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Abstract

We consider the computation of the Euclidean (or L2) norm of an n-dimensional vector in
�oating-point arithmetic. We review the classical solutions used to avoid spurious over�ow or
under�ow and/or to obtain very accurate results. We modify a recently published algorithm (that
uses double-word arithmetic) to allow for a very accurate solution, free of spurious over�ows and
under�ows. To that purpose, we use a double-word square-root algorithm of which we provide
a tight error analysis. The returned L2 norm will be within very slightly more than 0.5 ulp from
the exact result, which means that we will almost always provide correct rounding.

1 Introduction

1.1 Computation of Euclidean norms
We consider the computation of Euclidean norms in binary �oating-point arithmetic. The Euclidean
(or L2) norm of a vector (a0, a1, a2, . . . , an−1) ∈ Rn is the number

N =

√
n−1∑
i=0

a2i . (1)

The particular case n = 2 (the so-called “hypotenuse” function) has been studied in excellent
references [2, 13]. In this paper, we assume that n is larger (more precisely, our algorithms do work
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in the cases n = 1 or 2, but it is for larger values that good performance is aimed at). Computing
Euclidean norms is important in many scienti�c and engineering applications. A good implemen-
tation of the Euclidean norm must be fast and accurate. It must also avoid spurious under�ows and
over�ows. A spurious under�ow or over�ow is an under�ow or over�ow that occurs during an in-
termediate step, resulting in an inaccurate, in�nite or NaN returned result, whereas the exact result
is well within the domain of normal �oating-point numbers.

To illustrate how spurious under�ows and over�ows can jeopardize the computation of a Eu-
clidean norm, consider the following examples, assuming IEEE 754 binary64/double-precision arith-
metic and n = 3, with the default round-to-nearest, ties-to-even, rounding function, and suppose
that we implement Formula (1) naively by �rst summing the squares serially and then taking the
square-root.

• With a0 = 1.5 × 2511, a1 = 0, and a2 = 2512, we will obtain an in�nite result (because the
computation of a22 over�ows), whereas the exact result is 5×2510, which is much smaller than
the over�ow threshold;

• with a0 = a1 = a2 = (45/64) × 2−537, the computed result is 0, whereas the exact result is
around 1.2178× 2−537, which is much above the under�ow threshold.

Note that from an accuracy point-of-view, spurious under�ow is a problem only if all terms ai are
tiny (otherwise, the errors due to under�ows that occur when squaring the “tiny” terms vanish in
front of the squares of the “big” terms). However, spurious under�ow can be very harmful from
a performance point-of-view on a system on which subnormal numbers are handled in software,
through a trapping under�ow mechanism.

There are no catastrophic cancellations when computing a Euclidean norm: all added terms are
nonnegative. Hence, even a naive use of Formula (1) will be rather accurate when no under�ow or
over�ow occurs. More precisely, Jeannerod and Rump recently showed [30] that the relative error
is bounded by (n

2
+ 1
)
· u, (2)

where u is the “rounding unit” (see de�nition below). The bound (2) is very sharp: for instance, in
binary64/double-precision �oating-point arithmetic, if n = 7, with a0 = 1125899918705907/250,
a1 = 6893812215223557/266 and a2 = a3 = · · · = a6 = 1592262918131443/277, the naive use of
Formula (1) leads to a relative error 4.499999839236531787 · · ·u, which is extremely close to the
bound

(
n
2

+ 1
)
u = 4.5u. However, the probability of observing a similar case by chance is almost

zero: such examples must be built, and in practice, the typical error rather grows like
√
n · u [25].

However, we can try to take advantage of the absence of catastrophic cancellations to always
obtain results very near the exact result. Our goal is to obtain a result that is almost always correctly
rounded (or always correctly rounded, using Ziv’s rounding test, see Remark 4.6 below). Correct
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rounding enhances the reproducibility of the calculations, which is becoming an important issue:
as pointed out by Demmel and NGuyen [16], in the context of ExaScale computing, reproducibility
considerably helps debugging and validating numerical programs, it is also sometimes needed for
legal reasons when di�erent sides need to agree on the results of some computation. More generally,
our contribution could be used in a “highly accurate” arithmetic toolbox.

Note that the Euclidean norm of the complex vector (b0, b1, b2, . . . , bn−1) ∈ Cn is equal to the
norm of the real vector (a0, a1, a2, . . . , a2n−1) ∈ R2n such that a2j = <(bj) and a2j+1 = =(bj).
Hence, all properties, algorithms and bounds presented in this paper for real vectors are easily gen-
eralizable to complex vectors.

Due to the importance of the topic, several solutions have been suggested and analyzed until
recently for computing norms accurately and/or without spurious under�ows and over�ows [4, 24,
18, 19, 1]. We will present them in Section 2.1. Before that, let us present some de�nitions and
properties related to �oating-point arithmetic, that will be useful in the sequel of this paper.

1.2 The underlying FP arithmetic
In the following, we assume a radix-2, precision-p, �oating-point (FP) arithmetic (where p ≥ 5),
with extremal exponents emin < 0 and emax > 0. We also assume emin = 1 − emax (which is
a requirement of the IEEE 754-2019 Standard for FP arithmetic [27]). In such a system, a �nite
�oating-point number (FPN) is a number of the form M · 2e−p+1, with M ∈ Z, |M | ≤ 2p − 1, and
e ∈ Z, emin ≤ e ≤ emax [38]. A FPN x is normal if |x| ≥ 2emin or x = 0, and subnormal otherwise.
The largest representable FP number is Ω = 2emax · (2 − 21−p), the smallest positive normal FP
number, also called “under�ow threshold”, is 2emin . In the following, we will say that an arithmetic
operation under�ows if its result is both subnormal and inexact. This choice may seem strange, but
we want to avoid under�ows because of accuracy concerns: when the result is exact, there is no
need to worry about accuracy (this is why the under�ow �ag is not raised in such a case under the
default exception handling for under�ow of the IEEE 754-2019 Standard). The smallest positive FP
number is α = 2emin−p+1.

The notation RN(t) stands for t rounded to the nearest FP number. We do not assume a partic-
ular tie-breaking rule in our proofs,1 and we use the default ties-to-even rule in our examples. For
instance RN(c · d) is the result of the FP multiplication c ∗ d, assuming round-to-nearest rounding
mode (which is the default in IEEE 754-2019). The number ulp(x), for x 6= 0 is

ulp(x) = 2max{blog2 |x|c,emin}−p+1,

and u = 2−p = 1
2
ulp(1) denotes the roundo� error unit. The constraint p ≥ 5 implies u ≤ 1/32,

which will serve many times in our proofs. The relative error due to rounding to nearest a real
1Our proofs, however, are based on the assumptions that RN(−x) = −RN(x), and that if k ∈ Z and if both x and

2kx are in the normal domain, then RN(2kx) = 2kRN(x).

3



number x such that |x| ∈ [2emin ,Ω], namely |(RN(x)− x)/x|, is bounded by u/(1 + u) [30]. When
tightness is not necessary, we will use the simpler yet very slightly looser bound u. We will denote
succ(t) the �oating-point successor of t, and η the number 2(emin+p)/2 (beware: it is a FP number
only when emin + p is even). Barring over�ow, the square of a FPN ≥ η can be expressed exactly as
the sum of two FPNs [6]. We also have the following property (see for instance [38]):

Property 1.1. If a FP number t̂ approximates a real number t with relative error ε, then t̂ is within
(ε/u) · ulp(t) from t.

The FP numbers between 2k and 2k+1 are multiples of 2k+1u: for instance, the FP numbers
between 1 and 2 are 1, 1 + 2u, 1 + 4u, 1 + 6u, . . . , 2 − 2u, 2. We call binade an interval of the
form [2k, 2k+1), k ∈ Z. Table 1 reminds the values of p, emin and emax for the binary interchange
formats of IEEE 754-2019 up to 128 bits [27] and the more recent b�oat16 format [21], and Table 2
summarizes our notation for the important FP parameters.

Table 1: Main parameters of the binary interchange formats of size up to 128 bits speci�ed by the 754-2019
standard [27], and the b�oat16 format [21].

name binary16 binary32 (basic) binary64 (basic) binary128 (basic) b�oat16
former name single precision double precision

p 11 24 53 113 8
emax +15 +127 +1023 +16383 +127
emin −14 −126 −1022 −16382 −126

Table 2: Notation for the important FP parameters.

notation numerical value explanation

Ω 2emax · (2− 2−p+1) largest �nite FPN
α 2emin−p+1 smallest positive FPN

2emin 2emin smallest positive normal FPN (under�ow threshold)
succ(t) succ(t) �oating-point successor of t
η 2(emin+p)/2 the square of a FPN ≥ η is the sum of two FPNs
u 2−p roundo� error unit

ulp(x) (for x ∈ R, x 6= 0) 2max{blog2 |x|c,emin}−p+1 unit in the last place

4



A computed result is faithfully rounded if i) it is equal to the exact result if this one is a FP
number, and ii) it is one of the two FP numbers that surround the exact result otherwise. This
implies (barring over�ow) that the returned result is within one ulp of the exact result from the
exact result.

Figure 1 illustrates the notions presented in this section.

2k 2k+1
t

RN(t)

the two faithful roundings of t

u · 2k+1 = ulp(t)

Figure 1: The �oating-point numbers between 2k and 2k+1 (assuming emin ≤ k < emax).

1.3 Double-word and pair arithmetics
Evaluating norms with an accuracy signi�cantly better than that of the naive algorithm may require
representing intermediate results with a precision higher than the working FP precision. This can
be done by representing these intermediate results by a pair of FP numbers. For instance, Graillat
et al. [18] recently published an algorithm that computes faithfully rounded norms. To achieve
that goal, they use double-word (or “double-double”) arithmetic in their intermediate calculations.
Lange and Rump [43] recently de�ned a “pair arithmetic” (which is a somehow “relaxed” version of
double-word arithmetic), and showed how it can be used, under some conditions, to obtain faithfully
rounded results in FP arithmetic. The algorithms used to perform operations with these arithmetics
are usually based on the three basic “building blocks” presented in Section 1.3.1: Fast2Sum, 2Sum,
and Fast2Mult. It is possible that new operations recently introduced in the IEEE 754 Standard
for FP arithmetic [27] and brie�y presented in Section 1.3.2 replace these building blocks in a near
future. Double-word arithmetic (and more generally, pair and multiple-word arithmetics) is slowly
yet steadily gaining importance among numerical methods [32, 43, 35, 17]: this makes a careful
study of its error useful.
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1.3.1 The basic building blocks: Fast2Sum, 2Sum, and Fast2Mult

Algorithm 1 – Fast2Sum(a, b). The Fast2Sum algorithm [15]. It takes 3 FP operations.
s← RN(a+ b)
z ← RN(s− a)
t← RN(b− z)

If |a| ≥ |b|, unless over�ow occurs, the two FP numbers s and t returned by Algorithm 1 satisfy
s+t = a+b. Since s is the result of the conventional �oating-point addition of a and b, t is the error of
that addition. Also, if the �rst operation does not over�ow, the other operations cannot over�ow [7].
For that algorithm, under�ow is harmless (this is an immediate consequence of Lemma 1.3).

Algorithm 2 – 2Sum(a, b). The 2Sum algorithm [37, 34]. It takes 6 FP operations.
s← RN(a+ b)
a′ ← RN(s− b)
b′ ← RN(s− a′)
δa ← RN(a− a′)
δb ← RN(b− b′)
t← RN(δa + δb)

Unless over�ow occurs, the two FP numbers s and t returned by Algorithm 2 satisfy s+t = a+b:
this algorithm returns the same result as Algorithm 1 without any condition on a and b. On the other
hand, it is slightly less over�ow-proof: If the �rst operation does not over�ow and if |a| < Ω, then
the other operations cannot over�ow [7]. Under�ow is harmless.

Algorithm 3 – Fast2Mult(a, b). The Fast2Mult algorithm (see for instance [33, 40, 38]). It requires
the availability of a fused multiply-add (FMA) instruction for computing RN(ab− πh).
πh ← RN(a · b)
π` ← RN(a · b− πh)

In this paper, Algorithm Fast2Mult is used for expressing the square of a FP number as a double-
word number. One should keep in mind that, barring over�ow, the condition for that algorithm to
guarantee that πh + π` = a · b is stronger than just requiring the absence of under�ow in the �rst
multiplication. Several slightly di�erent conditions appear in the literature (see [6] for a necessary
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and su�cient condition). One can show (see for instance [8]) that if 2emin+p ≤ |a · b|, then πh +π` =
a · b. In the case of the computation of a · a, this condition becomes

|a| ≥ η = 2(emin+p)/2. (3)

Algorithm Fast2Mult requires the availability of an FMA instruction. Without an FMA instruction,
the calculation of (πh, π`) remains possible, but at a signi�cantly higher cost (17 �oating-point op-
erations instead of 2 [15]).

