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Abstract. We explain that the CHSH Bell inequality cannot be applied to the photon correlation exper-
iments that have been associated with it. In fact, when we apply the inequality to these experiments its
derivation would imply that a single photon can have two different linear polarization states at the same
time, while they cannot be measured at the same time. The issue is a consequence of the special exper-
imental context we try to impose the mathematics on. We are able to pinpoint the exact place in the
derivation of the inequality where the application of the mathematics to the physics causes a problem. We
then derive a Bell inequality that is appropriate for an application to the experiments. The boundaries of
this corrected inequality are much less stringent and the experiments do not violate this inequality.

PACS. 0 3.65.Ta, 03.65.Ud, 03.67.-a

1 Introduction: commutation relations

In quantum mechanics (QM) we learn that the operators

L̂z =
~
ı
[x

∂

∂y
− y ∂

∂x
] (cycl.), (1)

are the operators for the components of the angular momentum L = (Lx, Ly, Lz). They obey the commutation
relations:

[ L̂x, L̂y ] = ı~L̂z (cycl.). (2)

From this result, Bohr drew the conclusion that two components Lx and Ly of the angular momentum L could not
exist simultaneously. This is in the least highly counterintuitive. Heisenberg was less radical and in his discussions
with Bohr, he defended the viewpoint that the commutation relation would rather imply that Lx and Ly cannot be
measured simultaneously. Einstein did not accept these conclusions and in order to refute them he considered two
identical particles that would travel in opposite directions. On one of them one would measure Lx and on the other
Ly. Some clarification is needed here. First of all, there is also a commutation relation for p̂x and x̂:

[ x̂, p̂x ] = ı~. (3)

But in quantum field theory Dirac replaced this by:

[φ(t, r1), χ(t, r2) ] = ı~δ(r1 − r2). (4)

Here φ and χ are operators for conjugated variables. This implies that the position operator in one place r1 and the
momentum operator in a different place r2 commute, but that position and momentum operators in the same place
r1 = r2 do not commute. This remark actually undermines Einstein’s strategy to rebut Bohr’s conclusion based on
the EPR argument, because it makes him miss the target, as we can actually expect similarly:

[ L̂x(r1), L̂y(r2) ] = ı~ L̂zδ(r1 − r2) (cycl.), (5)
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such that it is indeed possible to measure the two quantities simultaneously on two correlated particles. But there is
another confusion here, because the real meaning of L̂x is that it is the operator for the angular momentum L when it
is aligned with the x-axis [1]. The angular-momentum commutation relations are then no longer mysterious. In fact,
such commutation relations occur trivially in the Lie algebra of every non-abelian Lie group and are entirely classical.
They only express that e.g. the angular momentum cannot be simultaneously aligned with the y-axis, when it is
already aligned with the x-axis [1]. We have actually very similar commutation operations for electron spin operators.

Let us consider only polarizers whose planes are parallel to a given plane. We can then characterize their orientation
by an angle in this plane. We note these orientations by the angles αj for filter A and βk for filter B. We do not know
what kind of commutation relations one should define for polarization operators. But conceptually we must take into
account that we cannot orient simultaneously a filter A along α2 in r1 when it is already aligned along α1 in r1.
However, it is possible to align a filter B in a position r2 along βk when A is already aligned along αj in r1. In other
words we cannot measure simultaneously the polarizations along α1 and α2 in r1 or along β1 and β2 in r2 but we
can measure simultaneously any combination of αj in r1 and βk in r2. That is not only true in QM, it is also true in
classical physics.

2 Bell inequalities

A part of the present section is drawn from [2]. The subject matter of the Bell inequalities and the experiments of
Aspect et al. [3,4] can be supposed to be very well-known. For an introduction we refer to [5]. However, the argument
has often been blurred by drawing in unnecessary issues, leading to some confusion. We give here an elementary
derivation that removes all unnecessary considerations. This will show how elementary the argument is and how very
hard it is to question the validity of the inequalities.

We consider 4 variables a1 ∈ S, a2 ∈ S, b1 ∈ S, b2 ∈ S, where S = {0, 1}. The idea is that 0 corresponds to
absorption in a polarizer, and 1 to transmission. Then aj will correspond to polarizer settings in one arm of the set-up,
and bk to polarizer settings in the other arm. There are thus 16 possible combinations for the values of (a1, a2, b1, b2).
By making a table of these 16 combinations it is easy to verify that we always have:

∀(a1, a2, b1, b2) ∈ S4 : Q = a1b1 − a1b2 − a2b1 − a2b2 + a2 + b2 ∈ S. (6)

We consider now functions aj ∈ F (V, S) and bk ∈ F (V, S). The notation F (V, S) stands for the set of functions whose
domain is the set V and whose values belong to the set S. Here V is a set of relevant variables for the experiment. We
can call the set V the set of hidden variables, even if some of them may not really be hidden. One can imagine that
V could be a subset of a vector space Rn or of a manifold, e.g. a non-abelian Lie group like SO(3). We have then:

