
HAL Id: hal-03482567
https://hal.science/hal-03482567v1

Preprint submitted on 16 Dec 2021 (v1), last revised 7 Oct 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accurate calculation of Euclidean Norms using
Double-word arithmetic

Vincent Lefèvre, Nicolas Louvet, Jean-Michel Muller, Joris Picot, Laurence
Rideau

To cite this version:
Vincent Lefèvre, Nicolas Louvet, Jean-Michel Muller, Joris Picot, Laurence Rideau. Accurate calcu-
lation of Euclidean Norms using Double-word arithmetic. 2021. �hal-03482567v1�

https://hal.science/hal-03482567v1
https://hal.archives-ouvertes.fr


Accurate calculation of Euclidean Norms using
Double-word arithmetic

Vincent Lefèvre Nicolas Louvet Jean-Michel Muller
Joris Picot Laurence Rideau

December 16, 2021

Abstract
We consider the computation of the Euclidean (a.k.a. L2) norm of an n-

dimensional vector in �oating-point arithmetic. We review the classical solutions
used to avoid spurious over�ow or under�ow and/or to obtain very accurate re-
sults. We modify a recently published algorithm [13] to allow for a very accurate
solution, free of spurious over�ows and under�ows. The returned result will be
within very slightly more than 0.5 ulp from the exact result, which means that
we will almost always provide correct rounding.

Keywords: Floating-Point arithmetic; Euclidean norms; Double-word arithmetic;
Double-double arithmetic; Over�ow; Under�ow; Square-root.

1 Introduction

1.1 Computation of Euclidean norms
We consider the computation of Euclidean norms in binary �oating-point arithmetic.
The Euclidean (a.k.a. L2) norm of a vector (a0, a1, a2, . . . , an−1) is the number

N =

√√√√n−1∑
i=0

a2i . (1)

Computing Euclidean norms is important in many scienti�c and engineering appli-
cations. A good implementation of the Euclidean norm must be fast and accurate. It
must also avoid spurious under�ows and over�ows. A spurious under�ow or over-
�ow is an under�ow or over�ow that occurs during an intermediate step, resulting in
an inaccurate, in�nite or NaN returned result, whereas the exact result is well within
the domain of normal �oating-point numbers.

To illustrate how spurious under�ows and over�ows can jeopardize the com-
putation of a Euclidean norm, consider the following examples, assuming IEEE 754
binary64/double-precision arithmetic and n = 3, with the default round-to-nearest,
ties-to-even, rounding function, and suppose that we implement Formula (1) naively
by �rst summing the squares serially and then taking the square root.
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• with a0 = 1.5 × 2511, a1 = 0, and a2 = 2512, we will obtain an in�nite result
(because the computation of a22 over�ows), whereas the exact result is 5×2510,
which is much smaller than the over�ow threshold;

• with a0 = a1 = a2 = (45/64) × 2−537, the computed result is 0, whereas
the exact result is around 1.2178× 2−537, which is much above the under�ow
threshold.

Note that from an accuracy point-of-view, spurious under�ow is a problem only if all
terms ai are tiny (otherwise, the errors due to under�ows that occur when squaring
the “tiny” terms vanish in front of the squares of the “big” terms). However, spurious
under�ow can be very harmful from a performance point-of-view on a system on
which subnormal numbers are handled in software, through a trapping under�ow
mechanism.

There are no catastrophic cancellations when computing a Euclidean norm: all
added terms are nonnegative. Hence, even a naive use of Formula (1) will be rather
accurate when no under�ow or over�ow occurs (roughly speaking, at most log2 n bits
of the �nal result can be incorrect). However, we can try to take advantage of that
property to always obtain results very near the exact result.

The particular case n = 2 (the so-called “hypotenuse” function) has been studied
in excellent references [1, 10]. In this paper, we assume thatn is larger (more precisely,
our algorithms do work in the cases n = 1 or 2, but it is for larger values that good
performance is aimed at).

Due to the importance of the topic, several solutions have been suggested and
analyzed until recently for computing norms accurately and/or without spurious un-
der�ows and over�ows [2, 19, 13, 14]. We will present them in Section 2.1. Before that,
let us present some de�nitions and properties related to �oating-point arithmetic, that
will be useful in the sequel of this paper.

1.2 The underlying FP arithmetic
In the following, we assume a radix-2, precision-p, �oating-point (FP) arithmetic
(where p ≥ 5), with extremal exponents emin < 0 and emax > 0. We also as-
sume emin = 1 − emax (which is a requirement of the IEEE 754-2019 Standard for
FP arithmetic [21]). In such a system, a �oating-point number (FPN) is a number of
the form [32]:

M · 2e−p+1,

with M ∈ Z, |M | ≤ 2p − 1, and e ∈ Z, emin ≤ e ≤ emax. A FPN x is normal if
|x| ≥ 2emin or x = 0, and subnormal otherwise. The largest representable FP number
is

Ω = 2emax · (2− 21−p), (2)

the smallest positive normal FP number, also called “under�ow threshold”, is 2emin .
In the following, we will say that an arithmetic operation under�ows if its result is
both subnormal and inexact.This choice may seem strange, but we want to avoid
under�ows because of accuracy concerns: when the result is exact, there is no need
to worry about accuracy (incidentally, this is why the under�ow �ag is nor raised in
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such a case under the default exception handling for under�ow of the IEEE 754-2019
Standard).

The smallest positive FP number is

α = 2emin−p+1. (3)

The notation RN(t) stands for t rounded to the nearest FP number. We do not assume
a particular tie-breaking rule in our proofs,1 and we use the default ties-to-even rule
in our examples. For instance RN(c · d) is the result of the FP multiplication c ∗ d,
assuming round-to-nearest rounding mode (which is the default in IEEE 754-2019).
The number ulp(x), for x 6= 0 is

ulp(x) = 2max{blog2 |x|c,emin}−p+1,

and u = 2−p = 1
2ulp(1) denotes the roundo� error unit. The constraint p ≥ 5

implies u ≤ 1/32, which will serve many times in our proofs. The relative error due
to rounding to nearest a real number x such that |x| ∈ [2emin ,Ω], namely |(RN(x)−
x)/x|, is bounded by u/(1+u) [24]. When tightness is not necessary, we will use the
simpler yet very slightly looser bound u. We will denote succ(t) the �oating-point
successor of t, and η the number 2(emin+p)/2 (beware: it is a FP number only when
emin+p is even). Barring over�ow, the square of a FPN≥ η can be expressed exactly as
the sum of two FPNs [4]. We also have the following property (see for instance [32]):

Property 1.1. If a FP number t̂ approximates a real number t with relative error ε, then
t̂ is within (ε/u) · ulp(t) from t.

The FP numbers between 2k and 2k+1 are multiples of 2k+1u: for instance, the FP
numbers between 1 and 2 are 1, 1+2u, 1+4u, 1+6u, . . . , 2−2u, 2. We call binade an
interval of the form [2k, 2k+1), k ∈ Z. Table 1 reminds the values of p, emin and emax

for the binary interchange formats of IEEE 754-2019 up to 128 bits [21] and the more
recent b�oat16 format [16], and Table 2 summarizes our notation for the important
FP parameters.

Table 1: Main parameters of the binary interchange formats of size up to 128 bits speci�ed by
the 754-2019 standard [21], and the b�oat16 format [16].

Name binary16 binary32 binary64 binary128 b�oat16
(basic) (basic) (basic)

Former name N/A single double N/A N/A
precision precision

p 11 24 53 113 8

emax +15 +127 +1023 +16383 +127

emin −14 −126 −1022 −16382 −126

1Our proofs, however, are based on the assumptions that RN(−x) = −RN(x), and that if k ∈ Z and if
both x and 2kx are in the normal domain, then RN(2kx) = 2kRN(x).
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Table 2: Notation for the important FP parameters

Notation numerical value explanation
Ω 2emax · (2− 2−p+1) largest �nite FPN
α 2emin−p+1 smallest positive FPN

2emin 2emin
smallest positive normal FPN

(under�ow threshold)
succ(t) succ(t) �oating-point successor of t.

η 2(emin+p)/2

the square of a FPN ≥ η
(unless it over�ows)

is exactly representable
as the sum of two FPNs

u 2−p

roundo� error unit
(the relative error due to

rounding to nearest a number
between 2emin and Ω
is ≤ u/(1 + u) < u)

ulp(x)
(x ∈ R, x 6= 0)

2max{blog2 |x|c,emin}−p+1

unit in the last place
(distance between consecutive

FPNs in the
neighborhood of x)

A computed result is faithfully rounded if i) it is equal to the exact result if this one
is a FP number, and ii) it is one of the two FP numbers that surround the exact result
otherwise. This implies (barring over�ow) that the returned result is within one ulp
of the exact result from the exact result.

Figure 1 illustrates the notions presented in this section.

2k 2k+1
t

RN(t)

the two faithful roundings of t

u · 2k+1 = ulp(t)

Figure 1: The �oating-point numbers between 2k and 2k+1 (assuming emin ≤ k < emax)

1.3 Double-word and pair arithmetics
Evaluating norms with an accuracy signi�cantly better than that of the naive algo-
rithm may require representing intermediate results with a precision higher than the
working FP precision. This can be done by representing these intermediate results
by a pair of FP numbers. For instance, Graillat et al. [13] recently published an algo-
rithm that computes faithfully rounded norms. To achieve that goal, they use double-
word (a.k.a. “double-double”) arithmetic in their intermediate calculations. Lange and
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Rump [38] recently de�ned a “pair arithmetic” (which is a somehow “relaxed” version
of double-word arithmetic), and showed how it can be used, under some conditions, to
obtain faithfully rounded results in �oating-point arithmetic. The algorithms used to
perform operations with these arithmetics are usually based on the three basic “build-
ing blocks” presented in Section 1.3.1: Fast2Sum, 2Sum, and Fast2Mult. However, it
is possible that new operations recently introduced in the IEEE 754 Standard for FP
arithmetic [21] and brie�y presented in Section 1.3.2 replace these building blocks in
a near future.

1.3.1 The basic building blocks: Fast2Sum, 2Sum, and Fast2Mult

Algorithm 1 – Fast2Sum(a, b). The Fast2Sum algorithm [11]. It takes 3 FP opera-
tions.
s← RN(a+ b)
z ← RN(s− a)
t← RN(b− z)

If |a| ≥ |b|, unless over�ow occurs, the two FP numbers s and t returned by
Algorithm 1 satisfy s + t = a + b. Since s is the result of the conventional �oating-
point addition of a and b, t is the error of that addition. Also, if the �rst operation does
not over�ow, the other operations cannot over�ow [6]. For that algorithm, under�ow
is harmless (this is an immediate consequence of Lemma 1.3).

Algorithm 2 – 2Sum(a, b). The 2Sum algorithm [30, 28]. It takes 6 FP operations.
s← RN(a+ b)
a′ ← RN(s− b)
b′ ← RN(s− a′)
δa ← RN(a− a′)
δb ← RN(b− b′)
t← RN(δa + δb)

Unless over�ow occurs, the two FP numbers s and t returned by Algorithm 2
satisfy s + t = a + b: this algorithm returns the same result as Algorithm 1 without
any condition on a and b. On the other hand, it is slightly less over�ow-proof: If the
�rst operation does not over�ow and if |a| < Ω then the other operations cannot
over�ow [6]. Under�ow is harmless.

Algorithm 3 – Fast2Mult(a, b). The Fast2Mult algorithm (see for instance [27, 35,
31]). It requires the availability of a fused multiply-add (FMA) instruction for com-
puting RN(ab− πh).
πh ← RN(a · b)
π` ← RN(a · b− πh)
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In this paper, Algorithm Fast2Mult will be used for expressing the square of a FP
number a as a double-word number. One should keep in mind that, barring over�ow,
the condition for that algorithm to guarantee that πh+π` = a · b is stronger than just
requiring the absence of under�ow in the �rst multiplication. Several slightly di�erent
conditions appear in the literature (see [4] for a necessary and su�cient condition).
One can show (see for instance [5]) that if 2emin+p ≤ |a · b|, then πh + π` = a · b. In
the case of the computation of the square of a, this condition becomes

|a| ≥ η = 2(emin+p)/2. (4)

Algorithm Fast2Mult requires the availability of an FMA instruction. Without an FMA
instruction, the calculation of (πh, π`) remains possible, but at a signi�cantly higher
cost (17 �oating-point operations instead of 2 [11]).

1.3.2 An alternative: the new “augmented” arithmetic operations

The latest release of the IEEE Standard for Floating-Point Arithmetic, published in
2019 [21], speci�es new “augmented” operations, called augmentedAddition, augment-
edSubtraction, and augmentedMultiplication (history and motivation are presented
in [36]). These operations use a new “rounding direction”, round-to-nearest ties-to-
zero, denoted RN0 in this paper, that satis�es [21]:

RN0(t) (where t is a real number) is the FP number nearest t. If the two
nearest FP numbers bracketing t are equally near, RN0(t) is the one with
smaller magnitude. If |t| > Ω + 2emax−p then RN0(t) = ∞, with the
same sign as t.

The augmented operations are de�ned as follows [21, 36]:

• augmentedAddition(x, y) delivers (a0, b0) such that a0 = RN0(x+y) and, when
a0 /∈ {±∞,NaN}, b0 = (x+ y)− a0. When b0 = 0, it is required to have the
same sign as a0;

• augmentedSubtraction(x, y) is augmentedAddition(x,−y);

• augmentedMultiplication(x, y) delivers (a0, b0) such that a0 = RN0(x · y) and,
where a0 /∈ {±∞,NaN}, b0 = RN0((x · y)− a0). When (x · y)− a0 = 0, the
�oating-point number b0 (equal to 0) is required to have the same sign as a0.

As we are writing these lines, no fast hardware implementation of these operations is
o�ered on widely available platforms. When this happens, in the algorithms presented
in this paper, it can be worth replacing 2Sum and Fast2Sum by augmentedAddition,
and replacing Fast2Mult by augmentedMultiplication.

1.3.3 Double-word arithmetic

We de�ne a double-word number as follows
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De�nition 1.2. A double-word (DW) number x is the unevaluated sum xh+x` of two
�oating-point numbers xh and x` such that

xh = RN(x).

Double-word arithmetic goes back to the seminal work of Dekker [11]. Algorithms
for manipulating double-word numbers have been published and analyzed by Li et
al. [29], Hida, Li and Bailey [18, 17], Joldes et al. [26], Muller and Rideau [33]. Let
us now give a two classical DW algorithms. Some new results on DW arithmetic
necessary for this study will be given later on, in Section 3.

Let us �rst consider the addition of a DW number and a FP number. Consider
Algorithm 4 below. It was implemented in the QD library [18].

Algorithm 4 – DWPlusFP(xh, x`, y). Algorithm for computing (xh, x`) + y in
binary, precision-p, �oating-point arithmetic, implemented in the QD library. The
number x = (xh, x`) is a DW number (i.e., it satis�es De�nition 1.2). It takes 10 FP
operations.

1: (sh, s`)← 2Sum(xh, y)
2: v ← RN(x` + s`)
3: (zh, z`)← Fast2Sum(sh, v)
4: return (zh, z`)

That algorithm was analyzed by Joldes et al. [26]. They found that its relative
error ∣∣∣∣ (zh + z`)− (x+ y)

x+ y

∣∣∣∣
is bounded by

2 · u2

1− 2u
= 2u2 + 4u3 + 8u4 + · · · (5)

They also showed that the bound (5) is asymptotically optimal, by exhibiting “generic”
(i.e., parameterized by the precision p) input values for which the ratio between the
attained relative error and the bound goes to 1 as p goes to in�nity.

Now, let us turn to the addition of two DW numbers. Algorithm 5 below was �rst
given by Dekker [11], under the name of add2. It was implemented by Hida, Li, and
Bailey in the QD library [18] under the name of “sloppy addition”. The reason for
that name is that if the input operands have di�erent signs, the relative error can be
arbitrarily large. We will not use that algorithm, but since it is the algorithm used by
Graillat et al to perform their summations [13], we brie�y present it and some of its
properties for the sake of completeness and for helping to compare our solutions.
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Algorithm 5 – SloppyDWPlusDW(xh, x`, yh, y`). “Sloppy” calculation of
(xh, x`) + (yh, y`) in binary, precision-p, �oating-point arithmetic. It takes 11 FP
operations.

