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Abstract 12 

This study focused on the impacts of aged aquaculture microplastics (MPs) on oysters (Crassostrea 13 

gigas). Adult oysters were exposed for two months to a cocktail of MPs representative of the 14 

contamination of the Pertuis Charentais area (Bay of Biscay, France) and issuing from oyster framing 15 

material. The MPs mixture included 28 % of polyethylene, 40 % of polypropylene and 32 % of PVC 16 

(polyvinyl chloride). During the exposure, tissues were sampled for various analyzes (MP 17 

quantification, toxicity biomarkers). Although no effect on the growth of adult oysters was noted, the 18 

mortality rate of bivalves exposed to MPs (0.1 and 10 mg. L-1 MP) increased significantly (respectively 19 

13.3 and 23.3 % of mortalities cumulative). On the one hand, the responses of biomarkers revealed 20 

impacts on oxidative stress, lipid peroxidation and environmental stress. At 56 days of exposure, 21 

significant increases were noted for Glutathione S-Transferase (GST, 10 mg. L-1 MP), Malondialdehyde 22 

(MDA, 10 mg. L-1 MP) and Laccase (LAC, 0.1 and 10 mg. L-1 MP). No variations were observed for 23 

Superoxyde Dismutase (SOD). Besides, ingestion of MPs in oyster tissues and the presence in 24 

biodeposits was highlighted. In addition, in vitro fertilisations were performed to characterize MPs 25 

effects on the offspring. Swimming behavior, development and growth of D-larvae were analyzed at 26 

24-, 48- and 72-hours after fertilisation. D-larvae, from exposed parents, demonstrated reduced 27 

locomotor activity. Developmental abnormalities and arrest as well as growth retardation were also 28 
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noted. This study highlighted direct and intergenerational effects of MPs from aged plastic materials on 29 

Pacific oysters. 30 

 31 

Graphical abstract 32 
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1. Introduction 37 

The growing use of plastics dramatically increases their production in Europe (57.9 million tons, 38 

PlasticsEurope, 2020) and in the World (368 million tons). Whether from land, atmosphere or rivers, 39 

anthropogenic pollutants, including plastics, end up in the marine environment (Halpern et al., 2008). 40 

In recent years, microplastics (MPs) has drawn the public’s attention. MPs are defined as plastic particles 41 

between 1 µm and 5 mm (Cole et al., 2011; Wagner et al., 2014), while nanoplastics (NPs) are smaller 42 
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than 100 nm (Lambert & Wagner, 2016; Gigault et al., 2016). MPs are spread in all oceans (Barnes et 43 

al., 2009), including in the Arctic Ocean (Zarfl & Matthies, 2010). The MP size range distribution in 44 

the environment depends on hydrodynamic conditions, and degradation processes (Enders et al., 2015). 45 

MPs occurrence in ocean is variable over time and space. Oceanic gyres and coastal areas as hot spots 46 

of MP accumulation (Law et al., 2010). In Europe, 73 % of the plastic production resorts to 6 polymers 47 

(PlasticsEurope, 2020): polypropylene (PP), high and low-density polyethylene (HDPE and LDPE), 48 

polyvinyl chloride (PVC), polyurethane (PUR), polyethylene terephthalate (PET) and polystyrene (PS). 49 

Once ingested, MPs cause abrasions, obstructions and alterations of physiological structures, affecting 50 

the survival of individuals (Wright et al., 2013). MPs can also generate chemical damage, as they 51 

contained a large variety of additives (Pérez-Albaladejo et al., 2020; Hermabessiere et al., 2017) and 52 

can sorbed persistent organic pollutants and heavy metals (Rochman et al., 2013; Bakir et al., 2014; 53 

Gorman et al., 2019; Naik et al., 2019). Recent studies have documented the potential effects of MPs 54 

on marine organisms and in particular bivalves (Tallec et al., 2018; Sussarellu et al., 2016; Revel et al., 55 

2020). However, most of the MPs studied were of commercial origin and very few studies focused on 56 

the impacts of environmental MPs (Pannetier et al., 2020; Cormier et al., 2021; Gardon et al., 2020).  57 

Bivalves are commonly used in studies to assess water quality and habitat. These filter feeders, in 58 

particular Crassostrea gigas oysters, are sensitive to alterations in water quality, which makes them 59 

good bioindicators and bioaccumulators for the study of pollutants (O'Connor, 2002), and in particular 60 

of MPs (Ward et al., 2019; Bonanno & Orlando-Bonaca, 2018). In fact, oysters (C. gigas) are considered 61 

sentinel species of anthropized coastal ecosystems, due to their wide distribution, their sedentary 62 

lifestyle, and their sensitivity to a large range of pollutants (Conger et al., 1978; His et al., 1999; Quiniou 63 

et al., 2007). Found in the bivalve tissues, MPs appear as fibres, fragments or granules (Cho et al., 2019; 64 

Jin-Feng et al., 2018). MP size and shape vary according to the tissue and species (Li et al., 2015). 65 

Phuong et al. (2018a) highlighted that MP contamination fluctuated according to seasons, species and 66 

their living conditions (wild or farmed). Several previous studies have shown the presence of MPs in 67 

the tissues of oysters living on the French Atlantic coasts (Van Cauwenbergh & Janssen, 2014; Phuong 68 

et al., 2018b). Sussarelu et al. (2016) demonstrated that the PS-MPs ingestion altered energy flows, 69 

metabolism and homeostasis in oysters, resulting in a loss of energy dedicated to their reproductive 70 



function. They also noted impacts on the gametogenesis, with a decrease in quantity and quality of the 71 

gametes produced. Several studies underlined MPs effects on adult bivalves – including on their 72 

gametogenesis mechanism, and early larval stages. Cole & Galloway (2015) demonstrated that oyster 73 

larvae ingested PS-MPs, although their study differed in terms of larval stages and particle sizes. Tallec 74 

et al. (2018) reported a significant increase in malformation and developmental arrest (early mortality) 75 

frequencies in oyster larvae exposed to PS-NPs. Bringer et al. (2020b) studied the ingestion and effects 76 

of fluorescent MPs (mixed polymers) on oyster larvae. They documented that 72h-old D-larvae ingested 77 

