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Abstract. We analyse the proof of a CHSH Bell-type inequality and show that this inequality cannot be
applied to the experiments it has been designed for. In the example we study, two polarization values
are attributed to each of the two photons of a correlated photon pair, such that four values are assigned
simultaneously to a single pair. But in the experiments these four values cannot be measured simultaneously
on a single photon pair, such that the assumptions underlying the inequality do not properly translate the
experimental situation into mathematics. The CHSH inequality is therefore based on wrong modelling. To
derive an inequality that correctly reflects the experimental situation and does contain the experimentally
measured probabilities p(aj ∧ bk), a combination of four distinct photon pairs (and, where applicable, two
single photons to measure p(a2) and p(b2) in independent runs) must be considered rather than just a single
pair. Using the same methodology as was used for the CHSH inequality one can derive a new inequality,
which is now based on correct modelling and properly translates the physics into mathematics. But is
has different, less stringent boundaries with the effect that it is no longer violated by the experiments.
Larsson has tried to rebut this within the context of the wrong model that has been used to derive the
CHSH inequality. Within this wrong context he presented the different boundaries obtained within the
correct model as an experimental loophole caused by statistical fluctuations when the counting statistics
are not good enough. Individual violations of the inequality would be possible but the averages, i.e. the
measured probabilities respect the inequality. This is wrong because what is at stake in the wrong model
is a systematic theoretical error caused by the wrong modelling. It has nothing to do with statistical
fluctuations and can therefore not be healed by improving the counting statistics. But based on his idea
about the averages Larsson is able to prove the inequality for the measured probabilities. However, this is
a proof locked up inside the premises of the wrong model, while a comparison between the wrong and the
correct model shows that their probability distributions are normalized differently, such that the wrong
model is smuggling in a normalization error. The same modelling error occurs in the derivation of other
types of Bell inequalities such that none of them can be applied to the experimental data they were designed
for. The violation of these Bell inequalities can therefore not be considered as a proof for the existence of
entanglement.

PACS. 03.65.Ta, 03.65.Ud, 03.67.-a

1 Introduction - Traditional derivation of a CHSH Bell inequality

The subject matter of the Bell inequalities culminating in the experiments of Aspect et al. [1,2] can be supposed
to be very well-known. For an introduction we refer to [3]. Further experimental developments have been the recent
loophole-free experiments [4,5]. Let us inspect the derivation of the CHSH Bell inequality given in [3]. We consider 4
variables a1 ∈ S, a2 ∈ S, b1 ∈ S, b2 ∈ S, where S = {0, 1}. The idea is that 0 corresponds to absorption in a polarizer,
and 1 to transmission. Then aj will correspond to polarizer settings in one arm of the set-up, and bk to polarizer
settings in the other arm. There are thus 16 possible combinations for the values of (a1, a2, b1, b2). By making a table
of these 16 combinations it is easy to verify that we always have:

∀(a1, a2, b1, b2) ∈ S4 : Q = a1b1 − a1b2 − a2b1 − a2b2 + a2 + b2 ∈ S. (1)
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Throughout the paper we will use the notation F (W1,W2) for the set of functions whose domain is the set W1 and
whose values belong to the set W2. Let us consider now functions aj ∈ F (V, S) and bk ∈ F (V, S). Here V is a set of
relevant variables for the experiment. We can call the set V the set of hidden variables. One can imagine that V could
be a subset of a vector space Rn or of a manifold, e.g. a non-abelian Lie group like SO(3) or SU(3). We have then:

∀λ ∈ V : 0 ≤ Q(λ) ≤ 1, where:

Q(λ) = a1(λ)b1(λ)− a1(λ)b2(λ)− a2(λ)b1(λ)− a2(λ)b2(λ) + a2(λ) + b2(λ). (2)

We can now consider a probability density p over V . The function p belongs then to the set of functions F (V, [0,∞[)
with domain V and values in [0,∞[. We further require that

∫
V
p(λ)dλ = 1. We can now integrate Equation 2 with p

over V . Introducing the notations:

p(aj ∧ bk) =

∫
V

aj(λ) bk(λ) p(λ) dλ,

p(aj) =

∫
V

aj(λ) p(λ) dλ, p(bk) =

∫
V

bk(λ) p(λ) dλ, (3)

we obtain then:

0 ≤ p(a1 ∧ b1)− p(a1 ∧ b2)− p(a2 ∧ b1)− p(a2 ∧ b2) + p(a2) + p(b2) ≤ 1. (4)

Here ∧ is the logical “and” operator. This is the CHSH Bell inequality applied to the photon correlation experiments
described in [1] and in its precursor [6]. It is a purely mathematical identity and does not depend on any physical
considerations. It is also free of any considerations about statistical correlations and statistical independence, which
must be dealt with in the definition of the probability density p ∈ F (V, [0,+∞[), i.e. its definition domain V , its values
and its normalization to 1. In [1,6], the quantity p(aj ∧ bk) becomes the probability for the event that photon 1 is
transmitted by the filter A oriented along a direction defined by the angle αj while its buddy photon 2 is transmitted
by the filter B oriented along βk.

Rather than using some experimental results with a limited accuracy, we can inject theoretical expressions for the
outcomes of these experiments into the inequality and check if they violate it. By adopting theoretical expressions we
can avoid the burden of discussing the experimental and statistical uncertainties. Many such uncertainties may occur
and lead to the objection that a violation reported could in reality not be genuine and be due to experimental errors.
This is then called an experimental loophole. There have therefore been elaborate attempts to make the experiments
very precise such as to close all possible experimental loopholes [4,5]. These experiments and those described in [1,2,
6] are all extremely meticulous, representing the state of the art of their time. The exact theoretical expressions can
be considered to just express what the result of an infinitely precise loophole-free experiment would be. By plugging
the exact theoretical expressions rather than experimental results into the inequality we free the argument from all
experimental considerations. It becomes immune to them. The probabilities are thus identified with the mathematical
expressions for the outcomes of the photon polarization experiments that are considered to be exact:

p(aj ∧ bk) =
1

2
cos2(αj − βk), p(aj) =

1

2
, p(bk) =

1

2
, (5)

where αj and βk are the angles of the polarizer settings in the two arms of the experiment. These expressions are
known to violate the Bell inequality for certain choices of angles α1, α2, β1 and β2. If the theoretical expressions in
Equation 5 were not rigorously exact, then we could still test the inequality with the improved rigorous expressions.
But the logic of the quest for rigorously exact data to test the Bell inequality falls apart if the Bell inequality in
Equation 4 itself is wrong.