1: (sh, s`)← 2Sum(xh, yh)
2: v ← RN(x` + y`)
3: w ← RN(s` + v)
4: (zh, z`)← Fast2Sum(sh, w)
5: return (zh, z`)

If the inputs operands xh and yh have the same sign (which is of course the case
when summing squares), the relative error of Algorithm 5 is bounded by 3u2 [13].
This bound is asymptotically optimal. Consider:

xh = 1 + 2u,
x` = −u+ u2,
yh = 9u,
y` = −6u2 − 8u3,

for which the double-word number returned by Algorithm 5 is equal to 1+10u−8u2

and the exact sum is equal to 1 + 10u− 5u2 − 8u3, resulting in a relative error

u2 · 3− 8u

1 + 10u− 5u2 − 8u3
= 3u2 − 38u3 +O(u4).

1.3.4 Lange and Rump’s pair arithmetic

Lange and Rump [38] recently de�ned a “pair arithmetic” (which is a somehow “re-
laxed” version of double-word arithmetic), and showed how it can be used, under
some conditions, to obtain faithfully rounded results in �oating-point arithmetic.

Rewritten with our notation, the pair algorithms used by Lang and Rump [38] for
addition and square root are the following.

Algorithm 6 – Pair_addition(xh, x`, yh, y`). Lange and Rump’s calculation of
(xh, x`) + (yh, y`) in binary, precision-p, �oating-point arithmetic. It is Algorithm 5
without the last “renormalization”. It takes 8 FP operations.

1: (sh, s`)← 2Sum(xh, yh)
2: v ← RN(x` + y`)
3: w ← RN(s` + v)
4: return (sh, w)
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Algorithm 7 – Pair_sqrt(xh, x`). Lange and Rump’s calculation of the square-root
of (xh, x`) in binary, precision-p, �oating-point arithmetic. It is Algorithm 8 without
the last “renormalization”. It takes 5 FP operations (counting the square root as one).

1: sh ← RN(
√
xh)

2: ρ1 ← RN(xh − s2h) (with an FMA instruction)
3: ρ2 ← RN(x` + ρ1)
4: s` ← RN(ρ2/(2 · sh))
5: return (sh, s`)

These algorithms are similar to the DW algorithms presented in this paper, with
the di�erence that they avoid the last “renormalizing” Fast2Sum operation. This
makes them signi�cantly faster, but this may sometimes make them less accurate,
especially when cancellations occur. When adding squares, however, there are no
cancellations: this makes Lange and Rump’s pair arithmetic a very good candidate.

1.4 Some results useful later on
The following Lemma is frequently used to show that some calculations remain valid
even when operands are below the under�ow threshold (the proof is straightforward).

Lemma 1.3 (Hauser Lemma [15]). If x and y are �oating-point numbers, and if the
number RN(x+ y) is subnormal, then x+ y is a �oating-point number, which implies
RN(x+ y) = x+ y.

For bounding the error committed during the evaluation of a sum of squares, we
will use the following lemma, which is a direct consequence of Lemma 2.1 in [37], due
to Lange and Rump.

Lemma 1.4 (Lange and Rump [37]). Let F be an arbitrary subset of R and let +̃ be an
operation in F with the only assumption that

∀a, b ∈ F, |(a+̃b)− (a+ b)| ≤ min{|a|, |b|}.

Let x1, x2, · · · , xn be elements of F and de�ne numbers si and εi as follows:

s1 = x1,
si = xi+̃si−1 = (xi + si−1)(1 + εi) for i = 2, . . . , n.

We have ∣∣∣∣∣sn −
n∑
i=1

xi

∣∣∣∣∣ ≤
n∑
i=2

|εi| ·
n∑
i=1

|xi|.

For computing square roots in double-word arithmetic, we will need the following
result, due to Boldo and Daumas [4].

Lemma 1.5 (Exact representation of the square root remainder. This is Theorem 5
of [4], restricted to binary arithmetic and rewritten with our notation). In binary,
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precision-p, FP arithmetic, let s = RN(
√
x), where x is a FP number. The correcting

term
x− s2

is a FPN if and only if there exists a pair of integers (m, e) (with |m| ≤ 2p − 1) such
that s = m · 2e−p+1 and 2e ≥ emin + p− 1.

1.5 Aim and organization of this paper
Ideally, one would like to always return correctly rounded results (i.e., the computed
result is the �oating-point nearest to the exact result, which implies that the error
is less than or equal to 0.5 ulp of the exact result). This seems di�cult to guarantee
without making the calculation much slower. However, we are going to show that a
modi�cation of Graillat et al.’s algorithm [13] can be used to always obtain a maximum
error very slightly above 0.5 ulp. This means that we will almost always obtain the
correctly rounded result, except in rare cases when the exact norm is very near the
exact middle of two consecutive �oating-point numbers. Beyond the gain in terms of
accuracy, this will enhance the reproducibility of the calculations, which is becoming
an important issue [12].

The sequel of the paper is organized as follows. Section 2 presents the algorithms
one can �nd in the literature. More precisely, in Subsection 2.1 we quickly review the
classical solutions suggested for avoiding spurious over�ows and under�ows, Sub-
section 2.2 brie�y presents the use by Graillat et al. of double-word arithmetic for
obtaining more accurate results, and in Subsection 2.3 we consider applying a recent
result by Lange and Rump [38] to obtain faithfully rounded norms in pair arithmetic.
In Section 3 we give some new results on double-word arithmetic that will be helpful
for our study. In particular we give a new bound (that takes into account the fact
that we manipulate positive numbers) for and existing addition algorithm, and we
present and analyze an algorithm that computes the square-root of a double-word
number. Since the proof of that square-root algorithm is long and rather complex,
and since the error bound of our euclidean norm algorithm derives from the error
bound of the square-root algorithm, to give more con�dence on our result, we have
formally proven the square-root algorithm, using the Coq proof assistant (see for in-
stance [7]). This part of the paper continues the work undertaken by two of us on the
formal proof of double-word algorithms [34]. Section 4 presents our algorithms for
computing Euclidean norms. We �rst assume that no under�ow or over�ow occurs
in Subsection 4.1, then we deal with the general case in Subsection 4.2.

Our solution builds on Graillat et al.’s solution [13], with the following di�erences:

• we introduce a more accurate algorithm for summing the squares of the terms
ai in DW arithmetic;

• once we have obtained an approximation to the sum of squares as a DW num-
ber, we directly take its square root using a speci�c DW to FP square-root al-
gorithm, whereas Graillat et al “convert” the sum of squares to �oating-point
(by just retaining the most signi�cant part) and take its square root using the
conventional FP square root;
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• we use di�erent comparison constants for preventing under�ows and over-
�ows.

2 Conventional solutions for computing Euclidean
norms

2.1 Avoiding spurious over�ows/under�ows
Several solutions have been suggested for dealing with spurious under�ows and over-
�ows when computing Euclidean norms. A �rst solution [20] would be to use the
exception-handling mechanism provided by the IEEE 754 Standard for FP arithmetic:
one could �rst use the naive method (i.e., straightforward implementation of (1)),
check if an under�ow or over�ow exception occurred, and use a more sophisticated
method only in that case. It is unlikely that this approach will allow good performance
on modern highly pipelined processors. All other approaches consist in scaling the
terms ai, i.e. we multiply or divide them by one (or several) constant(s) such that
computing sums of squares of the scaled values is over�ow-free, and that under�ow
is either impossible or harmless (a good presentation, along with comparisons of ex-
isting Fortran codes can be found in [14]). A straightforward choice is to scale all
values by the factor max |ai|, i.e., to evaluate the norm as

max |ai| ×

√√√√n−1∑
k=0

(
ak

max |ai|

)2

.

That approach has several drawbacks:

• it requires two passes over the data (�nding the maximum of the |ai| takes time
and no computation can start before that max is found);

• it requires divisions, and FP divisions are in general signi�cantly slower than
FP additions and multiplications;

• multiplying and dividing by max |ai| are, in general, non-exact operations,
which leads to a slightly larger �nal error than the error of directly using (1)
when no under�ow/over�ow occurs.

An already better approach (at least in terms of accuracy, delay may be another matter)
consists in choosing a scale factor equal to a power of 2 close to max |ai|, obtained for
instance by the means of the scaleB and logB functions2 speci�ed by the IEEE-754
Standard [21] (when an e�cient implementation of these functions is available. If this
is not the case, a possible turnaround is suggested in [23, Theorem IV.2]).

2scaleB(x, k) returns (in a binary format, which is the case considered in this paper) x · 2k (where x
is a FP number and k is an integer), and logB(x) returns (in a binary format) blog2 |x|c (where x is a FP
number). In the C programming language, these functions are called scalebn and logb (resp. scalebnf
and logbf) for binary64/double precision operands (resp. binary32/single precision) operands.
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Higham [19, Pages 500 and 507] attributes to Hammarling a smart algorithm that
consists in dynamically scaling the data. We start from s0 = 1 and t0 = |x0|. At step
i of the algorithm, we have already computed

si−1 =

i−1∑
k=0

(xk/ti−1)2,

where si−1 is the current scaled sum and ti−1 is the current value of the scale factor.
If |xi| ≤ ti−1 then si = si−1 + (xi/ti−1)2 and the scale factor does not change:
ti = ti−1. If |xi| > ti−1 then we need to update the scale factor. We compute

si = 1 + si−1 · (ti−1/xi)2,

and we replace the scale factor by |xi|: ti = |xi|. After this, one easily checks that
si =

∑i
k=0(xk/ti)

2. The �nal result is tn−1
√
sn−1. With this method, a single pass

over the data su�ces. That algorithm was implemented in the Lapack [14] package
released by netlib3. In Section 5.2 it will be called the “Netlib algorithm”. However,
the number of scale factor updates may be large: up to n− 1 updates if the |xi|’s are
in increasing order (although its average value is around log(n)), which may result
in delays and additional rounding errors due to (in general, nonexact) multiplications
and divisions. Again, a slight improvement in terms of accuracy can consist in choos-
ing, when |xi| > ti−1, a value ti equal to a power of two close to (and preferably
above) |xi|, and then taking si = (xi/ti)

2 + si−1 · (ti−1/ti)2.
With the methods examined so far, a scaling is applied even when not needed.
Blue [2] takes a decisive step by suggesting to split the input numbers into 3 classes

(that we will call TINY, MED, and BIG), depending on their order of magnitude:

• numbers of the MED Class can be squared, and their squares can be accumu-
lated, without under�ows or over�ows. A FP number ai is in the MED Class
if4

ai = 0 or minmed ≤ |ai| ≤ maxmed,

where the choice of minmed and maxmed depends on the parameters (p, emin

and emax) of the FP arithmetic, and on the largest value of n, say nmax, for
which a correct behavior is to be guaranteed. We compute

Smed =
∑

ai∈MED

a2i ;

• numbers of the BIG Class must be “scaled down” to make sure that we can
accumulate their squares safely (i.e., without over�ow). A FP number ai is in
the BIG Class if

maxmed < |ai|.
3www.netlib.org
4As a matter of fact, 0 could be as well in the TINY class instead of the MED class if this simpli�es the

programming. In any case, accumulating 0 in one part or another one will of course not change the result.
However, depending on the underlying computer architecture, the choice may have a signi�cant impact
on performance, due to branch prediction issues.
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All numbers of the BIG Class are multiplied by the same prede�ned constant
tbig, chosen equal to a power of 2 (to make the multiplication errorless), and
such that for ai ∈ BIG, tbig · ai ∈ MED. We compute

Sbig =
∑

ai∈BIG

(tbig · ai)2 .

(usual presentation of the method is with divisions by constants, of course when
actually implementing it, multiplication is preferable for performance reasons)

• numbers of the TINY Class must be “scaled up” to make sure that we can com-
pute their squares safely (i.e., without under�ow: each square must be larger
than the subnormal threshold5 2emin ). A FP number ai is in the TINY Class if

|ai| < minmed and ai 6= 0.

All numbers of the TINY Class are multiplied by the same constant ttiny, chosen
equal to a power of 2, and such that for ai ∈ TINY, ttiny · ai ∈ MED. We
compute

Stiny =
∑

ai∈TINY

(ttiny · ai)2 .

Let us summarize the various constraints that the parameters minmed, maxmed,
tbig, and ttiny must satisfy:

minmed2 ≥ 2emin , (6a)

nmax ·maxmed2 · (1 + ρ) < Ω +
1

2
ulp(Ω) = 2emax+1 − 2emax−p, (6b)

maxmed · tbig ≥ minmed, (6c)
Ω · tbig ≤ maxmed, (6d)

minmed · ttiny ≤ maxmed, (6e)
α · ttiny ≥ minmed, (6f)

where Ω and α are de�ned in (2) and (3) respectively, and ρ is a bound on the relative
error of the algorithm used for computing the sum of squares in MED. Assuming that
maxmed and nmax are powers of 2, Eq. (6b) can be replaced by

nmax ·maxmed2 < 2emax+1 − 2emax−p.

Later on, when we use double-word arithmetic, (6a) will need to be replaced by the
stronger condition minmed ≥ η.

In Blue’s original algorithm [2], the three terms Stiny, Smed, and Sbig are all com-
puted, in three accumulators. However, if BIG is nonempty, provided that the ratio
maxmed/minmed is large enough, the value of Stiny has negligible in�uence on the
�nal result. Graillat et al’s algorithm [13] and the variant of Blue’s algorithm pre-
sented by Hanson and Hopkins in [14] take this into account and use two accumu-
lators only: as soon as an element of BIG is met, we no longer need to accumulate
elements of TINY.
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TINY MED BIG

tbig · BIG

ttiny · TINY

łog2(R)0 2 4 6 8 10 12 14 16−2−4−6−8−10−12−14

α minmed 1 maxmed Ω

łog2(R)0 2 4 6 8 10 12 14 16−2−4−6−8−10−12−14

α minmed 1 maxmed Ω

łog2(R)0 2 4 6 8 10 12 14 16−2−4−6−8−10−12−14

α minmed 1 maxmed Ω

Figure 2: The splitting and the scaling of the FP numbers into 3 classes TINY, MED, and BIG.
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Figure 2 illustrates this splitting of the FP numbers into three classes.
The norm

N =

√√√√n−1∑
i=0

a2i

is equal to √
Stiny/t2tiny + Smed + Sbig/t2big,

but obviously that formula cannot be employed since Sbig/t
2
big—and, more rarely, the

sum—could over�ow, and Stiny/t
2
tiny could under�ow. Blue suggests obtaining N as

follows:

1. if BIG and TINY are empty (i.e., if Sbig = Stiny = 0), then
√
Smed is returned;

2. otherwise, if BIG is nonempty then if
√
Sbig is larger than the precomputed

constant Ω · tbig, +∞ is returned6, otherwise we de�ne

ymin = min
{√

Smed,
1
tbig

√
Sbig

}
,

ymax = max
{√

Smed,
1
tbig

√
Sbig

}
.

and we go to step 4.

3. if BIG is empty and TINY is nonempty, we de�ne

ymin = min
{√

Smed,
1

ttiny

√
Stiny

}
,

ymax = max
{√

Smed,
1

ttiny

√
Stiny

}
.

and we go to step 4

4. if ymin <
√
u · ymax we return ymax, otherwise we return

ymax ·

(
1 +

(
ymin

ymax

)2
)1/2

. (7)

The additional division and square root that appear in (7) were perhaps unavoid-
able in the pre-IEEE-754 era. However, they involve additional delay and rounding
error in the calculation. Graillat et al [13] also split the input values into 3 classes, and
give a simpler solution for the �nal reconstruction of the norm N from Sbig, Smed,
and Stiny. Their work uses double-word arithmetic (see Section 1.2) for accumulating
the sums Sbig, Smed, and Stiny, so the context is slightly di�erent (we will come to
that later on in this paper), but let us momentarily present their solution for avoiding
under/over�ow in the context of simple FP numbers. They choose:

tbig = 2−E , (8a)
5We will need a stronger condition when we represent numbers in double-word arithmetic.
6One can check that with an IEEE-754 compliant system, that test is not needed.
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ttiny = 2E , with (8b)

E = 2×
⌈

1

2
·
⌈
emax − emin + p

3

⌉⌉
, (8c)

minmed = 2emax+1−2E , (8d)
maxmed = 2emax+1−E , (8e)

so that tbig = 1/ttiny and minmed = tbig ·maxmed. The choice (8c) indicates that
they obtain TINY, MED, and BIG by splitting the exponent range of the FP format
into three parts of approximately the same size. Assume n < 1/u. Graillat et al. show
that:

• If BIG is nonempty, we can neglect the elements of TINY, so that we need to
compute √

Smed +
Sbig

t2big
.