1.3.2 An alternative: the new “augmented” arithmetic operations

The latest release of the IEEE Standard for Floating-Point Arithmetic, published in 2019 [27], speci-
�es new “augmented” operations, called augmentedAddition, augmentedSubtraction, and augmented-
Multiplication (history and motivation are presented in [41]). These operations use a new “rounding
direction”, round-to-nearest ties-to-zero, denoted RN0 in this paper, that satis�es [27]:

RN0(t) (where t is a real number) is the FP number nearest t. If the two nearest FP
numbers bracketing t are equally near, RN0(t) is the one with smaller magnitude. If
|t| > Ω + 2emax−p, then RN0(t) = ±∞, with the same sign as t.

The augmented operations are de�ned as follows [27, 41]:

• augmentedAddition(x, y) delivers (a0, b0) such that a0 = RN0(x + y) and, when a0 /∈
{±∞,NaN}, b0 = (x + y) − a0. When b0 = 0, it is required to have the same sign as
a0;

• augmentedSubtraction(x, y) is augmentedAddition(x,−y);

• augmentedMultiplication(x, y) delivers (a0, b0) such that a0 = RN0(x · y) and, where a0 /∈
{±∞,NaN}, b0 = RN0((x · y) − a0). When (x · y) − a0 = 0, the �oating-point number b0
(equal to 0) is required to have the same sign as a0.

As we are writing these lines, no fast hardware implementation of these operations is o�ered on
widely available platforms. When this happens, in the algorithms presented in this paper, it can be
worth replacing 2Sum and Fast2Sum by augmentedAddition, and replacing Fast2Mult by augment-
edMultiplication.

1.3.3 Double-word arithmetic

We de�ne a double-word number as follows

De�nition 1.2. A double-word (DW) number x is the unevaluated sum xh + x` of two �oating-point
numbers xh and x` such that xh = RN(x).
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Double-word arithmetic goes back to the seminal work of Dekker [15]. Algorithms for manipu-
lating DW numbers have been published and analyzed by Li et al. [36], Hida, Li and Bailey [23, 22],
Joldes et al. [32], Muller and Rideau [39]. Let us now give a two classical DW algorithms. Some new
results on DW arithmetic necessary for this study are given in Section 3.

Let us �rst consider the addition of a DW number and a FP number. Consider Algorithm 4 below.
It was implemented in the QD library [23].

Algorithm 4 – DWPlusFP(xh, x`, y). Algorithm for computing (xh, x`) + y in binary, precision-p,
�oating-point arithmetic, implemented in the QD library. The number x = (xh, x`) is a DW number
(i.e., it satis�es De�nition 1.2).

1: (sh, s`)← 2Sum(xh, y)
2: v ← RN(x` + s`)
3: (zh, z`)← Fast2Sum(sh, v)
4: return (zh, z`)

That algorithm was analyzed by Joldes et al. [32]. They found that its relative error

|((zh + z`)− (x+ y))/ (x+ y)|

is bounded by
2 · u2/(1− 2u) = 2u2 + 4u3 + 8u4 + · · · (4)

They also showed that the bound (4) is asymptotically optimal, by exhibiting “generic” (i.e., param-
eterized by the precision p) input values for which the ratio between the attained relative error and
the bound goes to 1 as p goes to in�nity.

Now, let us turn to the addition of two DW numbers. Algorithm 5 below was �rst given by
Dekker [15], under the name of add2. It was implemented by Hida, Li, and Bailey in the QD li-
brary [23] under the name of “sloppy addition”. The reason for that name is that if the input operands
have di�erent signs, the relative error can be arbitrarily large. We will not use that algorithm, but
since it is the algorithm used by Graillat et al. to perform their summations [18], we brie�y present
it and some of its properties for the sake of completeness and for helping to compare our solutions.

Algorithm 5 – SloppyDWPlusDW(xh, x`, yh, y`). “Sloppy” calculation of (xh, x`) + (yh, y`) in
binary, precision-p, �oating-point arithmetic. It takes 11 FP operations.

1: (sh, s`)← 2Sum(xh, yh)
2: v ← RN(x` + y`)
3: w ← RN(s` + v)
4: (zh, z`)← Fast2Sum(sh, w)
5: return (zh, z`)
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If the inputs operands xh and yh have the same sign (which is of course the case when summing
squares), the relative error of Algorithm 5 is bounded by 3u2 [18]. This bound is asymptotically
optimal: consider xh = 1 + 2u, x` = −u + u2, yh = 9u, and y` = −6u2 − 8u3, for which the
double-word number returned by Algorithm 5 is equal to 1 + 10u− 8u2 and the exact sum is equal
to 1 + 10u− 5u2 − 8u3, resulting in a relative error u2 · (3− 8u)/(1 + 10u− 5u2 − 8u3) = 3u2 −
38u3 +O(u4).

1.3.4 Lange and Rump’s pair arithmetic

Lange and Rump [43] recently de�ned a “pair arithmetic” (which is a somehow “relaxed” version of
double-word arithmetic), and showed how it can be used, under some conditions, to obtain faithfully
rounded results in �oating-point arithmetic.

Rewritten with our notation, the pair algorithms used by Lange and Rump [43] for addition and
square-root are the following.

Algorithm 6 – Pair_addition(xh, x`, yh, y`). Lange and Rump’s calculation of (xh, x`)+(yh, y`) in
binary, precision-p, �oating-point arithmetic. It is Algorithm 5 without the last “renormalization”.
It takes 8 FP operations.

1: (sh, s`)← 2Sum(xh, yh)
2: v ← RN(x` + y`)
3: w ← RN(s` + v)
4: return (sh, w)

Algorithm 7 – Pair_sqrt(xh, x`). Lange and Rump’s calculation of the square-root of (xh, x`) in
binary, precision-p, �oating-point arithmetic. It is Algorithm 8 without the last “renormalization”.
It takes 5 FP operations (counting the square-root as one).

1: sh ← RN(
√
xh)

2: ρ1 ← RN(xh − s2h) (with an FMA instruction)
3: ρ2 ← RN(x` + ρ1)
4: s` ← RN(ρ2/(2 · sh))
5: return (sh, s`)

These algorithms are similar to the DW algorithms presented in this paper, with the di�erence
that they avoid the last “renormalizing” Fast2Sum operation. This makes them signi�cantly faster,
but this may sometimes make them less accurate, especially when cancellations occur. When adding
squares, however, there are no cancellations: this makes Lange and Rump’s pair arithmetic a very
good candidate.
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1.4 Some results useful later on
The following lemma is frequently used to show that some calculations remain valid even when
operands are below the under�ow threshold (the proof is straightforward).

Lemma 1.3 (Hauser Lemma [20]). If x and y are �oating-point numbers, and if the number RN(x+y)
is subnormal, then x+ y is a �oating-point number, which implies RN(x+ y) = x+ y.

For bounding the error committed during the evaluation of a sum of squares, we will use the
following lemma, which is a direct consequence of Lemma 2.1 in [42], due to Lange and Rump.

Lemma 1.4 (Lange and Rump [42]). Let F be an arbitrary subset of R and let +̃ be an operation in
F with the only assumption that ∀a, b ∈ F, |(a+̃b) − (a + b)| ≤ min{|a|, |b|}. Let x1, x2, . . . , xn be
elements of F and de�ne numbers si and εi as follows:

s1 = x1,
si = xi+̃si−1 = (xi + si−1)(1 + εi) for i = 2, . . . , n.

We have |sn −
∑n

i=1 xi| ≤
∑n

i=2 |εi| ·
∑n

i=1 |xi|.

For computing square-roots in double-word arithmetic, we will need the following result, due to
Boldo and Daumas [6]. This is Theorem 5 of [6], restricted to binary arithmetic and rewritten with
our notation.

Lemma1.5 (Exact representation of the square-root remainder). In binary, precision-p, FP arithmetic,
let s = RN(

√
x), where x is a FP number. The correcting term x− s2 is a FPN if and only if there exists

a pair of integers (m, e) (with |m| ≤ 2p − 1) such that s = m · 2e−p+1 and 2e ≥ emin + p− 1.

1.5 Aim and organization of this paper
Ideally, one would like to always return correctly rounded results (i.e., the computed result is the
�oating-point number nearest to the exact result, which implies that the error is less than or equal
to 0.5 ulp of the exact result). This seems di�cult to guarantee without signi�cantly slowing down
the calculation. However, we show in this paper that a modi�cation of Graillat et al.’s algorithm [18]
can be used to always obtain a maximum error very slightly above 0.5 ulp. This means that we almost
always obtain the correctly rounded result, except in rare cases when the exact norm is very near
the middle of two consecutive FP numbers. Furthermore, if needed, we can detect when the result
returned by our algorithm may not be correctly rounded (see Remark 4.6).

The sequel of the paper is organized as follows. Section 2 presents the algorithms one can �nd
in the literature. More precisely, in Subsection 2.1 we quickly review the classical solutions sug-
gested for avoiding spurious over�ows and under�ows, Subsection 2.2 brie�y presents the use by
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Graillat et al. of double-word arithmetic for obtaining more accurate results, and in Subsection 2.3
we consider applying a recent result by Lange and Rump [43] to obtain faithfully rounded norms
in pair arithmetic. In Section 3 we give some new results on DW arithmetic that will be helpful for
our study. In particular, we give a new bound (that takes into account the fact that we manipulate
positive numbers) for an existing addition algorithm, and we present and analyze an algorithm that
computes the square-root of a DW number. Since the proof of that square-root algorithm is long and
rather complex, and since the error bound of our Euclidean norm algorithm derives from the error
bound of the square-root algorithm, to give more con�dence on our result, we have formally proven
the square-root algorithm, using the Coq proof assistant (see for instance [9]). This part of the paper
continues the work undertaken by two of us on the formal proof of double-word algorithms [39].
Section 4 presents our algorithms for computing Euclidean norms. We �rst assume in Subsection 4.1
that no under�ow or over�ow occurs, then we deal with the general case in Subsection 4.2.

Our solution builds on Graillat et al.’s solution [18], with the following di�erences:

• we introduce a more accurate algorithm for summing the squares of the terms ai in DW arith-
metic;

• once we have obtained an approximation to the sum of squares as a DW number, we directly
take its square-root using a speci�c DW to FP square-root algorithm, whereas Graillat et al.
“convert” the sum of squares to �oating-point (by just retaining the most signi�cant part) and
take its square-root using the conventional FP square-root;

• we use di�erent comparison constants for preventing under�ows and over�ows.

2 Conventional solutions for computing Euclidean norms

2.1 Avoiding spurious over�ows/under�ows
Several solutions have been suggested for dealing with spurious under�ows and over�ows when
computing Euclidean norms. A �rst solution [26] would be to use the exception-handling mech-
anism provided by the IEEE 754 Standard for FP arithmetic: one could �rst use the naive method
(i.e., straightforward implementation of (1)), check if an under�ow or over�ow exception occurred,
and use a more sophisticated method only in that case. This approach is unlikely to allow good
performance on modern highly pipelined processors. All other approaches consist in scaling the
terms ai, i.e., we multiply or divide them by one (or several) constant(s) such that computing sums
of squares of the scaled values is over�ow-free, and that under�ow is either impossible or harmless
(a good presentation, along with comparisons of existing Fortran codes can be found in [19]). A
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straightforward choice is to scale all values by the factor max |ai|, i.e., to evaluate the norm as

max |ai| ×

√
n−1∑
k=0

(ak/max |ai|)2.

This approach has several drawbacks:

• it requires two passes over the data (�nding the maximum of the |ai| takes time and no com-
putation can start before that max is found);

• it requires divisions, and FP divisions are in general signi�cantly slower than FP additions and
multiplications;

• multiplying and dividing by max |ai| are, in general, nonexact operations, which leads to a
slightly larger �nal error than the error of directly using (1) when no under�ow/over�ow
occurs.

An already better approach (at least in terms of accuracy, latency may be another matter) consists
in choosing a scale factor equal to a power of 2 close to max |ai|, obtained for instance by the
means of the scaleB and logB functions2 speci�ed by the IEEE-754 Standard [27] (when an e�cient
implementation of these functions is available. If this is not the case, a possible workaround is
suggested in [29, Theorem IV.2]).

Higham [24, Pages 500 and 507] attributes to Hammarling a smart algorithm that consists in
dynamically scaling the data. It was implemented in the LAPACK [19] package released by netlib3.
We start from s0 = 1 and t0 = |x0|. At step i of the algorithm, we have already computed si−1 =∑i−1

k=0(xk/ti−1)
2, where si−1 is the current scaled sum and ti−1 is the current value of the scale factor.

If |xi| ≤ ti−1 then si = si−1+(xi/ti−1)
2 and the scale factor does not change: ti = ti−1. If |xi| > ti−1

then we need to update the scale factor. We compute

si = 1 + si−1 · (ti−1/xi)2,

and we replace the scale factor by |xi|: ti = |xi|. After this, one easily checks that si =
∑i

k=0(xk/ti)
2.