We can try to derive the results of Equation 5 by classical reasoning. But when we fail to find such a derivation
this does not prove that such a classical derivation does not exist. It could just mean that we are too dull-witted or
lacking imagination. An example of such a classical calculation which fails is the following. Let us assume that a source
produces photon pairs that are both linearly polarized along an angle ϕ. Then applying Malus’ law the probabilities
for the transmissions of the filters at angles αj , βk will be cos2(αj − ϕ) and cos2(βk − ϕ) respectively. Under the
assumption that the probability of the angle ϕ is uniformly distributed, we get by integration over ϕ the following
classical expressions for the result of the experiment:

p(aj ∧ bk) =

∫ 2π

0

cos2(αj − ϕ) cos2(βk − ϕ) dϕ =
1

8
+

1

4
cos2(αj − βk),

p(aj) =
1

2
, p(bk) =

1

2
. (6)
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This is not in agreement with Equation 5 which reproduces the experimental results and is also the result predicted
by quantum mechanics. Now we can speculate that our failure could be due to not choosing the right assumptions.
This keeps us then wondering if a classical derivation exists or otherwise. In fact, the photons that impinge on a
polarization filter have not interacted with another polarization filter beforehand such that using Malus’ law might
not be in order. The interaction with a filter is also not a mere transmission, else a succession of polarizers at angles
0, π2 ,

π
4 would yield the same result as a succession 0, π4 ,

π
2 which is not the case. The polarizer modifies the state of

the photon and the correct description of this modification might be necessary for formulating a correct calculation.
The photons are also traversing a medium where they are subject to refraction and their speed becomes smaller than
c. But a violation of the Bell inequality puts an end to any such doubts, because it proves that such an alternative
derivation just does not exist. It is like Galois’ proof that in general we cannot solve a quintic by radicals. It is an
impossibility proof which shows that it is pointless to keep searching for another derivation. That is the importance
of the inequality. A violation of the inequality also questions realism and/or locality.

2 The logical error and how to correct for it

Let us now explain where this impossibility proof goes wrong. We made the point above that we could rather inject
the theoretical values into the inequality because the issue we want to raise is not at all one of some experimental error
giving rise to an experimental loophole. This issue we want to raise is a matter of principle, a logical error. It will be
very important to keep this distinction in mind in the following. Note that in Equation 1 the number a1 in a1b1 is the
same as in a1b2, implying that a1b1 and a1b2 must be measured on a same photon pair. The equation implies that all
numbers a1, a2, b1, b2 must be measured on a same photon pair.

� Remark 1. This does not mean that the numbers (a1, a2, b1, b2) are all “inscribed” inside both photons of a pair. As the
filter angles αj and βk can be given an uncountable infinity of orientations, that would require all possible numbers aj and bk
to be “registered” inside the photons. It seems unlikely that such a giant amount of information would be stored in a single
photon. It is more reasonable to assume that some information is present within the hidden variables of the photon and some
information within the hidden variables of the experimental set-up, such that then together these hidden variables determine
the outcome of a polarization experiment on a photon. Therefore, when we state that photons have the values (a1, a2, b1, b2) in
the following, it will only be a misuse of language in order to express that the hidden variables of the photons together with
those of their context (i.e. the set-up) determine these values.

Presumably, the photon has a few polarization parameters when it leaves the source and the rest is determined by the
interaction of the photon with the set-up, i.e. the two polarizers and their orientations. In other words, the outcome of the
experiment is produced by the interactions. This raises the question how we can consistently obtain the same response in both
arms of the set-up when the two polarizers are parallel. The systematic agreement shows that the interactions that come into
play are not the interaction of a photon with an individual electron, atom or molecule of a polarizer. That would give rise to
fluctuations with the result that the responses in both arms cannot be consistently the same. The mechanism must therefore
be more like the interaction of a photon with a macroscopic field generated by a very large amount of electrons, atoms or
molecules of the polarizers. It could e.g. be an electric field. That means that the hidden variables within the polarizer can be
replaced by macroscopic quantities that do not allow for fluctuations. All statistical fluctuations must therefore be due to those
of the completely correlated pair of photons. We will call these macroscopic quantities, which describe the polarizers, “the fields”.

But as combinations of filter orientations (α1, β1) and (α1, β2) cannot exist simultaneously, the photon pairs involved
in measuring p(a1 ∧ b1) and p(a1 ∧ b2) must be different (and they are!). Therefore in Equation 4 the probabilities
p(a1 ∧ b1) and p(a1 ∧ b2) are forcedly determined by measuring quantities a1b1 and a′1b

′
2 on different photon pairs,

in contradiction with the assumption underlying Equation 1, where we attribute to a photon simultaneously two
different linear polarizations. One of these polarizations in Equation 1 is then revealed by measurement, while the
(latent) existence of the other one is not revealed but supposed to be granted by determinism. Even if it might be
possible to obtain the value of the latent variable by deterministic reasoning it does not contribute to the statistics
(as implied by the algebra) because it is not counted in the set-up wherein it remains latent.

The correct Bell inequality for the experiments, translating them correctly into mathematics, should be based on

considering 16 numbers a
(`)
1 , a

(`)
2 , b

(`)
1 , b

(`)
2 , ` ∈ {1, 2, 3, 4} where ` is an index for the set-up used. This will then take

into account that the quantities p(aj ∧ bk) are all measured on different (sets of) photon pairs. Instead of Q as defined
in Equation 1 we can define:
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q1 = a
(1)
1 b

(1)
1 − a

(2)
1 b

(2)
2 − a

(3)
2 b

(3)
1 − a

(4)
2 b

(4)
2 + a

(3)
2 + b

(2)
2 ,

q2 = a
(1)
1 b

(1)
1 − a

(2)
1 b

(2)
2 − a

(3)
2 b

(3)
1 − a

(4)
2 b

(4)
2 + a

(3)
2 + b

(4)
2 ,

q3 = a
(1)
1 b

(1)
1 − a

(2)
1 b

(2)
2 − a

(3)
2 b

(3)
1 − a

(4)
2 b

(4)
2 + a

(4)
2 + b

(2)
2 ,

q4 = a
(1)
1 b

(1)
1 − a

(2)
1 b

(2)
2 − a

(3)
2 b

(3)
1 − a

(4)
2 b

(4)
2 + a

(4)
2 + b

(4)
2 . (7)

Here the four alternatives correspond to four different choices for the measurements from which we use a2 and b2
to complete the inequality. We could also measure p(a2) and p(b2) in independent runs. This will then lead to the
definition of yet another quantity Q (see below). In Equation 7 there are thus 216 = 65536 combinations of the numbers

a
(`)
1 , a

(`)
2 , b

(`)
1 , b

(`)
2 , ` ∈ {1, 2, 3, 4} to be considered.

Fig. 1: The quantities q1 and q2 as defined in Equation 7 as a function of the variable x = m/65536 which labels the

65536 combinations of the 16 variables a
(`)
1 , a

(`)
2 , b

(`)
1 , b

(`)
2 , ` ∈ {1, 2, 3, 4}. It can be clearly seen that these quantities

are no longer confined to the set {0, 1} but to an interval of length 4.