MPs, which were detected in their digestive tract. This study also highlighted that MPs are able to stick 78 

to the locomotor cilia of D-larvae, influencing their swimming behaviour at 24-h of development. In 79 

addition, Bringer et al. (2020a) demonstrated that an exposure to 4-13 µm HDPE-MPs, affected the 80 

oyster maximum swimming speed and trajectories of oyster larvae. A recent study focused on effects 81 

environmental MPs on the early stages of the pearl oyster, Pinctada margaritifera (Gardon et al., 2020). 82 

This work documented the impacts of aged plastics on the embryo-larval and larval stages, leading to 83 

malformations and mortalities depending on the tested concentrations (Gardon et al., 2020).  84 

Aquaculture professionals regularly use plastic tools (Lusher et al., 2017). Following extreme 85 

hydroclimatic events (storms, winds or strong currents, etc.), professional materials become detached 86 

and drift towards beaches and coasts during high tides. Plastics, used in French oyster farming, could 87 

deteriorate, fragment and become toxic when broken down into particles of MPs/NPs. In addition, the 88 

additives released could potentially be more harmful to the marine environment than the polymer itself 89 

(phthalates, PAHs, metals ; Bringer et al., 2021b). The French shellfish market is important. The 90 

sustainability of shellfish companies depends on the quality of the water. 91 

This study aimed at assessing effects of environmentally-aged MPs (from shellfish farming) on adult 92 

oysters (C. gigas) and their offspring. The MPs used (138.6 ± 2.3 µm) were a cocktail of three different 93 

aged-polymers: oyster crops (HDPE), collector cups (PP) and collector tubes (PVC). The data obtained 94 

included: (i) MP exposure of two-month-old adult oysters, with a follow-up on survival, biometrics, 95 

potential ingestion/excretion (tissues/biodeposits) and biomarker responses; (ii) larvae from exposed 96 

parents, with a 72-hour follow-up on swimming behaviour, development (malformations and 97 

developmental arrest) and length growth. 98 



 99 

2. Materials and Method 100 

2.1 Preparation and analysis of environmentally-aged cocktail of MPs 101 

Plastic macrodebris were recovered on the French Atlantic beach (South-West, France), more precisely 102 

in the Angoulins-sur-Mer municipality (Bringer et al., 2021b). These were sorted to identify plastics 103 

from the oyster farming industry. HDPE oyster culture crops, PP cup collectors and PVC tube collectors, 104 

were selected. A GC-MS pyrolysis analysis (700 °C) of the three plastic materials selected (manual 105 

cutting of 130-200 μg samples) allowed the identification of the main polymer. After a rough cut (3-4 106 

cm), the plastics were  crushed using a stationary metal hammer, crushing the plastics several times. 107 

Then, the plastics were  sieved using 5 mm, 1 mm and 100 μm sieves. The grinding was carried out at 108 

room temperature so as  not to influence the nature of the polymers materials. MPs cocktail of 138.6 109 

± 2.3 μm were recovered (three analytical replicates in laser granulometry, Malverne ®). MPs cocktail 110 

was composed of 28 % HDPE, 40 % PP and 32 % PVC (Andrady, 2011). Each solution was prepared 111 

in pure Milli-Q-water (Millipore ®) and kept in the dark at 4 °C (Figure 1). To carry out a quantitative 112 

analysis of MPs in experimental seawater, each cocktail solution (0.1, and 10 mg. L-1 MP) was tested 113 

through a flow cytometer (Attune Acoustic Focusing Cytometer ®) according to the protocole described 114 

previously (Bringer et al., 2020a ; Bringer et al., 2020b). Two-millilitre samples from each MP 115 

exposition solution were vortexed (StarLab Vortex IR ®, 12,000 rpm for 20 sec) to homogenise the 116 

solutions and then 300 μL were taken for flow cytometry analysis. A calibration was carried out, thanks 117 

to previous studies (Bringer et al., 2020a) with commercial MPs, to achieve an analysis rate of 500 118 

μL.min-1 and a saturation of 10,000 particles maximum detected. From the control conditions (10 μm 119 

filtered seawater), control analytical  samples (n=12) were created. The blank obtained enabled to 120 

remove background particles (natural present in seawater). Using seawater filtered at 0.2 μm, a first 121 

calibration was conducted to select the < 200-time detected particles. MPs measurements in seawater 122 

were assessed at T1 (D17), T2 (D35) and T3 (D56) for all exposure conditions.  123 

 124 



 125 

Figure 1. Experimental design of adult oysters exposed to MPs cocktail obtained from different aged-plastic 126 

materials used in French oyster farms. 127 

 128 

2.2 Experimental exposure of adult oysters and larvae 129 

In June 2019, adult oysters Crassostrea gigas (Bayne et al., 2019; Bayne et al., 2017) purchased from 130 

a commercial hatchery (24 mo, 15.75 ± 1.5 g) were transferred to our laboratory. After a 7-day 131 

acclimatisation period, the oysters were placed in 9 experimental tanks of 37.5 L (n=30 oysters per tank, 132 

with three replicates tanks per condition) with 3 large buffer tanks (one buffer tank per condition). Tanks 133 

were supplied with filtered (10 µm) UV-treated (78.3 L.h-1) running seawater (filtered seawater, FSW) 134 

at a temperature of 18.5 ± 0.1 °C, salinity of 35.3 ± 0.06 and natural photoperiod. During the experiment, 135 

the tank temperature was gradually increased to faithfully recreate the environmental conditions of 136 

spring on the French Atlantic coast (Zapata-Restrepo et al., 2019). Seawater came from the Atlantic 137 

Ocean (South-West, France) in the Pertuis Breton and more precisely it was pumped in the Baie de 138 

l'Aiguillon (La Rochelle, France). Once a day, oysters were fed with a mixed diet (T.Isochrysis galbana, 139 
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Pavlova, Tetraselmis, Thalassiosira and Nanno, Shelfish diet, VariconAqua). Tanks (n=3/condition) 140 

containing the exposed oysters, were connected to a buffer tank, equipped with an air bubbling system 141 

in order to aerate FSW, and carry out a continuous water renewal in a closed system. The buffer tanks 142 

had the same physicochemical parameters as the exposure tanks. Every two days, water was renewed to 143 

prevent bacterial growth and provide good conditions for oysters. Three conditions were set up:  control 144 

condition (without MPs), 0.1 mg. L-1 MP, and 10 mg. L-1 MP (Figure 2). In each buffer tank, a pumping 145 

system was set up to homogenise MPs in water. After a two-month exposure, oysters were mating to 146 

obtain embryos. Then, oyster larvae were grown in filtered seawater (0.2 µm) at 24 °C (optimal 147 

temperature for development, Robinson, 1992) and potential effects of MPs on their swimming 148 

behaviour and development were recorded at 24-, 48- and 72-hours (Figure 2). 149 

 150 
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Figure 2. Experimental design of adult oysters exposed to environmentally-aged MPs cocktail for two months. 152 