The �nal result is tn−1
√
sn−1. With this method, a single pass over the data su�ces. However, the

number of scale factor updates may be large: up to n− 1 updates if the |xi|’s are in increasing order
(although its average value is around log(n)), which may result in delays and additional rounding

2scaleB(x, k) returns (in a binary format, which is the case considered in this paper)x·2k (wherex is a FP number and
k is an integer), and logB(x) returns (in a binary format) blog2 |x|c (where x is a FP number). In the C programming
language, these functions are called scalbn and logb (resp. scalbnf and logbf) for binary64/double precision (resp.
binary32/single precision) operands.

3www.netlib.org
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errors due to (in general, nonexact) multiplications and divisions. An improvement in terms of
accuracy consists in choosing, when |xi| > ti−1, a value ti equal to a power of two close to (and
preferably above) |xi|, and then taking si = (xi/ti)

2 + si−1 · (ti−1/ti)2.
With the methods examined so far, a scaling is applied even when not needed.
Blue [4] takes a decisive step by suggesting to split the input numbers into 3 classes (that we will

call TINY, MED, and BIG), depending on their order of magnitude:

• numbers of the MED class can be squared, and their squares can be accumulated, without
under�ows or over�ows. A FP number ai is in the MED class if4 ai = 0 or minmed ≤ |ai| ≤
maxmed, where the choice of minmed and maxmed depends on the parameters (p, emin and
emax) of the FP arithmetic, and on the largest value of n, say nmax, for which a correct behavior
is to be guaranteed. We compute Smed =

∑
ai∈MED a

2
i ;

• numbers of the BIG class must be “scaled down” to make sure that we can accumulate their
squares without over�ow. A FP number ai is in the BIG class if maxmed < |ai|. All numbers of
the BIG class are multiplied by the same prede�ned constant tbig, chosen equal to a power of 2
(to make the multiplication errorless), and such that for ai ∈ BIG, tbig·ai ∈ MED. We compute
Sbig =

∑
ai∈BIG (tbig · ai)2 (usual presentation of the method is with divisions by constants; of

course, when actually implementing it, multiplication is preferable for performance reasons);

• numbers of the TINY class must be “scaled up” to make sure that we can compute their squares
without under�ow: each square must be larger than the subnormal threshold5 2emin . A FP
number ai is in the TINY class if |ai| < minmed and ai 6= 0. All numbers of the TINY class
are multiplied by the same constant ttiny, chosen equal to a power of 2, and such that for
ai ∈ TINY, ttiny · ai ∈ MED. We compute Stiny =

∑
ai∈TINY (ttiny · ai)2.

4As a matter of fact, 0 could be as well in the TINY class instead of the MED class if this simpli�es the programming.
In any case, accumulating 0 in one part or another one will of course not change the result. However, depending on the
underlying computer architecture, the choice may have a signi�cant impact on performance, due to branch prediction
issues.

5We will need a stronger condition when we represent numbers in double-word arithmetic.
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Let us summarize the various constraints that the parameters minmed, maxmed, tbig, and ttiny
must satisfy:

minmed2 ≥ 2emin , (5a)

nmax ·maxmed2 · (1 + κ) < Ω + (1/2)ulp(Ω) = 2emax+1 − 2emax−p, (5b)

maxmed · tbig ≥ minmed, (5c)

Ω · tbig ≤ maxmed, (5d)

minmed · ttiny ≤ maxmed, (5e)

α · ttiny ≥ minmed, (5f)

where Ω and α are de�ned in Table 2, and κ is a bound on the relative error of the algorithm used for
computing the sum of squares in MED. Assuming that maxmed and nmax are powers of 2, Eq. (5b)
can be replaced by nmax · maxmed2 < 2emax+1 − 2emax−p. Later on, when we use double-word
arithmetic, (5a) will need to be replaced by the stronger condition minmed ≥ η.

A recent, e�cient implementation of Blue’s algorithm is given by Anderson [1]. In Blue’s original
algorithm [4], the three termsStiny, Smed, andSbig are all computed, in three accumulators. However,
if BIG is nonempty, provided that the ratio maxmed/minmed is large enough, the value of Stiny

has negligible in�uence on the �nal result. Graillat et al.’s algorithm [18] and the variant of Blue’s
algorithm presented by Hanson and Hopkins in [19] take this into account and use two accumulators
only: as soon as an element of BIG is met, we no longer need to accumulate elements of TINY.

Figure 2 illustrates this splitting of the FP numbers into three classes.
The norm N =

√∑n−1
i=0

a2i is equal to
√
Stiny/t2tiny + Smed + Sbig/t2big, but obviously that for-

mula cannot be employed since Sbig/t
2
big—and, more rarely, the sum—could over�ow, and Stiny/t

2
tiny

could under�ow. Blue suggests obtaining N as follows:

1. if BIG and TINY are empty (i.e., if Sbig = Stiny = 0), then
√
Smed is returned;

2. if BIG is nonempty, then if
√
Sbig is larger than the precomputed constant Ω · tbig, +∞ is

returned6, otherwise we de�ne

ymin = min
{√

Smed,
1

tbig

√
Sbig

}
,

ymax = max
{√

Smed,
1

tbig

√
Sbig

}
,

and we go to step 4;
6One can check that with an IEEE-754 compliant system, that test is not needed.
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TINY MED BIG

tbig · BIG

ttiny · TINY

log2(R)0 2 4 6 8 10 12 14 16−2−4−6−8−10−12−14

α minmed 1 maxmed Ω

log2(R)0 2 4 6 8 10 12 14 16−2−4−6−8−10−12−14

α minmed 1 maxmed Ω

log2(R)0 2 4 6 8 10 12 14 16−2−4−6−8−10−12−14

α minmed 1 maxmed Ω

Figure 2: The splitting and the scaling of the FP numbers into 3 classes TINY, MED, and BIG.
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3. if BIG is empty and TINY is nonempty, we de�ne

ymin = min
{√

Smed,
1

ttiny

√
Stiny

}
,

ymax = max
{√

Smed,
1

ttiny

√
Stiny

}
,

and we go to step 4;

4. if ymin <
√
u · ymax, we return ymax, otherwise we return

ymax ·
(
1 + (ymin/ymax)

2)1/2 . (6)

The additional division and square-root that appear in (6) were perhaps unavoidable in the pre-
IEEE-754 era. However, they involve additional delay and rounding error in the calculation. Graillat
et al. [18] also split the input values into 3 classes, and give a simpler solution for the �nal recon-
struction of the norm N from Sbig, Smed, and Stiny. Their work uses double-word arithmetic (see
Section 1.2) for accumulating the sums Sbig, Smed, and Stiny, so the context is slightly di�erent (we
will come to that later on in this paper), but let us momentarily present their solution for avoiding
under/over�ow in the context of simple FP numbers. They choose:

tbig = 2−E, (7a)

ttiny = 2E, with (7b)
E = 2× d(1/2) · d(emax − emin + p)/3ee , (7c)

minmed = 2emax+1−2E, (7d)
maxmed = 2emax+1−E, (7e)

so that tbig = 1/ttiny and minmed = tbig ·maxmed. The choice (7c) indicates that they obtain TINY,
MED, and BIG by splitting the exponent range of the FP format into three parts of approximately
the same size. Assume n < 1/u. Graillat et al. show that:

• If BIG is nonempty, we can neglect the elements of TINY, so that we need to compute√
Smed + Sbig/t2big.

This can be done without under/over�ows as follows.

– If Sbig ≥ minmed2/u3 (i.e., Sbig/t
2
big ≥ maxmed2/u3 ≥ n · maxmed2/u2) or

Smed ≤ maxmed2u2, then Smed is negligible in front of Sbig/t
2
big and we can return

(1/tbig)
√
Sbig = ttiny

√
Sbig;
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– if Smed > maxmed2u2 and Sbig < minmed2/u3, then we can compute

χ = Sbig/tbig + tbigSmed = ttinySbig + tbigSmed

without over�ow or under�ow, so that we can return(
1/
√
tbig
)
· √χ, (8)

and the (precomputed) constant 1/
√
tbig =

√
ttiny is a power of 2 since (7a) and (7c)

imply that tbig is an even power of 2, so all multiplications in (8) are exact.

• If BIG is empty, we need to compute√
Smed + Stiny/t2tiny = (1/ttiny) ·

√
Stiny + Smed/t2big.

This can be done as follows.

– If Smed ≥ minmed/u3 or Stiny ≤ maxmed2u2, we can return
√
Smed;

– otherwise, we can safely compute the desired result as(
1/
√
ttiny

)
·
√
ttinySmed + tbigStiny

and the term 1/
√
ttiny =

√
tbig is a power of 2.

2.2 Using double-word numbers to improve accuracy: Graillat et al.’s so-
lution

Let us temporarily put aside the problem of avoiding spurious under/over�ow, and let us focus on
the need for accurately computing the sum of squares and the square-root involved in the computa-
tion of the Euclidean normN . The goal of Graillat et al. [18] was to guarantee faithful rounding ofN .
For that purpose, to save accuracy as much as possible, they compute the sum of squares

∑n−1
i=0 a

2
i

in double-word arithmetic. They �rst express the squares of the FP numbers ai as DW numbers
using Algorithm 3 (Fast2Mult). Then they sum the obtained DW numbers using Algorithm 5 (Slop-
pyDWPlusDW). As they mention, that summation is easily parallelizable. The obtained result is a
double-word approximation (Sh, S`) to the sum of squares.

After this, they take the square-root of Sh, using the correctly rounded square-root instruction
that is available on all IEEE 754 compliant systems. They show that, under reasonable conditions,
that square-root is a faithful rounding of the norm. More precisely, the condition they give on n
for their algorithm to return a faithful result is n < 1/(24u+ u2), i.e., n ≤ 699050 in binary32
arithmetic, and n ≤ 3.752× 1014 in binary64 arithmetic.
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Assuming sequential addition of the squares of the ais, and assuming that all numbers are in
the MED class (i.e., no scaling is needed), Graillat et al.’s algorithm uses 13n − 10 �oating-point
operations.

Let us mention, however, that the choice of “dropping” S` is tantamount to losing a non-
negligible information on the sum of squares.

Incidentally, Graillat et al. make a little and reasonably harmless mistake: they did not realize
that the value of minmed they choose (called β0 in their paper), given in Eq. (7d), is less than η in
binary32 arithmetic (it, is however, larger than η in binary64 and binary128 arithmetics). Hence,
in very rare cases (computations of norms in binary32 arithmetic with all scaled operands slightly
over minmed), some squares will not be expressed exactly as DW numbers. Whether this can lead
to errors slightly larger than the claimed bound remains an open question.

They target faithful rounding (i.e., error less than 1 ulp). We have a di�erent goal in mind: we
wish to achieve a �nal error extremely close to 0.5 ulp of the exact result, i.e., we wish to almost
always provide a correctly rounded result. This will be done by keeping the sum (Sh, S`) of the
squares in DW arithmetic, and using an algorithm that computes the square-root of a DW num-
ber (Algorithm 9). We will also compute (Sh, S`) more accurately, by using a di�erent summation
scheme, based on Algorithm 4.

2.3 An alternative: computing norms with pair arithmetic
In [43], Lange and Rump give conditions for their pair arithmetic to return faithfully rounded results.
We have applied Theorems 4.2 and 5.4 of [43] to two cases: the computation of N when the squares
are added sequentially using the Pair_addition algorithm, and the same computation where the a2i
are added blockwise: we divide them in k blocks of m terms, with km = n, we �rst add all the terms
of each block together, and then we add the k obtained sums. We obtain the following results:

• with the sequential summation, we will obtain a faithfully rounded result if
⌈
4
5
n+ 5

4

⌉
≤

1/
√

2u− u2 − 2;

• with the blockwise summation, we will obtain a faithfully rounded result if⌈
4
5
(m+ k − 1) + 5

4

⌉
≤ 1/

√
2u− u2 − 2.

Table 3 presents the maximum possible values of n allowed by these conditions, for binary32
and binary64 arithmetics. For the blockwise algorithm, we have chosen the “optimal” choice k =
m = d

√
ne.

Assuming sequential addition of the squares of the ais, and assuming that all numbers are in the
MED class (i.e., no scaling is needed), computing a norm in pair arithmetic uses 10n − 3 �oating-
point operations. Of course, exactly as for conventional or double-word arithmetics, one may need
scalings to avoid spurious under/over�ows.
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Table 3: Maximum values of n for which a pair-arithmetic implementation is guaranteed to return a faithful
result. For the blockwise algorithm, we have chosen k = m = d

√
ne.

format sequential summation blockwise summation
binary32 3615 3,268,864
binary64 83,886,075 ≈ 8.796× 1014

3 Some results on double-word arithmetic
In this section, let us give a few new results on double-word arithmetic that can be useful for accu-
rately computing norms. All the results of this section have been formally certi�ed using the Coq
proof assistant7 and the Flocq [10, 11] library.