Fig. 2: The quantities q3 and q4 as defined in Equation 7 as a function of the variable x = m/65536 which labels the

65536 combinations of the 16 variables a
(`)
1 , a

(`)
2 , b

(`)
1 , b

(`)
2 , ` ∈ {1, 2, 3, 4}. It can be clearly seen that these quantities

are no longer confined to the set {0, 1}, but to an interval of length 4.
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In Figures 1-2 we represent the graphs of the results of these calculations for qj . The x-axis corresponds each time
to x = m/65536 where m is the label m ∈ [ 1, 65536 ] ∩ N of the combination. None of the values qj is limited to the
set {0, 1}. For comparaison, we also define Q` by:

Q` = a
(`)
1 b

(`)
1 − a

(`)
1 b

(`)
2 − a

(`)
2 b

(`)
1 − a

(`)
2 b

(`)
2 + a

(`)
2 + b

(`)
2 , ∀` ∈ {1, 2, 3, 4}. (8)

This corresponds to the traditional Bell inequalities for the photon pairs in the four set-ups. Figures 3-4 show the
graphs of the results of the calculations for Q` on the same table of 65536 combinations. Now all values Q` neatly
belong to {0, 1}.

Fig. 3: The quantities Q1 and Q2 as defined in Equation 8 as a function of the variable x = m/65536 which labels

the 65536 combinations of 4 variables a
(`)
1 , a

(`)
2 , b

(`)
1 , b

(`)
2 , ` ∈ {1, 2, 3, 4}, for ` = 1 and ` = 2. Now the quantities remain

confined to the set {0, 1}, which is the basis for the CHSH pristine Bell inequality.

Fig. 4: The quantities Q3 and Q4 as defined in Equation 8 as a function of the variable x = m/65536 which labels

the 65536 combinations of 4 variables a
(`)
1 , a

(`)
2 , b

(`)
1 , b

(`)
2 , ` ∈ {1, 2, 3, 4}, for ` = 3 and ` = 4. Now the quantities remain

confined to the set {0, 1}, which is the basis for the pristine CHSH Bell inequality.

Finally, we have also investigated the case where p(a2) and p(b2) are measured in independent runs. We can simplify

these calculations by leaving out the variables a
(1)
2 , b

(1)
2 , a

(2)
2 , b

(2)
1 , a

(3)
1 , b

(3)
2 , a

(4)
1 , b

(4)
1 from our calculations, because they

are not used anyway. We only used them above in order to be able to make a comparison with the data for Q`. We
can define then a set V = V1 × V2 × V3 × V4 × V5 × V6 of hidden variables (λ1, λ2, λ3, λ4, λ5, λ6) that are necessary
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to describe the observables that occur in the six independent runs η ∈ [1, 6] ∩ N. The four photon pairs and the two
single photons within the six data collection runs have then each their hidden variables. Here λ1 are hidden variables

for (a
(1)
1 , b

(1)
1 ) in set-up η = 1. We do not consider hidden variables for (a

(1)
2 , b

(1)
2 ) in set-up η = 1 because they do

not intervene in the measurements. In set-up η = 1, the variables (a
(1)
2 , b

(1)
2 ) are completely free. We consider thus

only the measured values c = (a
(1)
1 , b

(1)
1 , a

(2)
1 , b

(2)
2 , a

(3)
2 , b

(3)
1 , a

(4)
2 , b

(4)
2 , a

(5)
2 , b

(6)
2 ). Let us note (λ1, λ2, λ3, λ4, λ5, λ6) as λ

and dλ1 dλ2 dλ3 dλ4 dλ5 dλ6 as dλ. Here λη refers to the hidden variables in set-up η, where η ∈ [1, 6] ∩ N. The Bell
inequality will now be based on the quantity:

Q = a
(1)
1 b

(1)
1 − a

(2)
1 b

(2)
2 − a

(3)
2 (λ)b

(3)
1 − a

(4)
2 b

(4)
2 + a

(5)
2 + b

(6)
2 . (9)

The result of this calculation for all 1024 combinations c is shown in Figure 5. We see that the boundaries are now
−3 and 3. The values are now distributed over an interval of length 6. In all our calculations we have thus found an
equality between the length of the interval of the values and the number of experiments modelled.

Fig. 5: The quantity Q as defined in Equation 9 as a function of the variable x = m/1024 which labels the 210 = 1024

combinations c of possible values for the 10 variables (a
(1)
1 , b

(1)
1 , a

(2)
1 , b

(2)
2 , a

(3)
2 , b

(3)
1 , a

(4)
2 , b

(4)
2 , a

(5)
2 , b

(6)
2 ). The quantity

Q is no longer confined to the set {0, 1} but rather to the set [−3, 3] ∩ N, which is the basis for the corrected Bell
inequality in Equation 10. The length of the interval is now 6.

This will now yield really the probabilities measured in 6 runs to be inserted into the inequality:

− 3 ≤ p(a1 ∧ b1)− p(a1 ∧ b2)− p(a2 ∧ b1)− p(a2 ∧ b2) + p(a2) + p(b2) ≤ 3. (10)

For the full inequality we must thus integrate the inequality −3 ≤ Q(λ) ≤ 3 with p(λ) over V , where the boundaries

have been obtained by considering all 1024 possible combinations of c = (a
(1)
1 , b

(1)
1 , a

(2)
1 , b

(2)
2 , a

(3)
2 , b

(3)
1 , a

(4)
2 , b

(4)
2 , a

(5)
2 , b

(6)
2 ).

Of course the 6 runs are in reality obtained in one run where one performs ultra-fast switching between the 4 config-
urations of the two polarizers and two runs where only one parameter is measured.

Hence, the data for qj and for Q explore now a larger range than those for Q` (which correspond to the pristine
Bell inequality), because they are less strongly correlated. In fact, the photon pairs in the various runs are completely
independent. The observables aj , bk measured in different runs can therefore be different. The observables aj , bk for a
single photon pair do not allow for such a slight of hand in the thought experiment leading to Equation 4, where we
imagine that all the information is harvested at once. Hence the traditional Bell inequalities based on Equations 1 or
8 are correct for a single photon pair but it is impossible to test them by real-life experiments. Inequalities that can
be tested by experiments must be based on a derivation starting from Equation 7 or Equation 9. By just using the
simple argument used in the traditional derivation we can now no longer prove that the boundaries of the inequalities
that one can derive from Equation 7 or Equation 9 are as stringent as has been claimed on the basis of Eq 4. That
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simple argument stated that we can prove the Bell inequality by just using the results 0 ≤ Q`(λ) ≤ 1 and integrate
it using

∫
V
p(λ)dλ = 1, where ∀λ : p(λ) ≥ 0. We have then 0 ≤

∫
V
Q`(λ)p(λ)dλ ≤

∫
V
p(λ)dλ = 1. Using the same

argument, the boundaries we can establish this way for the inequality are now no longer 0 and 1. We can no longer
prove the CHSH inequality. These results indicate that the proof of the Bell inequality which has been applied to the
experiments is wrong.