After fertilisation, behaviour, development, and growth analyses were carried out on D-larvae. 153 

 154 

2.3 Biometric analysis and survival 155 

A length growth monitoring was performed on adult oysters exposed to MPs for two months. A follow-156 

up was carried out at D0 (T0), D17 (T1), D35 (T2) and D56 (T3). Oysters (n=30/condition) were measured 157 

(length, width and thickness) with a digital calliper and weighted (whole weight, wet flesh and empty 158 

shell). A condition index was calculated in order to compare the growth of exposed oysters to control 159 

ones. Bodoy et al. (1986) defined the index condition by the ratio of wet flesh to whole weight minus 160 

empty shell. The delta condition index was the difference between the beginning and end of the exposure 161 

period. A survival monitoring was carried out, removing dead oysters every two days and counting the 162 

total dead oysters for each condition over the two-month period. 163 

 164 

2.4 Microplastic analysis in adult oysters tissues and faeces 165 

Methodological details have been placed in the section Supplementary data (S1). 166 

 167 

2.5 Analyses of biochemical biomarkers in adult oysters  168 

Individual sample processing  169 

Adult oysters were removed from their experimental tank, dissected to extract shell tissue, and 170 

submerged in liquid nitrogen and stored at -80 °C for analysis. For each condition and each sampling 171 

date (T1, T2 and T3), digestive glands (n=5/conditions) were homogenised in ice-cold phosphate buffer 172 

(100 mM, pH 7.2, 1100 mOsm). The homogenates were then centrifuged for 15 min at 12,500 g at 4 °C 173 

and the Final Fractions (FF), corresponding to the supernatant, were used for biochemical assays.  FF 174 

was stored at -80 °C for analyzes. Analytical protocols for each biomarker have been placed in the 175 

Supplementary data section (S2). 176 

 177 

 178 



2.6 Reproduction of adult oysters after a two-month exposure 179 

Mature oysters were cleaned to avoid external contaminations and remove stuck microorganisms. Male 180 

and female oysters were induced to spawn by thermal stimulation (alternating immersion in FSW at 18 181 

°C and 28 °C for 30 min) or by stripping the gonad (when thermal stimulation was ineffective) (Mai et 182 

al., 2013; Gamain et al., 2017; Bringer et al., 2020a). Males and females were individually isolated in 183 

beakers (500 mL of FSW) at their spawning temperatures (Parker et al., 2009) for 10 minutes, before 184 

being removed. Eggs and sperm from two individuals were selected to create a single pairing. To 185 

eliminate debris and faeces, both were sieved separately using 50 μm (sperm) and 100 μm (eggs) meshes 186 

(Sefar Nitex ®). Sperm mobility was assessed and eggs counted under a microscope (Motic ®) at 100x 187 

magnification. Eggs were fertilised with sperm at a ratio of 1:10 (egg:sperm). Fertilisation success was 188 

studied under a microscope at 100x magnification, 1 hour after the start of the fertilisation. Embryos 189 

were then counted and transferred to a 24-well microplate (Greiner Bio-One, Cellstar without detectable 190 

DNase, RNase, human DNA and pyrogens ®) used in embryotoxicity according to previously published 191 

protocols (His et al., 1999; Quiniou et al., 2005) and the AFNOR standard procedure (NF ISO 17244, 192 

2015). The fertilized eggs (approximately 300-350 eggs) were placed in wells containing 2 mL of 193 

filtered seawater (0.2 µm) and incubated in a dark climatic chamber at 24 °C for 24-, 48- and 72-hour.  194 

 195 

2.7 Larval behaviour, development and growth  196 

After a 24-, 48- and 72-hour incubation, the swimming behaviour was recorded under a microscope 197 

(ZEISS Axio Observer Z1 ®) at 100x magnification in a naturally-lit air-conditioned room, set at 24 °C. 198 

Two-minute videos were recorded. For the three replicates (corresponds to three different couples with 199 

fertilisation success), results are expressed in mean ± SEM, with 6 videos by couple, i.e., n=18 200 

videos/condition. A freeware application (VirtualDub, Windows ®) was used to subsample videos to 4 201 

fps (frame per second) and convert them to AVI format (Gamain et al., 2019 and Bringer et al., 2020a,b). 202 

ImageJ (1,52a software) was used to analyse the videos. These (AVI format) were first converted to 203 

grayscale image, before being transformed into a stack of binary images. Swimming parameters of 204 

numbered D-larvae, including their maximum speed (pixel/s) and trajectories, were calculated using the 205 



wrMTrck plugin. Consequently, each larva was assigned an identification number reported in the result 206 

file. Using the protocol published by Gamain et al. (2019) and improved by Bringer et al., 2020a, three 207 

different types of larval path were noted: (1) rectilinear; (2) circular and (3) motionless. A graphic tablet 208 

(Wacom Bamboo Pen&Touch ®) and image processing software (Photos, Windows 10) enabled to 209 

quantify and characterise the swimming trajectories. Once processed with a plugin, the videos were 210 

analysed to ensure each larva was only detected once. Then, 25 μL of 1 % buffered formaldehyde 211 

(Sigma- Aldrich Chemical ®, St. Quentin Fallavier, France) were added to each well. The percentage 212 

of abnormal D-larvae (developmental abnormalities) and developmental arrests were recorded (His et 213 

al., 1999; Quiniou et al., 2005) according to the standardised AFNOR procedure (NF ISO 17244, 2015). 214 

To validate the bioassays, the control condition should have contained less than 20 % of abnormal larvae 215 