∀λ ∈ V : 0 ≤ Q(λ) = a1(λ)b1(λ)− a1(λ)b2(λ)− a2(λ)b1(λ)− a2(λ)b2(λ) + a2(λ) + b2(λ) ≤ 1. (7)

We can now consider a probability density p over V , i.e. p(λ) dλ. The function p belongs then to the set of functions
F (V, [0,∞[) with domain V and values in [0,∞[. We further require that

∫
V
p(λ)dλ = 1. We can now integrate Eq. 7

with p over V . Introducing the notations:

p(aj ∧ bk) =

∫
V

aj(λ) bk(λ) p(λ) dλ, p(aj) =

∫
V

aj(λ) p(λ) dλ, p(bk) =

∫
V

bk(λ) p(λ) dλ, (8)

we obtain then:

0 ≤ p(a1 ∧ b1)− p(a1 ∧ b2)− p(a2 ∧ b1)− p(a2 ∧ b2) + p(a2) + p(b2) ≤ 1. (9)

Here ∧ is the logical “and” operator. This is the CHSH Bell inequality used in the photon correlation experiments
described in Shimony’s review article. It is a purely mathematical identity and does not depend on any physical
considerations. It is also free of any considerations about statistical correlations and statistical independence. We
will apply this inequality to the probabilities in the photon correlation experiments. Then p(aj ∧ bk) becomes the
probability for the event that photon 1 is transmitted by the filter A aligned along αj while its buddy photon 2 is
transmitted by the filter B aligned along βk. The probabilities are thus identified with the mathematical expressions
for the outcomes of the photon polarization experiments:

p(aj ∧ bk) =
1

2
cos2(αj − βk), p(aj) =

1

2
, p(bk) =

1

2
, (10)

where αj and βk are the angles of the polarizer settings in the two arms of the experiment. There is a loophole in this
derivation, viz. that it cannot be taken for granted that there exists a common probability distribution F (V, [0,∞[) from
which it would be possible to derive the values of the four quantities p(αj ∧ βk) simultaneously by integration over Eq.
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7 (See Eqs. 7 and 8 in [2]). From the viewpoint of mathematical rigour the introduction of such a common probability
distribution would require an existence proof. A physicist might consider this remark as mathematical faultfinding.
The existence of a common probability distribution is certainly a necessary condition for the four quantities p(αj ∧ βk)
to exist simultaneously. This is in turn a necessary condition for one being able to derive the Bell inequality for them.

But the considerations in Section 1 show that the simultaneous existence of these four quantities cannot be taken
for granted. This is e.g. what quantum mechanics would state when we measure quantities that correspond to non-
commuting operators. To many people such a no-go zone is conceptually purely quantum mechanical. But we have
seen in Section 1 that this is not true. Commutation relations also occur in Lie algebras. Furthermore a polarizer
cannot be aligned in two different orientations at the same time. The latter remark cannot be considered as outside
the scope of classical reasoning. In this respect many authors have used the concept of contextuality to signal this
remark.

3 The correct inequality

Fig. 1: The quantities q1 and q2 as defined in Eq. 11 as a function of the variable x = m/65536 which labels the 65536

combinations of the 16 variables a
(`)
1 , a

(`)
2 , b

(`)
1 , b

(`)
2 , ` ∈ {1, 2, 3, 4}. It can be clearly seen that these quantities are no

longer confined to the set {0, 1}.

Note that in Eq. 6 the number a1 in a1b1 is the same as in a1b2, implying that a1b1 and a1b2 must be measured on
a same photon pair. The equation implies that all numbers a1, a2, b1, b2 must be measured on a same photon pair. But
as combinations of filter orientations (α1, β1) and (α1, β2) cannot exist simultaneously, the photon pairs involved in
measuring p(a1 ∧ b1) and p(a1 ∧ b2) must be different. Therefore in Eq. 9 the probabilities p(a1 ∧ b1) and p(a1 ∧ b2)
are forcedly determined by measuring quantities a1b1 and a′1b

′
2 on different photon pairs, in contradiction with the

assumption expressed in Eq. 6, which requires a photon to have simultaneously two different linear polarizations. One
of these polarizations in Eq. 6 is then revealed by measurement, while the (latent) existence of the other one is not
revealed but supposed to be granted by determinism. Even if it might be possible to obtain the value of the latent
variable by deterministic reasoning it could not possibly contribute to the statistics (as implied by the algebra) because
it is not counted in the set-up wherein it remains latent.