3 Larsson’s rebuttal

Fig. 6: Histogram of the numbers N(Q) of times each value of the quantity Q(c) defined in Equation 9 is obtained in
the data for all combinations c reported in Figure 5. The theoretical frequencies are then ν(Q) = N(Q)/1024. If we

determined these frequencies experimentally by coin tossing for all variables a
(η)
j and b

(η)
k , the measured frequencies

may deviate from these theoretical frequencies, due to statistical fluctuations. Certain values of c may have been under-
sampled, while other values might have been over-sampled. But for good enough statistics, the measured frequencies
will converge to the theoretical frequencies shown in this histogram. Tossing the coin more times will not change the
theoretical interval [−3, 3] ∩ Z. The data shown here have no further purpose than illustrating that our argument
in the main text has nothing to do with statistical fluctuations. They are of no further use because to calculate the
experimental probabilities one must use p(λ), rather than rather than p(c) or p(Q) as determined by coin tossing and
the integral

∫
Q(c(λ))p(λ) dλ relies on the use of p(λ) rather than calculated quantities like p(Q) or p(c).

This problem that in each set-up one has pairs of photons that are different from those in the other set-ups has
already been discussed by Larsson [7] who indeed noted that in an experiment a1b1 and a1b2 are corresponding in
general to different values of λ, e.g. a1(λ1)b1(λ1) and a1(λ2)b2(λ2). His equation 15 contains the same expressions as
our Eqs. 7, 9. He then argued that there can be individual violations of the inequality but not in the mean for a large
quantity of data. For sufficiently good statistics the individual errors would average out and converge to the mean.
This argument would be an experimental loophole that could be solved by improving the statistics. This would then
debunk our objection.

But this is a very poor and misleading explanation of the state of affairs. The error at issue is not a statistical
error caused by statistical fluctuations but a systematic error produced by a wrong mathematical description of the
experiment. It misrepresents the systematic difference between a correct and a wrong model as a statistical error
within the framework of the wrong model. We can illustrate this with the aid of Figure 6 which is a histogram
for the occurrence of the values Q(c) ∈ [−3, 3] ∩ Z for all possible combinations c as displayed in Figure 5. The
frequencies ν(Q) = N(Q)/1024 in the histogram of Figure 6 are the exact theoretical frequencies the experimentally
measured frequencies will converge to when the statistics are good enough (if we attribute the same probability to each
configuration c). The values of Q and their frequencies in the histogram cannot be affected by improving the statistics
because they are theoretical and exact. The differences we find between Q and Q` cannot be belittled as experimental
errors due to statistical fluctuations. The only error that exists resides in the wrong choice of the model used to derive
Q`, which just does not describe the physical reality correctly. Both Q and Q` are the correct theoretical values for
their respective models. Also differences between the boundaries for qj or Q and those for Q` cannot be attributed to
statistical fluctuations. The boundaries for qj or Q are the exact theoretical values within the framework of a correct
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read-out set-up 1 set-up 2 set-up 3 set-up 4 set-up 5 set-up 6
+a1b1 −a1b2 −a2b1 −a2b2 +a2 +b2

1 t1,1
2 t2,1
...

...
j tj,1
...

...
u tu,1

u+ 1 tu+1,2

u+ 2 tu+2,2

...
...

u+ j tu+j,2

...
...

2u t2u,2
2u+ 1 t2u+1,3

2u+ 2 t2u+2,3

...
...

2u+ j t2u+j,3

...
...

3u t3u,3
3u+ 1 t3u+1,4

3u+ 2 t3u+2,4

...
...

3u+ j t3u+j,4

...
...

4u t4u,4
4u+ 1 t4u+1,5

4u+ 2 t4u+2,5

...
...

4u+ j t4u+j,5

...
...

5u t5u,5
5u+ 1 t5u+1,6

5u+ 2 t5u+2,6

...
...

5u+ j t5u+j,6

...
...

6u t6u,6

Table 1: Overview of the data collection. The columns show the six set-ups. For each set-up we have listed the terms
ajbk, aj or bk for which we want to measure the average value in order to determine the probabilities p(aj ∧ bk), p(aj)
or p(bk). For each set-up there are u registrations, such that in total there are 6u registrations.

description of the experiment. The theoretical values in Fig. 6 are like the theoretical values of the Gaussian function

g ∈ F (R,R) : x → g(x) = 1
σ
√
2π

exp(− (x−µ)2
2σ2 ). The numbers x ∈ R and the values g(x) are not empirical statistical

fluctuations with respect to the mean µ, that could be eliminated by improving the statistics, but theoretical values.

Statistical fluctuations are a subsidiary problem we do not have to treat in our discussion, because we have adopted
the strategy to inject the theoretical values into the inequalities. Behind its confusing formulation, Larsson’s argument
contains something far more essential than statistical fluctuations. The correct way to explain Larsson’s argument
is the following. It corresponds to the comparison he makes between his two equations 17 and 18. We consider the
experiment and its hidden variables as a purely theoretical thought experiment (Gedankenexperiment). We do not
perform the experiments, we just do the deterministic calculations that correspond to them. We can e.g. imagine that
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we calculate the results of the experiment by a Monte Carlo simulation. For each simulated photon pair we calculate
the four parameters a1, b1, a2, b2 from the hidden variables. We can register them on a first spreadsheet, which we will
call the pristine spreadsheet. But we also construct a second spreadsheet. On this second spreadsheet we will simulate
the six runs with the six set-ups in the real-life experiment. We do not register during the first run of u measurements
in set-up 1 the values obtained for a2, b2 in the calculations that we will use to obtain p(a1 ∧ b1). We only register the
values for a1b1. We wipe out all other numbers, because they do not play a rôle in set-up 1.

We can carry out an analogous trick of selective registration for the simulation of the result in each of the six
set-ups. For each set-up we register the truncated results for the emission of u ∈ N photon pairs. We must select for u
a very large number, in order to obtain good statistics. But as we are performing a thought experiment, we can take
u as large as we like. It just plays a theoretical rôle in a proof, similar to the one of u in the following definition of a
limit:

lim
x→∞

f(x) = a ⇔ (∀ε > 0)(∃u ∈ N)(x > u⇒ |f(x)− a| < ε), (11)

because we have pointed out that we do not bother about statistics in our theoretical approach. This way each of
the six measurement is in reality a repetition of a same imaginary experiment where we determine simultaneously all
parameters a1, b1, a2, b2, but do not register all the results.