This can be done without under/over�ows as follows.

– If Sbig ≥ minmed2/u3 (i.e., Sbig

t2big
≥ maxmed2

u3 ≥ n · maxmed2

u2 ) or Smed ≤

maxmed2u2 then Smed is negligible in front of Sbig

t2big
and we can return

1
tbig

√
Sbig = ttiny

√
Sbig.

– if Smed > maxmed2u2 and Sbig < minmed2/u3 then we can compute
Sbig

tbig
+ tbigSmed = ttinySbig + tbigSmed

without over�ow or under�ow, so that we can return
1
√
tbig
·
√
ttinySbig + tbigSmed, (9)

and the (precomputed) constant 1√
tbig

=
√
ttiny is a power of 2 since (8a)

and (8c) imply that tbig is an even power of 2, so all multiplications in (9)
are exact.

• If BIG is empty, we need to compute√
Smed +

Stiny

t2tiny
=

1

ttiny

√
Stiny +

Smed

t2big
.

This can be done as follows.

– If Smed ≥ minmed/u3 or Stiny ≤ maxmed2u2 we can return
√
Smed;

– otherwise, we can safely compute the desired result as
1

√
ttiny

·
√
ttinySmed + tbigStiny

and the term 1√
ttiny

=
√
tbig is a power of 2.
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2.2 Using double-word numbers to improve accuracy: Graillat
et al.’s solution

Let us now temporarily put aside the problem of avoiding spurious under/over�ow,
and let us focus on the need for accurately computing the sum of squares and the
square root involved in the computation of a Euclidean norm. The goal of Graillat et
al [13] was to guarantee faithful rounding of the Euclidean norm N (1). For that pur-
pose, to save accuracy as much as possible, they compute the sum of squares

∑n−1
i=0 a

2
i

in double-word arithmetic. They �rst express the squares of the FP numbers ai as DW
numbers using Algorithm 3 (Fast2Mult). Then they sum the obtained DW numbers
using a double-word addition algorithm, Algorithm 5 (SloppyDWPlusDW). As they
mention, that summation is easily parallelizable. The obtained result is a double-word
approximation (Sh, S`) to the sum of squares.

After this, they take the square root of Sh, using the correctly rounded square
root instruction that is available on all IEEE 754 compliant systems. They show that,
under reasonable conditions, that square root is a faithful rounding of the norm. More
precisely, the condition they give on n for their algorithm to return a faithful result is

n <
1

24u+ u2
, (10)

i.e., n ≤ 699050 in binary32 arithmetic, and n ≤ 3.752×1014 in binary64 arithmetic.
Assuming sequential addition of the squares of the ais, and assuming that all num-

bers are in the MED class (i.e., no scaling is needed), Graillat et al’s algorithm uses
13n− 10 �oating-point operations.

Let us mention, however, that the choice of “dropping” S` is tantamount to losing
a non-negligible information on the sum of squares.

Incidentally, Graillat et al make a little and reasonably harmless mistake: they did
not realize that the value of minmed they choose (called β0 in their paper), given in
Eq. (8d), is less than η in binary32 arithmetic (it, is however, larger than η in binary64
and binary128 arithmetics). Hence, in very rare cases (computations of norms in bi-
nary32 arithmetic with all scaled operands slightly over minmed), some squares will
not be expressed exactly as DW numbers. Whether this can lead to errors slightly
larger than the claimed bound remains an open question.

They target faithful rounding (i.e., error less than 1 ulp). We have a di�erent
goal in mind: we wish to achieve a �nal error extremely close to 0.5 ulp of the exact
result, i.e., we wish to almost always provide a correctly rounded result. This will
be done by keeping the sum (Sh, S`) of the squares in DW arithmetic, and using an
algorithm that computes the square root of a DW number (Algorithm 9). We will also
compute (Sh, S`) more accurately, by using a di�erent summation scheme, based on
Algorithm 4.

2.3 An alternative: computing norms with pair arithmetic
In [38], Lange and Rump give conditions for their pair arithmetic to return faithfully
rounded results. We have applied Theorems 4.2 and 5.4 of [38] to two cases: the
computation of N when the squares are added sequentially using the Pair_addition
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algorithm, and the same computation where the a2i are added blockwise: we divide
them in k blocks of m terms, with km = n, we �rst add all the terms of each block
together, and then we add the k obtained sums. We obtain the following results:

• with the sequential summation, we will obtain a faithfully rounded result if⌈
4

5
n+

5

4

⌉
≤ 1√

2u− u2
− 2;

• with the blockwise summation , we will obtain a faithfully rounded result if⌈
4

5
(m+ k − 1) +

5

4

⌉
≤ 1√

2u− u2
− 2.

Table 3 presents the maximum possible values of n allowed by these conditions,
for binary32 and binary64 arithmetics. For the blockwise algorithm we have chosen
the “optimal” choice k = m = d

√
ne.

Table 3: Maximum values of n for which a pair-arithmetic implementation is guaranteed to
return a faithful result. For the blockwise algorithm we have chosen k = m = d

√
ne.

format sequential summation blockwise summation
binary32 3615 3, 268, 864
binary64 83, 886, 075 ≈ 8.796× 1014

Assuming sequential addition of the squares of the ais, and assuming that all num-
bers are in the MED class (i.e., no scaling is needed), computing a norm in pair arith-
metic uses 10n−3 �oating-point operations. Of course, exactly as for conventional or
double word arithmetics, one may need scalings to avoid spurious under/over�ows.

3 Some results on double-word arithmetic
In this section, let us give a few new results on double-word arithmetic that can be
useful for accurately computing norms. All the results of this section have been for-
mally certi�ed using the Coq proof assistant 7 and the Flocq [8, 9] library.

3.1 Properties of DWPlusFP
First, the relative error bound (5) on Algorithm DWPlusFP (Alg. 4) was given in [26]
assuming input numbers of arbitrary sign. One may wonder if, when the operands
have the same sign (i.e., when xh and y have the same sign), we can obtain a better
error bound. This would for instance be useful for summing squares, which is the
main step of the computation of Euclidean norms. Indeed, we have,

7http://coq.inria.fr/
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Theorem 3.1. If x = (xh, x`) is a nonnegative double-word number and y is a non-
negative FP number, then the relative error of Algorithm 4 is bounded by u2. That bound
is asymptotically optimal.

Proof. We will show a result very slightly more general than the theorem, namely: if
xh, x` and y are FP numbers satisfying xh ≥ 0, y ≥ 0, and |x`| ≤ 1

2ulp (max{xh, y})
then (zh, z`) is a DW number and∣∣∣∣ (zh + z`)− (x+ y)

x+ y

∣∣∣∣ ≤ u2.
The case xh = 0 or y = 0 is straightforward, so we do not consider it in the following.
Without loss of generality, we can assume xh ≥ y (otherwise, it su�ces to exchange
these variables, since they have a symmetric role in the algorithm). Still without loss
of generality, we assume 1 ≤ xh ≤ 2− 2u, which implies 1− u ≤ x ≤ 2− u, so that
1− u < x+ y ≤ 4− 3u.

De�ne ε = v − (x` + s`).

• If x+y < 1 then xh = 1 (otherwise x+y = xh+x`+y ≥ (1 + 2u)−u+ 0 =
1 + u). We also have −u ≤ x` < 0, and 0 < y < |x`|. This implies sh = 1 and
s` = y. Therefore −u ≤ x` + s` ≤ u, which implies |v| ≤ u and |ε| ≤ u2/2.
Since |v| is less than sh, we can use Fast2Sum at Line 3 of the algorithm. This
leads to a relative error bounded by u2/(2 · (1− u)), which is always less than
u2;

• If 1 ≤ x + y ≤ 2 then xh + y ≤ 2 + u, so that 1 ≤ sh ≤ 2 and |s`| ≤ u.
Therefore |x` + s`| ≤ 2u. As a consequence |v| ≤ 2u and |ε| ≤ u2. Since
|v| ≤ 2u and sh ≥ 1 we can use Fast2Sum at Line 3 of the algorithm, and the
relative error ε/(x+ y) is bounded by u2.

• If 2 < x + y then 2 − u < xh + y ≤ 4 − 4u, so that 2 ≤ sh ≤ 4 − 4u and
|s`| ≤ 2u. Therefore |x` + s`| ≤ 3u. As a consequence |v| ≤ 3u and |ε| ≤ 2u2.
Since |v| ≤ 3u and sh ≥ 2 we can use Fast2Sum at Line 3 of the algorithm, and
the relative error ε/(x+ y) is bounded by u2.

The asymptotic optimality of the bound is shown by considering the following
input values  xh = 1,

x` = u− u2,
y = u,

for which the double-word number returned by Algorithm 4 is equal to 1 + 2u (with
2Sum with round-to-nearest ties-to-even at Line 1 of the Algorithm. If we replace
2Sum by augmentedAddition, we obtain 1 + 2u− 2u2: the absolute value of the error
is the same), resulting in a relative error

u2

1 + 2u− u2
= u2 − 2u3 +O(u4).
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Remark 3.2. When the operands x = xh +x` and y are positive, Algorithm 4 satis�es
the condition of Lemma 1.4 (with F being the set of the DW numbers), namely:∣∣∣DWPlusFP(xh, x`, y)− (xh + x` + y)

∣∣∣ ≤ min {(xh + x`), y} .

Proof. We have∣∣∣DWPlusFP(xh, x`, y)− (xh + x` + y)
∣∣∣ = |v − (x` + s`)|,

and
|v − (x` + s`)| ≤ |x`| ≤ u · (xh + x`) < xh + x`,

and
|v − (x` + s`)| ≤ |s`| ≤ y.

Therefore,
|v| ≤ min{xh + x`, y}.

Later on, we will compute sums of squares using Algorithm DWPlusFP (Algo-
rithm 4). We will need to bound the computed sum of n ≤ 1/u positive numbers less
than some power of 2, say 2k , by n · 2k (this is of course a straightforward property
of the exact sum, but this is far from obvious for the computed sum). This will be
ensured by the following lemma.
Lemma 3.3. If (xh, x`) is a DW number and y is a FP number such that xh, y ≥ 2emin ,
xh + x` ≤ m1 · 2k and y ≤ m2 · 2k wherem1 andm2 are positive integers satisfying
m1 + m2 ≤ 2p then, barring over�ow, the double-word number (zh, z`) returned by
Algorithm DWPlusFP satis�es

zh + z` ≤ (m1 +m2) · 2k.

Proof. Since zh+z` = sh+v, we need to prove that sh+v ≤ (m1+m2)·2k . First note
that xh = RN(xh + x`) ≤ m1 · 2k and sh = RN(xh + y) ≤ RN

(
(m1 +m2) · 2k

)
=

(m1 +m2) · 2k . We have,

x+ y = xh + x` + y ≤ (m1 +m2) · 2k,

so that (since sh + s` = xh + y)

sh + s` + x` ≤ (m1 +m2) · 2k. (11)

• if sh < (m1 + m2) · 2k , then, since sh and (m1 + m2) · 2k are FP numbers,
succ(sh) ≤ (m1 + m2) · 2k . Since |s`| ≤ 1

2ulp(sh) and |x`| ≤ 1
2ulp(xh) ≤

1
2ulp(sh), we have |s` + x`| ≤ ulp(sh), so that

|v| = |RN(s` + x`)| ≤ RN(ulp(sh)) = ulp(sh).

Hence,
sh + v ≤ sh + ulp(sh) = succ(sh) ≤ (m1 +m2) · 2k.

• if sh = (m1+m2)·2k then (11) implies s`+x` ≤ 0, therefore v = RN(s`+x`) ≤
0, which implies sh + v ≤ (m1 +m2) · 2k .
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3.2 Square-root of a double-word number
Assume that x = (xh, x`) is a DW number, and that xh ≥ 22k , where k is an integer
larger than or equal to (emin+p)/2. The following two algorithms evaluate the square
root of x. Algorithm 8 returns a DW number, and Algorithm 9 returns a FP number.

Algorithm 8 – SQRTDWtoDW(xh, x`). Computes the square-root of the DW num-
ber (xh, x`) in binary, precision-p, �oating-point arithmetic and returns a DW num-
ber (zh, z`). It takes 8 FP operations (counting the FP square root as one).

1: sh ← RN(
√
xh)

2: ρ1 ← RN(xh − s2h) (with an FMA instruction)
3: ρ2 ← RN(x` + ρ1)
4: s` ← RN(ρ2/(2 · sh))
5: (zh, z`)← Fast2Sum(sh, s`)
6: return (zh, z`)

To obtain a �oating-point number, one can replace the “Fast2Sum” of Line 5 of
Algorithm 8 by a �oating-point addition and obtain

Algorithm 9 – SQRTDWtoFP(xh, x`). Computes the square-root of the DW num-
ber (xh, x`) in binary, precision-p, �oating-point arithmetic and returns a �oating-
point number z. It takes 6 FP operations (counting the FP square root as one).

1: sh ← RN(
√
xh)

2: ρ1 ← RN(xh − s2h) (with an FMA instruction)
3: ρ2 ← RN(x` + ρ1)
4: s` ← RN(ρ2/(2 · sh))
5: z ← RN(sh + s`)
6: return z

Remark 3.4. For performance purposes, if the FMA operator is fast enough, to avoid
the multiplication of sh by 2 that appears in Line 4 of both algorithms, one can somehow
“delay” that operation, and replace Lines 4 and 5 of Algorithm 8 by (we inline the
Fast2Sum algorithm for the sake of clarity):

4: t` ← RN(ρ2/sh) t` equals 2s`
5: zh ← RN(sh + 0.5 · t`) �rst line of Fast2Sum(sh, s`)
6: delta← RN(zh − sh) second line of Fast2Sum(sh, s`)
7: z` ← RN(0.5 · t` − δ) third line of Fast2Sum(sh, s`)

Similarly, one can replace Lines 4 and 5 of Algorithm 9 by:

4: t` ← RN(ρ2/sh) t` equals 2s`
5: z ← RN(sh + 0.5 · t`)
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By doing so, Algorithm 8 now takes 7 FP operations, and Algorithm 9 takes 5 FP opera-
tions. In both cases, the computed results are exactly the same.

Let us now analyze Algorithms 8 and 9. We assume that the input double-word
operand x = (xh, x`) is positive, i.e., xh > 0. If xh can be zero, a preliminary test
must be added at the beginning of these two algorithms. We have,

Theorem 3.5. If x = (xh, x`) is a double-word number, p ≥ 5, x ≥ 22k , where k is an
integer larger than or equal to (emin + p)/2 and no over�ow or under�ow occurs, then
the relative error of Algorithm 8 is bounded by

25

8
u2 = 3.125u2,

and that bound is asymptotically optimal.

Theorem 3.6. If x = (xh, x`) is a double-word number, p ≥ 5, x ≥ 22k , where k is an
integer larger than or equal to (emin + p)/2 and no over�ow or under�ow occurs, then
the �oating-point number returned by Algorithm 9 is within(

1

2
+

7

4
· 2−p

)
· ulp(

√
xh + x`)

from
√
xh + x`, and the relative error of that algorithm is bounded by

u+
17

8
u2 +

33

8
u3.

For proving Theorem 3.10 below, we will also need the following result.

Remark 3.7. If xh = 22k with k ∈ Z then Algorithm 9 returns 2k .

Since Algorithms 8 and 9 di�er only in the last line, we give a common proof to
the two theorems (and we will prove Remark 3.7 in passing).

