Vincent Lefèvre

Nicolas Louvet

Jean-Michel Muller

Joris Picot

Laurence Rideau

Accurate Calculation of Euclidean Norms using Double-Word Arithmetic

Keywords: Floating-point arithmetic, Euclidean norms, Double-word arithmetic, Doubledouble arithmetic, Over ow, Under ow, Square-root, Formalization, Proof assistant, Coq

We consider the computation of the Euclidean (or L2) norm of an n-dimensional vector in oating-point arithmetic. We review the classical solutions used to avoid spurious over ow or under ow and/or to obtain very accurate results. We modify a recently published algorithm (that uses double-word arithmetic) to allow for a very accurate solution, free of spurious over ows and under ows. To that purpose, we use a double-word square-root algorithm of which we provide a tight error analysis. The returned L2 norm will be within very slightly more than 0.5 ulp from the exact result, which means that we will almost always provide correct rounding.

Introduction 1.Computation of Euclidean norms

We consider the computation of Euclidean norms in binary oating-point arithmetic. The Euclidean (or L2) norm of a vector (a 0 , a 1 , a 2 , . . . , a n-1) ∈ R n is the number

N = n-1 i=0 a 2 i . (1)
The particular case n = 2 (the so-called "hypotenuse" function) has been studied in excellent references [START_REF] Beebe | The Mathematical-Function Computation Handbook: Programming Using the MathCW Portable Software Library[END_REF][START_REF] Borges | Algorithm 1014: An improved algorithm for hypot(x,y)[END_REF]. In this paper, we assume that n is larger (more precisely, our algorithms do work in the cases n = 1 or 2, but it is for larger values that good performance is aimed at). Computing Euclidean norms is important in many scienti c and engineering applications. A good implementation of the Euclidean norm must be fast and accurate. It must also avoid spurious under ows and over ows. A spurious under ow or over ow is an under ow or over ow that occurs during an intermediate step, resulting in an inaccurate, in nite or NaN returned result, whereas the exact result is well within the domain of normal oating-point numbers.

To illustrate how spurious under ows and over ows can jeopardize the computation of a Euclidean norm, consider the following examples, assuming IEEE 754 binary64/double-precision arithmetic and n = 3, with the default round-to-nearest, ties-to-even, rounding function, and suppose that we implement Formula (1) naively by rst summing the squares serially and then taking the square-root.

• With a 0 = 1.5 × 2 511 , a 1 = 0, and a 2 = 2 512 , we will obtain an in nite result (because the computation of a 2 2 over ows), whereas the exact result is 5 × 2 510 , which is much smaller than the over ow threshold;

• with a 0 = a 1 = a 2 = (45/64) × 2 -537 , the computed result is 0, whereas the exact result is around 1.2178 × 2 -537 , which is much above the under ow threshold.

Note that from an accuracy point-of-view, spurious under ow is a problem only if all terms a i are tiny (otherwise, the errors due to under ows that occur when squaring the "tiny" terms vanish in front of the squares of the "big" terms). However, spurious under ow can be very harmful from a performance point-of-view on a system on which subnormal numbers are handled in software, through a trapping under ow mechanism.

There are no catastrophic cancellations when computing a Euclidean norm: all added terms are nonnegative. Hence, even a naive use of Formula (1) will be rather accurate when no under ow or over ow occurs. More precisely, Jeannerod and Rump recently showed [START_REF] Jeannerod | On relative errors of oating-point operations: optimal bounds and applications[END_REF] that the relative error is bounded by

n 2 + 1 • u, (2)
where u is the "rounding unit" (see de nition below). The bound (2) is very sharp: for instance, in binary64/double-precision oating-point arithmetic, if n = 7, with a 0 = 1125899918705907/2 50 , a 1 = 6893812215223557/2 66 and a 2 = a 3 = • • • = a 6 = 1592262918131443/2 77 , the naive use of Formula (1) leads to a relative error 4.499999839236531787 • • • u, which is extremely close to the bound n 2 + 1 u = 4.5u. However, the probability of observing a similar case by chance is almost zero: such examples must be built, and in practice, the typical error rather grows like √ n • u [START_REF] Higham | A new approach to probabilistic rounding error analysis[END_REF]. However, we can try to take advantage of the absence of catastrophic cancellations to always obtain results very near the exact result. Our goal is to obtain a result that is almost always correctly rounded (or always correctly rounded, using Ziv's rounding test, see Remark 4.6 below). Correct rounding enhances the reproducibility of the calculations, which is becoming an important issue: as pointed out by Demmel and NGuyen [START_REF] Demmel | Numerical reproducibility and accuracy at exascale[END_REF], in the context of ExaScale computing, reproducibility considerably helps debugging and validating numerical programs, it is also sometimes needed for legal reasons when di erent sides need to agree on the results of some computation. More generally, our contribution could be used in a "highly accurate" arithmetic toolbox.

Note that the Euclidean norm of the complex vector (b 0 , b 1 , b 2 , . . . , b n-1) ∈ C n is equal to the norm of the real vector (a 0 , a 1 , a 2 , . . . , a 2n-1) ∈ R 2n such that a 2j = (b j) and a 2j+1 = (b j). Hence, all properties, algorithms and bounds presented in this paper for real vectors are easily generalizable to complex vectors.

Due to the importance of the topic, several solutions have been suggested and analyzed until recently for computing norms accurately and/or without spurious under ows and over ows [START_REF] Blue | A portable fortran program to nd the euclidean norm of a vector[END_REF][START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF][START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF][START_REF] Hanson | Remark on algorithm 539: A modern fortran reference implementation for carefully computing the euclidean norm[END_REF][START_REF] Anderson | Algorithm 978: Safe scaling in the level 1 blas[END_REF]. We will present them in Section 2.1. Before that, let us present some de nitions and properties related to oating-point arithmetic, that will be useful in the sequel of this paper.

The underlying FP arithmetic

In the following, we assume a radix-2, precision-p, oating-point (FP) arithmetic (where p ≥ 5), with extremal exponents e min < 0 and e max > 0. We also assume e min = 1 -e max (which is a requirement of the IEEE 754-2019 Standard for FP arithmetic [START_REF]IEEE. IEEE Standard for Floating-Point Arithmetic (IEEE Std[END_REF]). In such a system, a nite oating-point number (FPN) is a number of the form M • 2 e-p+1 , with M ∈ Z, |M | ≤ 2 p -1, and e ∈ Z, e min ≤ e ≤ e max [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]. A FPN x is normal if |x| ≥ 2 e min or x = 0, and subnormal otherwise. The largest representable FP number is Ω = 2 emax • (2 -21-p), the smallest positive normal FP number, also called "under ow threshold", is 2 e min . In the following, we will say that an arithmetic operation under ows if its result is both subnormal and inexact. This choice may seem strange, but we want to avoid under ows because of accuracy concerns: when the result is exact, there is no need to worry about accuracy (this is why the under ow ag is not raised in such a case under the default exception handling for under ow of the IEEE 754-2019 Standard). The smallest positive FP number is α = 2 e min -p+1 .

The notation RN(t) stands for t rounded to the nearest FP number. We do not assume a particular tie-breaking rule in our proofs, 1 and we use the default ties-to-even rule in our examples. For instance RN(c • d) is the result of the FP multiplication c * d, assuming round-to-nearest rounding mode (which is the default in IEEE 754-2019). The number ulp(x), for x = 0 is ulp(x) = 2 max{ log2 |x| ,e min }-p+1 , and u = 2 -p = 1 2 ulp(1) denotes the roundo error unit. The constraint p ≥ 5 implies u ≤ 1/32, which will serve many times in our proofs. The relative error due to rounding to nearest a real number x such that |x| ∈ [2 e min , Ω], namely |(RN(x) -x)/x|, is bounded by u/(1 + u) [START_REF] Jeannerod | On relative errors of oating-point operations: optimal bounds and applications[END_REF]. When tightness is not necessary, we will use the simpler yet very slightly looser bound u. We will denote succ(t) the oating-point successor of t, and η the number 2 (e min +p)/2 (beware: it is a FP number only when e min + p is even). Barring over ow, the square of a FPN ≥ η can be expressed exactly as the sum of two FPNs [START_REF] Boldo | Representable correcting terms for possibly under owing oating point operations[END_REF]. We also have the following property (see for instance [START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]): Property 1.1. If a FP number t approximates a real number t with relative error , then t is within (/u) • ulp(t) from t.

The FP numbers between 2 k and 2 k+1 are multiples of 2 k+1 u: for instance, the FP numbers between 1 and 2 are 1, 1 + 2u, 1 + 4u, 1 + 6u, . . . , 2 -2u, 2. We call binade an interval of the form [2 k , 2 k+1), k ∈ Z. Table 1 reminds the values of p, e min and e max for the binary interchange formats of IEEE 754-2019 up to 128 bits [START_REF]IEEE. IEEE Standard for Floating-Point Arithmetic (IEEE Std[END_REF] and the more recent b oat16 format [START_REF] Henry | Leveraging the b oat16 arti cial intelligence datatype for higher-precision computations[END_REF], and Table 2 summarizes our notation for the important FP parameters.

(x) (for x ∈ R, x = 0) 2 max{ log 2 |x| ,e min }-p+1
unit in the last place A computed result is faithfully rounded if i) it is equal to the exact result if this one is a FP number, and ii) it is one of the two FP numbers that surround the exact result otherwise. This implies (barring over ow) that the returned result is within one ulp of the exact result from the exact result.

Figure 1 illustrates the notions presented in this section.

2 k 2 k+1 t RN(t) the two faithful roundings of t u • 2 k+1 = ulp(t)
Figure 1: The oating-point numbers between 2 k and 2 k+1 (assuming e min ≤ k < e max).

Double-word and pair arithmetics

Evaluating norms with an accuracy signi cantly better than that of the naive algorithm may require representing intermediate results with a precision higher than the working FP precision. This can be done by representing these intermediate results by a pair of FP numbers. For instance, Graillat et al. [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF] recently published an algorithm that computes faithfully rounded norms. To achieve that goal, they use double-word (or "double-double") arithmetic in their intermediate calculations. Lange and Rump [START_REF] Rump | Faithfully Rounded Floating-Point Computation[END_REF] recently de ned a "pair arithmetic" (which is a somehow "relaxed" version of double-word arithmetic), and showed how it can be used, under some conditions, to obtain faithfully rounded results in FP arithmetic. The algorithms used to perform operations with these arithmetics are usually based on the three basic "building blocks" presented in Section 1.3.1: Fast2Sum, 2Sum, and Fast2Mult. It is possible that new operations recently introduced in the IEEE 754 Standard for FP arithmetic [START_REF]IEEE. IEEE Standard for Floating-Point Arithmetic (IEEE Std[END_REF] and brie y presented in Section 1.3.2 replace these building blocks in a near future. Double-word arithmetic (and more generally, pair and multiple-word arithmetics) is slowly yet steadily gaining importance among numerical methods [START_REF] Joldes | Tight and rigorous error bounds for basic building blocks of double-word arithmetic[END_REF][START_REF] Rump | Faithfully Rounded Floating-Point Computation[END_REF][START_REF] Kouya | Acceleration of lu decomposition supporting double-double, triple-double, and quadruple-double precision oating-point arithmetic with avx2[END_REF][START_REF] Fasi | Matrix Multiplication in Multiword Arithmetic: Error Analysis and Application to GPU Tensor Cores[END_REF]: this makes a careful study of its error useful.

The basic building blocks: Fast2Sum, 2Sum, and Fast2Mult

Algorithm 1 -Fast2Sum(a, b). The Fast2Sum algorithm [START_REF] Dekker | A oating-point technique for extending the available precision[END_REF]. It takes 3 FP operations.

s ← RN(a + b) z ← RN(s -a) t ← RN(b -z)
If |a| ≥ |b|, unless over ow occurs, the two FP numbers s and t returned by Algorithm 1 satisfy s+t = a+b. Since s is the result of the conventional oating-point addition of a and b, t is the error of that addition. Also, if the rst operation does not over ow, the other operations cannot over ow [START_REF] Boldo | On the robustness of the 2sum and fast2sum algorithms[END_REF]. For that algorithm, under ow is harmless (this is an immediate consequence of Lemma 1.3).