In Table 1 we present an overview of the data collection on the second spreadsheet of the Monte-Carlo calculation.
We have noted all the data values registered in this data collection under the form tm,n with a line index m for the
sequence number of the registration and a column index n for the number of the set-up. We see that e.g. on lines
with sequence numbers m ∈ [1, u] ∩ N the quantities tm,n for n 6= 1 have not been registered. In general, only the
quantities t(n−1)u+j,n where j ∈ [1, u] ∩ N have been registered. We can qualify the experiment simulated by the
Monte-Carlo method, and whereby we measure all quantities a1, b1, a2, b2 simultaneously on each photon pair the
imaginary experiment, because it is impossible in real life to measure all quantities a1, b1, a2, b2 simultaneously on a
photon pair. If we do not wipe out any of the results of the calculation, such that on each data line m we would
register 6 numbers instead of 1, then this imaginary experiment must satisfy the Bell inequality Eq. 4 because the
inequality corresponds to the exact translation into mathematics of this imaginary experiment where all the quantities
a1, b1, a2, b2 are supposed to be fully determined by the hidden variables. The imaginary experiment is simulated by
the pristine spreadsheet. But after wiping out all the data as specified above and visualized in Table 1 the second
spreadsheet of the Monte-Carlo calculation simulates the real-life experiment.

For u sufficiently large the averages of the data t(n−1)u+j,n, where n is fixed and j ∈ [1, u] ∩ N will converge
to the same values as the averages of tm,n, where n is is fixed and m ∈ [1, 6u] ∩ N. Of course only the data for
m = (n− 1)u+ j with j ∈ [1, u]∩N have been registered on the second spreadsheet but all data tm,n are available on
the pristine spreadsheet of the imaginary experiment. The same is true for the averages of the data tj,n, where n is
fixed and j ∈ [1, u]∩N. Again, of the latter data only the data tj,1 have been registered on the second spreadsheet but
the other data are available on the pristine spreadsheet. Combining the two pieces of information, we can conclude
that the averages for (m,n) = ((n − 1)u + j, n) and for (m,n) = (j, n), where j runs over [1, u] ∩ N are equivalent.
This has been called the fair-sampling argument.

Consider now the block structure of the second spreadsheet in Table 1. The equivalence we proved means that
we can move all diagonal blocs (n, n) to the positions (1, n), not for the detailed information inside the blocks but
for their averages. This means that the six averages we obtain from the six set-ups are the same as we would have
obtained in the imaginary experiment by registering all the data for the measurements m ∈ [1, u]∩N (or alternatively
the measurements m ∈ [1, 6u]∩N for better statistics) without wiping them out. This proves that the results obtained
from the real-life experiment with the six set-ups are theoretically equivalent to those that we would have obtained
from the imaginary experiment whereby it would be physically possible to measure always the six values tm,n with
n ∈ [1, 6]∩N simultaneously. The real-life experiment is correctly translated into mathematics by Eq. 10. The imaginary
experiment is correctly translated into mathematics by Eq. 2. As the averages we obtain from the real-life experiment
and from the imaginary experiment have now been shown to be equivalent, the theoretical averages obtained from the
six experiments can be plugged into the Bell inequality based on the wrong formulation Eq. 2 and will satisfy it. This
description correctly resumes Larsson’s rebuttal. We may note that this rebuttal admits that the original proof of the
CHSH inequality was wrong and that the real proof is no longer as simple as has been claimed. This should prompt
us to be more cautious about the proofs that have been forwarded to us for years as unassailable.

4 The normalization error

Let us now show why this rebuttal is flawed. The motivation for formulating the Bell inequality was to perform a
simultaneous measurement of observables for correlated photons. It wanted to test Einstein’s original idea that the
components Lx and Ly of the angular momentum could be measured simultaneously for a single particle, despite the

fact that the corresponding operators L̂x and L̂y do not commute. We have discussed this issue in some more detail
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in the Appendix 1. Einstein’s trick was to make the reputedly impossible simultaneous measurement of Lx and Ly by
performing simultaneously a measurement with two different experimental devices on two identical particles. This kept
alive the idea that the information determining the outcome in the two experimental devices would be simultaneously
inscribed in the particles, e.g. Lx and Ly would be simultaneously defined for a single particle, just like they would
be simultaneously defined for a macroscopic object, like e.g. a spinning top.

In this discussion, all the information was locked up in the particles. But in the photon correlation experiment
the full information is no longer confined to the correlated pair of identical photons. A part of the information is
also stored in each of the polarizers. The full information is spread out over different locations in the set-up that can
be very remote one from another. We are therefore not at all testing Einstein’s original idea anymore. And in our
attempts to make sense of the experimental results we have even ended up with the condition that all the macroscopic
fields must be simultaneously inscribed in the hidden variables for a set-up (which corresponds to a single choice for
the orientation of each of the filters). This can definitely not be the case, because we are now no longer discussing
quantum properties of particles, but macroscopic properties of set-ups. There is no simultaneous information about
several set-ups available in a single set-up.

The problem is that in the thought experiment we must consider for both polarizers two possible orientations
simultaneously. Theoretically, there is absolutely no obstacle to the simultaneous definition of all the information about
the hidden variables involved in the two possible orientations of both filters in the imaginary thought experiment, but
experimentally there is.

Larsson’s argument considers the statistical averages obtained from the exact model description in Eq. 9 and
puts them into correspondence with the statistical averages that occur in the wrong model description of Eq. 2. The
discussion is kept confined inside the context of the wrong model.

The Bell inequality implies that the hidden variables for the four combinations of polarizer fields must all be
contained in the complete set V of all relevant hidden variables. We must construct this set V . Let us note the sets of
hidden variables when the polarizer orientations are αj as Aj , those when the polarizer orientations are βk as Bk, and
those for the photon pairs C. Then the set of hidden variables for the set-up 1 will be V1 = A1 ×B1 ×C. This will be
the set of hidden variables for the real-life measurement of p(a1 ∧ b1). The hidden variables for a2 and b2 do not play a
rôle in the outcome of this experiment. We must now define the probability distribution on the set V1. This description
will not contain a single clue about the fields that will be present in the measurements involving a2 and b2. Nature
can absolutely not know that we intend to perform experiments involving a2 and b2 later on. The joint probability
distribution over the set V1 of hidden variables for the photon pairs and the two fields involved in measuring a1 and
b1 (and nothing more) will yield an accurate description of what really happens in nature. This joint distribution will
be the exact probability distribution that determines the outcome for p(a1 ∧ b1).

