
HAL Id: hal-03482524
https://hal.science/hal-03482524

Submitted on 16 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptation of Grover’s Quantum Algorithm to
Multiuser Detection in an OCDMA System
Muhammad Idham Habibie, Jihad Hamie, Claire Goursaud

To cite this version:
Muhammad Idham Habibie, Jihad Hamie, Claire Goursaud. Adaptation of Grover’s Quantum
Algorithm to Multiuser Detection in an OCDMA System. SOFTT 2021 - IEEE 5th Sym-
posium on Future Telecommunication Technologies, Dec 2021, Bandung, Indonesia. pp.1-6,
�10.1109/SOFTT54252.2021.9673141�. �hal-03482524�

https://hal.science/hal-03482524
https://hal.archives-ouvertes.fr


Adaptation of Grover’s Quantum Algorithm to
Multiuser Detection in an OCDMA System

Muhammad Idham Habibie
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Abstract—To support multiple transmissions in an optical
fiber, several techniques have been studied such as Optical Code
Division Multiple Access (OCDMA). In particular, the incoherent
OCDMA systems are appreciated for their simplicity and reduced
cost. However, they suffer from Multiple Access Interference
(MAI), which degrades the performances. In order to cope with
this MAI, several detectors have been studied. Among them,
the Maximum Likelihood (ML) detector is the optimal one but
it suffers from high complexity as all possibilities have to be
tested prior to decision. However, thanks to the recent quantum
computing advances, the complexity problem can be circum-
vented. Indeed, quantum algorithms, such as Grover, exploit
the superposition states in the quantum domain to accelerate
the computation. Thus, in this paper, we propose to adapt the
quantum Grover’s algorithm in the context of MUD, in an
OCDMA system using non-orthogonal codes. We propose a way
to adapt the received noisy signal to the constraints defined
by Grover’s algorithm. We further evaluate the probability of
success in detecting the active users for different noise levels.
Aside from the complexity reduction, simulations show that our
proposal has a high probability of detection when the received
signal is not highly altered. We show the benefits of our proposal
compared to the classical and the optimal ML detector.

Index Terms—MAI, ML detector, MUD, OCDMA, quantum
algorithms, Grover’s algorithm.

I. INTRODUCTION

Optical fiber transmission is a key component in current
communications systems. Indeed, the ever growing number of
subscribers and demand for reliable access to high-speed and
high-quality services is now a very important challenge which
can be addressed by exploiting the high bandwidth offered by
optical fibers [1].

Nonetheless, sharing this resource requires adapted access
techniques. Compared to the historical ones (Time Division
Multiple Access (TDMA), Frequency DMA (FDMA), and
Wavelength DMA (WDMA)), the more recent Optical Code
Division Multiple Access (OCDMA) has gained significant
attention from the research community during the two last
decades [2]. In OCDMA systems a spreading code (or a
set of spreading codes) is assigned to each potential user
in the network. Whenever a user is willing to transmit, it
emits its code (or one of its codes). This approach makes an
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efficient use of the bandwidth as several users are simultane-
ously transmitting; while ensuring data confidentiality and low
interception probability (thanks to the code which hides the
transmitted information) and effective network control design
(as the access to the medium can be done on the fly). It also
permits to handle bursty traffic, and differentiated QoS and
data rates [3].

OCDMA systems can be divided into two categories: coher-
ent and non coherent schemes. In the first category, codes are
bipolar (built with either (−1) or (+1)) which yields a perfect
orthogonality between the codes. On the contrary, incoherent
OCDMA systems consider unipolar codes ((0) and (1)) [4] The
latter permits the use of a simpler emitter and receiver, but at
the cost of interference between simultaneously transmitted
sequences. This interference is called MAI (Multiple Access
Interference), and is one of the main limitations for OCDMA
performance and capacity.