Algorithm 2 -2Sum(a, b). The 2Sum algorithm [START_REF] Møller | Quasi double-precision in oating-point addition[END_REF][START_REF] Knuth | The Art of Computer Programming[END_REF]. It takes 6 FP operations.

s ← RN(a + b) a ← RN(s -b) b ← RN(s -a) δ a ← RN(a -a) δ b ← RN(b -b) t ← RN(δ a + δ b)
Unless over ow occurs, the two FP numbers s and t returned by Algorithm 2 satisfy s+t = a+b: this algorithm returns the same result as Algorithm 1 without any condition on a and b. On the other hand, it is slightly less over ow-proof: If the rst operation does not over ow and if |a| < Ω, then the other operations cannot over ow [START_REF] Boldo | On the robustness of the 2sum and fast2sum algorithms[END_REF]. Under ow is harmless. Algorithm 3 -Fast2Mult(a, b). The Fast2Mult algorithm (see for instance [START_REF] Kahan | Lecture notes on the status of IEEE-754[END_REF][START_REF] Nievergelt | Scalar fused multiply-add instructions produce oating-point matrix arithmetic provably accurate to the penultimate digit[END_REF][START_REF] Muller | Handbook of Floating-Point Arithmetic[END_REF]). It requires the availability of a fused multiply-add (FMA) instruction for computing RN(ab -π h).

π h ← RN(a • b) π ← RN(a • b -π h)
In this paper, Algorithm Fast2Mult is used for expressing the square of a FP number as a doubleword number. One should keep in mind that, barring over ow, the condition for that algorithm to guarantee that π h + π = a • b is stronger than just requiring the absence of under ow in the rst multiplication. Several slightly di erent conditions appear in the literature (see [START_REF] Boldo | Representable correcting terms for possibly under owing oating point operations[END_REF] for a necessary and su cient condition). One can show (see for instance [START_REF] Boldo | Emulating round-to-nearest-ties-to-zero "augmented" oating-point operations using round-to-nearest-ties-to-even arithmetic[END_REF]) that if 2 e min +p ≤ |a • b|, then π h + π = a • b. In the case of the computation of a • a, this condition becomes |a| ≥ η = 2 (e min +p)/2 .

(

) 3
Algorithm Fast2Mult requires the availability of an FMA instruction. Without an FMA instruction, the calculation of (π h , π) remains possible, but at a signi cantly higher cost (17 oating-point operations instead of 2 [START_REF] Dekker | A oating-point technique for extending the available precision[END_REF]).

An alternative: the new "augmented" arithmetic operations

The latest release of the IEEE Standard for Floating-Point Arithmetic, published in 2019 [START_REF]IEEE. IEEE Standard for Floating-Point Arithmetic (IEEE Std[END_REF], species new "augmented" operations, called augmentedAddition, augmentedSubtraction, and augmented-Multiplication (history and motivation are presented in [START_REF] Riedy | Augmented arithmetic operations proposed for IEEE-754[END_REF]). These operations use a new "rounding direction", round-to-nearest ties-to-zero, denoted RN 0 in this paper, that satis es [START_REF]IEEE. IEEE Standard for Floating-Point Arithmetic (IEEE Std[END_REF]: RN 0 (t) (where t is a real number) is the FP number nearest t. If the two nearest FP numbers bracketing t are equally near, RN 0 (t) is the one with smaller magnitude. If |t| > Ω + 2 emax-p , then RN 0 (t) = ±∞, with the same sign as t.

The augmented operations are de ned as follows [START_REF]IEEE. IEEE Standard for Floating-Point Arithmetic (IEEE Std[END_REF][START_REF] Riedy | Augmented arithmetic operations proposed for IEEE-754[END_REF]:

• augmentedAddition(x, y) delivers (a 0 , b 0) such that a 0 = RN 0 (x + y) and, when a 0 / ∈ {±∞, NaN}, b 0 = (x + y) -a 0 . When b 0 = 0, it is required to have the same sign as a 0 ;

• augmentedSubtraction(x, y) is augmentedAddition(x, -y);

• augmentedMultiplication(x, y) delivers (a 0 , b 0) such that a 0 = RN 0 (x • y) and, where a 0 / ∈ {±∞, NaN}, b 0 = RN 0 ((x • y) -a 0). When (x • y) -a 0 = 0, the oating-point number b 0 (equal to 0) is required to have the same sign as a 0 .

As we are writing these lines, no fast hardware implementation of these operations is o ered on widely available platforms. When this happens, in the algorithms presented in this paper, it can be worth replacing 2Sum and Fast2Sum by augmentedAddition, and replacing Fast2Mult by augment-edMultiplication.

Double-word arithmetic

We de ne a double-word number as follows De nition 1.2. A double-word (DW) number x is the unevaluated sum x h + x of two oating-point numbers x h and x such that x h = RN(x). Double-word arithmetic goes back to the seminal work of Dekker [START_REF] Dekker | A oating-point technique for extending the available precision[END_REF]. Algorithms for manipulating DW numbers have been published and analyzed by Li et al. [START_REF] Li | Design, implementation and testing of extended and mixed precision BLAS[END_REF], Hida, Li and Bailey [START_REF] Hida | C++/fortran-90 double-double and quad-double package, release 2.3.17[END_REF][START_REF] Hida | Algorithms for quad-double precision oating-point arithmetic[END_REF], Joldes et al. [START_REF] Joldes | Tight and rigorous error bounds for basic building blocks of double-word arithmetic[END_REF], Muller and Rideau [START_REF] Muller | Formalization of double-word arithmetic, and comments on "Tight and rigorous error bounds for basic building blocks of double-word arithmetic[END_REF]. Let us now give a two classical DW algorithms. Some new results on DW arithmetic necessary for this study are given in Section 3.

Let us rst consider the addition of a DW number and a FP number. Consider Algorithm 4 below. It was implemented in the QD library [START_REF] Hida | C++/fortran-90 double-double and quad-double package, release 2.3.17[END_REF].

Algorithm 4 -DWPlusFP(x h , x , y). Algorithm for computing (x h , x) + y in binary, precision-p, oating-point arithmetic, implemented in the QD library. The number x = (x h , x) is a DW number (i.e., it satis es De nition 1.2).

1: (s h , s) ← 2Sum(x h , y) 2: v ← RN(x + s) 3: (z h , z) ← Fast2Sum(s h , v) 4: return (z h , z)
That algorithm was analyzed by Joldes et al. [START_REF] Joldes | Tight and rigorous error bounds for basic building blocks of double-word arithmetic[END_REF]. They found that its relative error

|((z h + z) -(x + y))/ (x + y)| is bounded by 2 • u 2 /(1 -2u) = 2u 2 + 4u 3 + 8u 4 + • • • (4)
They also showed that the bound (4) is asymptotically optimal, by exhibiting "generic" (i.e., parameterized by the precision p) input values for which the ratio between the attained relative error and the bound goes to 1 as p goes to in nity. Now, let us turn to the addition of two DW numbers. Algorithm 5 below was rst given by Dekker [START_REF] Dekker | A oating-point technique for extending the available precision[END_REF], under the name of add2. It was implemented by Hida, Li, and Bailey in the QD library [START_REF] Hida | C++/fortran-90 double-double and quad-double package, release 2.3.17[END_REF] under the name of "sloppy addition". The reason for that name is that if the input operands have di erent signs, the relative error can be arbitrarily large. We will not use that algorithm, but since it is the algorithm used by Graillat et al. to perform their summations [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF], we brie y present it and some of its properties for the sake of completeness and for helping to compare our solutions.

Algorithm 5 -SloppyDWPlusDW(x h , x , y h , y). "Sloppy" calculation of (x h , x) + (y h , y) in binary, precision-p, oating-point arithmetic. It takes 11 FP operations.

1: (s h , s) ← 2Sum(x h , y h) 2: v ← RN(x + y) 3: w ← RN(s + v) 4: (z h , z) ← Fast2Sum(s h , w) 5: return (z h , z)
If the inputs operands x h and y h have the same sign (which is of course the case when summing squares), the relative error of Algorithm 5 is bounded by 3u 2 [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF]. This bound is asymptotically optimal: consider x h = 1 + 2u, x = -u + u 2 , y h = 9u, and y = -6u 2 -8u 3 , for which the double-word number returned by Algorithm 5 is equal to 1 + 10u -8u 2 and the exact sum is equal to 1 + 10u -5u 2 -8u 3 , resulting in a relative error

u 2 • (3 -8u)/(1 + 10u -5u 2 -8u 3) = 3u 2 - 38u 3 + O(u 4).

Lange and Rump's pair arithmetic

Lange and Rump [START_REF] Rump | Faithfully Rounded Floating-Point Computation[END_REF] recently de ned a "pair arithmetic" (which is a somehow "relaxed" version of double-word arithmetic), and showed how it can be used, under some conditions, to obtain faithfully rounded results in oating-point arithmetic.

Rewritten with our notation, the pair algorithms used by Lange and Rump [START_REF] Rump | Faithfully Rounded Floating-Point Computation[END_REF] for addition and square-root are the following.

Algorithm 6 -Pair_addition(x h , x , y h , y). Lange and Rump's calculation of (x h , x) + (y h , y) in binary, precision-p, oating-point arithmetic. It is Algorithm 5 without the last "renormalization". It takes 8 FP operations.

1: (s h , s) ← 2Sum(x h , y h) 2: v ← RN(x + y) 3: w ← RN(s + v) 4: return (s h , w)
Algorithm 7 -Pair_sqrt(x h , x). Lange and Rump's calculation of the square-root of (x h , x) in binary, precision-p, oating-point arithmetic. It is Algorithm 8 without the last "renormalization". It takes 5 FP operations (counting the square-root as one).

1: s h ← RN(√ x h) 2: ρ 1 ← RN(x h -s 2 h) (with an FMA instruction) 3: ρ 2 ← RN(x + ρ 1) 4: s ← RN(ρ 2 /(2 • s h)) 5: return (s h , s)
These algorithms are similar to the DW algorithms presented in this paper, with the di erence that they avoid the last "renormalizing" Fast2Sum operation. This makes them signi cantly faster, but this may sometimes make them less accurate, especially when cancellations occur. When adding squares, however, there are no cancellations: this makes Lange and Rump's pair arithmetic a very good candidate.

Some results useful later on

The following lemma is frequently used to show that some calculations remain valid even when operands are below the under ow threshold (the proof is straightforward). Lemma 1.3 (Hauser Lemma [20]). If x and y are oating-point numbers, and if the number RN(x+y) is subnormal, then x + y is a oating-point number, which implies RN(x + y) = x + y.

For bounding the error committed during the evaluation of a sum of squares, we will use the following lemma, which is a direct consequence of Lemma 2.1 in [START_REF] Rump | Error estimates for the summation of real numbers with application to oating-point summation[END_REF], due to Lange and Rump.

Lemma 1.4 (Lange and Rump [START_REF] Rump | Error estimates for the summation of real numbers with application to oating-point summation[END_REF]). Let F be an arbitrary subset of R and let + be an operation in F with the only assumption that ∀a, b ∈ F, |(a +b) -(a + b)| ≤ min{|a|, |b|}. Let x 1 , x 2 , . . . , x n be elements of F and de ne numbers s i and i as follows:

s 1 = x 1 , s i = x i +s i-1 = (x i + s i-1)(1 + i) for i = 2, . . . , n. We have |s n -n i=1 x i | ≤ n i=2 | i | • n i=1 |x i |.
For computing square-roots in double-word arithmetic, we will need the following result, due to Boldo and Daumas [START_REF] Boldo | Representable correcting terms for possibly under owing oating point operations[END_REF]. This is Theorem 5 of [START_REF] Boldo | Representable correcting terms for possibly under owing oating point operations[END_REF], restricted to binary arithmetic and rewritten with our notation. Lemma 1.5 (Exact representation of the square-root remainder). In binary, precision-p, FP arithmetic, let s = RN(√ x), where x is a FP number. The correcting term x -s 2 is a FPN if and only if there exists a pair of integers (m, e) (with |m| ≤ 2 p -1) such that s = m • 2 e-p+1 and 2e ≥ e min + p -1.