3.1 Properties of DWPlusFP
First, the relative error bound (4) on Algorithm DWPlusFP (Alg. 4) was given in [32] assuming input
numbers of arbitrary sign. One may wonder if, when the operands have the same sign, we can
obtain a better error bound. This would be useful for summing squares, which is the main step of
the computation of Euclidean norms. Indeed, we have,

Theorem 3.1. If x = (xh, x`) is a nonnegative double-word number and y is a nonnegative FP number,
then the relative error of Algorithm 4 is bounded by u2. That bound is asymptotically optimal.

The proof is given in the supplementary materials.
Theorem 3.1 does not apply when y is negative. However, for very small values of |y|, one can

nevertheless obtain an error bound signi�cantly better than (4), which will be useful in Section 4.1.
More precisely,

Property 3.2. Assuming u ≤ 1/16 (i.e., p ≥ 4), if x = xh + x` is positive and y ≥ (−2u − u2) · x,
then the relative error of Algorithm 4 is bounded by u2 + 3u3.

The proof is given in the supplementary materials.
We also have,

Remark 3.3. When the operands x = xh + x` and y are positive, Algorithm 4 satis�es the condition
of Lemma 1.4 (with F being the set of the DW numbers), namely:∣∣∣DWPlusFP(xh, x`, y)− (xh + x` + y)

∣∣∣ ≤ min {(xh + x`), y} .
7https://coq.inria.fr/
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Proof. We have |DWPlusFP(xh, x`, y)− (xh + x` + y)| = |v − (x` + s`)|, and

|v − (x` + s`)| ≤ |x`| ≤ u · (xh + x`) < xh + x`,

and |v − (x` + s`)| ≤ |s`| ≤ y. Therefore, |v| ≤ min{xh + x`, y}.

Later on, we will compute sums of squares using Algorithm DWPlusFP (Algorithm 4). We will
need to bound the computed sum of n ≤ 1/u positive numbers less than some power of 2, say 2k,
by n · 2k (this is of course a straightforward property of the exact sum, but this is far from obvious
for the computed sum). This will be ensured by the following lemma.

Lemma 3.4. If (xh, x`) is a DWnumber and y is a FP number such that xh, y ≥ 2emin , xh+x` ≤ m1 ·2k

and y ≤ m2 ·2k wherem1 andm2 are positive integers satisfyingm1+m2 ≤ 2p then, barring over�ow,
the double-word number (zh, z`) returned by Algorithm DWPlusFP satis�es zh + z` ≤ (m1 +m2) · 2k.

The proof is given in the supplementary materials.

3.2 Square-root of a double-word number
Assume that x = (xh, x`) is a DW number, and that xh ≥ 22k, where k is an integer larger than
or equal to (emin + p)/2. The following two algorithms evaluate the square-root of x. Algorithm 8
returns a DW number, and Algorithm 9 returns a FP number.

Algorithm 8 – SQRTDWtoDW(xh, x`). Computes the square-root of the DW number (xh, x`)
in binary, precision-p, �oating-point arithmetic and returns a DW number (zh, z`). It takes 8 FP
operations (counting the FP square-root as one).

1: if xh = 0 then
2: return (0, 0)
3: else
4: sh ← RN(

√
xh)

5: ρ1 ← RN(xh − s2h) (with an FMA instruction)
6: ρ2 ← RN(x` + ρ1)
7: s` ← RN(ρ2/(2 · sh))
8: (zh, z`)← Fast2Sum(sh, s`)
9: return (zh, z`)

10: end if

To obtain a �oating-point number, one can replace the “Fast2Sum” of Line 8 of Algorithm 8 by a
�oating-point addition and obtain
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Algorithm 9 – SQRTDWtoFP(xh, x`). Computes the square-root of the DW number (xh, x`) in
binary, precision-p, �oating-point arithmetic and returns a �oating-point number z. It takes 6 FP
operations (counting the FP square-root as one).

1: if xh = 0 then
2: return 0
3: else
4: sh ← RN(

√
xh)

5: ρ1 ← RN(xh − s2h) (with an FMA instruction)
6: ρ2 ← RN(x` + ρ1)
7: s` ← RN(ρ2/(2 · sh))
8: z ← RN(sh + s`)
9: return z

10: end if

Remark 3.5. For performance purposes, if the FMA instruction is fast enough, to avoid the multipli-
cation of sh by 2 that appears in Line 7 of both algorithms, one can somehow “delay” that operation,
and replace Lines 7 and 8 of Algorithm 8 by (we inline the Fast2Sum algorithm for the sake of clarity):

7: t` ← RN(ρ2/sh) (t` equals 2s`)
8: zh ← RN(sh + 0.5 · t`) (�rst line of Fast2Sum(sh, s`))
9: δ ← RN(zh − sh) (second line of Fast2Sum(sh, s`))
10: z` ← RN(0.5 · t` − δ) (third line of Fast2Sum(sh, s`))

Similarly, one can replace Lines 7 and 8 of Algorithm 9 by:

7: t` ← RN(ρ2/sh) (t` equals 2s`)
8: z ← RN(sh + 0.5 · t`)

By doing so, Algorithm 8 now takes 7 FP operations, and Algorithm 9 takes 5 FP operations. In both
cases, the computed results are exactly the same.

Let us now analyze Algorithms 8 and 9. We assume that the input double-word operand x =
(xh, x`) is positive, i.e., xh > 0 (the case xh = 0 is straightforward). We have,

Theorem 3.6. If x = (xh, x`) is a double-word number, p ≥ 5, x ≥ 22k, where k is an integer larger
than or equal to (emin+p)/2 and no over�ow or under�ow occurs, then the relative error of Algorithm 8
is bounded by (25/8) · u2 = 3.125 · u2, and that bound is asymptotically optimal.
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Theorem 3.7. If x = (xh, x`) is a double-word number, p ≥ 5, x ≥ 22k, where k is an integer larger
than or equal to (emin + p)/2 and no over�ow or under�ow occurs, then the �oating-point number
returned by Algorithm 9 is within (1/2 + (7/4) · 2−p) ·ulp(

√
xh + x`) from

√
xh + x`, and the relative

error of that algorithm is bounded by u+ (17/8) · u2 + (33/8) · u3.

The proof of Theorem 3.11 below uses the following result.

Remark 3.8. If xh = 22k with k ∈ Z, then Algorithm 9 returns 2k.

The common proof of Theorem 3.6, Theorem 3.7, and Remark 3.8 uses results from [5, 6, 28] and
is given in the supplementary materials.

Intuitively, since the square-root of a huge number is less than that number, and the square-root
of a tiny number is larger than that number, over�ows and under�ows are not much of a concern
when evaluating square-roots. This does not mean that intermediate calculations in Algorithms 8
and 9 cannot under�ow or over�ow. Let us now quickly address this issue.

Remark 3.9. Under the conditions of Theorems 3.6 and 3.7 (and assuming emax ≥ 2, which always
holds in practice8), no over�ow can occur in Algorithms 8 and 9.

The proof is given in the supplementary materials.

Remark 3.10. Under the conditions of Theorems 3.6 and 3.7, with the additional assumption p+ 3 ≤
emax, under�ows in Algorithms 8 and 9 are impossible or harmless.

The proof is given in the supplementary materials.
Now, let us assume that the input values (xh, x`) of Algorithm SQRTDWtoFP (Algorithm 9) ap-

proximate some number xwith a known relative error bound. Let us see how SQRTDWtoFP(xh, x`)
approximates

√
x. We have

Theorem 3.11. If (xh, x`) approximates a positive number x with relative error bounded by νu2 with

νu2 < 1 (9)

and if no under�ow/over�ow occurs, thenR = SQRTDWtoFP(xh, x`) approximates
√
xwith a relative

error bounded by (
u+

17

8
u2 +

33

8
u3
)
·
(

1 +
ν · u2

1− ν · u2

)
+

ν · u2

1− ν · u2
. (10)

8In fact, Condition emax ≥ 2 can be deduced from the conditions of Theorems 3.6 and 3.7. We know that x ≥ 2emin+p,
so that xh ≥ 2emin+p, which can be representable only if emax ≥ emin + p. And since p ≥ 5 and emin = 1− emax, we
have emax ≥ 6− emax. Therefore, emax ≥ 3.
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Furthermore, under the more stringent condition

2uν < 1, (11)

we have ∣∣R−√x∣∣ ≤ (1

2
+ u ·

(
7

4
+

ν

1− ν · u2

))
ulp
(√

x
)
. (12)

The proof is given in the supplementary materials.
Very similarly to what we have done with Algorithm SQRTDWtoFP (Algorithm 9), let us now

assume that the input values (xh, x`) of Algorithm SQRTDWtoDW (Algorithm 8) approximate some
number x with a known relative error bound. Let us see how SQRTDWtoDW(xh, x`) approximates√
x. We have

Theorem 3.12. If (xh, x`) approximates a positive number x with relative error bounded by νu2 with
νu2 < 1 and if no under�ow/over�ow occurs, then R = SQRTDWtoDW(xh, x`) approximates

√
x

with a relative error bounded by

u2 ·
(

25

8
+

ν

1− νu2
+

25

8
· νu2

1− νu2

)
. (13)

The proof is described in the supplementary materials.

4 Our algorithms for computing Euclidean norms

4.1 Computing a Euclidean norm assuming no under�ow or over�ow oc-
curs

In this section, we assume that all the terms ai of (1) are in MED, so that no under�ow/over�ow
occurs and a2i is exactly representable by a DW number for all i. We �rst approximate the sum of
squares

∑n−1
i=0 a

2
i by a DW number (Sh, S`), with some relative error νu2, and then use Algorithm

SQRTDWtoFP (Algorithm 9) to approximate the square-root of Sh + S` by a �oating-point number
R. The �nal error will be deduced from ν using Theorem 3.11.

Let us now �rst present two di�erent ways of computing (Sh, S`).

4.1.1 Sequential computation of the sum of squares

Let us �rst consider the following, sequential algorithm.
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Algorithm 10 Sequential computation of
∑n−1

i=0 a
2
i assuming no under�ow/over�ow occurs. It takes

13n− 5 FP operations.

1. For i = 0 . . . n− 1, express the terms a2i as double-word numbers (yhi , y
`
i ), de�ned as

(yhi , y
`
i ) = Fast2Mult(ai, ai). (14)

We have a2i = yhi + y`i .

2. Accumulate the terms yhi using the DWPlusFP algorithm (Algorithm 4). More precisely, de�ne

(xh1 , x
`
1) = 2Sum(yh0 , y

h
1 )

�rst, then, iteratively compute, for i = 2 . . . n− 1, the terms

(xhi , x
`
i) = DWPlusFP(xhi−1, x

`
i−1, y

h
i ).

3. Accumulate the terms y`i using the conventional “recursive” summation, i.e., for i = 0 . . . n−2,
compute

σi+1 = RN(σi + y`i+1),

with σ0 = y`0.

4. Obtain the approximation to
∑n−1

i=0 a
2
i with one call to DWPlusFP:

(Sh, S`) = DWPlusFP(xhn−1, x
`
n−1, σn−1).

Algorithm 10 assumes n ≥ 2. We have,

Lemma 4.1. Assuming no under�ow/over�ow occurs, u ≤ 1/16, and n ≤ 1/u, the double-word
number (Sh, S`) returned by Algorithm 10 satis�es∣∣(Sh + S`)−

∑n−1
i=0 a

2
i

∣∣
≤ ((2n− 1)u2 + (n+ 2)u3 + (2n− 2)u4 + (7n− 7)u5 + (3n− 3)u6) ·

∑n−1
i=0 a

2
i ,

(15)

which implies ∣∣∣∣∣(Sh + S`)−
n−1∑
i=0

a2i

∣∣∣∣∣ ≤ ((2n− 1)u2 + (n+ 5)u3
)
·
n−1∑
i=0

a2i . (16)

The proof is given in the supplementary materials.
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4.1.2 Blockwise computation of the sum of squares

Now, assume that n = km, and that we separate the input numbers ai into k blocks of m numbers,
either for parallelizing the calculation or for obtaining (as it will be clear later on) a more accurate
result. Block number j (j = 0, . . . , k − 1) contains the elements amj, amj+1, amj+2, . . . , am(j+1)−1.

We separately sum the elements of each block using Algorithm 10 (which requires m ≤ 1/u).
The results of these “partial” summations are DW numbers (Zh

j , Z
`
j ). A solution could be to sum

these numbers using Algorithm SloppyDWPlusDW (Algorithm 5). We obtain, however, a better
error bound by summing these terms in the same way as we have summed the terms a2i in Algo-
rithm 10 (which requires k ≤ 1/u), i.e., we �rst compute a DW approximation to the sum of the
“higher” terms Zh

j using DWPlusFP (Algorithm 4) iteratively, we then accumulate the “lower” terms
Z`

j using naive summation, and we �nally add the obtained results with one call to DWPlusFP. This
gives Algorithm 11, presented below.