Proof. De�nex = xh+x`. First note that sh ≥ 2k and, since k ≥ (emin+p)/2 > emin,
sh is in the normal domain. Hence, if e is the FP exponent of sh, 2e ≤ sh < 2e+1,
and sh can be written m · 2e−p+1 where m ∈ N. We have e ≥ k and therefore
2e ≥ emin + p, hence the condition of Lemma 1.5 is satis�ed. This implies

ρ1 = xh − s2h

(i.e., the operation at Line 2 of Algorithms 8 and 9 is exact). This is a well-known
property of the �oating-point square-root and the FMA instruction [3, 4].

Now, without loss of generality, we can assume 1 ≤ xh ≤ 4− 4u. Note that this
implies 1 ≤ sh ≤ 2− 2u. We have

|sh −
√
xh| < u (12)

(equality is impossible because the square root of a �oating-point number cannot be
a “midpoint” [22]).
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Let us �rst bound the distance between
√
x and sh. We have∣∣√x− sh∣∣ ≤ |√xh − sh|+ ∣∣√x−√xh∣∣ . (13)

Using the mean-value theorem, we have∣∣√x−√xh∣∣ =

∣∣∣∣x− xh2
√
ξ

∣∣∣∣ =

∣∣∣∣ x`2
√
ξ

∣∣∣∣ , (14)

for some ξ between x and xh. Hence,

• if xh = 1 and x < xh (which implies −u/2 ≤ x` < 0) then∣∣√x−√xh∣∣ ≤ u/2

2
√

1− u/2
,

which is less than u/2 for all u ≤ 1;

• if xh > 1 or (xh = 1 and x` ≥ 0) then the term
√
ξ in (14) is larger than 1, so

that ∣∣√x−√xh∣∣ ≤ u

2

• if xh = 2 and x < xh (which implies −u ≤ x` < 0) then∣∣√x−√xh∣∣ ≤ u

2
√

2− u
,

which is less than u/
√

2 for all u ≤ 1;

• if xh > 2 or (xh = 2 and x` ≥ 0) then the term
√
ξ in (14) is larger than

√
2, so

that ∣∣√x−√xh∣∣ ≤ u√
2
.

Combined with (12) and (13), this gives

∣∣√x− sh∣∣ ≤ { 3u
2 if xh ≤ 2− 2u,

u
(

1 +
√
2
2

)
otherwise.

(15)

Let us now estimate the error committed at Line 3 of Algorithms 8 and 9. We have

|x` + ρ1| ≤ |x`|+
∣∣xh − s2h∣∣ ≤ |x`|+ |√xh − sh| · (√xh + sh) ,

therefore,
|x` + ρ1| < |x`|+ u · (2sh + u) . (16)

• if xh ≤ 2− 2u then |x`| ≤ u and

sh <
√

2− 2u+ u <
√

2 · (1− u/2) + u <
√

2 + u/2,

so that 2sh + u < 2
√

2 + 2u. Hence |x` + ρ1| < u · (1 + 2
√

2) + 2u2. That
bound is less than 4u as soon as u ≤ 1/16 (i.e., as soon as p ≥ 4);

23



• if xh ≥ 2 then |x`| ≤ 2u and sh ≤ 2, so that 2sh + u ≤ 4 + u. Hence
|x` + ρ1| < 6u+ u2.

All this gives

ρ2 = RN(x` + ρ1) = RN(x− s2h) = x− s2h + ε1, (17)

with
|ε1| ≤

{
2u2 if xh ≤ 2− 2u,
4u2 otherwise.

(18)

We now deal with Line 4 of Algorithms 8 and 9. From (16), we obtain

|ρ2| ≤ |x`|+ u · (2sh + u) + |ε1|,

so that ∣∣∣∣ ρ22sh

∣∣∣∣ ≤ ∣∣∣∣ x`2sh

∣∣∣∣+ u ·
(

1 +
u

2sh

)
+

∣∣∣∣ ε12sh

∣∣∣∣ .
Therefore,

• if xh ≤ 2− 2u then sh ≥ 1 and∣∣∣∣ ρ22sh

∣∣∣∣ ≤ u

2
+ u ·

(
1 +

u

2

)
+ u2 ≤ 3u

2
+

3u2

2
, (19)

• if xh ≥ 2 then sh >
√

2− u, and∣∣∣∣ ρ22sh

∣∣∣∣ ≤ 2u

2 · (
√

2− u)
+ u ·

(
1 +

u

2 · (
√

2− u)

)
+ 2u2. (20)

The bounds (19) and (20) are less than 2u − 2u2 as soon as u ≤ 1/32 (i.e., as soon
as p ≥ 5). This is straightforward for bound (19). For bound (20) let us consider
functions

ϕ(u) =
1√

2− u
+

(
1 +

u

2 · (
√

2− u)

)
+ 2u

and
h(u) = 2− 2u.

Function ϕ is an increasing function of u, whereas h is a decreasing function. One
easily checks that ϕ(1/32) < h(1/32). Therefore, for any u ≤ 1/32, ϕ(u) < h(u).

All this gives (as soon as p ≥ 5)

|s`| ≤ 2u− 2u2 and s` =
ρ2
2sh

+ ε2, with |ε2| ≤ u2. (21)

This and sh ≥ 1 show that Fast2Sum can be used at Line 5 of Algorithm 8. By
combining (17) and (21), we �nally obtain

sh + s` = sh +
x− s2h + ε1

2sh
+ ε2

=
1

2
·
(
sh +

x

sh

)
+

ε1
2sh

+ ε2.
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(not surprisingly, we �nd again the Heron/Newton-Raphson formula for the square
root in the �rst term), and therefore

sh + s` −
√
x =

1

2
·
(
sh − 2

√
x+

x

sh

)
+

ε1
2sh

+ ε2

=
1

2sh
·
(
s2h − 2sh

√
x+ x

)
+

ε1
2sh

+ ε2

=
1

2sh
·
(
sh −

√
x
)2

+
ε1

2sh
+ ε2.

This gives ∣∣sh + s` −
√
x
∣∣ ≤ 1

2sh
·
(
sh −

√
x
)2

+

∣∣∣∣ ε12sh

∣∣∣∣+ |ε2| . (22)

Let us �rst quickly eliminate the case xh = 1, which is the only case for which
x (and therefore

√
x) may be less than 1. In that case, we easily �nd sh = 1, ρ1 =

0, ρ2 = x`, ε1 = 0, and |ρ2/(2sh)| = |x`/2| ≤ u/2, resulting in |ε2| ≤ u2/4.
Using (22) we obtain |sh + s` −

√
x| ≤ 11u2/8. The relative error of Algorithm 8 is

therefore bounded by 11u2/(8
√

1− u) which is always less than 25u2

8 . Now consider
Algorithm 9. Since ulp(

√
x) ≥ u, we have |sh + s` −

√
x| ≤ 11u · ulp(

√
x)/8. The

error of the addition of Line 5 of Algorithm 9 is less than or equal to 1
2ulp(sh + s`).

Since sh = 1 and s` = x`/2, sh + s` < 1 if and only if x < 1, i.e., if and only if√
x < 1. Therefore, ulp(sh + s`) = ulp(

√
x). As a consequence, the total absolute

error of Algorithm 9 is bounded by ( 1
2 + 11

8 u)ulp(
√
x), which is less than the bound

of Theorem 3.6. Also, the fact that sh = 1 and |s`| ≤ u/2 implies that Algorithm 9
returns z = 1, which proves Remark 3.7 .

In the following, we can therefore assume that xh ≥ 1 + 2u, which implies x ≥
1 + u. Using (15), (22) and the bounds (18) and (21) on ε1 and ε2, we deduce

• if xh ≤ 2− 2u then

∣∣sh + s` −
√
x
∣∣ ≤ 1

2

(
3u

2

)2

+ 2u2 =
25u2

8
= 3.125u2, (23)

• if xh ≥ 2 then

∣∣sh + s` −
√
x
∣∣ ≤ 1

2 · (
√

2− u)
·

[
u ·

(
1 +

√
2

2

)]2
+

4u2

2 · (
√

2− u)
+ u2

= u2 · 11 + 6
√

2− 4u

4
√

2− 4u
,

(24)
which is less than 3.5u2 as soon as u ≤ 1/32.

This immediately gives the bound in ulps of Theorem 3.6, by noting that ulp(
√
x) =

2u and that the error due to the addition of Line 5 of Algorithm 9 is bounded by
1
2ulp(sh + s`), which is less than or equal to 1

2ulp(
√
x):
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• �rst, 1 + 2u ≤ xh ≤ 4− 4u implies 1 + u ≤ x ≤ 4− 2u, so that 1 <
√
x < 2,

which implies ulp(
√
x) = 2u;

• 1 + 2u ≤ xh ≤ 4 − 4u also implies 1 ≤ sh ≤ 2 − 2u, therefore, using (21),
1− 2u+ u2 ≤ sh + s` ≤ 2− u2, hence ulp(sh + s`) equals u or 2u.

Let us now prove the relative error bounds given by Theorems 3.5 and 3.6. We
have

• if 1 + 2u ≤ xh ≤ 2 − 2u then x > 1, and, from (23), the relative error of
Algorithm 8 is bounded by 25u2

8 = 3.125u2;

• if xh ≥ 2, then x ≥ 2 − u, so that
√
x ≥

√
2− u, and the relative error of

Algorithm 8 is bounded by
3.5u2√
2− u

,

which is less than 25u2

8 as soon as u ≤ 1/2 (i.e., p ≥ 1).

Hence the relative error of Algorithm 8 is bounded by 25u2

8 . Concerning the relative
error of Algorithm 9 (i.e., the relative error bound of Theorem 3.6), we have just shown
that ∣∣sh + s` −

√
x
∣∣ ≤ 25

8
u2
√
x,

and we have the classical bound [24]:

|RN(sh + s`)− (sh + s`)| ≤
u

1 + u
· (sh + s`).

Therefore, ∣∣z −√x∣∣ =
∣∣RN(sh + s`)−

√
x
∣∣

≤ |RN(sh + s`)− (sh + s`)|+
∣∣sh + s` −

√
x
∣∣

≤ u

1 + u
· (sh + s`) +

25

8
u2
√
x

≤ u

1 + u
·
(

1 +
25

8
u2
)
·
√
x+

25

8
u2
√
x

= u ·
(

8 + 25u+ 50u2

8 + 8u

)
·
√
x.

The bound u+ 17
8 u

2 + 33
8 u

3 of Theorem 3.6 is proved by noting that

1 +
17

8
u+

33

8
u2 −

(
8 + 25u+ 50u2

8 + 8u

)
=

33u3

8 + 8u

is always positive.
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There remains to show that the bound 25u2/8 of Theorem 3.5 is asymptotically
optimal. This is done by considering the case{

xh = 1 + 6u
x` = u− 6u2,

for which one easily checks that Algorithm 8 returns zh + z` = 1 + 7
2u− 6u2 as soon

as p ≥ 3, resulting in a relative error∣∣∣∣∣
√

1 + 7u− 6u2 −
(
1 + 7

2u− 6u2
)

√
1 + 7u− 6u2

∣∣∣∣∣ =
25

8
u2 − 343

8
u3 +O(u4).

Intuitively, since the square root of a huge number is less than that number, and the
square root of a tiny number is larger than that number, over�ows and under�ows
are not much of a concern when evaluating square roots. This does not mean that
intermediate calculations in Algorithms 8 and 9 cannot under�ow or over�ow. Let us
now quickly address this issue.

Remark 3.8. Under the conditions of theorems 3.5 and 3.6 (and assuming emax ≥ 2,
which always holds in practice8), no over�ow can occur in Algorithms 8 and 9.

Proof. It su�ces to show that all intermediate values remain below Ω.
Since emax ≥ 2, we have Ω > 4 and therefore

√
Ω < Ω/2. Hence, since xh ≤ Ω,

sh = RN (
√
xh) ≤ RN

(√
Ω
)
≤ RN(Ω/2) = Ω/2.

This also implies that 2sh (needed at Line 4 of both algorithms) does not over�ow.
We have seen that xh − s2h is computed exactly. Hence,

|ρ1| = |(
√
xh − sh)(

√
xh + sh)| ≤ u

√
xh(
√
xh +

√
xh(1 + u))

≤ (2u+ u2)xh

≤ (2u+ u2)Ω

≤ 65
1024Ω

(since p ≥ 5 implies u ≤ 1/32). Therefore, |x` + ρ1| ≤ (3u+ u2)xh, so that

|ρ2| ≤ (3u+ u2)(1 + u)xh = (3u+ 4u2 + u3)xh ≤ 3201
32768Ω.

Hence,∣∣∣∣ ρ22sh

∣∣∣∣ ≤ (3u+ 4u2 + u3)xh
2(1− u)

√
xh

=
3u+ 4u2 + u3

2− 2u

√
xh ≤ 3201

63488

√
xh < Ω.

8In fact, Condition emax ≥ 2 can be deduced from the conditions of theorems 3.5 and 3.6. We know
that x ≥ 2emin+p, so that xh ≥ 2emin+p, which can be representable only if emax ≥ emin + p. And
since p ≥ 5 and emin = 1− emax, we have emax ≥ 6− emax. Therefore, emax ≥ 3.
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Multiplying by (1 +u) we get a bound on s` still less than Ω. We can now add sh and
s`:

sh + s` ≤
√
xh ·

(
1 + u+

3u+ 4u2 + u3

2− 2u
(1 + u)

)
=

2 + 3u+ 5u2 + 5u3 + u4

2− 2u

√
xh ≤ 2200737

2031616

√
Ω ≤ 2200737

2031616 ·
Ω

2
< Ω.

Remark 3.9. Under the conditions of theorems 3.5 and 3.6, with the additional assump-
tion p+ 3 ≤ emax, under�ows in Algorithms 8 and 9 are impossible or harmless.

Proof. Since x ≥ 22k , with k ≥ (emin + p)/2 > emin, xh ≥ 22k and therefore √xh
and sh are larger than or equal to 2emin . Therefore, we always have

|sh −
√
xh| ≤

u

1 + u

√
xh. (25)

We have ∣∣sh −√x∣∣ ≤ |sh −√xh|+ ∣∣√xh −√x∣∣
≤ u

1 + u

√
xh +

1

2 min{√xh,
√
x}
|xh − x|

(26)

(using the mean value theorem). If xh ≥ x, then (26) gives

∣∣sh −√x∣∣ ≤ u

1 + u

√
x(1 + u) +

1

2
√
x

(
u

1 + u

)
x

=
√
x · u ·G1(u),

with
G1(u) =

2
√

1 + u+ 1

2(1 + u)
<

2
(
1 + u

2

)
+ 1

2(1 + u)
<

3

2
.

Now, if xh < x, then (26) gives

∣∣sh −√x∣∣ ≤ u

1 + u

√
x+

1

2
√
x(1− u)

(
u

1 + u

)
x

=
√
x · u ·G2(u),

with
G2(u) =

1

1 + u

(
1 +

1

2
√

1− u

)
=

3

2
+

1− (1 + 3u)
√

1− u
2(1 + u)

√
1− u

.

We have

(1+3u)2(1−u)−1 = u(5+3u−9u2) = −9u·

(
u− 1

6
−
√

21

6

)
·

(
u− 1

6
+

√
21

6

)
,

28



therefore, for u ∈
[
0, 16 +

√
21
6

]
≈ [0, 0.93], (1 + 3u)

√
1− u > 1, so that G2(u) < 3

2 .
Hence, in all cases, ∣∣√x− sh∣∣ ≤ 3

2
u
√
x,

and therefore (√
x− sh

)2 ≤ 9

4
u2x.

This would also allow one to directly deduce that |x− s2h| ≤
(
3u+ 9

4u
2
)
· x, but we

can compute a slightly better bound: De�ne v = u/(1 + u). From (25), we have∣∣x− s2h∣∣ =
∣∣xh + x` − s2h

∣∣
≤
∣∣xh − s2h∣∣+ |x`|

≤ |(
√
xh − sh) · (

√
xh + sh)|+ v · x

≤ (v
√
xh) · (

√
xh + (

√
xh + v

√
xh)) + v · x

= xh · (2v + v2) + v · x
≤
[
(1 + v)(2v + v2) + v

]
· x

=
3u+ 9u2 + 7u3

(1 + u)3
· x

= 3u ·
1 + 3u+ 7

3u
2

1 + 3u+ 3u2 + u3
· x

≤ 3ux.