Aim and organization of this paper

Ideally, one would like to always return correctly rounded results (i.e., the computed result is the oating-point number nearest to the exact result, which implies that the error is less than or equal to 0.5 ulp of the exact result). This seems di cult to guarantee without signi cantly slowing down the calculation. However, we show in this paper that a modi cation of Graillat et al. 's algorithm [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF] can be used to always obtain a maximum error very slightly above 0.5 ulp. This means that we almost always obtain the correctly rounded result, except in rare cases when the exact norm is very near the middle of two consecutive FP numbers. Furthermore, if needed, we can detect when the result returned by our algorithm may not be correctly rounded (see Remark 4.6).

The sequel of the paper is organized as follows. Section 2 presents the algorithms one can nd in the literature. More precisely, in Subsection 2.1 we quickly review the classical solutions suggested for avoiding spurious over ows and under ows, Subsection 2.2 brie y presents the use by Graillat et al. of double-word arithmetic for obtaining more accurate results, and in Subsection 2.3 we consider applying a recent result by Lange and Rump [START_REF] Rump | Faithfully Rounded Floating-Point Computation[END_REF] to obtain faithfully rounded norms in pair arithmetic. In Section 3 we give some new results on DW arithmetic that will be helpful for our study. In particular, we give a new bound (that takes into account the fact that we manipulate positive numbers) for an existing addition algorithm, and we present and analyze an algorithm that computes the square-root of a DW number. Since the proof of that square-root algorithm is long and rather complex, and since the error bound of our Euclidean norm algorithm derives from the error bound of the square-root algorithm, to give more con dence on our result, we have formally proven the square-root algorithm, using the Coq proof assistant (see for instance [START_REF] Boldo | Formalization of real analysis: A survey of proof assistants and libraries[END_REF]). This part of the paper continues the work undertaken by two of us on the formal proof of double-word algorithms [START_REF] Muller | Formalization of double-word arithmetic, and comments on "Tight and rigorous error bounds for basic building blocks of double-word arithmetic[END_REF]. Section 4 presents our algorithms for computing Euclidean norms. We rst assume in Subsection 4.1 that no under ow or over ow occurs, then we deal with the general case in Subsection 4.2.

Our solution builds on Graillat et al. 's solution [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF], with the following di erences:

• we introduce a more accurate algorithm for summing the squares of the terms a i in DW arithmetic;

• once we have obtained an approximation to the sum of squares as a DW number, we directly take its square-root using a speci c DW to FP square-root algorithm, whereas Graillat et al.

"convert" the sum of squares to oating-point (by just retaining the most signi cant part) and take its square-root using the conventional FP square-root;

• we use di erent comparison constants for preventing under ows and over ows.

2 Conventional solutions for computing Euclidean norms

Avoiding spurious over ows/under ows

Several solutions have been suggested for dealing with spurious under ows and over ows when computing Euclidean norms. A rst solution [START_REF] Hull | Implementing complex elementary functions using exception handling[END_REF] would be to use the exception-handling mechanism provided by the IEEE 754 Standard for FP arithmetic: one could rst use the naive method (i.e., straightforward implementation of (1)), check if an under ow or over ow exception occurred, and use a more sophisticated method only in that case. This approach is unlikely to allow good performance on modern highly pipelined processors. All other approaches consist in scaling the terms a i , i.e., we multiply or divide them by one (or several) constant(s) such that computing sums of squares of the scaled values is over ow-free, and that under ow is either impossible or harmless (a good presentation, along with comparisons of existing Fortran codes can be found in [START_REF] Hanson | Remark on algorithm 539: A modern fortran reference implementation for carefully computing the euclidean norm[END_REF]). A straightforward choice is to scale all values by the factor max |a i |, i.e., to evaluate the norm as

max |a i | × n-1 k=0 (a k /max |a i |) 2 .
This approach has several drawbacks:

• it requires two passes over the data (nding the maximum of the |a i | takes time and no computation can start before that max is found);

• it requires divisions, and FP divisions are in general signi cantly slower than FP additions and multiplications;

• multiplying and dividing by max |a i | are, in general, nonexact operations, which leads to a slightly larger nal error than the error of directly using (1) when no under ow/over ow occurs.

An already better approach (at least in terms of accuracy, latency may be another matter) consists in choosing a scale factor equal to a power of 2 close to max |a i |, obtained for instance by the means of the scaleB and logB functions2 speci ed by the IEEE-754 Standard [START_REF]IEEE. IEEE Standard for Floating-Point Arithmetic (IEEE Std[END_REF] (when an e cient implementation of these functions is available. If this is not the case, a possible workaround is suggested in [29, Theorem IV.2]). Higham [24, Pages 500 and 507] attributes to Hammarling a smart algorithm that consists in dynamically scaling the data. It was implemented in the LAPACK [START_REF] Hanson | Remark on algorithm 539: A modern fortran reference implementation for carefully computing the euclidean norm[END_REF] package released by netlib3 . We start from s 0 = 1 and t 0 = |x 0 |. At step i of the algorithm, we have already computed 2 , where s i-1 is the current scaled sum and t i-1 is the current value of the scale factor. 2 and the scale factor does not change:

s i-1 = i-1 k=0 (x k /t i-1)
If |x i | ≤ t i-1 then s i = s i-1 +(x i /t i-1)
t i = t i-1 . If |x i | > t i-1
then we need to update the scale factor. We compute

s i = 1 + s i-1 • (t i-1 /x i) 2 ,
and we replace the scale factor by |x i |:

t i = |x i |. After this, one easily checks that s i = i k=0 (x k /t i) 2 . The nal result is t n-1 √ s n-1 .
With this method, a single pass over the data su ces. However, the number of scale factor updates may be large: up to n -1 updates if the |x i |'s are in increasing order (although its average value is around log(n)), which may result in delays and additional rounding errors due to (in general, nonexact) multiplications and divisions. An improvement in terms of accuracy consists in choosing, when |x i | > t i-1 , a value t i equal to a power of two close to (and preferably above) |x i |, and then taking

s i = (x i /t i) 2 + s i-1 • (t i-1 /t i) 2 .
With the methods examined so far, a scaling is applied even when not needed.

Blue [START_REF] Blue | A portable fortran program to nd the euclidean norm of a vector[END_REF] takes a decisive step by suggesting to split the input numbers into 3 classes (that we will call TINY, MED, and BIG), depending on their order of magnitude:

• numbers of the MED class can be squared, and their squares can be accumulated, without under ows or over ows. A FP number a i is in the MED class if4 a i = 0 or minmed ≤ |a i | ≤ maxmed, where the choice of minmed and maxmed depends on the parameters (p, e min and e max) of the FP arithmetic, and on the largest value of n, say n max , for which a correct behavior is to be guaranteed. We compute S med = a i ∈MED a 2 i ; • numbers of the BIG class must be "scaled down" to make sure that we can accumulate their squares without over ow. A FP number a i is in the BIG class if maxmed < |a i |. All numbers of the BIG class are multiplied by the same prede ned constant t big , chosen equal to a power of 2 (to make the multiplication errorless), and such that for

a i ∈ BIG, t big •a i ∈ MED. We compute S big = a i ∈BIG (t big • a i) 2
(usual presentation of the method is with divisions by constants; of course, when actually implementing it, multiplication is preferable for performance reasons);

• numbers of the TINY class must be "scaled up" to make sure that we can compute their squares without under ow: each square must be larger than the subnormal threshold5 2 e min . A FP number a i is in the TINY class if |a i | < minmed and a i = 0. All numbers of the TINY class are multiplied by the same constant t tiny , chosen equal to a power of 2, and such that for

a i ∈ TINY, t tiny • a i ∈ MED. We compute S tiny = a i ∈TINY (t tiny • a i) 2 .
Let us summarize the various constraints that the parameters minmed, maxmed, t big , and t tiny must satisfy:

minmed 2 ≥ 2 e min , (5a)
n max • maxmed 2 • (1 + κ) < Ω + (1/2)ulp(Ω) = 2 emax+1 -2 emax-p , (5b
)
maxmed • t big ≥ minmed, (5c)
Ω • t big ≤ maxmed, (5d)
minmed • t tiny ≤ maxmed, (5e)
α • t tiny ≥ minmed, (5f)
where Ω and α are de ned in Table 2, and κ is a bound on the relative error of the algorithm used for computing the sum of squares in MED. Assuming that maxmed and n max are powers of 2, Eq. (5b) can be replaced by n max • maxmed 2 < 2 emax+1 -2 emax-p . Later on, when we use double-word arithmetic, (5a) will need to be replaced by the stronger condition minmed ≥ η.

A recent, e cient implementation of Blue's algorithm is given by Anderson [START_REF] Anderson | Algorithm 978: Safe scaling in the level 1 blas[END_REF]. In Blue's original algorithm [START_REF] Blue | A portable fortran program to nd the euclidean norm of a vector[END_REF], the three terms S tiny , S med , and S big are all computed, in three accumulators. However, if BIG is nonempty, provided that the ratio maxmed/minmed is large enough, the value of S tiny has negligible in uence on the nal result. Graillat et al. 's algorithm [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF] and the variant of Blue's algorithm presented by Hanson and Hopkins in [START_REF] Hanson | Remark on algorithm 539: A modern fortran reference implementation for carefully computing the euclidean norm[END_REF] take this into account and use two accumulators only: as soon as an element of BIG is met, we no longer need to accumulate elements of TINY.

Figure 2 illustrates this splitting of the FP numbers into three classes.

y max • 1 + (y min /y max) 2 1/2 . (6
)
The additional division and square-root that appear in [START_REF] Boldo | Representable correcting terms for possibly under owing oating point operations[END_REF] were perhaps unavoidable in the pre-IEEE-754 era. However, they involve additional delay and rounding error in the calculation. Graillat et al. [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF] also split the input values into 3 classes, and give a simpler solution for the nal reconstruction of the norm N from S big , S med , and S tiny . Their work uses double-word arithmetic (see Section 1.2) for accumulating the sums S big , S med , and S tiny , so the context is slightly di erent (we will come to that later on in this paper), but let us momentarily present their solution for avoiding under/over ow in the context of simple FP numbers. They choose:

t big = 2 -E , (7a)
t tiny = 2 E , with (7b)
E = 2 × (1/2) • (e max -e min + p)/3 , (7c)
minmed = 2 emax+1-2E , (7d
) maxmed = 2 emax+1-E , (7e)
so that t big = 1/t tiny and minmed = t big • maxmed. The choice (7c) indicates that they obtain TINY, MED, and BIG by splitting the exponent range of the FP format into three parts of approximately the same size. Assume n < 1/u. Graillat et al. show that:

• If BIG is nonempty, we can neglect the elements of TINY, so that we need to compute

S med + S big /t 2 big .
This can be done without under/over ows as follows.

-If S big ≥ minmed 2 /u 3 (i.e., S big /t 2 big ≥ maxmed 2 /u 3 ≥ n • maxmed 2 /u 2) or S med ≤ maxmed 2 u 2 , then S med is negligible in front of S big /t 2 big and we can return (1/t big) S big = t tiny S big ; -if S med > maxmed 2 u 2 and S big < minmed 2 /u 3 , then we can compute χ = S big /t big + t big S med = t tiny S big + t big S med without over ow or under ow, so that we can return

1/ t big • √ χ, (8)
and the (precomputed) constant 1/ √ t big = √ t tiny is a power of 2 since (7a) and (7c) imply that t big is an even power of 2, so all multiplications in (8) are exact.

• If BIG is empty, we need to compute

S med + S tiny /t 2 tiny = (1/t tiny) • S tiny + S med /t 2 big .
This can be done as follows.