It could be possible to repeat that block decomposition recursively, resulting in better error
bounds. We doubt this would be e�cient (except possibly for huge values of n).

For analyzing Algorithm 11, we need the following lemma.

Lemma 4.2. Let n be a positive integer.

• the maximum possible value of k + m, where k and m are integers larger than or equal to 2
satisfying km = n is n/2 + 2;

• the minimum possible value of k + m, where k and m are positive integers satisfying km = n
is rn + n/rn, where rn is the largest divisor of n less than or equal to

√
n. That bound is always

larger than or equal to 2
√
n.

Proof. Straightforward by considering the variation of function t→ t+ n/t.
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Algorithm 11 Blockwise computation of
∑n−1

i=0 a
2
i assuming no under�ow/over�ow occurs. It takes

13n+ 6k − 5 FP operations.

1. for j = 0, 1, . . . , k − 1, compute an approximation (Zh
j , Z

`
j ) to

∑m(j+1)−1
i=mj a2i using Algo-

rithm 10 (the sequential summation algorithm) applied to amj, amj+1, amj+2, . . . , am(j+1)−1;

2. accumulate the terms Zh
j using Algorithm DWPlusFP (Algorithm 4). More precisely, de�ning(

Σh
1 ,Σ

`
1

)
= 2Sum(Zh

0 , Z
h
1 ),

iteratively compute, for j = 2 . . . k − 1 the terms(
Σh

j ,Σ
`
j

)
= DWPlusFP

(
Σh

j−1,Σ
`
j−1, Z

h
j

)
;

3. accumulate the termsZ`
j using the conventional “recursive” summation, i.e., for j = 0 . . . k−2,

compute
τj+1 = RN(τj + Z`

j+1),

with τ0 = Z`
0;

4. obtain the approximation (Sh, S`) to
∑n−1

i=0 a
2
i as

(Sh, S`) = DWPlusFP
(
Σh

k−1,Σ
`
k−1, τk−1

)
.

Algorithm 11 assumes k ≥ 2. It can be applied to the special case k = 1 if it stops after step 1 and
returns (Sh, S`) = (Zh

0 , Z
`
0), so that it reduces to Algorithm 10, taking only 13n− 5 FP operations.

Lemma 4.3. Assuming no under�ow/over�ow occurs, k ≤ 1/u,m ≤ 1/u, and u ≤ 1/16, the double-
word number (Sh, S`) returned by Algorithm 11 satis�es∣∣(Sh + S`)−

∑n−1
i=0 a

2
i

∣∣∑n−1
i=0 a

2
i

≤ β(k) + β(m) + β(k)β(m), (17)

where β(t) = (2t−1)u2 +(t+2)u3 +(2t−2)u4 +(7t−7)u5 +(3t−3)u6. Furthermore, if u ≤ 1/32,
we obtain∣∣(Sh + S`)−

∑n−1
i=0 a

2
i

∣∣∑n−1
i=0 a

2
i

≤ (2k + 2m− 2) · u2 + (0.1290n+ 0.9465(k +m) + 10.03) · u3. (18)
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The proof is given in the supplementary materials.
Let us now compare the bounds of Algorithm 10 and Algorithm 11, i.e., the bounds (15) and

(17), with the bound of Graillat et al.’s algorithm [18] (derived from the relative error bound 3u2 of
Algorithm 5), namely

3(n− 1)u2

1− 3(n− 1)u2
. (19)

We have the following property:

Property 4.4.

• if (k = 1 andm = n) or (k = n andm = 1), then Algorithm 11 boils down to Algorithm 10;

• as soon as n ≥ 3, u ≤ 1/32, and 3(n− 1)u2 < 1 (which is necessary for (19) to make sense), the
bound (19) is larger than the bound (16);

• if k ≥ 2 and m ≥ 2, assuming u ≤ 1/32 and n ≤ 1/u, the bound (16) is larger than the bound
(18).

The proof is given in the supplementary materials.
Property 4.4 shows that in all practical cases, our blockwise algorithm has a better error bound

than our sequential algorithm, which itself has a better error bound that Graillat et al.’s algorithm.
Assuming nu� 1, so that the bound (17) is essentially (2k + 2m− 2) ·u2, a direct consequence

of Lemma 4.2 is that an approximate minimum of the bound (17) is reached when k = rn or k = n/rn,
where rn is the largest divisor of n less than or equal to

√
n, resulting, if rn ≈

√
n in a relative error

less than around (4
√
n − 2) · u2. For instance, in IEEE 754 binary64 arithmetic (u = 2−53), with

n = 6000, the obtained relative error bounds are:

• 1.3322× 10−12 u with our sequential algorithm;

• 1.9981× 10−12 u with Graillat et al.’s algorithm;

• 3.5306× 10−14 u with the blockwise summation algorithm, with the near-optimal choices
k = 60 and m = 100 or k = 100 and m = 60.

Note that even with a very unbalanced block splitting the blockwise summation is signi�cantly
more accurate than the sequential summation. Still with the same values of n and u, the error
bound becomes 3.3374 × 10−13 in the case k = 4 and m = 1500. This is of interest, since for
performance reasons, one may wish to choose k equal to the maximum number of �oating-point
numbers that �t in an SIMD vector, which in practice is not a very large number (see Section 6.2).
Beyond being more accurate, the blockwise version exhibits more parallelism than the sequential
version, which may lead to better overall performance. Of course, if n is prime or has divisors that
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do not allow for a balanced splitting, it may be worth using the blockwise algorithm with a smaller
�nal block (the error bounds still apply, with a “theoretical” number of elements slightly larger than
n, corresponding to appending additional zero elements to the vector (a0, a1, . . . , an−1) to complete
the �nal block).

4.1.3 Obtaining the Euclidean norm barring under�ow/over�ow

We can now combine Lemma 4.3 and Theorem 3.11, and obtain.

Theorem 4.5. Assume that for all i, ai ∈ MED. Assume that u ≤ 1/32 (i.e., p ≥ 5) and that
Algorithm 10 (sequential summation, with n ≤ 1/u), or Algorithm 11 (blockwise summation, with
km = n and k,m ≤ 1/u), is used to compute the approximation (Sh, S`) to

∑n−1
i=0 a

2
i , and that

Algorithm SQRTDWtoFP (Algorithm 9) is used to approximate the square-root of Sh +S` by a �oating-
point number R. Let β(t) = (2t− 1)u2 + (t+ 2)u3 + (2t− 2)u4 + (7t− 7)u5 + (3t− 3)u6, and de�ne
a parameter ν as follows:

ν = β(n)/u2 if the sequential summation algorithm is used; (20a)

ν =
(
β(k) + β(m) + β(k)β(m)

)
/u2 if the blockwise summation algorithm is used. (20b)

If ν < 1/(2u), we have:∣∣∣∣∣R−
√

n−1∑
i=0

a2i

∣∣∣∣∣ ≤
(

1

2
+ u ·

(
7

4
+

ν

1− ν · u2

))
ulp
(√

n−1∑
i=0

a2i

)
. (21)

Note that since u ≤ 1/32, we can use in Theorem 4.5 the following simpler expressions for ν
(see Lemmas 4.1 and 4.3):

ν = (2n− 1) + (n+ 5)u (22)

with the sequential summation algorithm, and

ν = (2k + 2m− 2) + (0.1290n+ 0.9465(k +m) + 10.03) · u (23)

with the blockwise summation algorithm. Condition ν < 1/(2u) is not that restrictive: in the
binary32 format of the IEEE 754 Standard, assuming we use the sequential algorithm for sum-
ming the terms a2i , it is satis�ed for n ≤ 4194304, and in the binary64, it is satis�ed for n ≤
2,251,799,813,685,248. Even larger values of n can be reached if we use the blockwise algorithm:
in the binary32 format, choosing k equal to the largest divisor of n less than or equal to

√
n, the

condition is satis�ed for n = 500,000,000,000.
If we use our algorithm for computing the Euclidean norm of a vector of 10000 binary64 el-

ements, the returned result will be within 0.500000000002221 ulp from the exact result with the
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sequential summation, and within 0.5000000000000444 ulp from the exact result with the block-
wise summation and the choice k = m = 100. This means that we will almost always obtain a
correctly rounded result.

Remark 4.6. Note that instead of computing R = SQRTDWtoFP(Sh, S`) one may decide to compute
(Rh, R`) = SQRTDWtoDW(Sh, S`) (i.e., one chooses to obtain a double-word �nal result, using Al-
gorithm 8 instead of Algorithm 9). By combining Lemma 4.3 and Theorem 3.12, one easily �nds that
(Rh, R`) approximates the euclidean norm N with relative error

ε = u2 ·
(

25

8
+

ν

1− νu2
+

25

8
· νu2

1− νu2

)
,

where ν is the same as in Theorem 4.5. This can be of interest in two cases:

• if subsequent double-word calculations are to be performed;

• if one wishes to be certain of obtaining a correctly rounded norm: Ziv’s rounding test [14] can be
applied to the pair (Rh, R`) to check if Rh = RN(N). More precisely (see [14, Theorem 2.1]), if e
is a FP number larger than or equal to (1 + u)/(1− ε− 2ε/u), then RN(Rh + RN(R` · e)) = Rh

implies that Rh = RN(N).

4.2 Computing Euclidean norms in the general case
4.2.1 Choice of the parameters minmed, maxmed, ttiny, and tbig

Let us compute Euclidean norms, still using DW arithmetic, now in the general case (i.e., we no
longer assume that under�ow and over�ow cannot occur). We will use the three-class approach
presented in Section 2.1, inherited from Blue, very much like what is done by Graillat et al. [18], but
with di�erent choices for the parameters minmed, maxmed, ttiny, and tbig, for two reasons:

• �rst, from (3), if we wish to express the squares of the elements of MED as DW numbers
without error, we need to replace Constraint (5a) of Section 2.1 by minmed ≥ η;

• then, to make the necessity of scaling as infrequent as possible, and to make as small as possible
the error committed when we neglect the elements of TINY because BIG is nonempty, we try
to have maxmed as large as possible and minmed as small as possible.

Exactly as is done by Graillat et al., we choose maxmed and minmed equal to powers of 2, and to
avoid introducing additional rounding errors in the scalings, we choose tbig and ttiny equal to even
powers of 2. To simplify the analysis we also choose tbig = 1/ttiny. We also assumenmax = 1/u = 2p,
i.e., we wish to guarantee a correct behavior of the algorithms for vectors of dimension up to 2p.
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To simplify the analysis, we also assume u ≤ 1/32, which always holds in practice and is needed
anyway for the error bound of the SQRTDWtoFP algorithm (given by Theorem 3.6) to hold. In
particular, this makes it possible to use the simpler expression (23) for variable ν in Theorem 4.5.

Lemma 3.4 implies that if maxmed is a power of 2, when summing, using Algorithm 10 and/or
Algorithm 11, n numbers less than maxmed2, with n ≤ 1/u = 2p, the computed result is less than
n ·maxmed2. This gives the following constraint on maxmed: 2p ·maxmed2 ≤ Ω.

This leads us to the following choices:

• minmed is the power of 2 just above or equal to η, i.e., minmed = 2d(emin+p)/2e (with this choice
we still can observe rare cases where the low-order element of a DW number generated by
the computation of a square is subnormal, but this has no in�uence on accuracy, even if it can
have one on performance).

• maxmed is the power of 2 just below
√

Ω/2p, i.e., maxmed = 2b(emax−p)/2c. With these de�-
nitions, we have minmed ·maxmed ∈ {1, 2}, and

minmed/maxmed = 2−emax+p+1, (24)

which will be useful later on.

• Concerning ttiny and tbig, the possible values of these parameters are induced by the choices
of minmed and maxmed, the constraints (5c), (5d), (5e), and (5f) presented in Section 2.1, and
the additional constraint that ttiny = 1/tbig is an even power of 2.
We assume

3p+ 1 ≤ emax, i.e., emin ≤ −3p. (25)

Table 4 gives the various parameters and constraints associated with our algorithm for the
binary16, binary32, binary64 and binary128 formats of the IEEE 754-2019 Standard for FP
Arithmetic [27], and the b�oat16 format [21]. Among all these formats, binary16 is the only
one for which the various constraints required by our algorithm are not satis�ed.
Our choice ttiny = 1/tbig constraints even more the possible values of tbig and ttiny. Table 5
compares the obtained values for the binary32, binary64, and binary128 formats with the
values used by Graillat et al. [18].