(NF ISO 17244, 2015). For the three replicates (three couples of oyster genitors), results are expressed 216 

in mean ± SEM. In each condition, twelve wells of approximately 200 D-larvae were analysed, i.e., 217 

n=2400 D-larvae counted/condition.  218 

A length growth analysis using the ImageJ software was carried out, studying larvae exposed for 24-, 219 

48- and 72-hours (n=20/condition with three replicates, i.e., a total of n=60/condition). Each larva were 220 

measured lengthwise (Talmage et al., 2009; Helm et al., 2006; Bringer et al., 2021a). Exposed larvae 221 

were then visualised (ZEISS Axio Observer Z1, x20 objective) and photographed. Body length was 222 

determined from photographs. Results are expressed in mean ± SEM.  223 

 224 

2.8 Statistics 225 

Data are expressed in mean ± SEM. A logrank test, using the Kaplan-Meier method, was carried out to 226 

analyse the survival of adult oysters. In case of abnormal distribution, data were transformed using the 227 

following formula: P’=arcsin√r; P corresponds to raw data (frequency of larvae abnormalities) specified 228 

in P values from 0 to 1 (Legendre & Legendre, 1998). Homogeneity of variance (Levene’s test) and 229 

normality of distribution (Shapiro-Wilk) were assessed. In order to compare the various treatments, an 230 

analysis of variance (ANOVA) using Tukey’s post-hoc test was performed. For data not entering in the 231 

scope of a parametric test, a statistical analysis was carried out through the Kruskal-Wallis Test. 232 



Differences in tested concentration means were then assessed using the Kruskal Nemenyi Post-hoc test 233 

with the PMCMR package (the Tukey test equivalent for non-parametric data).  234 

Significance difference was accepted when p-value < 0.05. Statistical analysis was completed using R 235 

and graphs from Microsoft Excel ®.  236 

 237 

3. Results 238 

3.1 Analysis of MP concentrations 239 

Table 1.  Theoretical and measured MP concentrations in FSW at different sampling times.  240 

Conditions Sampling 

time 

Theoretical  

(mg. L-1 MP) 

Measured 

(MP. µL-1) 

Measured 

(MP. mL-1) 

MPs cocktail 

T1 0.1 0.68 ± 0.067 677 ± 67.6 

T2 0.1 0.66 ± 0.05 655 ± 53.0 

T3 0.1 0.94 ± 0.06 943 ± 60.7 

MPs cocktail 

T1 10 3.30 ± 0.32 3,297 ± 319.0 

T2 10 3.47 ± 0.14 3,466 ± 142.7 

T3 10 3.21 ± 0.22 3,205 ± 221.3 

 241 

Through flow cytometry, the different concentrations of the MPs cocktail were measured in the 242 

experimental waters used for the exposure of adult oysters (Table 1) at different sampling times (T1, T2 243 

and T3). At 0.1 mg. L-1 MP, very little variation was noted between the first two sampling times (T1 and 244 

T2), ranging from 655 ± 53.0 to 677 ± 67.6 MP.mL-1. At T3, the concentrations of MPs increased slightly, 245 

with 943 ± 60.7 MP.mL-1. At 10 mg. L-1 MP, values at the three sampling times (T1, T2 and T3) were 246 

stable. However, the difference in concentration factor between the two conditions of exposure to MPs 247 

seems to be lower than theory. 248 

 249 

3.2 State of health and reproductive effort in adult oysters 250 

To monitor growth and shape, a condition index was built from biometric measurements on adult 251 

oysters. However, there was no significant difference in the condition index between the control and 252 

exposed oysters (0.1 and 10 mg. L-1 MP) with respectively 0.36 ± 0.03; 0.30 ± 0.02 and 0.31 ± 0.04. 253 

Following a two-month exposure, oyster mortality rate differed significantly between the three exposure 254 

conditions (0, 0.1 and 10 mg. L-1 MP). The control condition exhibited the lowest mortality rate of 2.2 255 



% (n=90/condition). At 0.1 mg. L-1 MP, a cumulative mortality of 13.3 % was quantified. At 10 mg. L-256 

1 MP, the mortality rate reached 23.3 % (Figure 3.a). Over the exposure period, the cumulative mortality 257 

rate differed significantly between the conditions tested (Figure 3.b). 258 

 259 

 260 

Figure 3. (a) Survival monitoring of adult oysters exposed to MPs for two months: control (without pollutants); 261 

0.1 mg. L-1 MP and 10 mg. L-1 MP. (b) Histogram of cumulative mortalities for each exposure condition. Expressed 262 

in mean ± SEM. Different letters indicate significant differences between concentrations (p<0.05, Kaplan-Meir 263 

Test, n=90/condition). 264 

 265 

After two months exposure under controlled laboratory conditions, some adult oysters reached sexual 266 

maturity and developed mature gonads, allowing reproduction (n=10/conditions). Six oysters from the 267 

control condition emitted gametes. Seven oysters from the 0.1 mg MP. L-1 condition and 8 oysters from 268 

the 10 mg. L-1 MP condition were mature and ejected gametes through thermal shock (Table S3). In 269 

terms of sex determination, oysters in the control condition were predominantly maturing females (4:2, 270 

female: male) while oysters exposed to MPs were mostly males with mature gametes (2:5 for 0.1 mg. 271 

L-1 MP and 3:5 for 10 mg. L-1 MP, Table S1). The quality of gametes (well-formed oocytes and motile 272 

spermatozoa) and was observed under a microscope (Motic). In the control condition, 100 % of the 273 

gametes ejected being of good quality (Figure S4). 57 % and 50 % of the gametes from oysters exposed 274 

to 0.1 and 10 mg. L-1 MP were of good quality (Table S3). When bivalves expelled poor-quality gametes, 275 

they were not selected to proceed to in vitro fertilisation. Three couples for each condition (i.e. three 276 

replicates) were formed to obtain embryos, then becoming D-larvae. 277 
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 278 

3.3 MP analysis in adult oyster tissues and biodeposits 279 

MPs were quantified in digested tissues and biodeposits from exposed adult oysters (Table 2). 280 

 281 

Table 2. Concentrations of environmental MP cocktail (PE, PP and PVC) in oyster tissues (MPs.g-1) and 282 

biodeposits (cumulate faeces and pseudo-faeces, MPs.mg-1) at three sampling times (T1, T2 and T3). Data are 283 

expressed in mean ± SEM. Different letters indicate significant differences between concentrations (p < 0.05, 284 