-

If

Using double-word numbers to improve accuracy: Graillat et al.'s solution

Let us temporarily put aside the problem of avoiding spurious under/over ow, and let us focus on the need for accurately computing the sum of squares and the square-root involved in the computation of the Euclidean norm N . The goal of Graillat et al. [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF] was to guarantee faithful rounding of N . For that purpose, to save accuracy as much as possible, they compute the sum of squares n-1 i=0 a 2 i in double-word arithmetic. They rst express the squares of the FP numbers a i as DW numbers using Algorithm 3 (Fast2Mult). Then they sum the obtained DW numbers using Algorithm 5 (Slop-pyDWPlusDW). As they mention, that summation is easily parallelizable. The obtained result is a double-word approximation (S h , S) to the sum of squares. After this, they take the square-root of S h , using the correctly rounded square-root instruction that is available on all IEEE 754 compliant systems. They show that, under reasonable conditions, that square-root is a faithful rounding of the norm. More precisely, the condition they give on n for their algorithm to return a faithful result is n < 1/(24u + u 2), i.e., n ≤ 699050 in binary32 arithmetic, and n ≤ 3.752 × 10 14 in binary64 arithmetic.

Assuming sequential addition of the squares of the a i s, and assuming that all numbers are in the MED class (i.e., no scaling is needed), Graillat et al. 's algorithm uses 13n -10 oating-point operations.

Let us mention, however, that the choice of "dropping" S is tantamount to losing a nonnegligible information on the sum of squares.

Incidentally, Graillat et al. make a little and reasonably harmless mistake: they did not realize that the value of minmed they choose (called β 0 in their paper), given in Eq. (7d), is less than η in binary32 arithmetic (it, is however, larger than η in binary64 and binary128 arithmetics). Hence, in very rare cases (computations of norms in binary32 arithmetic with all scaled operands slightly over minmed), some squares will not be expressed exactly as DW numbers. Whether this can lead to errors slightly larger than the claimed bound remains an open question.

They target faithful rounding (i.e., error less than 1 ulp). We have a di erent goal in mind: we wish to achieve a nal error extremely close to 0.5 ulp of the exact result, i.e., we wish to almost always provide a correctly rounded result. This will be done by keeping the sum (S h , S) of the squares in DW arithmetic, and using an algorithm that computes the square-root of a DW number (Algorithm 9). We will also compute (S h , S) more accurately, by using a di erent summation scheme, based on Algorithm 4.

An alternative: computing norms with pair arithmetic

In [START_REF] Rump | Faithfully Rounded Floating-Point Computation[END_REF], Lange and Rump give conditions for their pair arithmetic to return faithfully rounded results. We have applied Theorems 4.2 and 5.4 of [START_REF] Rump | Faithfully Rounded Floating-Point Computation[END_REF] to two cases: the computation of N when the squares are added sequentially using the Pair_addition algorithm, and the same computation where the a 2 i are added blockwise: we divide them in k blocks of m terms, with km = n, we rst add all the terms of each block together, and then we add the k obtained sums. We obtain the following results:

• with the sequential summation, we will obtain a faithfully rounded result if 4 5 n

+ 5 4 ≤ 1/ √ 2u -u 2 -2;
• with the blockwise summation, we will obtain a faithfully rounded result if

4 5 (m + k -1) + 5 4 ≤ 1/ √ 2u -u 2 -2.
Table 3 presents the maximum possible values of n allowed by these conditions, for binary32 and binary64 arithmetics. For the blockwise algorithm, we have chosen the "optimal" choice k = m = √ n . Assuming sequential addition of the squares of the a i s, and assuming that all numbers are in the MED class (i.e., no scaling is needed), computing a norm in pair arithmetic uses 10n -3 oatingpoint operations. Of course, exactly as for conventional or double-word arithmetics, one may need scalings to avoid spurious under/over ows. 3 Some results on double-word arithmetic

In this section, let us give a few new results on double-word arithmetic that can be useful for accurately computing norms. All the results of this section have been formally certi ed using the Coq proof assistant 7 and the Flocq [START_REF] Boldo | Flocq: A uni ed library for proving oating-point algorithms in coq[END_REF][START_REF] Boldo | Computer Arithmetic and Formal Proofs: Verifying Floating-point Algorithms with the Coq System[END_REF] library.

Properties of DWPlusFP

First, the relative error bound (4) on Algorithm DWPlusFP (Alg. 4) was given in [START_REF] Joldes | Tight and rigorous error bounds for basic building blocks of double-word arithmetic[END_REF] assuming input numbers of arbitrary sign. One may wonder if, when the operands have the same sign, we can obtain a better error bound. This would be useful for summing squares, which is the main step of the computation of Euclidean norms. Indeed, we have,

Theorem 3.1. If x = (x h , x
) is a nonnegative double-word number and y is a nonnegative FP number, then the relative error of Algorithm 4 is bounded by u 2 . That bound is asymptotically optimal.

The proof is given in the supplementary materials. Theorem 3.1 does not apply when y is negative. However, for very small values of |y|, one can nevertheless obtain an error bound signi cantly better than (4), which will be useful in Section 4.1. More precisely, Property 3.2. Assuming u ≤ 1/16 (i.e., p ≥ 4), if x = x h + x is positive and y ≥ (-2u -u 2) • x, then the relative error of Algorithm 4 is bounded by u 2 + 3u 3 .

The proof is given in the supplementary materials. We also have, Remark 3.3. When the operands x = x h + x and y are positive, Algorithm 4 satis es the condition of Lemma 1.4 (with F being the set of the DW numbers), namely:

DWPlusFP(x h , x , y) -(x h + x + y) ≤ min {(x h + x), y} . Proof. We have |DWPlusFP(x h , x , y) -(x h + x + y)| = |v -(x + s)|, and |v -(x + s)| ≤ |x | ≤ u • (x h + x) < x h + x ,
and |v -(x + s)| ≤ |s | ≤ y. Therefore, |v| ≤ min{x h + x , y}.
Later on, we will compute sums of squares using Algorithm DWPlusFP (Algorithm 4). We will need to bound the computed sum of n ≤ 1/u positive numbers less than some power of 2, say 2 k , by n • 2 k (this is of course a straightforward property of the exact sum, but this is far from obvious for the computed sum). This will be ensured by the following lemma.

Lemma 3.4. If (x h , x) is a DW number and y is a FP number such that x h , y ≥ 2 e min , x h +x ≤ m 1 •2 k and y ≤ m 2 •2 k
where m 1 and m 2 are positive integers satisfying m 1 +m 2 ≤ 2 p then, barring over ow, the double-word number (z h , z) returned by Algorithm DWPlusFP satis es

z h + z ≤ (m 1 + m 2) • 2 k .
The proof is given in the supplementary materials.

Square-root of a double-word number

Assume that x = (x h , x) is a DW number, and that x h ≥ 2 2k , where k is an integer larger than or equal to (e min + p)/2. The following two algorithms evaluate the square-root of x. Algorithm 8 returns a DW number, and Algorithm 9 returns a FP number.

Algorithm 8 -SQRTDWtoDW(x h , x). Computes the square-root of the DW number (x h , x) in binary, precision-p, oating-point arithmetic and returns a DW number (z h , z). It takes 8 FP operations (counting the FP square-root as one).

1: if x h = 0 then 2:
return (0, 0) 3: else 4:

s h ← RN(√ x h) 5: ρ 1 ← RN(x h -s 2 h) (with an FMA instruction) 6: ρ 2 ← RN(x + ρ 1) 7: s ← RN(ρ 2 /(2 • s h)) 8: (z h , z) ← Fast2Sum(s h , s) 9:
return (z h , z) 10: end if To obtain a oating-point number, one can replace the "Fast2Sum" of Line 8 of Algorithm 8 by a oating-point addition and obtain Algorithm 9 -SQRTDWtoFP(x h , x). Computes the square-root of the DW number (x h , x) in binary, precision-p, oating-point arithmetic and returns a oating-point number z. It takes 6 FP operations (counting the FP square-root as one).

1: if x h = 0 then 2:
return 0 3: else 4:

s h ← RN(√ x h) 5: ρ 1 ← RN(x h -s 2 h) (with an FMA instruction) 6: ρ 2 ← RN(x + ρ 1) 7: s ← RN(ρ 2 /(2 • s h)) 8: z ← RN(s h + s) 9:
return z 10: end if Remark 3.5. For performance purposes, if the FMA instruction is fast enough, to avoid the multiplication of s h by 2 that appears in Line 7 of both algorithms, one can somehow "delay" that operation, and replace Lines 7 and 8 of Algorithm 8 by (we inline the Fast2Sum algorithm for the sake of clarity):

7: t ← RN(ρ 2 /s h) (t equals 2s) 8: z h ← RN(s h + 0.5 • t) (rst line of Fast2Sum(s h , s)) 9: δ ← RN(z h -s h) (second line of Fast2Sum(s h , s)) 10: z ← RN(0.5 • t -δ) (third line of Fast2Sum(s h , s))
Similarly, one can replace Lines 7 and 8 of Algorithm 9 by:

7: t ← RN(ρ 2 /s h) (t equals 2s) 8: z ← RN(s h + 0.5 • t)
By doing so, Algorithm 8 now takes 7 FP operations, and Algorithm 9 takes 5 FP operations. In both cases, the computed results are exactly the same.

Let us now analyze Algorithms 8 and 9. We assume that the input double-word operand x = (x h , x) is positive, i.e., x h > 0 (the case x h = 0 is straightforward). We have, Theorem 3.6. If x = (x h , x) is a double-word number, p ≥ 5, x ≥ 2 2k , where k is an integer larger than or equal to (e min +p)/2 and no over ow or under ow occurs, then the relative error of Algorithm 8 is bounded by (25/8) • u 2 = 3.125 • u 2 , and that bound is asymptotically optimal. Theorem 3.7. If x = (x h , x) is a double-word number, p ≥ 5, x ≥ 2 2k , where k is an integer larger than or equal to (e min + p)/2 and no over ow or under ow occurs, then the oating-point number returned by Algorithm 9 is within The common proof of Theorem 3.6, Theorem 3.7, and Remark 3.8 uses results from [START_REF] Bohlender | Semantics for exact oating point operations[END_REF][START_REF] Boldo | Representable correcting terms for possibly under owing oating point operations[END_REF][START_REF] Jeannerod | Midpoints and exact points of some algebraic functions in oating-point arithmetic[END_REF] and is given in the supplementary materials.

(1/2 + (7/4) • 2 -p)•ulp(√ x h + x) from √ x h + x ,
Intuitively, since the square-root of a huge number is less than that number, and the square-root of a tiny number is larger than that number, over ows and under ows are not much of a concern when evaluating square-roots. This does not mean that intermediate calculations in Algorithms 8 and 9 cannot under ow or over ow. Let us now quickly address this issue. Remark 3.9. Under the conditions of Theorems 3.6 and 3.7 (and assuming e max ≥ 2, which always holds in practice8), no over ow can occur in Algorithms 8 and 9.

The proof is given in the supplementary materials. Remark 3.10. Under the conditions of Theorems 3.6 and 3.7, with the additional assumption p + 3 ≤ e max , under ows in Algorithms 8 and 9 are impossible or harmless.

The proof is given in the supplementary materials. Now, let us assume that the input values (x h , x) of Algorithm SQRTDWtoFP (Algorithm 9) approximate some number x with a known relative error bound. Let

u 3 • 1 + ν • u 2 1 -ν • u 2 + ν • u 2 1 -ν • u 2 . (10
)
Furthermore, under the more stringent condition

2uν < 1, (11)
we have

R - √ x ≤ 1 2 + u • 7 4 + ν 1 -ν • u 2 ulp √ x . (12
)
The proof is given in the supplementary materials.