Since sh is a normal FPN larger than 2k , it can be written Sh ·2e−p+1, where e ≥ k
is an integer and |Sh| ≤ 2p − 1. Lemma 1.5 therefore implies that xh − s2h is a FPN,
so that ρ1 = xh − s2h (ρ1 may be subnormal, but this does not have any consequence
on its accuracy).

Let us now deal with Lines 3 and 4 of Algorithms 8 and 9. Let us �rst note that if∣∣∣∣s` − x− s2h
2sh

∣∣∣∣ ≤ ε,
then ∣∣(sh + s`)−

√
x
∣∣ ≤ ∣∣∣∣sh +

x− s2h
2sh

−
√
x

∣∣∣∣+

∣∣∣∣s` − x− s2h
2sh

∣∣∣∣
≤ 1

2sh

(
sh −

√
x
)2

+ ε

≤ 9u2

8

x

sh
+ ε

≤ 9u2

8
· x
√
x
(
1− 3

2u
) + ε =

9u2
√
x

8− 12u
+ ε.

(27)

This last bound is less than 5
4u

2
√
x+ ε for u ≤ 1/32.
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• if |ρ2| and |ρ2/(2sh)| are above the under�ow threshold 2emin then no under-
�ow occurs in the calculation, so that the proof of Theorems 3.5 and 3.6 still
holds;

• if |ρ2| < 2emin , then Lemma 1.3 implies ρ2 = x` + ρ1 = x− s2h, and therefore

1. if |ρ2/(2sh)| ≥ 2emin (so that s` is in the normal domain) then∣∣∣∣s` − ρ2
2sh

∣∣∣∣ ≤ u · ∣∣∣∣ ρ22sh

∣∣∣∣
= u ·

∣∣∣∣x− s2h2sh

∣∣∣∣
≤ 3

2
u2

x

sh

≤ 3

2
u2

x
√
x
(
1− 3

2u
)

=
3u2
√
x

2− 3u
,

and from
3u2

2− 3u
− 3

2
u2 − 3u3 = −3u3 ·

(
1− 6u

4− 6u

)
,

we easily deduce that
∣∣∣s` − ρ2

2sh

∣∣∣ is less than
(
3
2u

2 + 3u3
)√

x for u ≤
1/32. Therefore, we can take ε equal to that value, and obtain

|sh + s` −
√
x| <

(
11

4
u2 + 3u3

)√
x,

which is a better bound than that of Theorem 3.5;
2. if |ρ2/(2sh)| < 2emin then |s` − ρ2/(2sh)| ≤ 2emin−p, so that we can use

(27) with ε = 2emin−p, and obtain

|sh + s` −
√
x| < 5

4
u2
√
x+ 2emin−p.

From
√
x ≥ 2(emin+p)/2 we deduce 2emin−p ≤ 2(emin−3p)/2√x, and

emax = 1− emin ≥ p+ 3 implies 2(emin−3p)/2 ≤ 2−2p−1 = u2

2 , therefore

|sh + s` −
√
x| < 7

4
u2
√
x,

which is a better bound than that of Theorem 3.5.

• If |ρ2| ≥ 2emin and |ρ2/(2sh)| < 2emin this means that sh > 1/2 and therefore√
xh > 1/2, which implies xh > 1/4, so that x > 1/4 and

√
x > 1/2. We have
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|ρ2 − (x − s2h)| = |ρ2 − (x` + ρ1)| ≤ u|ρ2| and |s` − ρ2/(2sh)| ≤ 2emin−p.
Therefore,∣∣∣∣s` − x− s2h

2sh

∣∣∣∣ ≤ u · |ρ2|2sh
+ 2emin−p < 2emin−p+1 < 2emin−p+2

√
x.

Since emax = 1− emin ≥ p+ 3, we obtain 2emin−p+2 ≤ 2−2p = u2. Therefore,
(27) gives

|sh + s` −
√
x| < 9

4
u2
√
x,

which is a better bound than that of Theorem 3.5.

Now, let us assume that the input values (xh, x`) of Algorithm SQRTDWtoFP
(Algorithm 9) approximate some number xwith a known relative error bound. Let us
see how SQRTDWtoFP (xh, x`) approximates

√
x. We have

Theorem 3.10. If (xh, x`) approximates a positive number x with relative error
bounded by νu2 with

νu2 < 1 (28)
and if no under�ow/over�ow occurs, then

R = SQRTDWtoFP(xh, x`)

approximates
√
x with a relative error bounded by(
u+

17

8
u2 +

33

8
u3
)
·
(

1 +
ν · u2

1− ν · u2

)
+

ν · u2

1− ν · u2
(29)

Furthermore, under the more stringent condition

2uν < 1, (30)

we have ∣∣R−√x∣∣ ≤ (1

2
+ u ·

(
7

4
+

ν

1− ν · u2

))
ulp
(√
x
)
. (31)

Proof. We wish to bound the distance between R and
√
x, both in terms of relative

error and in terms of error in ulps. We have∣∣R−√x∣∣ ≤ ∣∣R−√xh + x`
∣∣+
∣∣√xh + x` −

√
x
∣∣ . (32)

Theorem 3.6 gives∣∣R−√xh + x`
∣∣ ≤ (u+

17

8
u2 +

33

8
u3
)
·
√
xh + x`. (33)

Since (xh, x`) approximates x with relative error < νu2, we have

|(xh + x`)− x| ≤ ν · u2 · x. (34)
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Hence, using the mean value theorem, we deduce

∣∣√xh + x` −
√
x
∣∣ =
|(xh + x`)− x|

2
√
ξ

≤ ν · u2 · x
2
√
ξ

for some ξ between xh + x` and x. From (34), we have

ξ ≥ x ·
(
1− ν · u2

)
,

therefore, assuming (28), we have (just by using the relation
√

1− t ≥ 1 − t for
t ∈ [0, 1]) √

ξ ≥
√
x ·
(
1− ν · u2

)
. (35)

This gives: ∣∣√xh + x` −
√
x
∣∣ ≤ ν · u2

1− ν · u2
·
√
x. (36)

Combining (32), (33), and (36), we obtain the relative error bound (29) of the the-
orem.

Let us now focus on the error bound in ulps. Using Theorem 3.6, we obtain

∣∣R−√xh + x`
∣∣ ≤ (1

2
+

7

4
u

)
ulp
(√
xh + x`

)
Using (36) and Property 1.1, we deduce that

√
xh + x` is within

ν · u
1− ν · u2

ulp
(√
x
)

from
√
x.

• if
√
xh + x` and

√
x belong to the same binade (which will be the case in general

since (36) implies that they are very close), or if xh + x` ≤ x then

ulp
(√
xh + x`

)
≤ ulp

(√
x
)
,

and therefore∣∣R−√x∣∣ ≤ (1

2
+ u ·

(
7

4
+

ν

1− ν · u2

))
ulp
(√
x
)
.

• if
√
xh + x` and

√
x are not in the same binade and xh + x` > x, then, under

condition (30), which is a much stronger condition than (28), we have (using
(34))

x < 2k ≤ xh + x` ≤ (1 + νu2) · x <
(

1 +
u

2

)
· x,

where k is an even integer (otherwise,
√
xh + x` and

√
x would be in the same

binade). This implies

2k ≤ xh + x` <
(

1 +
u

2

)
· 2k,
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so that xh = 2k and x` ≥ 0. Using Remark 3.7, we conclude that we obtain
R = 2k/2. We also have

2k

1 + u
2

< x ≤ 2k

and therefore
2k/2√
1 + u

2

<
√
x ≤ 2k/2 (37)

The number
2k/2√
1 + u

2

is always larger than 2k/2 ·
(
1− u

2

)
. This comes from

1

1 + u
2

−
(

1− u

2

)2
=
u · (4 + 2u− u2)

8 + 4u
> 0.

Therefore, from (37) we deduce

RN
(√
x
)

= 2k/2.

Hence,R is the correctly rounded result, and therefore |R−
√
x| ≤ 1

2ulp (
√
x),

which is stronger than (31).

Very similarly to what we have done with Algorithm SQRTDWtoFP (Algorithm 9),
let us now assume that the input values (xh, x`) of Algorithm SQRTDWtoDW (Algo-
rithm 8) approximate some number x with a known relative error bound. Let us see
how SQRTDWtoDW (xh, x`) approximates

√
x. We have

Theorem 3.11. If (xh, x`) approximates a positive number x with relative error
bounded by νu2 with

νu2 < 1 (38)

and if no under�ow/over�ow occurs, then

R = SQRTDWtoDW(xh, x`)

approximates
√
x with a relative error bounded by

u2 ·
(

25

8
+

ν

1− νu2
+

25

8
· νu2

1− νu2

)
. (39)

Proof. The bound is derived almost immediately from Theorem 3.5, (32), and (36).
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3.3 Formalization
To formalize the results of this section, in particular the proofs of correctness of the
proposed square root algorithm and the computation of the error bounds, we have
used the Coq proof assistant with the help of the Flocq library [8, 9] on the arithmetic
of �oating-point numbers.

The Flocq library o�ers various models for representing �oating-point numbers.
For the proof under the hypothesis that the algorithm runs without over�ow and
without under�ow (theorems 3.5, 3.6, 3.10 and 3.11), we used the model of repre-
sentation of �oating-point numbers without restrictions on the exponents (the FLX
format). This make the proofs easier, and close to the paper proof, avoiding tedious
veri�cation about the exponents.

On the other hand, in the case of over�ow studies (Remark 3.8), to verify that
the algorithm does not generate over�ows, we have had to prove that all numbers
involved in the algorithm remained, in absolute value, below the largest �oating-point
number) Ω. Indeed, in the Flocq library, the choice was made not to put an upper
bound on the exponents.

Finally, concerning under�ow (Remark 3.9), the FLT format of Flocq allows one to
give a lower bound to the exponents and the library develops a whole “theory” (i.e.,
de�nitions and properties) for this format of �oating-point numbers, in particular
for the normal and subnormal numbers. It is thus this format that we used to prove
Remark 3.9.

Note that, for the rounding function, we have chosen not to specify the tie-breaking
rule for round-to-nearest (the default, as said above, is ties-to-even). This makes the
proofs more general: they will for instance be still valid with the less frequently used
(but speci�ed by IEEE 754) “ties-to-away” tie-breaking rule.

4 Our algorithms for computing Euclidean norms

4.1 Computing a Euclidean norm assuming no under�ow or
over�ow occurs

In this section, we assume that all the terms ai of (1) are in MED, so that no under-
�ow/over�ow occurs and a2i is exactly representable by a DW number for all i. We
�rst approximate the sum of squares

∑n−1
i=0 a

2
i by a DW number (Sh, S`), with some

relative error νu2, and then use Algorithm SQRTDWtoFP (Algorithm 9) to approxi-
mate the square-root of Sh +S` by a �oating-point numberR. The �nal error will be
deduced from ν using Theorem 3.10.

Let us now �rst present two di�erent ways of computing (Sh, S`).

4.1.1 Sequential computation of the sum of squares

Let us �rst consider the following, sequential algorithm.
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Algorithm 10 Sequential computation of
∑n−1
i=0 a

2
i assuming no under�ow/over�ow

occurs. It takes 13n− 5 FP operations.

1. For i = 0 . . . n − 1, express the terms a2i as double-word numbers (yhi , y
`
i ),

de�ned as
(yhi , y

`
i ) = Fast2Mult(ai, ai) (40)

We have a2i = yhi + y`i .

2. Accumulate the terms yhi using the DWPlusFP algorithm (Algorithm 4). More
precisely, de�ne

(xh1 , x
`
1) = 2Sum(yh0 , y

h
1 )

�rst, then, iteratively compute, for i = 2 . . . n− 1, the terms

(xhi , x
`
i) = DWPlusFP(xhi−1, x

`
i−1, y

h
i ).

3. Accumulate the terms y`i using the conventional “recursive” summation, i.e., for
i = 0 . . . n− 2, compute

σi+1 = RN(σi + y`i+1),

with σ0 = y`0.

4. Obtain the approximation to
∑n−1
i=0 a

2
i with one call to DWPlusFP:

(Sh, S`) = DWPlusFP(xhn−1, x
`
n−1, σn−1).

Algorithm 10 assumes n ≥ 2. It can be applied to the special case n = 1 if it stops
after step 1 and returns (Sh, S`) = (yh0 , y

`
0), taking only 2 FP operations.

We have,

Lemma 4.1. Assuming no under�ow/over�ow occurs, the double-word number (Sh, S`)
returned by Algorithm 10 satis�es∣∣∣∣∣(Sh + S`)−

n−1∑
i=0

a2i

∣∣∣∣∣
≤
(
(2n− 1)u2 + (n− 1)u3 + (2n− 2)u4 + (n− 1)u5

)
·
n−1∑
i=0

a2i .

(41)

If n ≤ 1/u, this implies∣∣∣∣∣(Sh + S`)−
n−1∑
i=0

a2i

∣∣∣∣∣ < ((2n− 1)u2 + (n+ 1)u3
)
·
n−1∑
i=0

a2i . (42)
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Proof. Thanks to Remark 3.2. Lemma 1.4 can applied with F being the set of double-
word numbers, and with the bound u2 given by Theorem 3.1 on the terms |εi|. This
gives:∣∣∣∣∣(xhn−1 + x`n−1

)
−
n−1∑
i=0

yhi

∣∣∣∣∣ ≤ (n−1)·u2 ·
n−1∑
i=0

yhi ≤ (n−1)·u2 ·(1+u)·
n−1∑
i=0

a2i . (43)

Very similarly, using |y`i | ≤ u · a2i , the same lemma applied to the summation of the
terms y`i (with now F being the set of �oating-point numbers) gives∣∣∣∣∣σn−1 −

n−1∑
i=0

y`i

∣∣∣∣∣ ≤ (n− 1) · u ·
n−1∑
i=0

∣∣y`i ∣∣ ≤ (n− 1) · u2 ·
n−1∑
i=0

a2i . (44)

Adding (43) and (44), we deduce∣∣∣∣∣(xhn−1 + x`n−1 + σn−1
)
−
n−1∑
i=0

a2i

∣∣∣∣∣ ≤ (2 · (n− 1) · u2 + (n− 1) · u3
)
·
n−1∑
i=0

a2i . (45)

There remains to take into account the error bound on the last DWPlusFP operation.
We have∣∣(Sh + S`)−

(
xhn−1 + x`n−1 + σn−1

)∣∣ ≤ u2 · (xhn−1 + x`n−1 + σn−1
)

≤ u2 ·
(
1 + 2 · (n− 1) · u2 + (n− 1) · u3

)
·
n−1∑
i=0

a2i . (46)

Adding (45) and (46) we �nally obtain (41). Furthermore, if n ≤ 1/u then (2n−2)u4+
(n− 1)u5 ≤ 2nu4 − 2u4 + 1

u · u
5 ≤ 2u3 − u4 < 2u3, which gives (42).

4.1.2 Blockwise computation of the sum of squares

Now, assume that n = k × m, and that we separate the input numbers ai into k
blocks of m numbers, either for parallelizing the calculation or for obtaining (as it
will be clear later on) a more accurate result. Block number j (j = 0, . . . , k − 1)
contains the elements

amj , amj+1, amj+2, . . . , am(j+1)−1.

We will separately sum the elements of each block using Algorithm 10. The results
of these “partial” summations are DW numbers (Zhj , Z

`
j ). A solution could be to sum

these numbers using Algorithm SloppyDWPlusDW (Algorithm 5). We will obtain,
however, a better error bound by summing these terms in the same way as we have
summed the terms a2i in Algorithm 10, i.e., we will �rst compute a DW approximation
to the sum of the “higher” termsZhj using DWPlusFP (Algorithm 4) iteratively, we will
then accumulate the “lower” termsZ`j using naive summation, and we will �nally add
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the obtained results with one call to DWPlusFP. This gives Algorithm 11, presented
below.

It could be possible to repeat that block decomposition recursively, resulting in
better error bounds. We doubt this would be e�cient (except possibly for huge values
of n).

For analyzing Algorithm 11, we need the following lemma.

Lemma 4.2. Let n be a positive integer.