The correct Bell inequality for the experiments would consist in considering 16 numbers a
(`)
1 , a

(`)
2 , b

(`)
1 , b

(`)
2 , ` ∈

{1, 2, 3, 4} where ` is an index for the set-up used. This would take into account that the quantities p(aj ∧ bk) are all
measured with different photon pairs. Instead of Q as defined in Eq. 6 we can define:

q1 = a
(1)
1 b

(1)
1 − a

(2)
1 b

(2)
2 − a

(3)
2 b

(3)
1 − a

(4)
2 b

(4)
2 + a

(3)
2 + b

(2)
2 ,

q2 = a
(1)
1 b

(1)
1 − a

(2)
1 b

(2)
2 − a

(3)
2 b

(3)
1 − a

(4)
2 b

(4)
2 + a

(3)
2 + b

(4)
2 ,

q3 = a
(1)
1 b

(1)
1 − a

(2)
1 b

(2)
2 − a

(3)
2 b

(3)
1 − a

(4)
2 b

(4)
2 + a

(4)
2 + b

(2)
2 ,

q4 = a
(1)
1 b

(1)
1 − a

(2)
1 b

(2)
2 − a

(3)
2 b

(3)
1 − a

(4)
2 b

(4)
2 + a

(4)
2 + b

(4)
2 . (11)

Here the four possibilities correspond to four different choices for the measurements from which we use a2 and b2 to

complete the inequality. There are thus 216 = 65536 combinations of the numbers a
(`)
1 , a

(`)
2 , b

(`)
1 , b

(`)
2 , ` ∈ {1, 2, 3, 4} to
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be considered. In Fig. 1-2 we represent the graphs of the results of these calculations. The x-axis corresponds each
time to x = m/65536 where m is the label m ∈ [ 1, 65536 ] ∩ N of the combination. None of the values qj is limited
to the set {0, 1}. In fact they explore now a larger range because the data occurring in qj are less strongly correlated
than those in Q` (defined in Eq. 12), which correspond to the pristine Bell inequalities.

When we use the filter orientation α1 the number a2 becomes redundant in the sense that it is then not used in Eq.
11. It represents a potentiality that does not become reality by counting. We could therefore have limited ourselves

to the 8 parameters (a
(1)
1 , b

(1)
1 , a

(2)
1 , b

(2)
2 , a

(3)
2 , b

(3)
1 , a

(4)
2 , b

(4)
2 ) instead of the 16 numbers, because the other 8 numbers

are not being used in Eq. 11. But the formulation with 16 numbers is robust against any permutation of the labels
(1, 2, 3, 4) we attribute to the 4 combinations of filter settings. It would only require adapting the definitions of qj
accordingly. Keeping these redundant quantities permits also performing the following cross-check, which we think is
enlightening.

Fig. 2: The quantities q3 and q4 as defined in Eq. 11 as a function of the variable x = m/65536 which labels the 65536

combinations of the 16 variables a
(`)
1 , a

(`)
2 , b

(`)
1 , b

(`)
2 , ` ∈ {1, 2, 3, 4}. It can be clearly seen that these quantities are no

longer confined to the set {0, 1}.

Fig. 3: The quantities Q1 and Q2 as defined in Eq. 12 as a function of the variable x = m/65536 which labels the

65536 combinations of 4 variables a
(`)
1 , a

(`)
2 , b

(`)
1 , b

(`)
2 , ` ∈ {1, 2, 3, 4}, for ` = 1 and ` = 2. Now the quantities remain

confined to the set {0, 1}, which is the basis for the CHSH pristine Bell inequality.

Let us define Q` by:

Q` = a
(`)
1 b

(`)
1 − a

(`)
1 b

(`)
2 − a

(`)
2 b

(`)
1 − a

(`)
2 b

(`)
2 + a

(`)
2 + b

(`)
2 , ∀` ∈ {1, 2, 3, 4}. (12)

This corresponds to the traditional Bell inequalities for the four set-ups. For comparison we show in Figs. 3-4 also the
graphs for the calculations for Q` on the same table of 65536 combinations. Now all values Q` neatly belong to {0, 1}.
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Fig. 4: The quantities Q3 and Q4 as defined in Eq. 12 as a function of the variable x = m/65536 which labels the

65536 combinations of 4 variables a
(`)
1 , a

(`)
2 , b

(`)
1 , b

(`)
2 , ` ∈ {1, 2, 3, 4}, for ` = 3 and ` = 4. Now the quantities remain

confined to the set {0, 1}, which is the basis for the pristine CHSH Bell inequality.

Hence the traditional Bell inequalities remain correct but they are not tested by the experiments. By just using the
simple arguments used in the traditional derivation we can now no longer prove that the boundaries of the testable
inequality are as stringent as has been claimed. These results show clearly that a wrong Bell inequality has been
applied to the experiments. That the application of the CHSH Bell inequality to the photon correlation experiments
was not correct had already been pointed out by many authors, starting with Kupczynski back in 1987 (see [6,7] and
the many references therein). We think that the situation must now be very clear. There is absolutely nothing more
to say.
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