Very similarly to what we have done with Algorithm SQRTDWtoFP (Algorithm 9), let us now assume that the input values (x h , x) of Algorithm SQRTDWtoDW (Algorithm 8) approximate some number x with a known relative error bound. Let us see how SQRTDWtoDW(x h , x) approximates √

x. We have Theorem 3.12. If (x h , x) approximates a positive number x with relative error bounded by νu 2 with νu 2 < 1 and if no under ow/over ow occurs, then R = SQRTDWtoDW(x h , x) approximates √ x with a relative error bounded by

u 2 • 25 8 + ν 1 -νu 2 + 25 8 • νu 2 1 -νu 2 . (13
)
The proof is described in the supplementary materials.

4 Our algorithms for computing Euclidean norms

Computing a Euclidean norm assuming no under ow or over ow occurs

In this section, we assume that all the terms a i of (1) are in MED, so that no under ow/over ow occurs and a 2 i is exactly representable by a DW number for all i. We rst approximate the sum of squares n-1 i=0 a 2 i by a DW number (S h , S), with some relative error νu 2 , and then use Algorithm SQRTDWtoFP (Algorithm 9) to approximate the square-root of S h + S by a oating-point number R. The nal error will be deduced from ν using Theorem 3.11.

Let us now rst present two di erent ways of computing (S h , S).

Sequential computation of the sum of squares

Let us rst consider the following, sequential algorithm.

Algorithm 10 Sequential computation of n-1 i=0 a 2 i assuming no under ow/over ow occurs. It takes 13n -5 FP operations.

1. For i = 0 . . . n -1, express the terms a 2 i as double-word numbers (y h i , y i), de ned as

(y h i , y i) = Fast2Mult(a i , a i). (14)
We have a 2 i = y h i + y i . 2. Accumulate the terms y h i using the DWPlusFP algorithm (Algorithm 4). More precisely, de ne

(x h 1 , x 1) = 2Sum(y h 0 , y h 1)
rst, then, iteratively compute, for i = 2 . . . n -1, the terms

(x h i , x i) = DWPlusFP(x h i-1 , x i-1 , y h i).
3. Accumulate the terms y i using the conventional "recursive" summation, i.e., for i = 0 . . . n-2, compute σ i+1 = RN(σ i + y i+1), with σ 0 = y 0 .

4. Obtain the approximation to n-1 i=0 a 2 i with one call to DWPlusFP:

(S h , S) = DWPlusFP(x h n-1 , x n-1 , σ n-1).
Algorithm 10 assumes n ≥ 2. We have, Lemma 4.1. Assuming no under ow/over ow occurs, u ≤ 1/16, and n ≤ 1/u, the double-word number (S h , S) returned by Algorithm 10 satis es

(S h + S) -n-1 i=0 a 2 i ≤ ((2n -1)u 2 + (n + 2)u 3 + (2n -2)u 4 + (7n -7)u 5 + (3n -3)u 6) • n-1 i=0 a 2 i , (15)
which implies

(S h + S) - n-1 i=0 a 2 i ≤ (2n -1)u 2 + (n + 5) u 3 • n-1 i=0 a 2 i . (16
)
The proof is given in the supplementary materials.

Blockwise computation of the sum of squares

Now, assume that n = km, and that we separate the input numbers a i into k blocks of m numbers, either for parallelizing the calculation or for obtaining (as it will be clear later on) a more accurate result. Block number j (j = 0, . . . , k -1) contains the elements a mj , a mj+1 , a mj+2 , . . . , a m(j+1)-1 .

We separately sum the elements of each block using Algorithm 10 (which requires m ≤ 1/u). The results of these "partial" summations are DW numbers (Z h j , Z j). A solution could be to sum these numbers using Algorithm SloppyDWPlusDW (Algorithm 5). We obtain, however, a better error bound by summing these terms in the same way as we have summed the terms a 2 i in Algorithm 10 (which requires k ≤ 1/u), i.e., we rst compute a DW approximation to the sum of the "higher" terms Z h j using DWPlusFP (Algorithm 4) iteratively, we then accumulate the "lower" terms Z j using naive summation, and we nally add the obtained results with one call to DWPlusFP. This gives Algorithm 11, presented below.

It could be possible to repeat that block decomposition recursively, resulting in better error bounds. We doubt this would be e cient (except possibly for huge values of n).

For analyzing Algorithm 11, we need the following lemma.

Lemma 4.2. Let n be a positive integer.

• the maximum possible value of k + m, where k and m are integers larger than or equal to 2 satisfying km = n is n/2 + 2;

• the minimum possible value of k + m, where k and m are positive integers satisfying km = n is r n + n/r n , where r n is the largest divisor of n less than or equal to √ n. That bound is always larger than or equal to 2 √ n.

Proof. Straightforward by considering the variation of function t → t + n/t.

Algorithm 11 Blockwise computation of n-1 i=0 a 2 i assuming no under ow/over ow occurs. It takes 13n + 6k -5 FP operations.

1. for j = 0, 1, . . . , k -1, compute an approximation (Z h j , Z j) to m(j+1)-1 i=mj a 2 i using Algorithm 10 (the sequential summation algorithm) applied to a mj , a mj+1 , a mj+2 , . . . , a m(j+1)-1 ; 2. accumulate the terms Z h j using Algorithm DWPlusFP (Algorithm 4). More precisely, de ning

Σ h 1 , Σ 1 = 2Sum(Z h 0 , Z h 1),
iteratively compute, for j = 2 . . . k -1 the terms

Σ h j , Σ j = DWPlusFP Σ h j-1 , Σ j-1 , Z h j ;
3. accumulate the terms Z j using the conventional "recursive" summation, i.e., for j = 0 . . . k-2, compute τ j+1 = RN(τ j + Z j+1),

with τ 0 = Z 0 ;
4. obtain the approximation (S h , S) to n-1 i=0 a 2 i as

(S h , S) = DWPlusFP Σ h k-1 , Σ k-1 , τ k-1 .
Algorithm 11 assumes k ≥ 2. It can be applied to the special case k = 1 if it stops after step 1 and returns (S h , S) = (Z h 0 , Z 0), so that it reduces to Algorithm 10, taking only 13n -5 FP operations.

Lemma 4.3. Assuming no under ow/over ow occurs, k ≤ 1/u, m ≤ 1/u, and u ≤ 1/16, the doubleword number (S h , S) returned by Algorithm 11 satis es

(S h + S) -n-1 i=0 a 2 i n-1 i=0 a 2 i ≤ β(k) + β(m) + β(k)β(m), (17
)
where

β(t) = (2t -1)u 2 + (t + 2)u 3 + (2t -2)u 4 + (7t -7)u 5 + (3t -3)u 6 . Furthermore, if u ≤ 1/32, we obtain
(S h + S) -n-1 i=0 a 2 i n-1 i=0 a 2 i ≤ (2k + 2m -2) • u 2 + (0.1290n + 0.9465(k + m) + 10.03) • u 3 . (18
)
The proof is given in the supplementary materials. Let us now compare the bounds of Algorithm 10 and Algorithm 11, i.e., the bounds (15) and [START_REF] Fasi | Matrix Multiplication in Multiword Arithmetic: Error Analysis and Application to GPU Tensor Cores[END_REF], with the bound of Graillat et al. 's algorithm [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF] (derived from the relative error bound 3u 2 of Algorithm 5), namely

3(n -1)u 2 1 -3(n -1)u 2 . (19
)
We have the following property:

Property 4.4.

• if (k = 1 and m = n) or (k = n and m = 1), then Algorithm 11 boils down to Algorithm 10;

• as soon as n ≥ 3, u ≤ 1/32, and 3(n -1)u 2 < 1 (which is necessary for [START_REF] Hanson | Remark on algorithm 539: A modern fortran reference implementation for carefully computing the euclidean norm[END_REF] to make sense), the bound (19) is larger than the bound (16);

• if k ≥ 2 and m ≥ 2, assuming u ≤ 1/32 and n ≤ 1/u, the bound (16) is larger than the bound [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF].

The proof is given in the supplementary materials. Property 4.4 shows that in all practical cases, our blockwise algorithm has a better error bound than our sequential algorithm, which itself has a better error bound that Graillat et al. 's algorithm.

Assuming nu 1, so that the bound (17) is essentially (2k + 2m -2) • u 2 , a direct consequence of Lemma 4.2 is that an approximate minimum of the bound (17 Note that even with a very unbalanced block splitting the blockwise summation is signi cantly more accurate than the sequential summation. Still with the same values of n and u, the error bound becomes 3.3374 × 10 -13 in the case k = 4 and m = 1500. This is of interest, since for performance reasons, one may wish to choose k equal to the maximum number of oating-point numbers that t in an SIMD vector, which in practice is not a very large number (see Section 6.2). Beyond being more accurate, the blockwise version exhibits more parallelism than the sequential version, which may lead to better overall performance. Of course, if n is prime or has divisors that do not allow for a balanced splitting, it may be worth using the blockwise algorithm with a smaller nal block (the error bounds still apply, with a "theoretical" number of elements slightly larger than n, corresponding to appending additional zero elements to the vector (a 0 , a 1 , . . . , a n-1) to complete the nal block).

Obtaining the Euclidean norm barring under ow/over ow

We can now combine Lemma 4.3 and Theorem 3.11, and obtain. Theorem 4.5. Assume that for all i, a i ∈ MED. Assume that u ≤ 1/32 (i.e., p ≥ 5) and that Algorithm 10 (sequential summation, with n ≤ 1/u), or Algorithm 11 (blockwise summation, with km = n and k, m ≤ 1/u), is used to compute the approximation (S h , S) to n-1 i=0 a 2 i , and that Algorithm SQRTDWtoFP (Algorithm 9) is used to approximate the square-root of S h + S by a oatingpoint number R. Let β(t) = (2t -1)u 2 + (t + 2)u 3 + (2t -2)u 4 + (7t -7)u 5 + (3t -3)u 6 , and de ne a parameter ν as follows:

ν = β(n)/u 2 if the sequential summation algorithm is used; (20a) ν = β(k) + β(m) + β(k)β(m) /u 2 if the blockwise summation algorithm is used. (20b
)
If ν < 1/(2u), we have:

R - n-1 i=0 a 2 i ≤ 1 2 + u • 7 4 + ν 1 -ν • u 2 ulp n-1 i=0 a 2 i . (21
)
Note that since u ≤ 1/32, we can use in Theorem 4.5 the following simpler expressions for ν (see Lemmas 4.1 and 4.3): ν = (2n -1) + (n + 5) u [START_REF] Hida | Algorithms for quad-double precision oating-point arithmetic[END_REF] with the sequential summation algorithm, and

ν = (2k + 2m -2) + (0.1290n + 0.9465(k + m) + 10.03) • u (23)
with the blockwise summation algorithm. Condition ν < 1/(2u) is not that restrictive: in the binary32 format of the IEEE 754 Standard, assuming we use the sequential algorithm for summing the terms a 2 i , it is satis ed for n ≤ 4194304, and in the binary64, it is satis ed for n ≤ 2,251,799,813,685,248. Even larger values of n can be reached if we use the blockwise algorithm: in the binary32 format, choosing k equal to the largest divisor of n less than or equal to √ n, the condition is satis ed for n = 500,000,000,000.