• the maximum possible value of k+m, where k andm are integers larger than or
equal to 2 satisfying

k ·m = n, (47)

is n2 + 2;

• the minimum possible value of k +m, where k andm are positive integers satis-
fying (47) is rn + n/rn, where rn is the largest divisor of n less than or equal to√
n. That bound is always larger than or equal to 2

√
n.

Proof. Straightforward by considering the variation of function t→ t+ n/t.

Algorithm 11 Blockwise computation of
∑n−1
i=0 a

2
i assuming no under�ow/over�ow

occurs. It takes 13n+ 6k − 5 FP operations.

1. for j = 0, 1, . . . , k − 1, compute an approximation (Zhj , Z
`
j ) to∑m(j+1)−1

i=mj a2i using Algorithm 10 (the sequential summation algorithm) ap-
plied to amj , amj+1, amj+2, . . . , am(j+1)−1;

2. accumulate the terms Zhj using Algorithm DWPlusFP (Algorithm 4). More pre-
cisely, de�ning (

Σh1 ,Σ
`
1

)
= 2Sum(Zh0 , Z

h
1 ),

iteratively compute, for j = 2 . . . k − 1 the terms(
Σhj ,Σ

`
j

)
= DWPlusFP

(
Σhj−1,Σ

`
j−1, Z

h
j

)
;

3. accumulate the termsZ`j using the conventional “recursive” summation, i.e., for
j = 0 . . . k − 2, compute

τj+1 = RN(τj + Z`j+1),

with τ0 = Z`0;

4. obtain the approximation (Sh, S`) to
∑n−1
i=0 a

2
i as

(Sh, S`) = DWPlusFP
(
Σhk−1,Σ

`
k−1, τk−1

)
.
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Algorithm 11 assumes k ≥ 2. It can be applied to the special case k = 1 if it
stops after step 1 and returns (Sh, S`) = (Zh0 , Z

`
0), so that it reduces to Algorithm 10,

taking only 13n− 5 FP operations.

Lemma 4.3. Assuming no under�ow/over�ow occurs, the double-word number (Sh, S`)
returned by Algorithm 11 satis�es∣∣∣(Sh + S`)−

∑n−1
i=0 a

2
i

∣∣∣∑n−1
i=0 a

2
i

≤ β(k) + β(m) + β(k)β(m), (48)

where β(t) = (2t−1)u2 +(t−1)u3 +(2t−2)u4 +(t−1)u5. Furthermore, if n < 1/u
and u ≤ 1/32, we obtain∣∣∣(Sh + S`)−

∑n−1
i=0 a

2
i

∣∣∣∑n−1
i=0 a

2
i

≤ (2k + 2m− 2)·u2+(0.129n+ 0.939(k +m) + 2.03)·u3.

(49)

Proof. Lemma 4.1 applied to the computation of
∑m(j+1)−1
i=mj a2i with Algorithm 10

gives ∣∣∣∣∣∣(Zhj + Z`j
)
−
m(j+1)−1∑
i=mj

a2i

∣∣∣∣∣∣ ≤ β(m) ·
(m+1)j−1∑
i=mj

a2i ,

which implies ∣∣∣∣∣∣
k−1∑
j=0

(
Zhj + Z`j

)
−
n−1∑
i=0

a2i

∣∣∣∣∣∣ ≤ β(m) ·
n−1∑
i=0

a2i . (50)

Now we need to take into account the error due to summing the terms
(
Zhj + Z`j

)
to

obtain (Sh, S`). One easily notes that these terms are added exactly as the terms a2i
were added in Algorithm 10, hence we can readily adapt the proof of Lemma 4.1 and
obtain ∣∣∣∣∣∣(Sh + S`)−

k−1∑
j=0

(
Zhj + Z`j

)∣∣∣∣∣∣ ≤ β(k) ·
k−1∑
j=0

(
Zhj + Z`j

)
. (51)

Combining (50) and (51), we obtain∣∣∣∣∣(Sh + S`)−
n−1∑
i=0

a2i

∣∣∣∣∣ ≤ (β(k) + β(m) + β(k)β(m)) ·
n−1∑
i=0

a2i , (52)

which gives (48). When we develop this expression using the de�nition of β, we obtain
a fairly complex expression (whose �rst term of the series in u is (2m+ 2k− 2)u2 +
O(u3)), but with the further assumptions n < 1/u (that will be needed anyway in
Section 4.2) and u ≤ 1/32 (which always holds in practice and is needed anyway
for the correctness of the DW square root algorithms), we can obtain a much simpler
expression. We have seen at the end of the Proof of Lemma 4.1 (to deduce (42)) that if
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t ≤ 1/u then β(t, u) ≤ (2t− 1)u2 + (t+ 1)u3. Of course, n < 1/u implies k < 1/u
and m < 1/u. With this simpler bound for β, the term β(k) + β(m) + β(k)β(m) in
(52) becomes

(2 k − 2 + 2m)u2 + (k + 2 +m)u3 + (2 k − 1) (2m− 1)u4

+ ((2 k − 1) (m+ 1) + (k + 1) (2m− 1))u5 + (k + 1) (m+ 1)u6 (53)

Let us now bound the sum of the terms of order u3, u4, u5 and u6 in (53). Since
u ≤ 1/32, u4 ≤ u3/32, u5 ≤ u3/1024, and u6 ≤ u3/32768. Therefore, the sum of
these terms is less than

(k + 2 +m)u3 + (2 k − 1) (2m− 1)
u3

32

+ ((2 k − 1) (m+ 1) + (k + 1) (2m− 1))
u3

1024
+ (k + 1) (m+ 1)

u3

32768

=
(4225 km+ 30753 k + 30753m+ 66497)

32768
· u3,

which is less than (0.129n+ 0.939(k +m) + 2.03) · u3.

Let us now compare the bounds of Algorithm 10 and Algorithm 11, i.e., the bounds
(41) and (48), and the bound of Graillat et al’s algorithm [13] (which comes from the
relative error bound 3u2 of Algorithm 5), namely

3(n− 1)u2

1− 3(n− 1)u2
. (54)

We have the following property:

Property 4.4.

• if k = 1 and m = n or k = n and m = 1 then Algorithm 11 boils down to
Algorithm 10;

• as soon as n ≥ 3, u ≤ 1/32, and 3(n − 1)u2 < 1 (which is necessary for (54) to
make sense), the bound (54) is larger than the bound (42);

• if k ≥ 2 and m ≥ 2, assuming u ≤ 1/32 and n ≤ 1/u, the bound (42) is larger
than the bound (49).

Property 4.4 shows that in all practical cases, our blockwise algorithm has a bet-
ter error bound than our sequential algorithm, which has a better error bound that
Graillat et al.’s algorithm.

Proof. Let us �rst show that, under the conditions n ≥ 3,u ≤ 1/32, and 3(n−1)u2 <
1, the bound (54) is larger than the bound (42). Let us subtract the second bound from
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the �rst one, we have

3(n− 1)u2

1− 3(n− 1)u2
−
(
(2n− 1)u2 + (n+ 1)u3

)
≥ 3(n− 1)u2 −

(
(2n− 1)u2 + (n+ 1)u3

)
= (n− 2)u2 − (n+ 1)u3

≥ (n− 2)u2 −
(
n

32
+

1

32

)
u2

(since u ≤ 1/32) Therefore, the di�erence of both bounds is larger than(
31n

32
− 65

32

)
u2,

which is positive as soon as n ≥ 3.
Now, let us show that if k ≥ 2, m ≥ 2, u ≤ 1/32 and n ≤ 1/u, the bound (42) is

larger than the bound (49). The di�erence of both bounds is(
(2n− 1)u2 + (n+ 1)u3

)
−
(
(2k + 2m− 2) · u2 + (0.129n+ 0.939(k +m) + 2.03) · u3

)
which is equal to

(2n− 2(k +m) + 1)u2 + (0.871n− 0.939(k +m)− 1.03)u3. (55)

Lemma 4.2, implies that k+m ≤ n
2 +2. Using that in (55), we �nd that the di�erence

“bound (42) minus bound (49)” is larger than

(n− 3)u2 + (0.4015n− 2.908)u3 ≥ (n− 3)u2 − 2.908u3.

Since u ≤ 1/32, this di�erence is larger than (n− 3− 2.908/32)u2, which is positive
as soon as n ≥ 4 (incidentally, n ≥ 4 is implied by our hypothesis k ≥ 2 and m ≥ 2).

Assuming nu � 1, so that the bound (48) is essentially (2k + 2m− 2) · u2, a
direct consequence of Lemma 4.2 is that an approximate minimum of the bound (48)
is reached when k = rn or k = n/rn, where rn is the largest divisor of n less than or
equal to

√
n, resulting, if rn ≈

√
n in a relative error less than around (4

√
n−2) ·u2.

For instance, in IEEE 754 binary64 arithmetic (u = 2−53), withn = 6000, the obtained
relative error bounds are:

• 1.3322× 10−12 u with our sequential algorithm;

• 1.9981× 10−12 u with Graillat et al’s algorithm;

• 3.3506× 10−14 u with the blockwise summation algorithm, with the near-
optimal choices k = 60 and m = 100 or k = 100 and m = 60.
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Note that even with a very unbalanced block splitting the blockwise summation is
signi�cantly more accurate than the sequential summation. Still with the same values
of n and u, the error bound becomes 3.3374×10−13 in the case k = 4 andm = 1500.
Beyond being more accurate, the blockwise version exhibits more parallelism than
the sequential version, which may lead to better overall performance. Of course, if
n is prime or has divisors that do not allow for a balanced splitting, it may be worth
using the blockwise algorithm with a number of elements slightly larger than n (by
appending additional zero elements to the vector (a0, a1, . . . , an−1)).

4.1.3 Obtaining the Euclidean norm barring under�ow/over�ow

We can now combine Lemma 4.3 and Theorem 3.10, and obtain.

Theorem 4.5. Assume that for all i, ai ∈ MED. Assume that Algorithm 10 (sequential
summation) or Algorithm 11 (blockwise summation) is used to compute the approxima-
tion (Sh, S`) to

∑n−1
i=0 a

2
i (with k blocks ofm elements, where km = n) and Algorithm

SQRTDWtoFP (Algorithm 9) is used to approximate the square-root of Sh + S` by a
�oating-point number R. Let β(t) = (2t− 1)u2 + (t− 1)u3 + (2t− 2)u4 + (t− 1)u5,
and de�ne a parameter ν as follows:

ν =
β(n)

u2
if the sequential summation algorithm is used (56a)

ν =
β(k) + β(m) + β(k)β(m)

u2
if the blockwise summation algorithm is used

(general case)
(56b)

If ν < 1
2u , we have:∣∣∣∣∣∣R−
√√√√n−1∑

i=0

a2i

∣∣∣∣∣∣ ≤
(

1

2
+ u ·

(
7

4
+

ν

1− ν · u2

))
ulp


√√√√n−1∑

i=0

a2i

 . (57)

Note that if n < 1/u and u ≤ 1/32, we can use in Theorem 4.5 the following
simpler expressions for ν (see Lemmas 4.1 and 48):

ν = (2n− 1) + (n+ 1)u (58)

with the sequential summation algorithm, and

ν = (2k + 2m− 2) + (0.129n+ 0.939(k +m) + 2.03) · u (59)

with the blockwise summation algorithm. Condition ν < 1/(2u) is not that re-
strictive: in the binary32/single precision format of the IEEE 754 Standard, assum-
ing we use the sequential algorithm for summing the terms a2i , it is satis�ed for
n ≤ 4194304, and in the binary64/double precision format, it is satis�ed for n ≤
2, 251, 799, 813, 685, 248. Even larger values of n can be reached if we use the block-
wise algorithm: in the binary32 format, choosing k equal to the largest divisor of n
less than or equal to

√
n, the condition is satis�ed for n = 500, 000, 000, 000.
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If we use our algorithm for computing the Euclidean norm of a vector of 10000
binary64 elements, the returned result will be within 0.500000000002221 ulp from
the exact result with the sequential summation, and within 0.5000000000000444 ulp
from the exact result with the blockwise summation and the choice k = m = 100.
This means that we will almost always obtain a correctly rounded result.

4.2 Computing Euclidean norms in the general case
4.2.1 Choice of the parameters minmed, maxmed, ttiny, and tbig

Let us compute Euclidean norms, still using DW arithmetic, now in the general case
(i.e., we no longer assume that under�ow and over�ow cannot occur). We will use the
three-class approach presented in Section 2.1, very much like what is done by Graillat
et al. [13], but with di�erent choices for the parameters minmed, maxmed, ttiny, and
tbig, for two reasons:

• �rst, from (4), if we wish to express the squares of the elements of MED as DW
numbers without error, we need to replace Constraint (6a) of Section 2.1 by

minmed ≥ η;

• then, to make the necessity of scaling as infrequent as possible, and to make as
small as possible the error committed when we neglect the elements of TINY
because BIG is nonempty, we try to have maxmed as large as possible and
minmed as small as possible.

Exactly as is done by Graillat et al., we choose maxmed and minmed equal to powers
of 2, and to avoid introducing additional rounding errors in the scalings, we choose
tbig and ttiny equal to even powers of 2. To simplify the analysis we also choose
tbig = 1/ttiny. We also assume nmax = 1/u = 2p, i.e., we wish to guarantee a correct
behavior of the algorithms for vectors of dimension up to 2p. To simplify the analysis,
we also assume u ≤ 1/32, which always holds in practice. In particular, this makes it
possible to use the simpler expressions (58) and (59) for variable ν in Theorem 4.5.

Lemma 3.3 implies that if maxmed is a power of 2, when summing, using Algo-
rithm 10 and/or Algorithm 11, n numbers less than maxmed2, with n ≤ 1/u = 2p,
the computed result is less than n ·maxmed2. This gives the following constraint on
maxmed:

2p ·maxmed2 ≤ Ω.

This leads us to the following choices:

• minmed is the power of 2 just above or equal to η, i.e.,

minmed = 2d(emin+p)/2e.

(with this choice we still can observe rare cases where the low-order element
of a DW number generated by the computation of a square is subnormal, but
this has no in�uence on accuracy, even if it can have one on performance)
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• maxmed is the power of 2 just below
√

Ω/2p, i.e.,

maxmed = 2b(emax−p)/2c.

With these de�nitions, we have

minmed

maxmed
= 2−emax+p+1, (60)

and
minmed ·maxmed ∈ {1, 2}, (61)

which will be useful later on.

• Concerning ttiny and tbig, the possible values of these parameters are induced
by the choices of minmed and maxmed, the constraints (6c), (6d), (6e), and (6f)
presented in Section 2.1, and the additional constraint that ttiny = 1/tbig is an
even power of 2.
We will assume

3p+ 1 ≤ emax, i.e., emin ≤ −3p. (62)

Table 4 gives the various parameters and constraints associated with our algo-
rithm for the binary16, binary32, binary64 and binary128 formats of the IEEE
754-2019 Standard for FP Arithmetic [21], and the b�oat16 format [16]. One can
see that among all these formats, binary16 is the only one for which the various
constraints required by our algorithm are not satis�ed.
Our choice ttiny = 1/tbig constraints even more the possible values of tbig
and ttiny. Table 5 compares the obtained values for the binary32, binary64, and
binary128 formats with the values used by Graillat et al. [13].
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4.2.2 Obtaining the result from the intermediate sums of squares

The sum Smed =
∑
ai∈MED a

2
i of the elements of MED is approximated by a double-

word (Shmed, S
`
med), obtained using Algorithm 10 (sequential summation) or Algo-

rithm 11 (blockwise summation with k blocks of m elements, where km = n). This
approximation satis�es∣∣∣∣∣(Shmed + S`med

)
−

∑
ai∈MED

a2i

∣∣∣∣∣ ≤ νu2 ∑
ai∈MED

a2i ,

where ν is de�ned in (58) if we use Algorithm 10, and (59) if we use Algorithm 11.
These algorithms are also applied to the elements of BIG and TINY pre-multiplied
by tbig and ttiny respectively. Similarly, this gives double words (Shbig, S

`
big) and

(Shtiny, S
`
tiny) that satisfy∣∣∣∣∣(Shbig + S`big

)
−

∑
ai∈BIG

(tbigai)
2

∣∣∣∣∣ ≤ νu2 ∑
ai∈BIG

(tbigai)
2

and ∣∣∣∣∣(Shtiny + S`tiny
)
−

∑
ai∈TINY

(ttinyai)
2

∣∣∣∣∣ ≤ νu2 ∑
ai∈TINY

(ttinyai)
2.