ANOVA and Tukey post-hoc test). 285 

 286 

Sampling time T1 T2 T3 

Conditions Tissues Biodeposits Tissues Biodeposits Tissues Biodeposits 

Control 0 0 0 0 0 0 

MP 0.1 mg. L-1 2.1 ± 0.8 a 0.084 ± 0.02 a 6.3 ± 2.8 a 0.78 ± 0.2 a 5.4 ± 2.5 a 0.93 ± 0.2 a 

MP 10 mg. L-1 11.3 ± 3.6 b 6.4 ± 2.2 b 23.6 ± 9.2 b 7.6 ± 2.7 b 21.4 ± 7.3 b 7.3 ± 3.1 b 

 287 

In the control oysters, there were no microplastics in the tissues for the three sampling times. In exposed 288 

oysters, MPs were detected in the tissues at all sampling times (T1, T2 and T3). At T1, a greater quantity 289 

(increase factor of 5.4) of MPs is noted in the tissues of oysters exposed to 10 mg. L-1 MP compared to 290 

the 0.1 mg. L-1 MP condition. Same observation at T2 and T3, with increase factors of 3.7 and 4 291 

respectively. The two exposure conditions noted a decrease in the MPs present in the tissues at T3, 292 

compared to T2. Under the control conditions, there were no MPs in the biodeposits. In exposed oysters, 293 

MPs at T1 were quantified as follows: 0.084 ± 0.02 at 0.1 mg of MP .L-1 and 6.4 ± 2.2 MPs.mg-1 at 10 294 

mg. L-1 MP. At T2 and T3, the MPs in the biodeposits were markedly increased compared to T1. 295 

 296 

3.4 Analysis of biochemical biomarkers in the adult oyster digestive gland 297 

Figure 4 presents biomarker results on adult oysters exposed to environmental MPs (cocktail of HDPE, 298 

PVC and PP from oyster farming). SOD and GST activities are both induce under oxidative stress. The 299 

MDA activity is defined as lipid peroxidation and the LAC activity as environmental stress. 300 



 301 

 302 

Figure 4. Effects of environmental MPs on oxidative stress (Superoxide Dismutase (SOD) and Glutathione S-303 

transferase (GST)), lipid peroxidation (Malondialdehyde (MDA) and environmental stress Laccase (LAC) in C. 304 

gigas adult digestive gland. The different sampling times correspond to: T1 (D17), T2 (D35) and T3 (D56). Three MP 305 

conditions were tested: 0 (control), 0.1 and 10 mg. L-1 MP. The histogram data are expressed in mean ± SEM. 306 

Within series, the letters (a/b, A/B and α/β) above each bar indicate significant differences (p < 0.05, ANOVA and 307 

Tukey test, n=5/condition) between different sampling times for each condition.  308 

 309 

Superoxide Dismutase (SOD) and Glutathione S-transferase (GST) assays: oxidative stress 310 

The SOD activity in oysters from the three conditions tested (control, 0.1 and 10 mg. L-1 MP) decreased 311 

significantly at T3 (respectively 34.3 ± 3.3, 32.6 ± 2.5 and 30.0 ± 3.3 U/mg of protein), in comparison 312 

with T1 (respectively 51.4 ± 5.4, 60.9 ± 7.0 and 49.7 ± 8.3 U/mg of protein) and T2 (respectively 60.5 ± 313 

13.4, 72.8 ± 7.2 and 73.5 ± 20.5 U/mg of protein; ANOVA, p<0.01). Both the control and exposed 314 

oysters followed similar trends. It cannot be concluded that there is a significant difference in SOD 315 
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activity at T3 for the exposure conditions because the control condition follows the same trend. The 316 

GST activity in control condition had no significant change at the three sampling times (ANOVA, 317 

p=0.9). The trend was similar to oysters exposed to 0.1 mg MP. L-1, observing no significant difference 318 

between the three sampling times (ANOVA, p=0.5). In the 10 mg. L-1 MP condition, the GST activity 319 

increased at T3 (35.9 ± 5.4 U/mg of protein; ANOVA, p<0.05, Figure 4). 320 

 321 

Malondialdehyde (MDA) assay: lipid peroxidation 322 

In the control and 10 mg. L-1 MP conditions, the MDA activity in oysters had no significant difference 323 

at the three sampling times (respectively, ANOVA, p=0.2 and p=0.9). In the 0.1 mg. L-1 MP condition, 324 

the MDA activity increased between T2 (1.3 ± 0.2 µM/mg of protein) and T3 (1.9 ± 0.3 µM/mg of 325 

protein; ANOVA, p < 0.05) (Figure 4). 326 

 327 

Laccase (LAC) assay: environmental stress 328 

In control oysters, there were no significant differences of laccase activity between the three sampling 329 

times. The activity in oysters exposed to MPs (0.1 and 10 mg. L-1 MP) increased significantly between 330 

T2 (respectively 5.6 ± 0.6 and 4.1 ± 0.6 U/mg of protein) and T3 (respectively 7.3 ± 0.6 and 6.7 ± 0.6 331 

U/mg of protein; ANOVA, p < 0.05, Figure 4).  332 

 333 

3.5 Larval behaviour, development and growth 334 

The recorded videos (ZEISS Axio Observer Z1) highlighted a swimming activity (maximum swimming 335 

speed) increasing with the larvae age. The swimming speed was faster in 72-hour than for 24-hour larvae 336 

(Figure 5).  Compared to control larvae (153.3 ± 12.2 µm. s-1), 24-hour D-larvae (Figure 5.a) from 337 

exposed adult oysters swam significantly slower (respectively 97.6 ± 9.0 and 93.1 ± 5.0 µm. s-1 at 0.1 338 

and 10 mg. L-1 MP). 48-hour larvae (Figure 5.b) from parents exposed to 0.1 mg. L-1 MP had a lower 339 

swimming activity. 72-hour larvae (Figure 5.c) from parents exposed to the highest MP concentration 340 

(10 mg. L-1 MP, 155.6 ± 26.4 μm. s-1) swam slower than oyster larvae from other conditions (respectively 341 

194.5 ± 12.2 and 158.5 ± 16.0 μm. s-1 in the control and 0.1 mg. L-1 MP conditions). In addition, over a 342 



two-month period, the swimming trajectories of larvae from exposed parents were characterised (Figure 343 