If we use our algorithm for computing the Euclidean norm of a vector of 10000 binary64 elements, the returned result will be within 0.500000000002221 ulp from the exact result with the sequential summation, and within 0.5000000000000444 ulp from the exact result with the blockwise summation and the choice k = m = 100. This means that we will almost always obtain a correctly rounded result. Remark 4.6. Note that instead of computing R = SQRTDWtoFP(S h , S) one may decide to compute (R h , R) = SQRTDWtoDW(S h , S) (i.e., one chooses to obtain a double-word nal result, using Algorithm 8 instead of Algorithm 9). By combining Lemma 4.3 and Theorem 3.12, one easily nds that (R h , R) approximates the euclidean norm N with relative error

= u 2 • 25 8 + ν 1 -νu 2 + 25 8 • νu 2 1 -νu 2 ,
where ν is the same as in Theorem 4.5. This can be of interest in two cases:

• if subsequent double-word calculations are to be performed;

• if one wishes to be certain of obtaining a correctly rounded norm: Ziv's rounding test [START_REF] De Dinechin | On Ziv's rounding test[END_REF] can be applied to the pair (R h , R) to check if R h = RN(N). More precisely (see [START_REF] De Dinechin | On Ziv's rounding test[END_REF]Theorem 2.1]), if e is a FP number larger than or equal to Let us compute Euclidean norms, still using DW arithmetic, now in the general case (i.e., we no longer assume that under ow and over ow cannot occur). We will use the three-class approach presented in Section 2.1, inherited from Blue, very much like what is done by Graillat et al. [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF], but with di erent choices for the parameters minmed, maxmed, t tiny , and t big , for two reasons:

(1 + u)/(1 --2 /u), then RN(R h + RN(R • e)) = R h implies that R h = RN(N).
• rst, from (3), if we wish to express the squares of the elements of MED as DW numbers without error, we need to replace Constraint (5a) of Section 2.1 by minmed ≥ η;

• then, to make the necessity of scaling as infrequent as possible, and to make as small as possible the error committed when we neglect the elements of TINY because BIG is nonempty, we try to have maxmed as large as possible and minmed as small as possible.

Exactly as is done by Graillat et al., we choose maxmed and minmed equal to powers of 2, and to avoid introducing additional rounding errors in the scalings, we choose t big and t tiny equal to even powers of 2. To simplify the analysis we also choose t big = 1/t tiny . We also assume n max = 1/u = 2 p , i.e., we wish to guarantee a correct behavior of the algorithms for vectors of dimension up to 2 p .

To simplify the analysis, we also assume u ≤ 1/32, which always holds in practice and is needed anyway for the error bound of the SQRTDWtoFP algorithm (given by Theorem 3.6) to hold. In particular, this makes it possible to use the simpler expression [START_REF] Hida | C++/fortran-90 double-double and quad-double package, release 2.3.17[END_REF] for variable ν in Theorem 4.5. Lemma 3.4 implies that if maxmed is a power of 2, when summing, using Algorithm 10 and/or Algorithm 11, n numbers less than maxmed 2 , with n ≤ 1/u = 2 p , the computed result is less than n • maxmed 2 . This gives the following constraint on maxmed:

2 p • maxmed 2 ≤ Ω.
This leads us to the following choices:

• minmed is the power of 2 just above or equal to η, i.e., minmed = 2 (e min +p)/2 (with this choice we still can observe rare cases where the low-order element of a DW number generated by the computation of a square is subnormal, but this has no in uence on accuracy, even if it can have one on performance).

• maxmed is the power of 2 just below Ω/2 p , i.e., maxmed = 2 (emax-p)/2 . With these denitions, we have minmed • maxmed ∈ {1, 2}, and

minmed/maxmed = 2 -emax+p+1 , (24)
which will be useful later on.

• Concerning t tiny and t big , the possible values of these parameters are induced by the choices of minmed and maxmed, the constraints (5c), (5d), (5e), and (5f) presented in Section 2.1, and the additional constraint that t tiny = 1/t big is an even power of 2.

We assume 3p + 1 ≤ e max , i.e., e min ≤ -3p.

Table 4 gives the various parameters and constraints associated with our algorithm for the binary16, binary32, binary64 and binary128 formats of the IEEE 754-2019 Standard for FP Arithmetic [START_REF]IEEE. IEEE Standard for Floating-Point Arithmetic (IEEE Std[END_REF], and the b oat16 format [START_REF] Henry | Leveraging the b oat16 arti cial intelligence datatype for higher-precision computations[END_REF]. Among all these formats, binary16 is the only one for which the various constraints required by our algorithm are not satis ed.

Our choice t tiny = 1/t big constraints even more the possible values of t big and t tiny . Table 5 compares the obtained values for the binary32, binary64, and binary128 formats with the values used by Graillat et al. [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF].

Obtaining the result from the intermediate sums of squares

The sum S med = a i ∈MED a 2 i of the elements of MED is approximated by a double-word (S h med , S med), obtained using Algorithm 10 (sequential summation) or Algorithm 11 (blockwise summation with k blocks of m elements, where km = n). This approximation satis es Constraints on t big ((5c), (5d) and even power of 2)

1/4 ≤ t big ≤ 2 -14 (IMPOSSIBLE) 2 -118 ≤ t big ≤ 2 -70 2 -102 ≤ t big ≤ 2 -78 2 -968 ≤ t big ≤ 2 -540 2 -16268 ≤ t big ≤ 2 -8250
Constraints on t tiny ((5e), (5f) and even power of 2)

2
S h med + S med -a i ∈MED a 2 i ≤ νu 2 a i ∈MED a 2 i
, where ν is de ned in (22) if we use Algorithm 10, and (23) if we use Algorithm 11. These algorithms are also applied to the elements of BIG and TINY pre-multiplied by t big and t tiny respectively. Similarly, this gives double words (S h big , S big) and (S h tiny , S tiny) that satisfy

S h big + S big - a i ∈BIG (t big a i) 2 ≤ νu 2 a i ∈BIG (t big a i) 2 and S h tiny + S tiny - a i ∈TINY (t tiny a i) 2 ≤ νu 2 a i ∈TINY (t tiny a i) 2 .
This gives

1 t 2 tiny S h tiny + S tiny + S h med + S med + 1 t 2 big S h big + S big - n-1 i=0 a 2 i ≤ νu 2 n-1 i=0 a 2 i . (26)
Now, we can follow a reasoning similar to that of Graillat et al. [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF]. Denote S med = S h med +S med , Let us explain Algorithm 12. The various cases can be represented by triplets (a, b, c) ∈ {0, 1} 3 , where 0 means "empty" and 1 means "nonempty" for BIG, MED, and TINY, respectively. For instance, "(1, 0, 1)" means "MED is empty, and BIG and TINY are nonempty". In all generality, there are eight cases to consider, but this number can be reduced thanks the following remarks.

• As soon as BIG is not empty, 9 we can neglect the elements of S tiny . So Case (1, 1, 1) reduces to Case (1, 1, 0), and Case (1, 0, 1) reduces to Case (1, 0, 0). Indeed, in these cases, we have n-1 i=0 a 2 i > maxmed 2 , and a i ∈TINY a 2 i ≤ (n -1) • minmed 2 . Hence,

a i ∈TINY a 2 i < (n -1) • minmed 2 maxmed 2 • n-1 i=0 a 2 i < 2 p • minmed 2 maxmed 2 • n-1 i=0 a 2 i . (27)
Using [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF], the term 2 p • minmed 2 /maxmed 2 = 2 -2emax+3p+2 bounds the relative error committed by neglecting the elements of TINY in the summation. From [START_REF] Higham | A new approach to probabilistic rounding error analysis[END_REF], we deduce that it is less than or equal to u 3 .

We therefore easily obtain

S med + S big /t 2 big - n-1 i=0 a 2 i ≤ u 2 • (ν + u) • n-1 i=0 a 2 i . (28)
Therefore S med + S big /t 2 big will be a good approximation to n-1 i=0 a 2 i (the error of that approximation will be given later on). Hence we will compute

S med + S big /t 2 big . (29)
• Saying that MED is empty is equivalent to saying that S med = 0. So there is no need to develop Case (1, 0, 0) further provided that what we do on Case (1, 1, 0) is still correct when S med = 0.

• Likewise, saying that TINY is empty is equivalent to saying that S tiny = 0. So there is no need to develop Case (0, 1, 0) further provided that what we do on Case (0, 0, 1) is still correct when S tiny = 0.

We are therefore left with only four cases to consider: (1, 1, 0), (0, 1, 1), (0, 0, 1), and (0, 0, 0).

1.

If BIG is nonempty (Case (1, 1, 0)), the computation must be carried on without under ows or over ows. More precisely, concerning under ow, we must make sure that no term becomes less than 2 e min +p , otherwise it could not be represented accurately by a double-word number.

• If S h med < minmed 2 u 2 /t 2 big then S med < minmed 2 u 2 /t 2 big (because the bound is a FP number), hence, S med < (S big /t 2 big)u 2 . Therefore, the term S med can be neglected in front of the term S big /t 2 big . More precisely,

S big /t 2 big - n-1 i=0 a 2 i ≤ u 2 • 1 + ν + u + u 2 ν + u 3 • n-1 i=0 a 2 i , (30)
and one can return

1 t big • SQRTDWtoFP(S h big , S big) = t tiny • SQRTDWtoFP(S h big , S big). • If S h big > maxmed 2 • t 2 big /u 3 then S big > maxmed 2 • t 2 big /u 3 .
(1 + u)/u 3 ≤ t big maxmed 2 /u • (1 + u)/u 2 ≤ t big • Ω • (1 + u)/u 2 . Therefore, χ ≤ Ω • t big • 1 + (1 + u)/u 2 ≤ maxmed • 1 + u + u 2 • 2 2p < 2 (3p+emax)/2 • 1 + u + u 2 ,
and since u ≤ 1/32 implies 1 + u + u 2 < √ 2 we deduce χ < 2 (3p+emax+1)/2 , which is less than or equal to 2 emax < Ω since 3p + 1 ≤ e max . (b) Under ow: we have t tiny S big > S big , therefore the term t tiny S big is larger than minmed 2 , which is larger than η 2 = 2 e min +p . Using (5f), we also have

t big S med ≥ (minmed 2 • t tiny) • u 2 • (1 -u) ≥ (minmed 3 /α) • u 2 • (1 -u)
≥ 2 3(e min +p)/2-(e min -p+1)-2p-1

≥ 2 e min /2+p/

a 2 i ≤ u 2 • ν + 3 + u + 3u 2 ν + 3u 3 • n-1 i=0 a 2 i . (31)
we then take the square-root R of χ by the means of SQRTDWtoFP (Algorithm 9), and multiply R by √ t tiny (this last multiplication is errorless since t tiny is an even power of two).

2. If BIG is empty, and MED and TINY are nonempty (Case (0, 1, 1)), we need to compute S tiny /t 2 tiny + S med without under ows or over ows. Note that this can be rewritten

(1/t tiny) • S tiny + S med /t 2 big . (32)
The square-root part in (32) is exactly as [START_REF] Jeannerod | On various ways to split a oating-point number[END_REF] (with S med replaced by S tiny and S big replaced by S med). Furthermore, the terms S tiny , S med and S big have the same bounds. Therefore the reasoning is exactly as previously (the error bounds are slightly smaller because we no longer have the error term due to neglecting TINY), and we obtain:

• if S h tiny < minmed 2 u 2 /t 2 big or S h med > maxmed 2 • t 2 big /u 3 then we can return SQRTDWtoFP(S h med , S med);

• otherwise, we can compute χ = S med /t big + t big S tiny = t tiny S med + t big S tiny in doubleword arithmetic with one call to SloppyDWPlusDW, take its square-root R by the means of SQRTDWtoFP, and multiply R by √ t big .

3. If BIG and MED are empty (Case (0, 0, 1)), then we return t big •SQRTDWtoFP(S h tiny , S tiny), and the error bound of Theorem 4.5 applies.

4.

If BIG and MED and TINY are empty (Case (0, 0, 0)), then we return 0. Note that considering this case is important as Algorithm 9 requires a special treatment for a null input.

Table 6 gives the value of the comparison constants minmed 2 u 2 /t 2 big and maxmed 2 • t 2 big /u 3 (assuming t big is the largest allowed value in Table 5) needed by the algorithm.