4.2.2 Obtaining the result from the intermediate sums of squares

The sum Smed =
∑

ai∈MED a
2
i of the elements of MED is approximated by a double-word

(Sh
med, S

`
med), obtained using Algorithm 10 (sequential summation) or Algorithm 11 (blockwise

summation with k blocks of m elements, where km = n). This approximation satis�es
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Table 4: The various parameters of our algorithm for the binary16 format of IEEE 754-2019 [27], the b�oat16
format [21], and the binary32, binary64, and binary128 formats of IEEE 754-2019.

parameters binary16 b�oat16 binary32 binary64 binary128

p 11 8 24 53 113

emax 15 127 127 1023 16383

α 2−24 2−133 2−149 2−1074 2−16494

η 2−3/2 2−59 2−51 2−969/2 2−16269/2

Ω 65504
2128 − 2120

≈ 3.390× 1038
2128 − 2104

≈ 3.403× 1038
21024 − 2971

≈ 1.798× 10308
216384 − 216271

≈ 1.190× 104932

minmed 1/2 2−59 2−51 2−484 2−8134

maxmed 4 259 251 2485 28135

Constraints on tbig

((5c), (5d) and
even power of 2)

1/4 ≤ tbig ≤ 2−14

(IMPOSSIBLE)

2−118

≤ tbig
≤ 2−70

2−102

≤ tbig
≤ 2−78

2−968

≤ tbig
≤ 2−540

2−16268

≤ tbig
≤ 2−8250

Constraints on ttiny
((5e), (5f) and

even power of 2)

224 ≤ ttiny ≤ 4

(IMPOSSIBLE)

274

≤ ttiny
≤ 2118

298

≤ ttiny
≤ 2102

2590

≤ ttiny
≤ 2968

28360

≤ ttiny
≤ 216268

Constraint 3p + 1 ≤ emax NOT SATISFIED satis�ed satis�ed satis�ed satis�ed

∣∣(Sh
med + S`

med

)
−
∑

ai∈MED a
2
i

∣∣ ≤ νu2
∑

ai∈MED a
2
i , where ν is de�ned in (22) if we use Algo-

rithm 10, and (23) if we use Algorithm 11. These algorithms are also applied to the elements of BIG
and TINY pre-multiplied by tbig and ttiny respectively. Similarly, this gives double words (Sh

big, S
`
big)

and (Sh
tiny, S

`
tiny) that satisfy∣∣∣∣∣(Sh

big + S`
big

)
−
∑

ai∈BIG

(tbigai)
2

∣∣∣∣∣ ≤ νu2
∑

ai∈BIG

(tbigai)
2

and ∣∣∣∣∣(Sh
tiny + S`

tiny

)
−

∑
ai∈TINY

(ttinyai)
2

∣∣∣∣∣ ≤ νu2
∑

ai∈TINY

(ttinyai)
2.

This gives∣∣∣∣∣ 1

t2tiny

(
Sh
tiny + S`

tiny

)
+
(
Sh
med + S`

med

)
+

1

t2big

(
Sh
big + S`

big

)
−

n−1∑
i=0

a2i

∣∣∣∣∣ ≤ νu2
n−1∑
i=0

a2i . (26)

Now, we can follow a reasoning similar to that of Graillat et al. [18]. Denote Smed = Sh
med+S`

med,
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Table 5: The parameters minmed, maxmed, tbig, and ttiny in binary32 arithmetic, for our algorithm and for
Graillat et al.’s algorithm [18].

binary32 binary64 binary128

our solution Graillat et al. our solution Graillat et al. our solution Graillat et al.

minmed 2−51 2−60 2−484 2−376 2−8134 2−5536

maxmed 251 234 2485 2324 28135 25424

ttiny

2γ , where

γ ∈
{98, 100, 102}

294
2γ , where

γ is even and

590 ≤ γ ≤ 968

2700
2γ , where

γ is even and

8360 ≤ γ ≤ 16268

210960

tbig 1/ttiny 2−94 1/ttiny 2−700 1/ttiny 2−10960

Sbig = Sh
big + S`

big, and Stiny = Sh
tiny + S`

tiny. As the expression

1

t2tiny

(
Sh
tiny + S`

tiny

)
+
(
Sh
med + S`

med

)
+

1

t2big

(
Sh
big + S`

big

)
cannot be used directly, we operate on a case-by-case basis according to whether BIG, MED, and
TINY contain elements or not. The strategy for obtaining the norm from Sbig, Smed, and Stiny is
described by Algorithm 12.
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Algorithm 12 Obtaining the norm from Sbig, Smed, and Stiny without spurious over�ow or under-
�ow.
if BIG is nonempty then

if Sh
med < minmed2u2/t2big or S

h
big > maxmed2 · t2big/u3 then

return 1
tbig
· SQRTDWtoFP(Sh

big, S
`
big) = ttiny · SQRTDWtoFP(Sh

big, S
`
big)

else
compute χ̂ = SloppyDWPlusDW(ttinyS

h
big, ttinyS

`
big, tbigS

h
med, tbigS

`
med)

return
√
ttiny · SQRTDWtoFP(χ̂)

end if
else

if MED is nonempty then
if Sh

tiny < minmed2u2/t2big or S
h
med > maxmed2 · t2big/u3 then

return SQRTDWtoFP(Sh
med, S

`
med)

else
compute χ̂ = SloppyDWPlusDW(ttinyS

h
med, ttinyS

`
med, tbigS

h
tiny, tbigS

`
tiny)

return
√
tbig · SQRTDWtoFP(χ̂)

end if
else

return tbig · SQRTDWtoFP(Sh
tiny, S

`
tiny)

end if
end if

Let us explain Algorithm 12. The various cases can be represented by triplets (a, b, c) ∈ {0, 1}3,
where 0 means “empty” and 1 means “nonempty” for BIG, MED, and TINY, respectively. For
instance, “(1, 0, 1)” means “MED is empty, and BIG and TINY are nonempty”. In all generality,
there are eight cases to consider, but this number can be reduced thanks the following remarks.

• As soon as BIG is not empty,9 we can neglect the elements of Stiny. So Case (1, 1, 1) reduces
to Case (1, 1, 0), and Case (1, 0, 1) reduces to Case (1, 0, 0). Indeed, in these cases, we have∑n−1

i=0 a
2
i > maxmed2, and

∑
ai∈TINY a

2
i ≤ (n− 1) ·minmed2. Hence,

∑
ai∈TINY

a2i <
(n− 1) ·minmed2

maxmed2 ·
n−1∑
i=0

a2i < 2p · minmed2

maxmed2 ·
n−1∑
i=0

a2i . (27)

Using (24), the term 2p · minmed2/maxmed2 = 2−2emax+3p+2 bounds the relative error com-
mitted by neglecting the elements of TINY in the summation. From (25), we deduce that it is
less than or equal to u3.

9As pointed out by Graillat et al., there is no need to preliminarily check whether BIG is empty or not. One pro-
gressively accumulates sums of squares in two registers, initially dedicated to the elements of MED and TINY, and as
soon as an element of BIG is met, the accumulation of the terms of TINY is abandoned, and the very same register is
now used for accumulating the elements of BIG.
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We therefore easily obtain∣∣∣∣∣(Smed + Sbig/t
2
big

)
−

n−1∑
i=0

a2i

∣∣∣∣∣ ≤ u2 · (ν + u) ·
n−1∑
i=0

a2i . (28)

Therefore
√
Smed + Sbig/t2big will be a good approximation to

√∑n−1
i=0 a

2
i (the error of that

approximation will be given later on). Hence we will compute√
Smed + Sbig/t2big. (29)

• Saying that MED is empty is equivalent to saying that Smed = 0. So there is no need to
develop Case (1, 0, 0) further provided that what we do on Case (1, 1, 0) is still correct when
Smed = 0.

• Likewise, saying that TINY is empty is equivalent to saying that Stiny = 0. So there is no
need to develop Case (0, 1, 0) further provided that what we do on Case (0, 0, 1) is still correct
when Stiny = 0.

We are therefore left with only four cases to consider: (1, 1, 0), (0, 1, 1), (0, 0, 1), and (0, 0, 0).

1. If BIG is nonempty (Case (1, 1, 0)), the computation must be carried on without under�ows
or over�ows. More precisely, concerning under�ow, we must make sure that no term becomes
less than 2emin+p, otherwise it could not be represented accurately by a double-word number.

• If Sh
med < minmed2u2/t2big then Smed < minmed2u2/t2big (because the bound is a FP

number), hence, Smed < (Sbig/t
2
big)u

2. Therefore, the term Smed can be neglected in
front of the term Sbig/t

2
big. More precisely,∣∣∣∣∣Sbig/t

2
big −

n−1∑
i=0

a2i

∣∣∣∣∣ ≤ u2 ·
(
1 + ν + u+ u2ν + u3

)
·
n−1∑
i=0

a2i , (30)

and one can return
1

tbig
· SQRTDWtoFP(Sh

big, S
`
big) = ttiny · SQRTDWtoFP(Sh

big, S
`
big).

• If Sh
big > maxmed2 · t2big/u3 then Sbig > maxmed2 · t2big/u3. Also, Lemma 3.4 implies

Smed ≤ n ·maxmed2 < maxmed2/u, therefore Smed < (Sbig/t
2
big)u

2, and, as previously,
(30) holds and one can return

ttiny · SQRTDWtoFP(Sh
big, S

`
big).
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• If Sh
med ≥ minmed2u2/t2big and Sh

big ≤ maxmed2 · t2big/u3, then Smed ≥
(minmed2u2/t2big)(1− u) and Sbig ≤ maxmed2 · t2big(1 + u)/u3. Consider

χ = Sbig/tbig + tbigSmed = ttinySbig + tbigSmed.

The number χ can be computed without under�ow or over�ow:
(a) Over�ow: we have tbigSmed ≤ tbig · n ·maxmed2 ≤ tbig · Ω, and

ttinySbig ≤ ttinymaxmed2t2big(1 + u)/u3

≤ tbig
(
maxmed2/u

)
· (1 + u)/u2

≤ tbig · Ω · (1 + u)/u2.

Therefore,

χ ≤ Ω · tbig ·
(
1 + (1 + u)/u2

)
≤ maxmed ·

(
1 + u+ u2

)
· 22p

< 2(3p+emax)/2 ·
(
1 + u+ u2

)
,

and since u ≤ 1/32 implies 1 + u + u2 <
√

2 we deduce χ < 2(3p+emax+1)/2, which
is less than or equal to 2emax < Ω since 3p+ 1 ≤ emax.

(b) Under�ow: we have ttinySbig > Sbig, therefore the term ttinySbig is larger than
minmed2, which is larger than η2 = 2emin+p. Using (5f), we also have

tbigSmed ≥ (minmed2 · ttiny) · u2 · (1− u)

≥ (minmed3/α) · u2 · (1− u)

≥ 23(emin+p)/2−(emin−p+1)−2p−1

≥ 2emin/2+p/2−2,

and (25) implies emin/2 + 3p/2 ≤ 0. Hence

tbigSmed ≥ 2emin+2p−2 ≥ 2emin+p.

Therefore, it su�ces to compute χ in double-word arithmetic by summing tbig ·
(Sh

med, S
`
med) and ttiny · (Sh

big, S
`
big) by the means of SloppyDWPlusDW (Algorithm 5).

If we call χ̂ the computed result, namely

χ̂ = SloppyDWPlusDW(ttinyS
h
big, ttinyS

`
big, tbigS

h
med, tbigS

`
med),
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we obtain |χ̂− χ| ≤ 3u2χ. Combined with (28) this gives∣∣∣∣∣χ̂− tbig n−1∑
i=0

a2i

∣∣∣∣∣ ≤ u2 ·
(
ν + 3 + u+ 3u2ν + 3u3

)
·
n−1∑
i=0

a2i . (31)

we then take the square-root R of χ̂ by the means of SQRTDWtoFP (Algorithm 9), and
multiply R by √ttiny (this last multiplication is errorless since ttiny is an even power of
two).

2. If BIG is empty, and MED and TINY are nonempty (Case (0, 1, 1)), we need to compute√
Stiny/t2tiny + Smed

without under�ows or over�ows. Note that this can be rewritten

(1/ttiny) ·
√
Stiny + Smed/t2big. (32)

The square-root part in (32) is exactly as (29) (with Smed replaced by Stiny and Sbig replaced
by Smed). Furthermore, the terms Stiny, Smed and Sbig have the same bounds. Therefore the
reasoning is exactly as previously (the error bounds are slightly smaller because we no longer
have the error term due to neglecting TINY), and we obtain:

• if Sh
tiny < minmed2u2/t2big or Sh

med > maxmed2 · t2big/u3 then we can return

SQRTDWtoFP(Sh
med, S

`
med);

• otherwise, we can compute χ = Smed/tbig + tbigStiny = ttinySmed + tbigStiny in double-
word arithmetic with one call to SloppyDWPlusDW, take its square-rootR by the means
of SQRTDWtoFP, and multiply R by √tbig.