If we now want to draw also the hidden variables involved in the measurement of a2 and b2 into the description such
that we can calculate all the probabilities that occur in the Bell inequality for the imaginary experiment simultaneously,
we will have to extend the set of all possible hidden variables such as to include also those for the fields involved in
the measurements of a2 and b2. This will now be the set we already called V . We will describe this construction in
Appendix 2. The result is that the set V must be larger than the set V1  V .

The extension from V1 to V will have to be accompanied by a redefinition of the probability distribution which
will now have a definition domain V that is larger than the set V1. And this redefinition will require a change of
the normalization of the probability distribution, because the integral of the probability distribution will now have
to be normalized to 1 over V while it was previously normalized to 1 over V1. This redefinition will change the
integral of the probability distribution over V1  V , which will now acquire a value smaller than one. This implies
that the normalizations of the probability distributions for the calculations of p(aj ∧ bk) in real life and of those for
the calculations in the imaginary experiment are different, because in real life the probability distributions in each
set-up are normalized to 1. We can therefore not plug the real-life values into the Bell-inequality for the imaginary
experiment. The values we would have to plug into the inequality must be smaller. That is the sting inherent to the
need for a common description that does not correspond to real life.

Note that this remark would not have surfaced if we had defined the set of hidden variables as A1×A2×B1×B2×C
because the probability distributions over all the sets that occur in the Cartesian product could be normalized to 1,
such that the integrals over A1×A2×B1×B2×C and over A1×B1×C would be both 1. But as explained in Appendix
2, this does not take into account the correlations and the mutually exclusive character of A1 and A2 and of B1 and
B2. The formulation of the definition domain is too coarse. To put it simple, in the real-life experiments of p(aj ∧ bk)
we just define a probability distribution on a subset of Aj × Bk. While to define a common distribution function
whereby a1, b1, a2, b2 are all defined for a same photon pair, we must combine the four definition domains of the four
set-ups in an all-encompassing common definition domain. For didactical purposes one often represents probabilities
on probability trees. Each set-up corresponds to a tree. But if we want to consider the probabilities from four different
set-ups simultaneously we must unite the four trees within a single tree by giving the four trees a common root. And
the probabilities must then be normalized on the larger tree instead of on one of the four original trees. One may now
conceive the idea that one can avoid this by presenting the whole situation as a single tree with a definition domain
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A1×A2×B1×B2×C. But the definition domain then still remains a disjoint union of four sets. The need to define a
common probability distribution and to translate the physics correctly into mathematics is the whole essence of what
has been forgotten in the wrong modelling of the CHSH inequality.

5 Epilogue

In a first step Larsson tacitly replaced the correct model for the real-life experiments by the wrong model of the
imaginary experiment. We can see that in a second step his argument about the averages holds as long as one stays
inside the context of the imaginary experiment (as we did in the Monte Carlo simulation). However, his argument
does not survive the confrontation of the imaginary experiment with the real-life experiments, which also has to be
performed in order to validate his first tacit step. Hence, when we claimed that the experiment visualized in Table 1
simulated the real-life experiment, this was actually a falsehood because the probabilities in the six real-life set-ups
(with their individual probability distributions) are normalized differently than the six probabilities in the imaginary
experiment (which is governed by a common probability distribution). The contexts are different and the context of
the imaginary experiment does not translate the real-life contexts correctly into mathematics.

Of course Larsson did not pass his first step deliberately under silence. His first step consisted in misinterpreting
the systematic errors induced by the wrong modelling as statistical fluctuations of the wrong model (from which
the CHSH inequality is derived), which he continued to consider as correct. This way he became trapped within the
wrong model. And then there were just more nasty issues involved in sticking to the wrong model than he could treat
after being trapped. Therefore Larsson’s argument is a fallacy that manifests itself by the fact that his imaginary
experiment has a hidden normalization problem. The reason for this is that the CHSH inequality requires a global
context that allows to consider all probabilities simultaneously such that we can insert them into the inequality, while
the real-life experiments are taking place in a restricted context, which ignores our intentions to insert the results into
a Bell inequality later on.

Note that when we make the individual experiments in real life, we normalize the data from each run to a same
amount of u emitted photon pairs. This normalization problem is different from the normalization problem we are
describing here to counter Larsson’s rebuttal, because in his proof the data we did not register are in principle
representative of those we did register and vice versa, such that his proof implies carrying out an identical normalization
to a same number u of emitted pairs of photons, as is clearly visible from Table 1. That is why his proof looked correct.

Hence, contrary to what has been claimed by Larsson [7] his work cannot save the comparison between the
theoretically and experimentally obtained values in the inequality. Our objection does not address an experimental
loophole due to poor statistical accuracy. Remember why we proposed to inject the correct theoretical values for
the probabilities into the inequalities. We adopted this strategy because when we proceed this way we do not have to
bother about statistical-accuracy loopholes of the kind evoked by Larsson. It warrants us a rock-solid immunity against
becoming bamboozled by arguments about statistical fluctuations. We are then avoiding such issues all together and
making sure that we focus our attention only onto possible logical flaws in the theory.

6 Conclusion

For a given value of `, the quantities a
(`)
1 , a

(`)
2 , b

(`)
1 , b

(`)
2 are just the data for a single photon pair, which according

to classical thinking could be obtained by deterministic reasoning from the hidden variables and/or revealed by
measurement. Hence, the traditional Bell inequalities based on Equations 1 or 8 are (in theory) correct for a single
photon pair but it is impossible to test them by experiments, let alone that they could be violated by experiments.
The inequality that can be tested by experiments is e.g. given in Equation 10. Our results show clearly that a wrong
Bell inequality has been applied to the experiments. Larsson tried to repair for this by averaging, but he missed the
point that the wrong formulation of the physics leads also to a wrong normalization of the probabilities.

We may note that in some photon correlation experiments the inequalities used are different from the CHSH
inequality because they are based on a different type of polarizers (beam-splitting polarizers leading to experimental
outcomes +1 and −1 rather than 0 and 1). One uses e.g. so-called CH and CH-Eberhard Bell inequalities. There
exists a whole plethora of Bell-type inequalities, but in the derivation of all these inequalities the same logical error
persists. The violation of such Bell inequalities is thus not an experimental proof that classical thinking would have
been defeated and that locality or realism would have to be abandoned. There is no evidence based on Bell-type
experiments in favour of the existence of entanglement.

That the application of the CHSH Bell inequality to the photon correlation experiments was not correct had
already been pointed out by many authors, starting with Kupczynski back in 1987 (see [8,9] and the many references
therein). Many authors have stressed the importance of contextuality and evoked the lack of proof for the existence
of a common probability distribution, as stipulated by integrating Eq. 2 over p(λ). The latter objection may have
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looked to be mere mathematical fault-finding. Our calculations are actually introducing constructions of common
probability distributions. But the common probability distribution that underlies the CHSH inequality is different
from the real-life probability distributions which define the measured probabilities which we want to inject into the
CHSH inequality. Of course everything is rendered complicated by the multidimensional character of the sets of hidden
variables, which we even do not know to specify in full detail, because we have no inkling of a physical mechanism
that supposedly would explain the experiment classically, as illustrated by the wrong calculation that led to Eq. 6.