5). 24-hour D-larvae from unexposed parents (control condition) displayed rectilinear swimming 344 

trajectories (60.6 ± 6.4 %, Figure 5.a). 48- and 72-hour larvae had predominant rectilinear swimming 345 

paths (57.5 ± 12.4 % and 54.3 ± 5.8 % respectively, Figure 5.b & c). 24-hour D-larvae from parents 346 

exposed to 0.1 and 10 mg. L-1 MP mainly swam in circular trajectories, for 47.4 ± 8.1 and 65.0 ± 8.9 % 347 

of the larvae, respectively (Figure 5.a). Forty-eight hour D-larvae from the 0.1 mg. L-1 MP condition 348 

showed predominant circular trajectories (61.8 ± 7.4 %), in higher proportion than the control condition 349 

(32.5 ± 10.4 %). D-larvae from the 10 mg. L-1 MP condition had motionless trajectories (31.1 ± 6.0%), 350 

in higher proportion than the control condition (10.0 ± 3.8%, Figure 5.b). 72-hour larvae from parents 351 

exposed to 0.1 and 10 mg. L-1 MP displayed fewer rectilinear trajectories (respectively, 28.6 ± 9.4 and 352 

23.8 ± 6.5 %), in comparison with larvae from the control condition (54.3 ± 5.8 %, Figure 5.c). 353 

 354 



 355 

Figure 5. Maximum speed and trajectories (rectilinear, circular or motionless) of 24- (a), 48- (b) and 72-hour (c) 356 

D-larvae from adult oysters exposed for two months to 0 (control), 0.1 and 10 mg. L-1 MP. For the three replicates 357 

(i.e. three couples), values are expressed in mean ± SEM. Different letters indicate significant differences between 358 
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concentrations (p < 0.05, Kruskal-Wallis and Nemenyi post-hoc test for maximum recorded speed and ANOVA 359 

and Tukey post-hoc test for the trajectory statistical analysis, n=18 videos/condition).  360 

 361 

After being fixed with formalin (1 %), 72-h D-larvae were classified according to their developmental 362 

states (well-formed, malformed or in developmental arrest, Figure 6). D-larvae from unexposed adult 363 

oysters were well-formed (85.8 ± 1.4 %) and statistically different (p<0.05) from oysters exposed to 0.1 364 

(p<0.01) (81.1 ± 1.3 %) and 10 mg. L-1 MP (p<0.01) (74.2 ± 1.7 %). Malformed D-larvae from the 365 

control and 0.1 mg. L-1 MP conditions were not statistically different, with respectively 8.5 ± 1.2 and 366 

11.8 ± 1.0 % (p=0.08). On the contrary, malformed larvae in the 10 mg. L-1 MP condition were 367 

significantly higher than in the control condition (16.0 ± 1.8 % (p<0.01)). In addition, D-larvae with 368 

developmental arrest had no significant difference between the first two conditions (control and 0.1 mg. 369 

L-1 MP, with respectively 5.7 ± 0.7 and 7.1 ± 0.9 %, p=0.6). In comparison with the control condition 370 

(p=0.03<0.05), the 10 mg. L-1 MP condition differed significantly, with 9.8 ± 1.2 %. Representative 371 

photographs of malformed and developmental arrest larvae are presented in Figure S5. 372 

 373 

 374 

Figure 6. Percentages of well-formed, abnormal and developmental arrest in 72-hour C. gigas larvae. Over a two-375 

month period, genitor oysters were exposed to three conditions: 0 (control), 0.1 and 10 mg. L-1 MP. For the three 376 

replicates, values are expressed in mean ± SEM. Different letters indicate significant differences between 377 

concentrations (p < 0.05, ANOVA and Tukey test, n=2400 larvae/condition).  378 
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Larval growth was slower in exposed than in control larvae (Figure 7). Significantly differences of size 380 

reductions of 10.6 % and 12.3 %, were observed in 72-hour larvae from parents exposed to 0.1 and 10 381 

mg. L-1 MP. The total length of control D larvae was 63.0 ± 1.5 μm, and significantly greater than larvae 382 

of parents exposed to 0.1 mg. L-1 MP and up to 10 mg. L-1 MP measured 56.3 ± 1.0 μm and 55.3 ± 0.8 383 

μm. 384 

 385 

Figure 7. Larva total length (μm) of C. gigas after 24-, 48- and 72-h of development from parents exposed for 2 386 

months to different concentrations of MPs cocktail : 0 (control), 0.1 and 10 mg. L-1 MP. Values are means ± SEM. 387 

Different letters indicated significant differences between different concentrations and development time (p < 0.05, 388 

ANOVA and Tukey test, n=60/condition).  389 

 390 

4. Discussion 391 

The study aimed at evaluating the effects of environmentally-aged MPs (plastic materials from oyster 392 

farms) on C. gigas oysters. Over a two-month period, adult oysters were exposed to aged MPs 393 

obtained from a mixture of HDPE, PP and PVC. Their growth, survival, MP ingestion/excretion and 394 

the response of biomarkers were monitored. Adult oysters were fertilised in laboratory conditions to 395 

produce embryos. Then, the development and swimming activity of 72-hour oyster D-larvae (early 396 

stages of development) were observed. 397 

 398 

4.1 Microplastics concentrations in experimental seawater 399 
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MP concentrations in the exposure medium were assessed through flow cytometry. Except for the 0.1 400 

mg. L-1 MP condition at T3, concentrations measured were constant. In the latter condition at T3, the 401 

increase in MP concentration over time might be due to particles binding on the tank walls while water 402 

was renewed (Summers et al., 2018). Our present study focused on ecotoxicological test concentrations, 403 

stronger than what is found in the marine environment (Lenz et al., 2016; Paul-Pont et al., 2018). The 404 

previous study by Dubaish & Liebezeit (2013) determined concentrations in the North Sea of 1.7 405 