3. If BIG andMED are empty (Case (0, 0, 1)), then we return tbig ·SQRTDWtoFP(Sh
tiny, S

`
tiny),

and the error bound of Theorem 4.5 applies.

4. If BIG and MED and TINY are empty (Case (0, 0, 0)), then we return 0. Note that con-
sidering this case is important as Algorithm 9 requires a special treatment for a null input.

Table 6 gives the value of the comparison constants minmed2u2/t2big and maxmed2 · t2big/u3
(assuming tbig is the largest allowed value in Table 5) needed by the algorithm.
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Table 6: Value of the comparison constants minmed2u2/t2big and maxmed2 · t2big/u3 (assuming tbig is the
largest allowed value, or equivalently ttiny is the smallest allowed value) needed by the algorithm, for the
binary32, binary64, and binary128 formats of IEEE 754-2019.

format binary32
(with ttiny = 298)

binary64
(with ttiny = 2590)

binary128
(with ttiny = 28360)

minmed2u2/t2big 246 2106 2226

maxmed2t2big/u
3 2−22 2−51 2−111

4.2.3 Final error bound

We �nally obtain,
Theorem 4.7. If n ≤ 1/(4u) − 2 and u ≤ 1/32, and if the sequential algorithm (Algorithm 10) is

used for the summation of squares, then our algorithm computes
√∑n−1

i=0 a
2
i with an error bounded by(

1

2
+

(8n+ 16)u+ 37
2
u2

4− 2u

)
ulp
(√

n−1∑
i=0

a2i

)
,

without any risk of spurious under�ow or over�ow.

Theorem 4.8. If n ≤ 1/u, k + m ≤ 1/(4u) − 2 and u ≤ 1/32, and if the blockwise algorithm
(Algorithm 11) is used for the summation of squares, with k blocks ofm elements, where km = n, then

our algorithm computes
√∑n−1

i=0 a
2
i with an error bounded by(

1

2
+

(3.116 + 2(k +m))u+ 9.77u2

1− u
2

)
ulp
(√

n−1∑
i=0

a2i

)
,

without any risk of spurious under�ow or over�ow.

The proofs of Theorems 4.7 and 4.8 are given in the supplementary materials.
In all practical cases, if the decomposition in blocks is balanced enough, constraint “k + m ≤

1/(4u)−2” in Theorem 4.8 is less strong than constraint n ≤ 1/u. More precisely, assume we choose
k = m = d

√
ne (i.e., we possibly extend the vector (a0, a1, a2, . . . , an−1) with additional zeros if n

is not a perfect square). Constraint n ≤ 1/u implies d
√
ne < 1/

√
u+ 1, so that k+m < 2/

√
u+ 2,

and one easily checks that for all precisions p ≥ 7 (i.e., u ≤ 1/128), 2/
√
u+ 2 < 1/(4u)− 2.

4.2.4 Examples

Table 7 gives the error bounds we obtain in the cases n = 12 and n = 10000, for the b�oat16,
binary32, and binary64 formats.
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Table 7: Maximum possible values of n assuming sequential and blockwise summations, and �nal error,

expressed in ulp
(√∑n−1

i=0 a
2
i

)
for n = 12 and n = 10000, for the b�oat16, binary32, and binary64 formats.

format b�oat16 binary32 binary64

max. value of n for seq. summation 62 4,194,302 2.2517× 1015

max. value of n for blockw. summation 256 16,777,216 9.0072× 1015

error bound for n = 12 with seq. summation 0.610 ulp 0.5000017 ulp 0.5 0000000000000︸ ︷︷ ︸
13 zeros

311 ulp

error bound for n = 12 for blockw. summation
with k = 3,m = 4

0.5672 ulp 0.50000103 ulp 0.5 0000000000000︸ ︷︷ ︸
13 zeros

191 ulp

error bound for n = 10000 with seq. summation N/A 0.5012 ulp 0.5 0000000000︸ ︷︷ ︸
10 zeros

223 ulp

error bound for n = 10000 with blockw. summation
with k = m = 100

N/A 0.5000241 ulp 0.5 000000000000︸ ︷︷ ︸
12 zeros

45 ulp

5 Veri�cation of some of our proofs by the Coq proof assis-
tant

Our proofs, given in the “supplementary material”, are quite long and computational. This is not
fully satisfactory: long and tedious proofs are seldom read, with the potential risk that errors remain
unnoticed. To overcome this di�culty, we have veri�ed a large number of these proofs using the Coq
proof assistant with the help of the Flocq library [10, 11]. This veri�cation gives a high con�dence
in the correctness of the algorithms and error bounds, allowing future users to use them with trust.

The Coq proof assistant (see for example [3]) is based on the computation of inductive construc-
tions. It is an interactive proof construction tool, which provides a language of tactics to help the
user to build new proofs. The Flocq library, based on Coq, deals with the arithmetic of �oating-
point numbers. It provides di�erent models for representing �oating-point numbers and a bunch
of proofs of related properties. For example, the Flocq library was used by Boldo et al. to prove the
correctness of �oating-point passes of the veri�ed C compiler of CompCert [12]. Two of us recently
used Flocq to consolidate knowledge on the error bounds of basic algorithms for the arithmetic of
double-word numbers [39].

Concerning this present work on Euclidean norms, we veri�ed in Coq all the proofs concerning
the square-root (Section 3), the proofs of the sum-of-squares algorithms of Section 4.1, and The-
orem 4.5 (which establishes the correctness of our algorithms and error bounds for the Euclidean
norm assuming no under�ow or over�ow occurs). For that purpose, we also built a veri�ed proof
of the Lange and Rump theorem (Theorem 1.4).

Note that, for the rounding function RN, we have chosen not to specify the tie-breaking rule in
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our formal proofs (the default in IEEE 754 arithmetic, as said above, is ties-to-even). This makes our
proofs more general: they are for instance still valid with the less frequently used (but also speci�ed
by IEEE 754) “ties-to-away” tie-breaking rule.

Our formal proofs can be downloaded from the supplementary materials.

6 Experiments
We have checked our algorithm and compared it with other solutions from the literature on two as-
pects: accuracy and speed. We decided to design two di�erent implementations of our algorithm: an
implementation in Julia, used for accuracy testings, and a C implementation, used for performance
evaluation and comparison. The reason for this choice is simple: the versatility of Julia makes it
much easier to play with di�erent precisions. However, it is exactly the same algorithm that was
implemented in both environments. The Julia and C �les can be downloaded from the supplemen-
tary materials.

6.1 Accuracy testings
We have implemented the Naive algorithm, Hammarling’s algorithm, the algorithm of Graillat et
al. [18] as well as our algorithm (with the blockwise summation, i.e., Algorithm 11, with k = 2) in the
Julia programming language, and we have measured the errors obtained with randomly chosen input
arrays of increasing sizes. The elements of the arrays are �oating-point numbers. Their signi�cands
are uniformly generated between 1 and 2 − 2u, and their exponents are uniformly generated in a
range de�ned by one of the following pro�les:

• NORMAL_INPUT: the exponents are uniformly generated between emin and emax − p.

• MED_INPUT: the exponents are uniformly generated between
d(emin + p)/2e and b(emax − p)/2c.

The reason for choosing the former exponent range is that we want to avoid non-spurious under-
�ow or over�ow, and the reason for choosing the latter is to avoid any under�ow or over�ow. See
Table 1 and Table 4 for the values of the various parameters. We have performed all experiments
in the binary32 and binary64 �oating-point formats of the IEEE 754 Standard. We initially wanted
to perform experiments in the binary128 format too. For that purpose we wanted to use the GNU
libquadmath library, which provides a software implementation of the binary128 format, but we
discovered that its square-root function (sqrtq) is not correctly rounded. As this is a requirement
for the accuracy of the algorithm of Graillat et al. [18] as well as ours, the tests could not be per-
formed in that format. Finally, enclosures of the exact results are computed using Johansson’s Arb
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library [31], with enough accuracy to allow one to determine the correct roundings of the exact
results unambiguously.

Tables 8 (NORMAL_INPUT) and 9 (MED_INPUT) present the maximum obtained relative er-
rors, and the percentage of faithfully and correctly rounded results, as well as the percentage of
over�ows. In Table 8, the Naive algorithm always over�ows except in a few cases when n = 16.
As each input value has probability ≈ 0.25 of being an element of BIG, there is a probability of
approximately 0.75n that the array has no elements of BIG, which is around 0.01 when n = 16,
around 0.00000001 when n = 64, and even less when n is larger. In Table 9, no over�ow occurs,
so that we can now compare the Naive algorithm with the other ones. Beware: the “100%” in the
“correct rounding” columns of the table can be a bit misleading: these results do not show that our
algorithm always returns correctly rounded values (indeed, it cannot), but that incorrectly rounded
values are extremely unlikely in practice. Incorrectly rounded values are much more frequent with
the algorithm of Graillat et al. [18], which is not surprising: that algorithm was designed to always
return faithfully rounded values, and our tests show that this is indeed the case for all the input
arrays we have built. The two tables show that rounding errors in the Naive and the Hammaring
algorithms clearly increase with n. This is almost not the case with the algorithm of Graillat et al.,
as well as ours, in the range of sizes between 16 and 4096.

6.2 Performance evaluation
Our experiments have been performed in a similar way to the ones that were reported in [18]. As
said above, we implemented our algorithm in the C language for evaluating its performance and for
comparing it to four other algorithms:

• the “Naive algorithm” is the straightforward implementation of (1). It does not prevent spu-
rious over�ow/under�ow from happening, and can, in rare cases, be inaccurate when under-
�ows occur;

• a vectorized version of the Naive algorithm;

• Hammarling’s algorithm, presented in Section 2.1, as implemented by Graillat et al. [18];

• Graillat et al.’s algorithm presented in [18].

All �ve algorithms are compared using the IEEE-754 binary64 format.
We performed our tests on four di�erent machines, that we designate by the microarchitecture

they are based on: ARM ThunderX2, Intel Co�ee Lake, AMD Zen 2 and Intel Skylake.
In Section 4.1.2 we have considered possible values of the number of blocks in the blockwise

summation (i.e., variable k in Algorithm 11), in order to minimize the error bound. We have seen
(see Property 4.4) that even k = 2 is a signi�cant improvement, in terms of accuracy, compared to the
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Table 8: accuracy test results for vector coe�cients chosen in the NORMAL_INPUT pro�le.

using binary32 using binary64

algorithm n spurious relative rounding spurious relative rounding
over�ow error / u faithful correct over�ow error / u faithful correct

Naive 16 94 % 1.8746 99 % 87 % 98 % 1.2317 100 % 95 %
64 100 % NaN 0 % 0 % 100 % NaN 0 % 0 %

256 100 % NaN 0 % 0 % 100 % NaN 0 % 0 %
1024 100 % NaN 0 % 0 % 100 % NaN 0 % 0 %
4096 100 % NaN 0 % 0 % 100 % NaN 0 % 0 %

Hammarling 16 0 % 2.8028 94 % 75 % 0 % 2.5222 98 % 91 %
64 0 % 3.5873 90 % 59 % 0 % 2.8819 94 % 75 %

256 0 % 4.4652 88 % 57 % 0 % 3.3164 89 % 58 %
1024 0 % 7.2813 73 % 43 % 0 % 4.7827 84 % 53 %
4096 0 % 10.6339 38 % 19 % 0 % 6.4483 76 % 45 %

Graillat et al. 16 0 % 1.4232 100 % 92 % 0 % 1.4351 100 % 97 %
64 0 % 1.4460 100 % 87 % 0 % 1.4481 100 % 92 %

256 0 % 1.4664 100 % 87 % 0 % 1.4586 100 % 87 %
1024 0 % 1.4635 100 % 86 % 0 % 1.4770 100 % 87 %
4096 0 % 1.4900 100 % 86 % 0 % 1.4624 100 % 87 %

Ours 16 0 % 0.9969 100 % 100 % 0 % 0.9916 100 % 100 %
64 0 % 0.9962 100 % 100 % 0 % 0.9961 100 % 100 %

256 0 % 0.9969 100 % 100 % 0 % 0.9975 100 % 100 %
1024 0 % 0.9986 100 % 100 % 0 % 0.9962 100 % 100 %
4096 0 % 0.9986 100 % 100 % 0 % 0.9985 100 % 100 %
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Table 9: Accuracy test results for vector coe�cients chosen in the MED_INPUT pro�le.

using binary32 using binary64

algorithm n spurious relative rounding spurious relative rounding
over�ow error / u faithful correct over�ow error / u faithful correct

Naive 16 0 % 2.4618 99 % 82 % 0 % 1.8825 99 % 93 %
64 0 % 3.1185 97 % 73 % 0 % 2.3321 99 % 83 %