Numerous works have proposed code families which reduce
or remove this interference. In particular, Spectral amplitude
coding (SAC) approach (with numerous practical codes [5])
has gained attention thanks to its capability to entirely cancel
MAI. The main drawback of this family is that it does support
a large number of users due to its construction and properties.

On the other side, to use non-orthogonal codes, processing
techniques have been studied in order to reduce the MAI
impact on the final performance. These Multi User Detection
(MUD) techniques, such as Serial Interference Cancellation
(SIC) [6], and Parallel Interference Cancellation (PIC) [7],
along with Hard Limiter (HL) iteratively remove the users’
contributions. Performance are improved, but do not reach
that of the optimum Maximum Likelihood (ML) detector. The
main limitation for the use of this optimal receiver is its
complexity. Indeed, it tests all possible sets of user activity,
which quickly becomes intractable with classical processors
when the number of users increases. Fortunately, quantum
computing is quickly evolving and is a promising solution to
mitigate this limitation. Indeed, quantum algorithms, such as
Grover, exploit the superposition states in the quantum domain
to accelerate the computation.

Several papers have studied quantum multi-user detec-
tion (QMUD), using Boyer-Brassard-Høyer-Tapp (BBHT) and
Dürr-Høyer Algorithm (DHA) which have proven effective to



find random values in databases with a minimum and maxi-
mum complexity of 4.5

√
N and 22.5

√
N [8] [9] [10], where

N is the database size. Similarly, [11] proposed quantum
annealing for multi-user detection which helps to overcome
the problem in the Non-Orthogonal Multiple Access (NOMA)
receiver with Successive Interference Cancellation (SIC). In
terms of Multi-Carrier CDMA (MC-CDMA), a quantum par-
ticle swarm optimization (QPSO) is an effective algorithm for
multi-user detection when compared with the classical one
[12].

However, to the best of the authors knowledge, the approach
of using quantum algorithms for OCDMA has not been
considered yet. Thus, in this paper, we propose and evaluate
the benefits of using a quantum algorithm to perform MUD,
in an OCDMA system using non-orthogonal codes. To do so,
we adapt the Grover circuit to this problem.

This paper is structured as follows: Section II presents
an overview on quantum computation, where the Grover’s
algorithm and Grover’s circuits are described. Section III
describes our adaptation of the Grover’s algorithm for MUD
purposes. Section IV presents the performance results, based
on a simple but representative system. Finally, Section V
concludes the paper.

II. OVERVIEW ON THE QUANTUM COMPUTATION

A. Quantum Principle

Inspired by quantum mechanics and benefiting from the
superposition property, several problems have been solved
based on quantum computation, where the complexity can
be largely reduced. For example, quantum has permitted
to decrease the complexity of finding the prime factor of
a given integer value n from e(c(logn)1/3(log logn)2/3) to
O((log n)2(log log n)(log log log n)), where c is a constant
in the classical case [13]. Furthermore, quantum permits to
search a single value in a large unsorted database of size N
with a complexity of O(

√
N) (instead of O(N) in a classical

case). Moreover, it is proved that there are some problems,
which cannot be solved using the classical computation (e.g.
Boolean Satisfiability SAT problem) but, can be solved using
quantum computation techniques [14] [15]. Indeed, thanks to
the superposition, several simultaneous tasks are performed
and thus, the requested number of computations can be highly
reduced.

As a matter of fact, the quantum accelerates the computation
using a new type of bits, which are so-called as quantum
bits (qubits). The qubits are able to be in the state 0 and 1
simultaneously in a superposed state [16]. It is denoted with
the Dirac notation |.〉. The notation of a qubit |ψ〉 is written
as follows :

|ψ〉 = α|0〉+ β|1〉 (1)

where α and β are normalized complex numbers, which
verifies |α|2+ |β|2 = 1. The superposed state is only possible
within the quantum processor and can not be accessed outside.
However, it is possible to make a measurement on the qubit.
This will randomly project the qubit on |0〉 or |1〉 with respect