Examples

Table 7 gives the error bounds we obtain in the cases n = 12 and n = 10000, for the b oat16, binary32, and binary64 formats. 5 Veri cation of some of our proofs by the Coq proof assistant

Our proofs, given in the "supplementary material", are quite long and computational. This is not fully satisfactory: long and tedious proofs are seldom read, with the potential risk that errors remain unnoticed. To overcome this di culty, we have veri ed a large number of these proofs using the Coq proof assistant with the help of the Flocq library [START_REF] Boldo | Flocq: A uni ed library for proving oating-point algorithms in coq[END_REF][START_REF] Boldo | Computer Arithmetic and Formal Proofs: Verifying Floating-point Algorithms with the Coq System[END_REF]. This veri cation gives a high con dence in the correctness of the algorithms and error bounds, allowing future users to use them with trust. The Coq proof assistant (see for example [START_REF] Bertot | Interactive Theorem Proving and Program Development. Coq'Art: The Calculus of Inductive Constructions[END_REF]) is based on the computation of inductive constructions. It is an interactive proof construction tool, which provides a language of tactics to help the user to build new proofs. The Flocq library, based on Coq, deals with the arithmetic of oatingpoint numbers. It provides di erent models for representing oating-point numbers and a bunch of proofs of related properties. For example, the Flocq library was used by Boldo et al. to prove the correctness of oating-point passes of the veri ed C compiler of CompCert [START_REF] Boldo | Veri ed compilation of oating-point computations[END_REF]. Two of us recently used Flocq to consolidate knowledge on the error bounds of basic algorithms for the arithmetic of double-word numbers [START_REF] Muller | Formalization of double-word arithmetic, and comments on "Tight and rigorous error bounds for basic building blocks of double-word arithmetic[END_REF].

Concerning this present work on Euclidean norms, we veri ed in Coq all the proofs concerning the square-root (Section 3), the proofs of the sum-of-squares algorithms of Section 4.1, and Theorem 4.5 (which establishes the correctness of our algorithms and error bounds for the Euclidean norm assuming no under ow or over ow occurs). For that purpose, we also built a veri ed proof of the Lange and Rump theorem (Theorem 1.4).

Note that, for the rounding function RN, we have chosen not to specify the tie-breaking rule in our formal proofs (the default in IEEE 754 arithmetic, as said above, is ties-to-even). This makes our proofs more general: they are for instance still valid with the less frequently used (but also speci ed by IEEE 754) "ties-to-away" tie-breaking rule.

Our formal proofs can be downloaded from the supplementary materials.

Experiments

We have checked our algorithm and compared it with other solutions from the literature on two aspects: accuracy and speed. We decided to design two di erent implementations of our algorithm: an implementation in Julia, used for accuracy testings, and a C implementation, used for performance evaluation and comparison. The reason for this choice is simple: the versatility of Julia makes it much easier to play with di erent precisions. However, it is exactly the same algorithm that was implemented in both environments. The Julia and C les can be downloaded from the supplementary materials.

Accuracy testings

We have implemented the Naive algorithm, Hammarling's algorithm, the algorithm of Graillat et al. [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF] as well as our algorithm (with the blockwise summation, i.e., Algorithm 11, with k = 2) in the Julia programming language, and we have measured the errors obtained with randomly chosen input arrays of increasing sizes. The elements of the arrays are oating-point numbers. Their signi cands are uniformly generated between 1 and 2 -2u, and their exponents are uniformly generated in a range de ned by one of the following pro les:

• NORMAL_INPUT: the exponents are uniformly generated between e min and e max -p.

• MED_INPUT: the exponents are uniformly generated between (e min + p)/2 and (e max -p)/2 .

The reason for choosing the former exponent range is that we want to avoid non-spurious underow or over ow, and the reason for choosing the latter is to avoid any under ow or over ow. See Table 1 and Table 4 for the values of the various parameters. We have performed all experiments in the binary32 and binary64 oating-point formats of the IEEE 754 Standard. We initially wanted to perform experiments in the binary128 format too. For that purpose we wanted to use the GNU libquadmath library, which provides a software implementation of the binary128 format, but we discovered that its square-root function (sqrtq) is not correctly rounded. As this is a requirement for the accuracy of the algorithm of Graillat et al. [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF] as well as ours, the tests could not be performed in that format. Finally, enclosures of the exact results are computed using Johansson's Arb library [START_REF] Johansson | Arb: E cient arbitrary-precision midpoint-radius interval arithmetic[END_REF], with enough accuracy to allow one to determine the correct roundings of the exact results unambiguously.

Tables 8 (NORMAL_INPUT) and 9 (MED_INPUT) present the maximum obtained relative errors, and the percentage of faithfully and correctly rounded results, as well as the percentage of over ows. In Table 8, the Naive algorithm always over ows except in a few cases when n = 16. As each input value has probability ≈ 0.25 of being an element of BIG, there is a probability of approximately 0.75 n that the array has no elements of BIG, which is around 0.01 when n = 16, around 0.00000001 when n = 64, and even less when n is larger. In Table 9, no over ow occurs, so that we can now compare the Naive algorithm with the other ones. Beware: the "100%" in the "correct rounding" columns of the table can be a bit misleading: these results do not show that our algorithm always returns correctly rounded values (indeed, it cannot), but that incorrectly rounded values are extremely unlikely in practice. Incorrectly rounded values are much more frequent with the algorithm of Graillat et al. [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF], which is not surprising: that algorithm was designed to always return faithfully rounded values, and our tests show that this is indeed the case for all the input arrays we have built. The two tables show that rounding errors in the Naive and the Hammaring algorithms clearly increase with n. This is almost not the case with the algorithm of Graillat et al., as well as ours, in the range of sizes between 16 and 4096.

Performance evaluation

Our experiments have been performed in a similar way to the ones that were reported in [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF]. As said above, we implemented our algorithm in the C language for evaluating its performance and for comparing it to four other algorithms:

• the "Naive algorithm" is the straightforward implementation of (1). It does not prevent spurious over ow/under ow from happening, and can, in rare cases, be inaccurate when underows occur;

• a vectorized version of the Naive algorithm;

• Hammarling's algorithm, presented in Section 2.1, as implemented by Graillat et al. [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF];

• Graillat et al. 's algorithm presented in [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF].

All ve algorithms are compared using the IEEE-754 binary64 format. We performed our tests on four di erent machines, that we designate by the microarchitecture they are based on: ARM ThunderX2, Intel Co ee Lake, AMD Zen 2 and Intel Skylake.

In Section 4.1.2 we have considered possible values of the number of blocks in the blockwise summation (i.e., variable k in Algorithm 11), in order to minimize the error bound. We have seen (see Property 4.4) that even k = 2 is a signi cant improvement, in terms of accuracy, compared to the sequential summation. Now, for a binary64 implementation, if we reason in terms of performance, the best choice is the maximum number of binary64 FPNs that t in an SIMD vector. That number varies across the di erent extensions considered.

The main characteristics of the four used architectures are summarized in Table 10. In this table, we indicate for each system the processor name, the name of the instruction set architecture (column "ISA"), the name of the SIMD extension (column "SIMD") that was used to compile or to program the algorithms, and the chosen number k of blocks in the blockwise summation (taken equal to the number of binary64 FPNs that t in an SIMD vector).

We retrieved the code of Graillat et al. [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF] from https://www.christoph-lauter.org/faithfulnorm.tgz, and we directly used the plain C code they provide for the "Naive" and "Hammarling" (called Netlib in their code) algorithms. They also provide an implementation of their Euclidean norm algorithm using intrinsics functions for manipulating AVX2 vectors. In particular, they use these intrinsics functions to make the inner-loop of their algorithm branch-free by using componentwise masking operations.

We have used the same technique for implementing our algorithm, but we have added a small intermediate library to facilitate porting the code to di erent SIMD extensions. That library contains a type vec_t for the SIMD vectors, whose de nition depends on the targeted extension. For example, when the code is compiled for the AVX2 SIMD extension, vec_t is an alias for the type __m256d, and the componentwise addition of two SIMD vectors is de ned by inline vec_t vec_add (vec_t v1 , vec_t v2) { return _mm256_add_pd (v1 , v2); } On the other hand, when the code is compiled for the Neon extension of the ARM architecture, vec_t is now an alias for the float64x2_t type, and the componentwise addition of two vectors becomes inline vec_t vec_add (vec_t v1 , vec_t v2) { return vaddq_f64 (v1 , v2); } Table 11: Timing comparisons of ve algorithms to compute the Euclidean norm, for three di erent array sizes and three di erent pro les of inputs (the three pro les are abbreviated by MED_INP, NRM_INP, and SPUR_OVR). For each entry, the mean value and standard deviation of a population of 100,000 runs are given. All times are given in microseconds.

Intel Co ee Lake (AVX2) @3.2 GHz AMD Zen2 (AVX2) ≤3.

Remark 3 . 8 .

 38 and the relative error of that algorithm is bounded by u + (17/8) • u 2 + (33/8) • u 3 . The proof of Theorem 3.11 below uses the following result. If x h = 2 2k with k ∈ Z, then Algorithm 9 returns 2 k .

) is reached when k = r n or k = n/r n , where r n is the largest divisor of n less than or equal to √ n, resulting, if r n ≈ √ n in a relative error less than around (4 √ n -2) • u 2 . For instance, in IEEE 754 binary64 arithmetic (u = 2 -53), with n = 6000, the obtained relative error bounds are: • 1.3322 × 10 -12 u with our sequential algorithm; • 1.9981 × 10 -12 u with Graillat et al. 's algorithm; • 3.5306 × 10 -14 u with the blockwise summation algorithm, with the near-optimal choices k = 60 and m = 100 or k = 100 and m = 60.

Table 1 :

 1 Main parameters of the binary interchange formats of size up to 128 bits speci ed by the 754-2019 standard[START_REF]IEEE. IEEE Standard for Floating-Point Arithmetic (IEEE Std[END_REF], and the b oat16 format[START_REF] Henry | Leveraging the b oat16 arti cial intelligence datatype for higher-precision computations[END_REF].

	name	binary16 binary32 (basic) binary64 (basic) binary128 (basic) b oat16
	former name		single precision double precision		
	p	11	24	53	113	8
	e max	+15	+127	+1023	+16383	+127
	e min	-14	-126	-1022	-16382	-126

Table 2 :

 2 Notation for the important FP parameters.

	notation	numerical value	explanation
	Ω	2 emax • (2 -2 -p+1)	largest nite FPN
	α	2 e min -p+1	smallest positive FPN
	2 e min	2 e min	smallest positive normal FPN (under ow threshold)
	succ(t)	succ(t)	oating-point successor of t
	η	2 (e min +p)/2	the square of a FPN ≥ η is the sum of two FPNs
	u	2 -p	roundo error unit
	ulp		

Table 3 :

 3 Maximum values of n for which a pair-arithmetic implementation is guaranteed to return a faithful result. For the blockwise algorithm, we have chosen k = m =

	√	n .

Table 4 :

 4 The various parameters of our algorithm for the binary16 format of IEEE 754-2019[START_REF]IEEE. IEEE Standard for Floating-Point Arithmetic (IEEE Std[END_REF], the b oat16 format[START_REF] Henry | Leveraging the b oat16 arti cial intelligence datatype for higher-precision computations[END_REF], and the binary32, binary64, and binary128 formats of IEEE 754-2019.

	parameters	binary16	b oat16	binary32	binary64	binary128
	p	11	8	24	53	113
	emax	15	127	127	1023	16383
	α	2 -24	2 -133	2 -149	2 -1074	2 -16494
	η	2 -3/2	2 -59	2 -51	2 -969/2	2 -16269/2
	Ω	65504	2 128 -2 120 ≈ 3.390 × 10 38	2 128 -2 104 ≈ 3.403 × 10 38	2 1024 -2 971 ≈ 1.798 × 10 308	2 16384 -2 16271 ≈ 1.190 × 10 4932
	minmed	1/2	2 -59	2 -51	2 -484	2 -8134
	maxmed	4	2 59	2 51	2 485	2 8135

Table 5 :

 5 The parameters minmed, maxmed, t big , and t tiny in binary32 arithmetic, for our algorithm and for Graillat et al. 's algorithm[START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF]. big = S h big + S big , and S tiny = S h tiny + S tiny . As the expression Algorithm 12 Obtaining the norm from S big , S med , and S tiny without spurious over ow or underow. if BIG is nonempty then if S h med < minmed 2 u 2 /t 2 big or S h big > maxmed 2 • t 2 big /u 3 then return 1 t big • SQRTDWtoFP(S h big , S big) = t tiny • SQRTDWtoFP(S h big , S big) else compute χ = SloppyDWPlusDW(t tiny S h big , t tiny S big , t big S h med , t big S med) return √ t tiny • SQRTDWtoFP(χ) SloppyDWPlusDW(t tiny S h med , t tiny S med , t big S h tiny , t big S tiny) return √ t big • SQRTDWtoFP(χ)

		binary32	binary64			binary128
		our solution	Graillat et al.	our solution	Graillat et al.	our solution	Graillat et al.
	minmed	2 -51	2 -60	2 -484	2 -376		2 -8134	2 -5536
	maxmed	2 51	2 34	2 485	2 324		2 8135	2 5424
		2 γ , where		2 γ , where			2 γ , where
	t tiny	γ ∈	2 94	γ is even and	2 700		γ is even and	2 10960
		{98, 100, 102}		590 ≤ γ ≤ 968			8360 ≤ γ ≤ 16268
	t big	1/t tiny	2 -94	1/t tiny	2 -700		1/t tiny	2 -10960
		1 t 2 tiny	S h tiny + S tiny + S h med + S med +	1 big t 2	S h big + S

S big cannot be used directly, we operate on a case-by-case basis according to whether BIG, MED, and TINY contain elements or not. The strategy for obtaining the norm from S big , S med , and S tiny is described by Algorithm 12.