This gives∣∣∣∣∣ 1

t2tiny

(
Shtiny + S`tiny

)
+
(
Shmed + S`med

)
+

1

t2big

(
Shbig + S`big

)
−
n−1∑
i=0

a2i

∣∣∣∣∣
≤ νu2

n−1∑
i=0

a2i .

(63)

Now, we can follow a reasoning similar to that of Graillat et al. [13]. Denote
Smed = Shmed + S`med, Sbig = Shbig + S`big, and Stiny = Shtiny + S`tiny. As the
expression

1

t2tiny

(
Shtiny + S`tiny

)
+
(
Shmed + S`med

)
+

1

t2big

(
Shbig + S`big

)
cannot be used directly, we operate on a case-by-case basis according to whether BIG,
MED, and TINY contain elements or not. These cases can be represented by triplets
(a, b, c) ∈ {0, 1}3, where 0 means “empty” and 1 means “nonempty” for BIG, MED,
and TINY, respectively. For instance, “(1, 0, 1)” means “MED is empty, and BIG
and TINY are nonempty”. In all generality, there are eight cases to consider, but this
number can be reduced thanks the following remarks.

• As soon as BIG is not empty,9 we can neglect the elements of Stiny. So Case
(1, 1, 1) reduces to Case (1, 1, 0), and Case (1, 0, 1) reduces to Case (1, 0, 0).

9As pointed out by Graillat et al., there is no need to preliminarily check whether BIG is empty or
not. One progressively accumulates sums of squares in two registers, initially dedicated to the elements of
MED and TINY, and as soon as an element of BIG is met, the accumulation of the terms of TINY is
abandoned, and the very same register is now used for accumulating the elements of BIG.
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Indeed, in these cases, we have
n−1∑
i=0

a2i > maxmed2,

and ∑
ai∈TINY

a2i ≤ (n− 1) ·minmed2.

Hence,

∑
ai∈TINY

a2i <
(n− 1) ·minmed2

maxmed2 ·
n−1∑
i=0

a2i < 2p · minmed2

maxmed2 ·
n−1∑
i=0

a2i . (64)

Using (60), the term

2p · minmed2

maxmed2 = 2−2emax+3p+2

bounds the relative error committed by neglecting the elements of TINY in the
summation. From (62), we deduce that it is less than or equal to u3.
We therefore easily obtain∣∣∣∣∣

(
Smed +

1

t2big
Sbig

)
−
n−1∑
i=0

a2i

∣∣∣∣∣ ≤ u2 · (ν + u) ·
n−1∑
i=0

a2i . (65)

Therefore
√
Smed + 1

t2big
Sbig will be a good approximation to

√∑n−1
i=0 a

2
i (the

error of that approximation will be given later on). Hence we will compute√
Smed +

1

t2big
Sbig. (66)

• Saying that MED is empty is equivalent to saying that Smed = 0. So there
is no need to develop Case (1, 0, 0) further provided that what we do on Case
(1, 1, 0) is still correct when Smed = 0.

• Likewise, saying that TINY is empty is equivalent to saying that Stiny = 0. So
there is no need to develop Case (0, 1, 0) further provided that what we do on
Case (0, 0, 1) is still correct when Stiny = 0.

We are therefore left with only four cases to consider: (1, 1, 0), (0, 1, 1), (0, 0, 1), and
(0, 0, 0).

1. If BIG is nonempty (Case (1, 1, 0)), the computation must be carried on
without under�ows or over�ows. More precisely, concerning under�ow, we
must make sure that no term becomes less than 2emin+p, otherwise it could not
be represented accurately by a double-word number.
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• if Shmed < u2minmed2/t2big then Smed < u2minmed2/t2big (because the
bound is a FP number), hence,

Smed <
Sbig

t2big
u2.

Therefore, the term Smed can be neglected in front of the term Sbig/t
2
big.

More precisely,∣∣∣∣∣Sbig

t2big
−
n−1∑
i=0

a2i

∣∣∣∣∣ ≤ u2 · (1 + ν + u+ u2ν + u3
)
·
n−1∑
i=0

a2i , (67)

and one can return
1

tbig
· SQRTDWtoFP(Shbig, S

`
big) = ttiny · SQRTDWtoFP(Shbig, S

`
big).

• if Shbig > maxmed2 · t2big/u3 then Sbig > maxmed2 · t2big/u3. Also,
Lemma 3.3 implies Smed ≤ n ·maxmed2 < maxmed2/u, therefore

Smed <
Sbig

t2big
u2,

and, as previously, (67) holds and one can return

ttiny · SQRTDWtoFP(Shbig, S
`
big).

• if Shmed ≥ u2minmed2/t2big and Shbig ≤ maxmed2 · t2big/u3, then Smed ≥
(u2minmed2/t2big)(1−u) andSbig ≤ maxmed2 ·t2big(1+u)/u3. Consider

χ =
1

tbig
Sbig + tbigSmed = ttinySbig + tbigSmed.

The number χ can be computed without under�ow or over�ow:
(a) Over�ow: we have tbigSmed ≤ tbig · n ·maxmed2 ≤ tbig · Ω, and

ttinySbig ≤
ttinymaxmed2t2big(1 + u)

u3

≤ tbig
(

1

u
maxmed2

)
· 1 + u

u2
,

≤ tbig · Ω ·
1 + u

u2
.

Therefore,

χ ≤ Ω · tbig ·
(
1 + (1 + u)/u2

)
≤ maxmed ·

(
1 + u+ u2

)
· 22p

< 2(3p+emax)/2 ·
(
1 + u+ u2

)
,
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and since u ≤ 1/32 implies 1 + u + u2 <
√

2 we deduce χ <
2(3p+emax+1)/2, which is less than or equal to 2emax < Ω since
3p+ 1 ≤ emax.

(b) Under�ow: we have ttinySbig > Sbig, therefore the term ttinySbig is
larger than minmed2, which is larger than η2 = 2emin+p. Using (6f),
we also have

tbigSmed ≥ (minmed2 · ttiny) · u2 · (1− u)

≥ (minmed3/α) · u2 · (1− u)

≥ 23(emin+p)/2−(emin−p+1)−2p−1

≥ 2emin/2+p/2−2,

and (62) implies emin/2 + 3p/2 ≤ 0. Hence

tbigSmed ≥ 2emin+2p−2 ≥ 2emin+p.

Therefore, it su�ces to compute χ in double-word arithmetic by summing
tbig · (Shmed, S

`
med) and ttiny · (Shbig, S`big) by the means of SloppyDW-

PlusDW (Algorithm 5). If we call χ̂ the computed result, namely

χ̂ = SloppyDWPlusDW(ttinyS
h
big, ttinyS

`
big, tbigS

h
med, tbigS

`
med),

we obtain
|χ̂− χ| ≤ 3u2χ. (68)

Combined with (65) this gives∣∣∣∣∣χ̂− tbig
n−1∑
i=0

a2i

∣∣∣∣∣ ≤ u2 · (ν + 3 + u+ 3u2ν + 3u3
)
·
n−1∑
i=0

a2i . (69)

we then take the square root R of χ̂ by the means of SQRTDWtoFP (Al-
gorithm 9), and multiply R by √ttiny (this last multiplication is errorless
since ttiny is an even power of two).

2. If BIG is empty, and MED and TINY are nonempty (Case (0, 1, 1)), we
need to compute √

1

t2tiny
Stiny + Smed

without under�ows or over�ows. Note that this can be rewritten

1

ttiny

√
Stiny +

1

t2big
Smed. (70)

The square-root part in (70) is exactly as (66) (with Smed replaced by Stiny

and Sbig replaced by Smed). Furthermore, the terms Stiny, Smed and Sbig have
the same bounds. Therefore the reasoning is exactly as previously, (the error
bounds are slightly smaller because we no longer have the error term due to
neglecting TINY) and we obtain:
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Table 6: value of the comparison constants minmed2u2/t2big and maxmed2 ·t2big/u3 (assuming
tbig is the largest allowed value, or equivalently ttiny is the smallest allowed value) needed by
the algorithm, for the binary32, binary64, and binary128 formats of IEEE 754-2019.

format binary32
(with ttiny = 298)

binary64
(with ttiny = 2590)

binary128
(with ttiny = 28360)

minmed2u2

t2big
246 2106 2226

maxmed2t2big

u3 2−22 2−51 2−111

• if Shtiny < minmed2u2/t2big or Shmed > maxmed2 · t2big/u3 then we can
return

SQRTDWtoFP(Shmed, S
`
med),

• otherwise, we can compute

χ =
1

tbig
Smed + tbigStiny = ttinySmed + tbigStiny

in double-word arithmetic with one call to SloppyDWPlusDW, take its
square-root R by the means of SQRTDWtoFP, and multiply R by √tbig.

3. If BIG and MED are empty (Case (0, 0, 1)), then we return

tbig × SQRTDWtoFP(Sktiny, S
`
tiny),

and the error bound of Theorem 4.5 applies.

4. If BIG and MED and TINY are empty (Case (0, 0, 0)), then we return 0.
Note that considering this case is important as algorithm 9 requires a special
treatment for a null input.

Table 6 gives the value of the comparison constants minmed2u2/t2big and
maxmed2 · t2big/u3 (assuming tbig is the largest allowed value in Table 5) needed
by the algorithm.

4.2.3 Final error bound

Consider the term
ν′ := ν + 3 + u+ 3u2ν + 3u3

that appears in (69). To be able to obtain a �nal error in ulps we must make sure
that the condition “2uν′ < 1” is satis�ed, which corresponds to Condition (30) of
Theorem 3.10 with ν replaced by ν′. Let us consider the cases of sequential summation
and blockwise summation separately.

If the terms a2i have been summed-up using sequential summation
In that case, ν is given by (58), which implies

2uν′ = (4n+ 4)u+ (2n+ 4)u2 + (12n− 6)u3 + (6n+ 12)u4,
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and one easily checks that it is strictly less than 1 for n ≤ 1
4u − 2 (which we will

assume thereafter) and u ≤ 1
32 . Theorem 3.10 implies that the error is bounded by

(
1

2
+ u ·

(
7

4
+

ν′

1− ν′ · u2

))
ulp


√√√√n−1∑

i=0

a2i

 ,

which is equal to (
1

2
+ u · N

D

)
ulp


√√√√n−1∑

i=0

a2i

 ,

where

N =
15

4
+ 2n+ (n+ 2)u+

(
5n

2
− 13

2

)
u2 +

(
5n

4
+

5

2

)
u3

+

(
−21n

2
+

21

4

)
u4 +

(
−21n

4
− 21

2

)
u5

≤ 15

4
+ 2n+ (n+ 2) +

(
5n

2
− 13

2

)
u2 +

(
5n

4
+

5

2

)
u3 +

21

4
u4

and

D = 1 + (−2n− 2)u2 + (−n− 2)u3 + (−6n+ 3)u4 + (−3n− 6)u5.

Since n ≤ 1
4u − 2, we have

N ≤ 15

4
+ 2n+

((
1

4u
− 2

)
+ 2

)
u+

(
5
(

1
4u − 2

)
2

− 13

2

)
u2

+

(
5
(

1
4u − 2

)
4

+
5

2

)
u3 +

21

4
u4

≤ 4 + 2n+
5

8
u

since u ≤ 1/32, and

D ≥ 1 +

(
−2

(
1

4u
− 2

)
− 2

)
u2 +

(
−
(

1

4u
− 2

)
− 2

)
u3

+

(
−6

(
1

4u
− 2

)
+ 3

)
u4 +

(
−3

(
1

4u
− 2

)
− 6

)
u5

= 1− u

2
+

7

4
u2 − 3

2
u2 +

57

4
u4

≥ 1− u

2

since u ≤ 1/32.
We �nally obtain,

51



Theorem 4.6. If n ≤ 1
4u−2 and u ≤ 1

32 and if the sequential algorithm (Algorithm 10)

is used for the summation of squares then our algorithm computes
√∑n−1

i=0 a
2
i with an

error bounded by

(
1

2
+

(4 + 2n)u+ 5
8u

2

1− u
2

)
ulp


√√√√n−1∑

i=0

a2i

 ,

without any risk of spurious under�ow or over�ow.

If the terms a2i have been summed-up using blockwise summation
Assuming k blocks of m terms, with km = n, the value of ν is given by (59). We

obtain

2uν′ = (4(k +m) + 2)u

+ (0.258km+ 1.878(k +m) + 6.06)u2

+ (12(k +m)− 12)u3

+ (0.774km+ 5.634(k +m) + 18.18)u4.

Now, using km = n ≤ 1/u, and de�ning ` = k +m, we obtain

2uν′ ≤ (4`+ 2.258)u+ (1.878`+ 6.06)u2

+ (12`− 11.226)u3 + (5.634`+ 18.18)u4,
(71)

and one easily checks that it is strictly less than 1 for ` ≤ 1
4u − 2 (which we will

assume thereafter) and u ≤ 1
32 . We will use Theorem 3.10 with ν replaced by 1/(2u)

times the bound (71), i.e.,

2.0 `+ 1.1290 + (0.9390 `+ 3.030)u+ (6.0 `− 5.6130)u2 + (2.8170 `+ 9.090)u3

which will give an error bounded by

(
1

2
+ u · N

D

)
ulp


√√√√n−1∑

i=0

a2i

 ,

where

N = 2.879 + 2`+ (0.939`+ 3.03)u+ (2.5`− 7.58875)u2

+ (1.17375`+ 3.7875)u3

+ (−10.5`+ 9.82275)u4 + (−4.92975`− 15.9075)u5

≤ 2.879 + 2`+ (0.939`+ 3.03)u+ (2.5`− 7.58875)u2

+ (1.17375`+ 3.7875)u3

+ 9.82275u4
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and

D = 1 + (−2.0 `− 1.1290)u2 + (−0.9390 `− 3.030)u3

+ (−6.0 `+ 5.6130)u4 + (−2.8170 `− 9.090)u5.

Since ` ≤ 1
4u − 2 , we obtain

N ≤ 2.879 + 2`+
(
0.939

(
1
4u − 2

)
+ 3.03

)
u+

(
2.5
(

1
4u − 2

)
− 7.58875

)
u2

+
(
1.17375

(
1
4u − 2

)
+ 3.7875

)
u3 + 9.82275u4

= 3.11375 + 2 `+ 1.777u− 12.2953125u2 + 1.44u3 + 9.82275u4

≤ (3.12 + 2`) + 1.8u

since u ≤ 1/32. Similarly,

D ≥ 1 +
(
−2.0

(
1
4u − 2

)
− 1.1290

)
u2 +

(
−0.9390

(
1
4u − 2

)
− 3.030

)
u3

+
(
−6.0

(
1
4u − 2

)
+ 5.6130

)
u4 +

(
−2.8170

(
1
4u − 2

)
− 9.090

)
u5.

= 1− u
2 + 2.63625u2 − 2.652u3 + 16.90875u4 − 3.456u5

≥ 1− u
2

since u ≤ 1/32. This gives,

Theorem 4.7. If n ≤ 1/u, k+m ≤ 1
4u −2 and u ≤ 1

32 and if the blockwise algorithm
(Algorithm 11) is used for the summation of squares, with k blocks ofm elements, with

km = n, then our algorithm computes
√∑n−1

i=0 a
2
i with an error bounded by

(
1

2
+

(3.12 + 2(k +m))u+ 1.8u2

1− u
2

)
ulp


√√√√n−1∑

i=0

a2i

 ,

without any risk of spurious under�ow or over�ow.

In all practical cases, if the decomposition in blocks is balanced enough, constraint
“k + m ≤ 1

4u − 2” in Theorem 4.7 is less strong than constraint n ≤ 1/u. More
precisely, assume we choose k = m = d

√
ne (i.e., we possibly extend the vector

(a0, a1, a2, . . . , an−1) with additional zeros if n is not a perfect square). Constraint
n ≤ 1/u implies d

√
ne < 1/

√
u+ 1, so that

k +m <
2√
u

+ 2,

and one easily checks that for all precisions p ≥ 7 (i.e., u ≤ 1/128), 2√
u

+2 < 1
4u −2.