256 0 % 5.0218 87 % 56 % 0 % 3.5571 97 % 73 %
1024 0 % 8.2327 59 % 32 % 0 % 5.1627 89 % 59 %
4096 0 % 14.7189 15 % 7 % 0 % 8.0136 65 % 37 %

Hammarling 16 0 % 3.1054 91 % 63 % 0 % 2.7093 96 % 84 %
64 0 % 3.8794 89 % 58 % 0 % 3.0554 91 % 64 %

256 0 % 4.9390 83 % 51 % 0 % 4.1357 87 % 55 %
1024 0 % 9.0934 57 % 31 % 0 % 6.2451 81 % 51 %
4096 0 % 16.7972 16 % 8 % 0 % 8.5663 63 % 35 %

Graillat et al. 16 0 % 1.4743 100 % 88 % 0 % 1.4291 100 % 95 %
64 0 % 1.4478 100 % 87 % 0 % 1.4722 100 % 89 %

256 0 % 1.4388 100 % 87 % 0 % 1.4468 100 % 87 %
1024 0 % 1.4363 100 % 87 % 0 % 1.4845 100 % 87 %
4096 0 % 1.3335 100 % 87 % 0 % 1.4833 100 % 86 %

Ours 16 0 % 0.9986 100 % 100 % 0 % 0.9919 100 % 100 %
64 0 % 0.9994 100 % 100 % 0 % 0.9953 100 % 100 %

256 0 % 0.9987 100 % 100 % 0 % 0.9935 100 % 100 %
1024 0 % 0.9932 100 % 100 % 0 % 0.9974 100 % 100 %
4096 0 % 0.9242 100 % 100 % 0 % 0.9982 100 % 100 %
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Table 10: The four systems on which we performed our experiments.

machine CPU ISA SIMD k

ARM ThunderX2 Cavium ThunderX2 ARM v8.1 Neon 2
Intel Co�ee Lake Intel Core i7-8700 x86-64 AVX2 4
AMD Zen 2 AMD EPYC 7282 x86-64 AVX2 4
Intel Skylake Intel Xeon Gold 6136 x86-64 AVX512 8

sequential summation. Now, for a binary64 implementation, if we reason in terms of performance,
the best choice is the maximum number of binary64 FPNs that �t in an SIMD vector. That number
varies across the di�erent extensions considered.

The main characteristics of the four used architectures are summarized in Table 10. In this table,
we indicate for each system the processor name, the name of the instruction set architecture (column
“ISA”), the name of the SIMD extension (column “SIMD”) that was used to compile or to program
the algorithms, and the chosen number k of blocks in the blockwise summation (taken equal to the
number of binary64 FPNs that �t in an SIMD vector).

We retrieved the code of Graillat et al. [18] from

https://www.christoph-lauter.org/faithfulnorm.tgz,

and we directly used the plain C code they provide for the “Naive” and “Hammarling” (called Netlib
in their code) algorithms. They also provide an implementation of their Euclidean norm algorithm
using intrinsics functions for manipulating AVX2 vectors. In particular, they use these intrinsics
functions to make the inner-loop of their algorithm branch-free by using componentwise masking
operations.

We have used the same technique for implementing our algorithm, but we have added a small
intermediate library to facilitate porting the code to di�erent SIMD extensions. That library contains
a type vec_t for the SIMD vectors, whose de�nition depends on the targeted extension. For example,
when the code is compiled for the AVX2 SIMD extension, vec_t is an alias for the type __m256d,
and the componentwise addition of two SIMD vectors is de�ned by
inline vec_t vec_add(vec_t v1, vec_t v2) {
return _mm256_add_pd(v1, v2);

}

On the other hand, when the code is compiled for the Neon extension of the ARM architecture,
vec_t is now an alias for the float64x2_t type, and the componentwise addition of two vectors
becomes
inline vec_t vec_add(vec_t v1, vec_t v2) {
return vaddq_f64(v1, v2);

}
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Figure 3: Repartition of the observed timings on Intel Co�ee Lake for the MED_INPUT pro�le.

Note that an __m256d vector gathers 4 binary64 numbers, while a float64x2_t contains 2 binary64
numbers. Hence, the code we wrote is parameterized by a macro constant vec_len that takes for
value 8, 4 or 2 depending on the targeted SIMD extension.

We used this small library for implementing our algorithm, and we also used it to re-implement
the algorithm proposed by Graillat et al. [18]: on an AVX2 (with FMA) platform, the code we obtain
is exactly the same as the one they wrote, but this allowed us to port it easily to the AVX512 and
ARM Neon extensions.

The benchmark program of Graillat et al. [18] generates series of random numbers according to
a speci�c pro�le, and gives statistics on the time taken by the di�erent algorithms. Three di�erent
pro�les are considered here:

• NORMAL_INPUT and MED_INPUT generate �oating-point numbers as already explained in
Subsection 6.1.

• SPURIOUS_OVERFLOW selects �oating-point numbers whose exponent are uniformly cho-
sen between demax/2e and emax − p. As a consequence, squares of the inputs over�ow while
the exact result is in the normal range.

Table 11 presents the timings obtained on these various systems. The vectorized Naive algorithm
is, as expected, the fastest algorithm (but less accurate and prone to spurious over�ow/under�ow).
On Intel and AMD systems, our algorithm is generally slightly faster than Graillat et al.’s algorithm;
Hammarling’s algorithm is as fast or faster with the MED_INPUT pro�le, while slower with the
NORMAL_INPUT pro�le. We note that spurious over�ows do not slow down the computations
signi�cantly. Results on the ARM architecture are quite di�erent: timings do not depend on the
input pro�le, and Hammarling’s algorithm is consistently faster.

To give more insights into the timings reported in the previous table, where only average values
and standard deviations are given, we present in Figures 3 and 4 the histograms of the timings mea-
sured on the Intel Co�ee Lake system, with input vectors of size n = 4096. With the MED_INPUT
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Table 11: Timing comparisons of �ve algorithms to compute the Euclidean norm, for three di�erent array
sizes and three di�erent pro�les of inputs (the three pro�les are abbreviated by MED_INP, NRM_INP, and
SPUR_OVR). For each entry, the mean value and standard deviation of a population of 100,000 runs are given.
All times are given in microseconds.

Intel Co�ee Lake (AVX2) @3.2 GHz AMD Zen2 (AVX2) ≤3.2 GHz

algorithm n MED_INP NRM_INP SPUR_OVR MED_INP NRM_INP SPUR_OVR

Naive 256 0.2(0.2) 0.2(0.1) 0.2(0.2) 0.2(0.0) 0.4(0.0) 0.2(0.0)
1024 0.9(0.3) 0.9(0.3) 0.9(0.3) 1.0(0.0) 1.5(0.1) 1.0(0.0)
4096 3.6(0.6) 3.6(0.7) 3.6(0.6) 3.9(0.1) 5.8(0.1) 3.9(0.1)

Naive (vec) 256 0.1(0.1) 0.1(0.1) 0.1(0.1) 0.1(0.0) 0.1(0.0) 0.1(0.0)
1024 0.3(0.2) 0.3(0.2) 0.3(0.2) 0.4(0.0) 0.4(0.0) 0.4(0.0)
4096 1.0(0.3) 1.0(0.3) 1.0(0.3) 1.6(0.1) 1.6(0.1) 1.6(0.0)

Hammarling 256 0.3(0.1) 0.8(0.4) 0.3(0.2) 0.5(0.0) 1.2(0.0) 0.4(0.0)
1024 1.0(0.4) 3.1(0.8) 1.0(0.3) 1.7(0.1) 4.4(0.2) 1.7(0.1)
4096 3.7(0.5) 12.0(1.2) 3.7(0.6) 6.5(0.1) 17.5(0.2) 6.5(0.1)

Graillat et al. 256 0.5(0.3) 0.5(0.2) 0.5(0.3) 0.6(0.0) 0.6(0.0) 0.6(0.0)
1024 1.9(0.5) 2.0(0.5) 1.9(0.5) 2.1(0.1) 2.1(0.1) 2.1(0.3)
4096 7.6(0.8) 7.6(0.8) 7.6(0.8) 8.3(0.1) 8.3(0.1) 8.3(0.1)

Ours 256 0.5(0.3) 0.5(0.3) 0.5(0.2) 0.5(0.0) 0.5(0.0) 0.5(0.0)
1024 1.7(0.5) 1.7(0.5) 1.7(0.4) 1.8(0.1) 1.8(0.1) 1.8(0.1)
4096 6.4(0.7) 6.4(0.7) 6.4(0.8) 6.7(0.1) 6.7(0.1) 6.7(0.1)

Intel Skylake (AVX512) @3.0 GHz ARM ThunderX2 (Neon) ≤2.2 GHz

algorithm n MED_INP NRM_INP SPUR_OVR MED_INP NRM_INP SPUR_OVR

Naive 256 0.4(0.0) 0.6(0.1) 0.4(0.0) 0.7(0.0) 0.7(0.0) 0.7(0.0)
1024 1.5(0.1) 2.3(0.2) 1.5(0.0) 2.8(0.1) 2.8(0.1) 2.8(0.1)
4096 6.1(0.1) 9.3(0.4) 6.1(0.1) 11.2(0.2) 11.2(0.3) 11.2(0.3)

Naive (vec) 256 0.1(0.0) 0.1(0.0) 0.1(0.0) 0.4(0.0) 0.4(0.0) 0.4(0.0)
1024 0.2(0.0) 0.2(0.1) 0.2(0.0) 1.4(0.1) 1.4(0.2) 1.4(0.1)
4096 0.8(0.0) 0.8(0.1) 0.8(0.0) 5.6(0.1) 5.6(0.1) 5.6(0.1)

Hammarling 256 0.5(0.0) 1.3(0.3) 0.5(0.0) 1.7(0.1) 1.6(0.1) 1.7(0.1)
1024 1.6(0.1) 5.1(0.6) 1.6(0.1) 6.4(0.3) 6.4(0.3) 6.4(0.3)
4096 6.2(0.1) 20.3(1.2) 6.2(0.1) 25.1(0.4) 25.1(0.4) 25.1(0.4)

Graillat et al. 256 0.5(0.0) 0.5(0.0) 0.5(0.0) 3.5(0.1) 3.5(0.1) 3.5(0.1)
1024 1.8(0.1) 1.8(0.1) 1.8(0.1) 13.8(0.2) 13.8(0.3) 13.8(0.2)
4096 6.8(0.1) 6.8(0.1) 6.8(0.1) 55.5(0.4) 55.5(0.5) 55.5(0.5)

Ours 256 0.6(0.0) 0.6(0.0) 0.6(0.0) 3.5(0.1) 3.5(0.1) 3.5(0.1)
1024 1.7(0.1) 1.7(0.1) 1.7(0.1) 13.5(0.4) 13.5(0.5) 13.5(0.4)
4096 6.2(0.1) 6.2(0.2) 6.1(0.1) 53.1(0.4) 53.1(0.4) 53.1(0.4)45
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Figure 4: Repartition of the observed timings on Intel Co�ee Lake for the NORMAL_INPUT pro�le.

pro�le (Fig. 3), the few observed slight variations are probably due to operating system hazards. It
is noticeable that Hammarling’s algorithm is almost as fast as the nonvectorized Naive algorithm in
this pro�le. However, with the NORMAL_INPUT pro�le (Fig. 4), the performances of Hammarling’s
algorithm are clearly degraded and are more scattered. This may be due to frequent changes of the
scaling factor needed to prevent over�ows/under�ows with this pro�le.

It is clear from Table 11, that the performances of the various algorithms depend much on the
platform being used. However, in any case, these experiments show that our algorithm performs
quite nicely compared to the other algorithms while being more accurate.

Conclusion
We have presented algorithms that make it possible to compute Euclidean norms of vectors very
accurately, and without spurious under�ows or over�ows, even when these vectors are large. Our
tests show that the performance of the “blockwise” version of our algorithm is in general slightly
better than the performance of the slightly less accurate algorithm of Graillat et al., and in general
better than the signi�cantly less accurate Hammarling’s algorithm. Our work on the computation
of Euclidean norms also led us to obtain results on double-word arithmetic that can be of interest in
other areas:

• we have shown that when the operands are positive, the DWPlusFP algorithm has relative
error bound u2, and that bound is asymptotically optimal;

• we have shown the asymptotic optimality of the already known error bound 3u2 for the Slop-
pyDWPlusDW algorithm when the operands are positive;

• we have introduced new algorithms for computing square-roots of double-word numbers
(SQRTDWtoDW and SQRTDWtoFP), given an asymptotically optimal relative error bound
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for the �rst one, and an error bound in ulps for the second one.

Furthermore, we have formally proven the critical parts of our algorithms.
Interestingly enough, avoiding spurious under�ows and over�ows and computing more accu-

rately comes at a reasonable cost: the experiments presented in Section 6.2 show that our algorithm
is never more than two times slower than the naive algorithm.
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