MP.mL-1 (MP > 80 µm). In our work, the ranges of concentrations assayed reported means of 758 ± 60 406 

and 3,322 ± 228 MP.mL-1 for the two theoretical mass concentrations (0.1 and 10 mg. L-1 MP). It is 407 

therefore estimated that our study would have used concentrations 445 and 1,954 higher than the natural 408 

environment. However, our concentrations are close to certain ecotoxicological studies that took into 409 

account doses of 1,000 MP.mL-1 (Sussarellu et al., 2016 and Paul-Pont et al., 2016). According to 410 

literature, MP loads in seawater are within the μg.L−1 range, and the highest MP loads reported in the 411 

sea area round 0.08 to 0.3 mg.L−1 (Lusher et al., 2014; Frias et al., 2014). Thereby, the theoretical 0.1 412 

mg. L-1 MP concentration correspond to the contamination peak of MPs in the marine environment 413 

(Beiras et al., 2018). A recent study in the Bay of Biscay (South-West, Atlantic, France) near the study 414 

area where our MPs were collected indicated MP concentrations between 0.03 and 0.06 MPs.L-1 in 415 

water, with a size distribution between 4-2,000 µm, at the surface of the studied marine environment 416 

(Lerebours et al., 2021). Wang et al. (2021), reported higher concentrations of 15-20 MPs.L-1 in 417 

seawater from the coastal areas in Zhuhai (China), with a size range of 101-500 µm for 45 % of the 418 

detected MPs.  419 

 420 

4.2 Microplastic in adult oysters tissues and faeces 421 

MPs were not detected in tissues of control oysters. Like most animals, oysters lack enzymes and 422 

enzymatic pathways enabling to break down plastics (Aladaileh et al., 2007; Wright et al., 2013). After 423 

filtration-ingestion, MPs cannot be absorbed or used as energy, leading to their accumulation in the gills 424 

and digestive gland (Teng et al., 2020). This work echoed previous results highlighting that bivalve 425 

accumulated MPs in both experimental and natural conditions (Browne et al., 2008; Von Moos et al., 426 

2012; Magni et al., 2018; Teng et al., 2019; Birnstiel et al., 2019 and Ward et al., 2019). The presence 427 



of MPs accumulated in the tissues at the end of exposure (T3) could potentially affect reproductive 428 

efforts and subsequently the quality of the gonads and embryo-larval development (Sussarellu et al., 429 

2016). One must recognize that the concentrations tested and MP in tissues were much higher than those 430 

in the environment (Keisling et al., 2020). Regarding the quantities of MPs contained in the biodeposits, 431 

these present results are comparable to the results published by Revel et al. (2020). Oysters tended to 432 

quickly excrete MPs (Graham et al., 2019). In a recent study (Thomas et al., 2020), MPs were detected 433 

in tissues and biodeposits. Oysters could excrete MPs in faeces through cleaning processes, preventing 434 

the gills from being clogged by particles (Jorgensen, 1981) and rejecting indigestible particles (Wegner 435 

et al., 2012). Our results indicate low amounts of MPs in faeces. Although this suggests that oysters 436 

might excrete MPs through feces, a small fraction of these microparticles might persist in the tissues or 437 

be re-ingested by filtration, potentially leading to longer-term effects (Farrell & Nelson, 2013; Ribeiro 438 

et al., 2017). 439 

 440 

4.3 Oysters state of health 441 

In the present study, MP exposure of adult oysters did not affect their growth, but their survival. The 442 

highest dose of exposure (10 mg. L-1 MP) led to a significant increase of mortality rate. Sussarellu et al. 443 

(2016) obtained similar results, showing that oysters exposed to PS-MPs had disrupted energy flows, 444 

metabolism and homeostasis, increasing the mortality rate. Browne et al. (2013) reported in Arenicola 445 

marina, accumulation of nonylphenol and triclosan from PVC that led to altered physiological stress, 446 

immune system responses and increasing mortality. Stabilisation of mortality were noted at 35 and 44 447 

days for oysters exposed to respectively 0.1 and 10 mg. L-1 MP. The evolution in cumulative mortality 448 

of exposed individuals may suggest an adaptation to MP exposure (Guo et al., 2015). However, it 449 

remains complicated to conclude on the lethal effects of microplastics without setting up exclusion 450 

analyzes for other factors (i.e. bacteria, nutrition, toxic algae, etc.). In addition, an impact on fertilisation 451 

success was noted. The oysters exposed to MPs, having reached the stage of sexual maturation, had 452 

more males than females, unlike the control oysters. In addition, the quality of female gametes was 453 

poorer in adults exposed to MPs than in control. A previous study revealed that marine medaka (Oryzias 454 

melastigma) exposed to PS-MPs faced sex-specific endocrine disruption. Wang et al. (2019) suggested 455 



that PS-MPs had sex-specific reproductive disruption and decreased sex hormone levels in female 456 

plasma by inhibiting their synthesis. Sussarellu et al. (2016) indicated that the quality of gametes 457 

decreased following  parental exposure to PS-MPs. This work reached similar conclusions on the quality 458 

of gametes from exposed parents.  459 

 460 

4.4 Biomarkers activities 461 

The activities of biomarkers (SOD, GST, MDA and LAC) that can be modulated by environmental 462 

pollutants were used as defense markers, providing information on the level of exposure and the 463 

response capacities of oysters exposed to cocktail of MPs. Oxidative stress biomarkers were chosen for 464 

their early stress responses in bivalves (Valavanidis et al. 2006). Milinkovitch et al. (2015) confirmed 465 

that SOD was an early indicator of oxidative stress. In their study, Revel et al. (2019) indicated that the 466 

SOD activity in the digestive gland of blue mussels (Mytilus edulis) exposed for 10 days to a mixture of 467 

MPs (PE, PP) was no affected. Our results show a decrease in SOD over time and with increasing 468 

gonadal maturity in all conditions tested, including condition control. Similar effects have been 469 

demonstrated in C. gigas with a decrease in SOD due to seasonal variations (Luna-Acosta et al., 2010b). 470 

In contrast to this study, Ribeiro et al. (2017) revealed that the SOD activity in the digestive gland of 471 

Scrobicularia plana exposed to PS-MPs increased at the end of the exposure period.  472 

GST is involved both in the biotransformation of xenobiotics (Dos Santos et al., 2021) but also in the 473 

recycling of reduced glutathione and therefore in the fight against oxidants (Fabioux et al., 2015). This 474 

phenomenon could be a reaction to an increased xenobiotic biotransformation, as underlined by 475 