4.2.4 Examples

Table 7 gives the error bounds we obtain in the cases n = 12 and n = 10000, for the
b�oat16, binary32, and binary64 formats.
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Table 7: Maximum possible values of n assuming sequential and blockwise summations, and

�nal error, expressed in ulp
(√∑n−1

i=0 a
2
i

)
for n = 12 and n = 10000, for the b�oat16,

binary32, and binary64 formats.

Format b�oat16 binary32 binary64
max. value of n
assuming seq.

summation
62 4, 194, 302 2.25× 1015

max. value of n
assuming blockw.

summation
256 16, 777, 216 9.01× 1015

error bound
for n = 12

assuming seq.
summation

0.614 ulp 0.5000018 ulp 0.5 0000000000000︸ ︷︷ ︸
13

319 ulp

error bound
for n = 12

assuming blockw.
summation

with k = 3,m = 4

0.5699 ulp 0.50000106 ulp 0.5 0000000000000︸ ︷︷ ︸
13

197 ulp

error bound
for n = 10000
assuming seq.

summation

N/A 0.5012 ulp 0.5 0000000000︸ ︷︷ ︸
10

2221 ulp

error bound
for n = 10000

assuming blockw.
summation

with k = m = 100

N/A 0.5000241 ulp 0.5 000000000000︸ ︷︷ ︸
12

45 ulp

5 Numerical experiments
We have checked our algorithm and compared it with other solutions from the liter-
ature on two aspects: accuracy and speed. We decided to design two di�erent imple-
mentations of our algorithm: an implementation in Julia, used for accuracy testings,
and a C implementation, used for performance evaluation and comparison. The rea-
son for this choice is simple: the versatility of Julia makes it much easier to play with
di�erent precisions. However, it is exactly the same algorithm that was implemented
in both environments.

5.1 Accuracy testings
We have implemented the algorithm of Graillat et al. [13] as well as our algorithm
(with the blockwise summation, i.e., Algorithm 11, with k = 2) in the Julia program-
ming language, and we have measured the errors obtained with randomly chosen
input arrays. We have performed experiments in the binary32 and binary64 �oating-
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Table 8: Median and maximum errors obtained over a random set of input values, and percent-
age of faithfully and correctly rounded results. For S = 7, 8, . . . , 14, we generate 4096 · 214−S

arrays of random lengths between 2S−1 and 2S then, for each components, we generate ran-
dom exponents between emin + p and emax − p (to avoid non-spurious under�ow/over�ow)
and random signi�cand between 1 and 2− 2u. Each random series are uniform. An enclosure
of the exact result is computed with the help of the Arb library [25] with enough precision to
determine the correctly rounded �oating-point number unambiguously (veri�ed by the pro-
gram).

Error / u Rounding
Algorithm p Median Maximum Faithful Correct

Ours 24 0.3415 0.9990 100 % 100 %
53 0.2725 0.9989 100 % 100 %

Graillat et al. 24 0.3465 1.4916 100 % 87 %
53 0.2730 1.4608 100 % 89 %

point formats of the IEEE 754 Standard. The input arrays are built as follows. For
S = 7, . . . , 14 we generate 4096 × 214−S arrays of input values, whose length is
uniformly generated between 2S−1 and 2S . By doing this, very di�erent possible
array sizes are considered. The elements of the arrays are �oating-point numbers.
Their exponents are uniformly generated between emin + p and emax − p, and their
signi�cands are uniformly generated between 1 and 2− 2u.

The reason for choosing this exponent range is that we want to avoid non-spurious
under�ow or over�ow. Enclosures of the exact results are computed using Johans-
son’s Arb library [25], with enough accuracy to allow one to determine the correct
roundings of the exact results unambiguously. We initially wanted to perform ex-
periments in the binary128 format too. For that purpose we wanted to use the GNU
libquadmath library, which provides a software implementation of the binary128 for-
mat, but we discovered that its square root function (sqrtq) is not correctly rounded.
As this is a requirement for the accuracy of the algorithm of Graillat et al. [13] as well
as ours, the tests could not be performed in that format. Table 8 presents median and
maximum errors, and the percentage of faithfully and correctly rounded results. Be-
ware: the “100%” in the table can be a bit misleading: these results do not show that
our algorithm always return correctly rounded values (indeed, it cannot), but that
incorrectly rounded values are extremely unlikely in practice. Incorrectly rounded
values are much more frequent with the algorithm of Graillat et al. [13], which is not
surprising: that algorithm was designed to always return faithfully rounded values,
and our tests show that this is indeed the case for all the input arrays we have built.

5.2 Performance evaluation
Our experiments have been performed in a similar way as the ones that were reported
in [13]. As said above, we implemented our algorithm in the C language for evaluating
its performance and for comparing it to three other algorithms:
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Table 9: The four systems on which we performed our experiments.

SIMD
machine CPU ISA extension k

ARM ThunderX2 Cavium ThunderX2 ARM v8.1 Neon 2
Intel Co�ee Lake Intel Core i7-8700 x86-64 AVX2 4
AMD Zen 2 AMD EPYC 7282 x86-64 AVX2 4
Intel Skylake Intel Xeon Gold 6136 x86-64 AVX512 8

• the “Naive algorithm” is the straightforward implementation of (1). It does not
prevent spurious over�ow/under�ow from happening, and can, in rare cases,
be inaccurate when under�ows occur;

• the “Netlib algorithm” (i.e., Hammarling’s method presented in Section 2.1), as
implemented by Graillat et al. [13],

• the Graillat et al. algorithm presented in [13].

All four algorithms are compared using the IEEE-754 binary64 format.
We performed our tests on four di�erent machines, that we designate by the mi-

croarchitecture they are based on: ARM ThunderX2, Intel Co�ee Lake, AMD Zen 2 and
Intel Skylake.

In Section 4.1.2 we have considered possible values of the number of blocks in the
blockwise summation (i.e., variable k in Algorithm 11, in order to minimize the error
bound. We have seen (see Property 4.4) that even k = 2 is a signi�cant improvement,
in terms of accuracy, compared to the sequential summation. Now, for a binary64
implementation, if we reason in terms of performance, the best choice is the maximum
number of binary64 FPNs that �t in an SIMD vector. That number varies across the
di�erent extensions considered.

The main characteristics of the four used architectures are summarized in Table 9.
In this table, we indicate for each system the processor name, the name of the in-
struction set architecture (column “ISA”), the name of the SIMD extension that was
used to compile or to program the algorithms, and the chosen number k of blocks in
the blockwise summation (taken equal to the number of binary64 FPNs that �t in an
SIMD vector).

We retrieved the code of Graillat et al. [13] from http://www.christoph-lauter.
org/faithfulnorm.tgz, and we directly used the plain C code they provide for the
“Naive” and “Netlib” algorithms. They also provide an implementation of their Eu-
clidean norm algorithm using intrinsics functions for manipulating AVX2 vectors. In
particular, they use these intrinsics functions to make the inner-loop of their algo-
rithm branch-free by using componentwise masking operations.

We have used the same techniques for implementing our algorithm, but we have
added a small intermediate library to facilitate porting the code to di�erent SIMD ex-
tensions. This library contains a type vec_t for the SIMD vectors, whose de�nition
depends on the targeted extension. For example, when the code is compiled for the
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AVX2 SIMD extension, vec_t is an alias for the type __m256d, and the component-
wise addition of two SIMD vectors is de�ned by

inline vec_t vec_add(vec_t v1, vec_t v2) {
return _mm256_add_pd(v1, v2);

}

On the other hand, when the code is compiled for the Neon extension of the ARM ar-
chitecture, vec_t is now an alias for the float64x2_t type, and the componentwise
addition of two vectors becomes

inline vec_t vec_add(vec_t v1, vec_t v2) {
return vaddq_f64(v1, v2);

}

Note that an __m256d vector gathers 4 binary64 numbers, while a float64x2_t con-
tains 2 binary64 numbers. Hence, the code we wrote is parameterized by a macro
constant vec_len that takes for value 8, 4 or 2 depending on the targeted SIMD ex-
tension.

We used this small library for implementing our algorithm, and we also used it
to re-implement the algorithm proposed by Graillat et al. [13]: on an AVX2 (with
FMA) platform, the code we obtain is exactly the same as the one they wrote, but this
allowed us to port it easily to the AVX512 and ARM Neon extensions.

The benchmark program of Graillat et al. [13] generates series of random num-
bers according to as speci�c pro�le and measures statistics on the time taken by the
di�erent algorithms. Three di�erent pro�les are considered here:

• AROUND_ONE generates �oating-point numbers in a narrow range around
one, with exponents between−5 and 5, so only the MED class is used in these
test cases.

• FULL_RANGE generates numbers in the whole range of binary64 numbers, in-
cluding subnormal ones: the exponent of each �oating-point number is uni-
formly picked between −1074 and 1023.

• REALLY_SMALL selects �oating-point numbers whose squares are subnormal
numbers: the exponents of the �oating-point numbers are picked between
−1074 and −512. Note that subnormal inputs are expected to be much more
frequent than with the FULL_RANGE pro�le.

Tables 10, 11, 12, and 13 present the timings obtained on these various systems.
The Naive algorithm is, as expected, the fastest algorithm (but inaccurate and prone to
spurious over�ow/under�ow). On Intel and AMD systems, our algorithm is generally
slightly faster than Graillat et al.’s algorithm; the Netlib algorithm is as fast or faster
with the AROUND_ONE pro�le, while slower with the FULL_RANGE pro�le. In the
very particular case of the REALLY_SMALL pro�le, all performances are worse on
Intel systems, whereas with AMD systems our algorithm and Graillat et al.’s are only
slightly slower and the Netlib algorithm is faster. Results on the ARM architecture are
quite di�erent: timings do not depend on the input pro�le, and the Netlib algorithm
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Table 10: Timing statistic comparisons of four algorithms of computation of the Euclidean norm
on ARM ThunderX2, for three di�erent array sizes, and three di�erent pro�les of input. For
each entry, the mean value and standard deviation of a population of 100 000 runs is given.

ARM ThunderX2 (Neon) (pyxis-2.lyon.grid5000.fr)
Algorithm n Timing averages in hundreds of nanoseconds

AROUND_ONE FULL_RANGE REALLY_SMALL

Naive 256 7(1) 7(1) 7(0)
1024 28(1) 28(1) 28(1)
4096 112(2) 112(3) 112(2)

Netlib 256 17(1) 17(1) 17(1)
1024 64(2) 64(2) 65(3)
4096 253(5) 254(4) 256(5)

Graillat et al. 256 35(1) 35(2) 35(1)
1024 138(2) 138(2) 138(4)
4096 552(8) 553(6) 552(8)

Ours 256 35(1) 35(1) 35(1)
1024 136(2) 136(3) 139(4)
4096 557(5) 557(4) 557(4)

Table 11: Timing statistic comparisons of four algorithms of computation of the Euclidean norm
on Intel Skylake (AVX2), for three di�erent array sizes, and three di�erent pro�les of input. For
each entry, the mean value and standard deviation of a population of 100 000 runs is given.

Intel Skylake (AVX2) @3.2 GHz (nlbook)
Algorithm n Timing averages in hundreds of nanoseconds

AROUND_ONE FULL_RANGE REALLY_SMALL

Naive 256 4(6) 4(7) 121(42)
1024 15(8) 15(11) 380(141)
4096 59(20) 58(20) 645(268)

Netlib 256 5(7) 13(13) 18(14)
1024 16(8) 47(17) 68(14)
4096 62(20) 183(37) 267(39)

Graillat et al. 256 9(10) 9(10) 20(16)
1024 32(11) 32(15) 73(15)
4096 120(25) 120(28) 291(40)

Ours 256 8(9) 8(11) 19(15)
1024 27(11) 28(15) 69(16)
4096 103(26) 104(30) 273(43)
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Table 12: Timing statistic comparisons of four algorithms of computation of the Euclidean
norm on AMD Zen2, for three di�erent array sizes, and three di�erent pro�les of input. For
each entry, the mean value and standard deviation of a population of 100 000 runs is given.

AMD Zen2 (AVX2) (arunch)
Algorithm n Timing averages in hundreds of nanoseconds

AROUND_ONE FULL_RANGE REALLY_SMALL

Naive 256 2(0) 4(0) 4(0)
1024 10(0) 14(1) 14(1)
4096 39(1) 57(2) 55(2)

Netlib 256 4(0) 11(1) 8(1)
1024 16(1) 44(1) 30(1)
4096 65(2) 177(5) 121(4)

Graillat et al. 256 6(0) 6(0) 8(1)
1024 21(0) 21(1) 32(1)
4096 83(3) 83(3) 129(4)

Ours 256 5(0) 5(0) 7(1)
1024 17(0) 17(0) 27(1)
4096 67(2) 67(2) 106(3)

Table 13: Timing statistic comparisons of four algorithms of computation of the Euclidean norm
on Intel Skylake (AVX512), for three di�erent array sizes, and three di�erent pro�les of input.
For each entry, the mean value and standard deviation of a population of 100 000 runs is given.

Intel Skylake (AVX512) @3.0 GHz (srunch)
Algorithm n Timing averages in hundreds of nanoseconds

AROUND_ONE FULL_RANGE REALLY_SMALL

Naive 256 4(0) 6(1) 11(1)
1024 15(0) 23(2) 40(3)
4096 61(1) 91(4) 158(6)

Netlib 256 5(0) 13(3) 19(3)
1024 16(1) 50(6) 73(6)
4096 62(1) 196(12) 288(11)

Graillat et al. 256 5(1) 6(1) 15(2)
1024 18(1) 18(1) 58(3)
4096 68(1) 68(2) 228(7)

Ours 256 5(0) 6(1) 15(2)
1024 16(0) 16(1) 54(3)
4096 61(1) 61(2) 211(6)
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Figure 3: Repartition of obtained timings on Intel Skylake for the AROUND_ONE Pro�le (unit
= 10−7 seconds).
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Figure 4: Repartition of obtained timings on Intel Skylake for the FULL_RANGE Pro�le (unit
= 10−7 seconds).
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is consistently faster. The large standard deviation observed for our algorithm with
n = 256 and the FULL_RANGE is due to a single run.

To give more insight into the timings reported in the previous tables, where only
average values and standard deviations are given, we present in Figures 3 and 4 the
histograms of the timings measured on the Intel Skylake system, with input vectors of
size n = 4096. With the AROUND_ONE pro�le (Fig. 3), the few observed slight vari-
ations are probably due to operating system hazards. With the FULL_RANGE pro�le
(Fig. 4), the Netlib algorithm is the only one for which the timings signi�cantly dif-
fer from the ones of the AROUND_ONE pro�le. The Netlib performances are clearly
degraded and more scattered: these e�ects may be due to frequent changes of the
scaling factor.

It is clear from Tables 10, 11, 12, and 13 that the performances of the various
algorithms depend much on the platform being used. However, in any case, these
experiments show that our algorithm performs quite nicely compared to the other
algorithms while being more accurate.

Conclusion
We have presented algorithms that make it possible to compute euclidean norms of
large vectors very accurately, and without spurious under�ows or over�ows. Our
tests show that the performance of the “blockwise” version of our algorithm is in
general slightly better than the performance of the slightly less accurate algorithm
of Graillat et al., and signi�cantly better than the signi�cantly less accurate Netlib
algorithm. Our work on the computation of euclidean norms also led us to obtain
results on double-word arithmetic that can be of interest in other areas:

• we have shown that when the operands are positive, the DWPlusFP algorithm
has relative error bound u2, and that bound is asymptotically optimal;

• we have shown the asymptotic optimality of the already known error bound
3u2 for the SloppyDWPlusDW algorithm when the operands are positive;

• we have introduced new algorithms for computing square roots of double-word
numbers (SQRTDWtoDW and SQRTDWtoFP), given an asymptotically optimal
relative error bound for the �rst one, and an error bound in ulps for the second
one.

Interestingly enough, avoiding spurious under�ows and over�ows and computing
more accurately comes at a reasonable cost: the experiments presented in Section 5.2
show that our algorithm is never more than two times slower than the naive algo-
rithm.
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