It is well-known that probability calculus is teeming with pitfalls and paradoxes such that questioning locality
by relying on probability calculus was always a kind of reckless. Locality is nothing less than a cornerstone of the
theory of relativity and questioning it should preferably based on methods that are far less treacherous and error-prone.

Appendix 1: commutation relations

In quantum mechanics (QM) we learn that the operators

L̂z =
~
ı
[x

∂

∂y
− y ∂

∂x
] (cycl.), (12)

are the operators for the components of the angular momentum L = (Lx, Ly, Lz). They obey the commutation
relations:

[ L̂x, L̂y ] = ı~L̂z (cycl.). (13)

From this result, Bohr drew the conclusion that two components Lx and Ly of the angular momentum L could not
exist simultaneously. This is in the least highly counterintuitive. Heisenberg was less radical and in his discussions
with Bohr, he defended the viewpoint that the commutation relation would rather imply that Lx and Ly cannot be
measured simultaneously. Einstein did not accept these conclusions and in order to refute them he considered two
identical particles that would travel in opposite directions. On one of them one would measure Lx and on the other
Ly. Some clarification is needed here. First of all, there is also a commutation relation for p̂x and x̂:

[ x̂, p̂x ] = ı~1. (14)

But in quantum field theory Dirac replaced this by:

[φ(t, r1), χ(t, r2) ] = ı~δ(r1 − r2). (15)

Here φ and χ are operators for conjugated variables. This implies that the position operator in one place r1 and the
momentum operator in a different place r2 commute, but that position and momentum operators in the same place
r1 = r2 do not commute. This remark actually undermines Einstein’s strategy to rebut Bohr’s conclusion based on
the EPR argument, because it makes him miss the target (of addressing non-commuting variables), as we can actually
expect similarly:

[ L̂x(r1), L̂y(r2) ] = ı~ L̂zδ(r1 − r2) (cycl.), (16)

such that it is indeed possible to measure the two quantities simultaneously on two correlated particles. But there is
another confusion here, because the real meaning of L̂x is that it is the operator for the angular momentum L when it
is aligned with the x-axis [10]. The angular-momentum commutation relations are then no longer mysterious. In fact,
such commutation relations occur trivially in the Lie algebra of every non-abelian Lie group and are entirely classical.
The operators L̂x and L̂y simply do not commute because the angular momentum cannot be simultaneously aligned
with the y-axis, when it is already aligned with the x-axis [10]. The situation is completely analogous for electron spin
operators.

Let us consider only polarizers whose planes are parallel to a given plane. We can then characterize their orientation
by an angle in this plane. We have noted these orientations by the angles αj for the filter A and βk for filter B. We do
not know what kind of commutation relations one should define for polarization operators. But conceptually we must
take into account that we cannot orient simultaneously a filter A along α2 in r1 when it is already aligned along α1

in r1. However, it is possible to align a filter B in a position r2 along βk when A is already aligned along αj in r1. In
other words we cannot measure simultaneously the polarizations along α1 and α2 in r1 or along β1 and β2 in r2 but
we can measure simultaneously any combination of αj in r1 and βk in r2. That is not only true in QM, it is also true
in classical physics.
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Appendix 2 - Common probability distribution for the CHSH inequality

We will only describe the part of the construction that allows to consider the four probabilities p(aj ∧ bk). We will
make the construction in several steps. We will treat the sets of hidden variables in terms of positions within the
filters, despite the considerations we formulated in terms of fields in Remark 1. The idea behind this is that we want
to depend as little as possible on assumptions. E.g. the magnitude of a field might vary while only its direction has to
remain fixed. All relevant hidden variables will be functions of the positions. This turns the sets of hidden variables
into geometrical sets. We cannot have the product A1 × A2 within the expression of the definition domain as this
would imply that we can also measure p(a1 ∧ a2), while the two sets never acquire physical reality simultaneously.
Also A1 ∪A2 does not make sense because A1 ∩A2 contains position coordinates r1 ∈ A1 and A2 position coordinates
r2 ∈ A2 whereby r1 = r2. The sets A1 and A2 should have no real intersection because the two filter orientations they
correspond to cannot exist simultaneously. We therefore must perform the simultaneous description of A1 and A2 in
R6.

This repeats in a sense Einstein’s trick of identical duplication. We replace the pair of identical photons by two
identical pairs of identical photons, whereby one pair travels in a first universe E1 = R3 which contains the polar-
izers with orientations (α1, β1) and the other pair in a second universe E2 = R3 which contains the polarizers with
orientations (α2, β2). We can consider E1 and E2 as simultaneously embedded in R6 under the form E1 ∪ E2 ⊂ R6,
where

E1 = {(r1,0) ∈ R6 ‖ r1 ∈ E1},
E2 = {(0, r2) ∈ R6 ‖ r2 ∈ E2}. (17)

This way E1 ∼ E1 and E2 ∼ E2 become equivalent to orthogonal subspaces of R6. We define the isomorphism:
f1 ∈ F (E1, E1) by ∀r ∈ E1 : f1(r) = (r,0). We note this isomorphism as r ∼ (r,0). We also define the isomorphism:
f2 ∈ F (E2, E2) by ∀r ∈ E2 : f2(r) = (0, r). We note this isomorphism also as r ∼ (0, r). Finally we define an
isomorphism f ∈ F (E1, E2) by ∀(r,0) ∈ E1 : f(r,0) = (0, r) ∈ E2. We also write this isomorphism as (r,0) ∼ (0, r).
Under this isomorphism the trajectories of the first pair of photons are always mapped on the trajectories of the second
pair. We have then an isomorphism f between E1 ∼ E1 and between E2 ∼ E2. The sets E1 and E2 are disjoint. We
see that by construction E1 ⊥ E2, while we could have qualified E1 and E2 colloquially as “parallel” universes. The
experiment has now four arms, with the second pair of arms perpendicular to the first one. Despite the fact that E1

and E2 are both equivalent to R3, we have E1 ∼ E2 and E1 ⊥ E2 rather than E1 = E2.
We can then describe the probabilities p(a1 ∧ b1) and p(a2 ∧ b2) simultaneously on ((A1 × B1)× (A′2 × B′2))× C,

where we use the accents to note subsets of E2, such that A1∩A′2 = ∅ and B1∩B′2 = ∅. But this is not yet a completely
accurate definition of the definition domain of the probability distribution, because the photons are impinging onto
the polarizers in positions that are symmetrical with respect to the origin of R3. We must take into account this
correlation.