Breitwieser et al. (2016). Excessive oxidative stress can lead to a significant increase in oxidative 476 

damage (Araújo et al., 2016), potentially due to the depletion of organisms due to the activation of 477 

defense mechanisms to fight against the polluted environment. Concerning the GST enzyme, also linked 478 

to oxidative stress, an increase in this enzymatic activity was noted in freshwater clams Corbicula 479 

fluminea exposed to PS-NP (Li et al., 2020). GSTs are key players in the removal of reactive oxygen 480 

species (ROS), intervening indirectly by controlling the level of reduced glutathione. 481 

If the balance is upset in favor of ROS, oxidative stress is generated due to environmental stress and 482 

xenobiotics could influence this balance by catalyzing the production of ROS, and altering the metabolic 483 



balance (Donaghy et al., 2015; Manduzio et al., 2015). In addition, Wang et al. (2019) noted an 484 

increased GST activity in the intestine and gills of the marine medaka (Oryzias melastigma) exposed to 485 

20 and 200 µg PS-MP. L-1, concentrations similar to this study.  486 

The MDA content reflects the rate and intensity of lipid peroxidation (Qiao et al., 2019a, b). In the 0.1 487 

mg. L-1 MP condition at T3, the MDA content increased. The increase in MDA content, decreased the 488 

antioxidant protection and immune modulation (Pan et al., 2009; Breitwieser et al., 2016). Indeed, 489 

Sussarellu et al. (2016) and Palais et al. (2012) suggested that oysters exposed to particles can modify 490 

their energy flow and induced antioxidant and detoxification processes.  491 

Laccase (LAC) is a marker of environmental stress (Luna-Acosta et al., 2010a). In the two exposure 492 

conditions (0.1 and 10 mg. L-1 MP) at T3, the LAC activity increased over time. The environmental study 493 

conducted by Breitwieser et al. (2020) correlated an increase of the LAC activity in Mimachlamys varia 494 

over time in presence of metals (Cu, Cr, Mn, Sn, and As). Bivalves are able to detect pollutants in their 495 

environment and respond to stress by increasing their LAC activity (Luna-Acosta et al., 2015). At T3 – 496 

the last sampling time – LAC and MDA biomarkers were significantly increased in comparison to 497 

control group. Exposure to MPs should be investigated on a long-term basis to understand adaptive 498 

responses or toxic effects on bivalves. Understanding mechanisms triggered by organisms to fight 499 

against chronic exposure to MPs is key to conduct risk assessments. It is crucial as coastal areas are 500 

constantly impacted by plastics (Santana et al., 2018). The main limitations of biomarker measurements 501 

for assessing the quality of ecosystems are thus the difficulty in discriminating between “natural” 502 

adaptive responses and responses to chemical stress, in extrapolating responses from one scale of 503 

biological organization to another (cell-individual-population-community) and from one species to 504 

another (Forbes et al., 2006). In addition, the use of biomarkers such as SOD and GST lead to increased 505 

sensitivity in the results which could create bias in the observed effects. 506 

 507 

4.5 Intergenerational effects on D-larvae 508 

The present study also focused on the offspring obtained from adult oysters exposed to MPs over a two-509 

month period during gametogenesis (Enríquez-Díaz et al., 2009). The larval growth was slower in the 510 

MPs-exposed groups in comparison to the control group. This result is consistent with those obtained 511 



by Sussarellu et al. (2016) and Bringer et al. (2020b), suggesting that MPs exposure can delay C. gigas 512 

larval growth. In this work, the exposure conditions revealed a significant increase in developmental 513 

abnormalities, including malformations and developmental arrest. Thus, when parents were exposed to 514 

high MP concentrations, developmental abnormalities were more frequent in their offspring. A lot 515 

studies highlighted that micro-pollutants such as heavy metals and pesticides, caused developmental 516 

defects in oysters (Mai et al., 2012; Gamain et al., 2016, 2017; Bringer et al., 2021b). Tallec et al. (2018) 517 

reported greater toxicity of smaller plastic particles. In comparison with PS-MPs (2 µm), PS-NPs (500 518 

and 50 nm) had greater impacts on the fertilisation success and embryo-larval development of oyster C. 519 

gigas. Our results revealed a shift in the swimming behaviour of larvae from parents exposed to MPs. 520 

Indeed, circular trajectories increased, in comparison to rectilinear trajectory. Gamain et al. (2019) 521 

demonstrated that, under optimal developmental conditions, C. gigas D-larvae tended to have a 522 

rectilinear swimming behaviour (2-D analysis). In a previous study, Bringer et al. (2020a) noted that 523 

circular trajectories were significantly increased in larvae exposed to HDPE-MPs (4-13 µm). For both 524 

MP concentrations, a decrease in maximum speed recorded was noted in 24- and 72-hour D-larvae. 525 

These results are consistent with previous studies (Bringer et al., 2020a & b) in which D-larvae exposed 526 

to MPs (HDPE and polymer cocktail) showed a decrease in maximum swimming speed. Yin et al. 527 

(2019) indicated that black rockfish Sebastes schlegelii exposed to MPs (0.19 mg. L-1 PS-MP of 15 µm) 528 

had a restricted swimming speed and range of motion, affecting their hunting behaviour and exploration 529 

skill.  530 

Altogether our data reinforced the hypothesis that MPs impacted both the physiology and behaviours of 531 

oysters C. gigas.  This study relied on the use of secondary MPs – aged in the marine environment – as 532 

well as on plastic materials from oyster farming. 533 

 534 

5. Conclusions and perspectives 535 

To conclude, this experiment showed that the cocktail of MPs obtained from oyster material and aged 536 

in the marine environment can be toxic for adult oysters and the larval generation. The results indicated 537 

that exposure to MPs could affect survival, responses to defense biomarkers, and fertilization success, 538 

in adults (C. gigas) exposed for 2-months. D-larvae obtained from exposed oysters, having reached a 539 



mature stage, exhibited alterations in swimming behavior, development and growth. Bad weather and 540 

degradation of plastics from mariculture could therefore represent a possible threat to oyster farming 541 

and surrounding marine life. In the future, it would be useful to study the life cycle of aquaculture 542 

plastics and the potential risk of additives present on plastics on the Crassostrea gigas study model and 543 

the health of marine ecosystems in general. 544 

 545 
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