 Also, Lemma 3.4 implies S med ≤ n • maxmed 2 < maxmed 2 /u, therefore S med < (S big /t 2 big)u 2 , and, as previously, (30) holds and one can return t tiny • SQRTDWtoFP(S h big , S big). • t 2 big /u 3 , then S med ≥ (minmed 2 u 2 /t 2 big)(1 -u) and S big ≤ maxmed 2 • t 2 big (1 + u)/u 3 . Consider χ = S big /t big + t big S med = t tiny S big + t big S med . Over ow: we have t big S med ≤ t big • n • maxmed 2 ≤ t big • Ω, and t tiny S big ≤ t tiny maxmed 2 t 2 big

	• If S h med ≤ maxmed 2 The number χ can be computed without under ow or over ow: ≥ minmed 2 u 2 /t 2 big and S h big
	(a)

 2-2 , and (25) implies e min /2 + 3p/2 ≤ 0. Hence t big S med ≥ 2 e min +2p-2 ≥ 2 e min +p . Therefore, it su ces to compute χ in double-word arithmetic by summing t big • (S h med , S med) and t tiny • (S h big , S big) by the means of SloppyDWPlusDW (Algorithm 5). If we call χ the computed result, namely χ = SloppyDWPlusDW(t tiny S h big , t tiny S big , t big S h med , t big S med), we obtain | χ -χ| ≤ 3u 2 χ. Combined with (28) this gives

	n-1
	χ -t big
	i=0

Table 6 :

 6 Value of the comparison constants minmed 2 u 2 /t 2 big and maxmed 2 • t 2 big /u 3 (assuming t big is the largest allowed value, or equivalently t tiny is the smallest allowed value) needed by the algorithm, for the binary32, binary64, and binary128 formats of IEEE 754-2019.Theorem 4.7. If n ≤ 1/(4u) -2 and u ≤ 1/32, and if the sequential algorithm (Algorithm 10) is used for the summation of squares, then our algorithm computesThe proofs of Theorems 4.7 and 4.8 are given in the supplementary materials. In all practical cases, if the decomposition in blocks is balanced enough, constraint "k + m ≤ 1/(4u)-2" in Theorem 4.8 is less strong than constraint n ≤ 1/u. More precisely, assume we choose k = m = √ n (i.e., we possibly extend the vector (a 0 , a 1 , a 2 , . . . , a n-1) with additional zeros if n is not a perfect square). Constraint n ≤ 1/u implies

	format	binary32 (with t tiny = 2 98)	binary64 (with t tiny = 2 590)	binary128 (with t tiny = 2 8360)
	minmed 2 u 2 /t 2 big maxmed 2 t 2 big /u 3		2 46 2 -22			2 106 2 -51	2 226 2 -111
	4.2.3 Final error bound				
	We nally obtain,						
								n-1 i=0 a 2 i with an error bounded by
				1 2	+	(8n + 16) u + 37 2 u 2 4 -2u	ulp	n-1 i=0	a 2
				n-1 i=0 a 2 i with an error bounded by
		1 2	+	(3.116 + 2(k + m)) u + 9.77u 2 2 1 -u	ulp	n-1 i=0	a 2 i	,
	without any risk of spurious under ow or over ow.
	√ and one easily checks that for all precisions p ≥ 7 (i.e., u ≤ 1/128), 2/ n < 1/ √ u + 1, so that k + m < 2/ √ √ u + 2 < 1/(4u) -2.	u + 2,

i , without any risk of spurious under ow or over ow.

Theorem 4.8. If n ≤ 1/u, k + m ≤ 1/(4u) -2 and u ≤ 1/32, and if the blockwise algorithm (Algorithm 11) is used for the summation of squares, with k blocks of m elements, where km = n, then our algorithm computes

Table 7 :

 7 Maximum possible values of n assuming sequential and blockwise summations, and nal error,

	expressed in ulp	n-1 i=0 a 2 i	for n = 12 and n = 10000, for the b oat16, binary32, and binary64 formats.
		format		b oat16	binary32	binary64
	max. value of n for seq. summation	62	4,194,302	2.2517 × 10 15
	max. value of n for blockw. summation	256	16,777,216	9.0072 × 10 15
	error bound for n = 12 with seq. summation	0.610 ulp	0.5000017 ulp 0.5 0000000000000	311 ulp
						13 zeros
	error bound for n = 12 for blockw. summation with k = 3, m = 4	13 zeros 0.5672 ulp 0.50000103 ulp 0.5 0000000000000	191 ulp
	error bound for n = 10000 with seq. summation	N/A	0.5012 ulp	0.5 0000000000	223 ulp
						10 zeros
	error bound for n = 10000 with blockw. summation with k = m = 100	N/A	0.5000241 ulp	12 zeros 0.5 000000000000	45 ulp

Table 10 :

 10 The four systems on which we performed our experiments.

	machine	CPU	ISA	SIMD	k
	ARM ThunderX2 Cavium ThunderX2	ARM v8.1 Neon	2
	Intel Co ee Lake Intel Core i7-8700	x86-64	AVX2	4
	AMD Zen 2	AMD EPYC 7282	x86-64	AVX2	4
	Intel Skylake	Intel Xeon Gold 6136 x86-64	AVX512 8

Our proofs, however, are based on the assumptions that RN(-x) = -RN(x), and that if k ∈ Z and if both x and

k x are in the normal domain, then RN(2 k x) = 2 k RN(x).

scaleB(x, k) returns (in a binary format, which is the case considered in this paper) x•2 k (where x is a FP number and k is an integer), and logB(x) returns (in a binary format) log 2 |x| (where x is a FP number). In the C programming language, these functions are called scalbn and logb (resp. scalbnf and logbf) for binary64/double precision (resp. binary32/single precision) operands.

www.netlib.org

As a matter of fact, 0 could be as well in the TINY class instead of the MED class if this simpli es the programming. In any case, accumulating 0 in one part or another one will of course not change the result. However, depending on the underlying computer architecture, the choice may have a signi cant impact on performance, due to branch prediction issues.

We will need a stronger condition when we represent numbers in double-word arithmetic.

One can check that with an IEEE-754 compliant system, that test is not needed.

https://coq.inria.fr/

In fact, Condition e max ≥ 2 can be deduced from the conditions of Theorems 3.6 and 3.7. We know that x ≥ 2 emin+p , so that x h ≥ 2 emin+p , which can be representable only if e max ≥ e min + p. And since p ≥ 5 and e min = 1 -e max , we have e max ≥ 6 -e max . Therefore, e max ≥ 3.

As pointed out by Graillat et al., there is no need to preliminarily check whether BIG is empty or not. One progressively accumulates sums of squares in two registers, initially dedicated to the elements of MED and TINY, and as soon as an element of BIG is met, the accumulation of the terms of TINY is abandoned, and the very same register is now used for accumulating the elements of BIG.

Acknowledgement

This work is partly sponsored by the Agence Nationale de la Recherche (ANR) Nuscap project (https://anr.fr/Projet-ANR-20-CE48-0014).

Note that an __m256d vector gathers 4 binary64 numbers, while a float64x2_t contains 2 binary64 numbers. Hence, the code we wrote is parameterized by a macro constant vec_len that takes for value 8, 4 or 2 depending on the targeted SIMD extension.

We used this small library for implementing our algorithm, and we also used it to re-implement the algorithm proposed by Graillat et al. [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF]: on an AVX2 (with FMA) platform, the code we obtain is exactly the same as the one they wrote, but this allowed us to port it easily to the AVX512 and ARM Neon extensions.

The benchmark program of Graillat et al. [START_REF] Graillat | E cient Calculations of Faithfully Rounded L2-Norms of n-Vectors[END_REF] generates series of random numbers according to a speci c pro le, and gives statistics on the time taken by the di erent algorithms. Three di erent pro les are considered here:

• NORMAL_INPUT and MED_INPUT generate oating-point numbers as already explained in Subsection 6.1.

• SPURIOUS_OVERFLOW selects oating-point numbers whose exponent are uniformly chosen between e max /2 and e max -p. As a consequence, squares of the inputs over ow while the exact result is in the normal range.

Table 11 presents the timings obtained on these various systems. The vectorized Naive algorithm is, as expected, the fastest algorithm (but less accurate and prone to spurious over ow/under ow). On Intel and AMD systems, our algorithm is generally slightly faster than Graillat et al. 's algorithm; Hammarling's algorithm is as fast or faster with the MED_INPUT pro le, while slower with the NORMAL_INPUT pro le. We note that spurious over ows do not slow down the computations signi cantly. Results on the ARM architecture are quite di erent: timings do not depend on the input pro le, and Hammarling's algorithm is consistently faster.

To give more insights into the timings reported in the previous table, where only average values and standard deviations are given, we present in Figures 3 and4 the histograms of the timings measured on the Intel Co ee Lake system, with input vectors of size n = 4096. With the MED_INPUT pro le (Fig. 3), the few observed slight variations are probably due to operating system hazards. It is noticeable that Hammarling's algorithm is almost as fast as the nonvectorized Naive algorithm in this pro le. However, with the NORMAL_INPUT pro le (Fig. 4), the performances of Hammarling's algorithm are clearly degraded and are more scattered. This may be due to frequent changes of the scaling factor needed to prevent over ows/under ows with this pro le.

It is clear from Table 11, that the performances of the various algorithms depend much on the platform being used. However, in any case, these experiments show that our algorithm performs quite nicely compared to the other algorithms while being more accurate.

Conclusion

We have presented algorithms that make it possible to compute Euclidean norms of vectors very accurately, and without spurious under ows or over ows, even when these vectors are large. Our tests show that the performance of the "blockwise" version of our algorithm is in general slightly better than the performance of the slightly less accurate algorithm of Graillat et al., and in general better than the signi cantly less accurate Hammarling's algorithm. Our work on the computation of Euclidean norms also led us to obtain results on double-word arithmetic that can be of interest in other areas:

• we have shown that when the operands are positive, the DWPlusFP algorithm has relative error bound u 2 , and that bound is asymptotically optimal;

• we have shown the asymptotic optimality of the already known error bound 3u 2 for the Slop-pyDWPlusDW algorithm when the operands are positive;

• we have introduced new algorithms for computing square-roots of double-word numbers (SQRTDWtoDW and SQRTDWtoFP), given an asymptotically optimal relative error bound for the rst one, and an error bound in ulps for the second one.

Furthermore, we have formally proven the critical parts of our algorithms. Interestingly enough, avoiding spurious under ows and over ows and computing more accurately comes at a reasonable cost: the experiments presented in Section 6.2 show that our algorithm is never more than two times slower than the naive algorithm.