We could take these correlations also into account by making them part of the definition of the probability distri-
bution, by writing it sloppily, in a notation where the accents are tacitly implied, as:

p(rA,1)p(rA,2)p(rB,1)p(rB,2)

 2∑
j=1

δ(rA,j + rB,1) δ(rA,3−j + rB,2)

 , (18)

where rA,j and rB,k are noting position vectors in Aj and Bk. Note that the Dirac measures can be represented as
limits of test functions which are valid probability distribution functions. But all this is of course not rigorous, because
without the accents it represents the sets A1 and A2 as coexisting simultaneously in R3. The same is true for the
sets B1 and B2. Furthermore, the correlations are reducing the true sizes of the definition domains. Such reductions
are hidden by identifying the definition domains with Aj ×Bk and relegating the correlations to the definition of the
probability distribution. It impedes us to appreciate the true sizes of the definition domains. It becomes then less
obvious to show that the size of definition domain V of the common probability distribution is four times larger than
the size of the definition domain for a single set-up V1  V , as we will do. It is therefore better to treat the correlations
by incorporating them in the definition of the sets. Therefore, instead of A1 ×B1 and A′2 ×B′2, we define the sets:

E11 = {(r, r′) ∈ A1 ×B1 ‖ r + r′ = 0}
E22 = {(r, r′) ∈ A′2 ×B′2 ‖ r + r′ = 0}

E11,22 = {(ρ,ρ′) ∈ E11 × E22 ‖ ρ ∼ ρ′}. (19)
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This will allows us to define simultaneously p(a1 ∧ b1) and p(a2 ∧ b2). We must also define simultaneously p(a1 ∧ b2)
and p(a2 ∧ b1). We must therefore make a similar construction in a different space R6:

E12 = {(r, r′) ∈ A′′1 ×B′′2 ‖ r + r′ = 0}
E21 = {(r, r′) ∈ A′′′2 ×B′′′1 ‖ r + r′ = 0}

E12,21 = {(ρ,ρ′) ∈ E12 × E21 ‖ ρ ∼ ρ′}. (20)

To define simultaneously the four probabilities p(aj∧bk) we must then combine the two R6 representations as orthogonal
spaces in R12, the same way as we combined two R3 representations as orthogonal spaces in R6. The set of hidden
variables is then:

E × C = {(R,R′) ∈ E11,22 × E12,21 ‖ R ∼ R′} × C. (21)

We end up in R12 because we must reconcile four mutually incompatible set-ups in R3 wherein we measure the same
photon pair, as requested by the definition of the CHSH Bell inequality, where all quantities are simultaneously defined
for the same photon pair. There is also an ambiguity in the notation (a1, b1, a2, b2) because it does not specify if in the
real world this is obtained as ((a1, b1), (a2, b2)) or as ((a1, b2), (a2, b1)). We can always use C, because when we know
one photon, we know all of them as the four photons are identical. Moreover C does not contain position coordinates
but information about the polarizations of the identical photons. Up to isomorphisms the definition domain is a subset
of (A1 ∪A′2)× (B1 ∪B′2)× C. This subset can serve as a set of hidden variables because the other variables, like the
fields, are defined on A1, A′2, B1, B′2.

Of course, when the fields are constant, a much more simple construction of the set of hidden variables is in principle
possible, whereby we no longer specify the position coordinates but the fields. But we then still must define the set of
hidden variables as the union of four disjoint sets, determined by the four possible combinations (F(Aj),F(Bk)) of
the fields F . The set V1 is then a subset of A1 ×B1 × C and one of these four disjoint sets.

We can write V as a subset of ∪jkAj ×Bk ×C, with the accents implicitly understood. Obviously V1  V . On the
set E×C we can describe as a “real” experiment what we are forced to consider as an “imaginary” experiment in R3,
where the use of the qualifier “imaginary” is used to pinpoint the fact that two different orientations of the same filter
cannot simultaneously exist. On E×C this contradiction does no longer exist, because the different filter orientations
have been relegated to different orthogonal spaces. It is in this sense that we can call the thought experiment then
“real”: it is contradiction-free. The measure of the set of (A1 ∪ A′2) × (B1 ∪ B′2) will in principle be four times the
measure of any set of Aj ×Bk if the polarizers are strictly identical. The same will in principle be true for the subsets
which define the hidden variables [11].
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Larsson, J.-Å.; Abellán, C.; Amaya, W.; Pruneri, V.; Mitchell, M.W.; Beyer, J.; Gerrits, T.; Lita, A.E.; Shalm, L.K.;
Nam, S.W.; Scheidl,T.; Ursin,R.; Wittmann,B.; and Zeilinger, A.; Significant-Loophole-Free Test of Bell’s Theorem with
Entangled Photons. Phys. Rev. Lett. 115, 250401 (2015).

5. Shalm, L.K.; Meyer-Scott, E.; Christensen, B.G.; Bierhorst, P.; Wayne, M.A.; Stevens, M.J.; Gerrits,T.; Glancy, S.; Hamel,
D.R.; Allman, M.S.; Coakley, K.J.; Dyer, S.D.; Hodge, C.; Lita, A.E.; Verma, V.B.; Lambrocco, C.; Tortorici, E.; Migdall,
A.L.; Zhang, Y.; Kumor, D.R.; Farr, W.H.; Marsili, F.; Shaw, M.D.; Stern, J.A.; Abellán, Amaya, C.W.; Pruneri, V.;
Jennewein, T.; Mitchell, M.W.; Kwiat, P.G.; Bienfang, J.C.; Mirin, R.P.; Knill, E.; and Nam S.W.; Strong Loophole-Free
Test of Local Realism. Phys. Rev. Lett. 115, 250402 (2015).

6. Freedman, S.A.; and Clauser, J.F; Experimental test of local hidden variables. Phys. Rev. Lett. 28, 938 (1972).
7. Larsson, J.-A.; Loopholes in Bell inequality test of local realism. J. Phys. A 47, 424003 (2014).



G. Coddens: Bell inequalities 15

8. Kupczynski, M.; Is the Moon there if Nobody Looks: Bell Inequalities and Physical Reality. Frontiers in Physics 8, 273
(2020).

9. Kupczynski, M.; Closing the Door on Quantum Nonlocality. Entropy 20, 877 (2018).
10. Coddens, G. The exact meaning of the angular-momentum and spin operators in quantum mechanics.

https : //hal.archives− ouvertes.fr/hal− 03323780 (2021).
11. Khrennikov, A. Classical probability model for Bell inequality. Journal of Physics: Conference Series 504, 012019 (2014).


	Introduction - Traditional derivation of a CHSH Bell inequality
	The logical error and how to correct for it
	Larsson's rebuttal
	The normalization error
	Epilogue
	Conclusion