Fig. 1. Bloch Sphere [17]

to their associated probabilities. More precisely, |α|2 and |β|2
are respectively the probabilities of being in state |0〉 and |1〉.
If α = 0 ; β = 1, then |ψ〉 = 1. In contrast, β = 0 and
α = 1 always returns |ψ〉 = 0. In addition, the superposition
state where α = 1√

2
and β = 1√

2
leads to 50% probability of

having 0 or 1.
Since α and β are normalized complex numbers, it is

possible to transform eq.(1) into:

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 (2)

where 0 6 θ 6 π and 0 6 ϕ 6 2π. Hence, it is then possible
to illustrate |ψ〉 in a unit sphere as shown in Fig.1 [17].

B. Grover Algorithm

Let’s consider an unsorted database of size N . Grover’s
algorithm objective is to retrieve within the database the index
of the element verifying a given constraint. If we denote by f
the function which permits to relate the index x to the register
value, Grover’s algorithm solves f(x) = δ, where δ is the
desired value. To do so, Grover’s algorithm consists of two
parts ; Oracle and Diffuser as shown in Fig. 2. The Oracle
marks the states which verify the targeted constraints. The
related operation is defined as follows:

Uw|q〉 = (−1)f(x)|q〉 =

{
Uw|q〉 f(x) 6= δ

−Uw|q〉 f(x) = δ
(3)

where δ denotes the desired value, f(x) is the Grover function.
If f(x) is equal to δ, the oracle changes the associated
amplitude to a negative one.
Then, the marked qubit is amplified using diffuser, which is
denoted as follows:

Us|q〉 = 2|s〉〈s| − I (4)

Towards finding the desired solutions, the Oracle and
Diffuser are performing several iterations. This number of
iterations is in the order of O(

√
N) or less [16]. In this

context, [16] has defined and expressed the optimum number



Fig. 2. Grover Scheme

Fig. 3. General Grover Circuit of 2 qubits.

of iterations in order to find a specific solution. This optimal
number is depending on the size N of the involved database
and on the existing number of solutions, which is denoted as
S. The optimal number of iterations is given as follows:

Lopt = bπ/4
√
N/Sc (5)

After NI iteration steps, the probability of success (Ps) is
given by [18]:

Ps(NI) = sin2 ((2NI + 1) θs) (6)

where sin2 θs =
S
N .

C. Grover Circuit Implementation

The Grover circuit design can be simulated using Qiskit
library provided by Python. Qiskit provides numerous advan-
tages to build and analyse the quantum gates in order to
implement the quantum algorithm. The Grover circuit relies
on four different registers: 1) Index register 2) Value register
3) Reference register 4) Mark register [19]. The Index register
contains the argument of the function f(x) and will provide
the delivered solution at the end of the algorithm. The Value
Register contains the value of the function f(x) (in eq.3)
applied into the index register state, whereas Reference Reg-
ister corresponds to the desired value (δ). The Mark register
provides the negative sign into the computation, to mark the
valid states. Figure 3 illustrates a basic two qubits Grover
circuit, where all the four different registers are illustrated.
In such settings, the mark and diffusion part are the same,
only adapted to the size of the considered problem. However,
the part related to the function is specific to the problem.

III. PROPOSED SYSTEM

A. System Model

In this paper, we propose to adapt Grover’s algorithm to
perform the Multi-User Detection in an OCDMA system, and
we evaluate the performance.

We consider a network where each user is assigned a
unique code, and transmits the code when sending a bit
bi = 1, while it remains silent for a 0. The users’ signals
are propagated over the same fiber and are observed at the
receiver side as a summation of all transmitted contributions.
It must be noted that the transmission is classical (only the
decoding will be performed in quantum domain). In addition,
we consider a transmission model where all emitted signals
arrive simultaneously at the receiver with the same amplitude
(thanks to a feedback loop for example). We model the channel
as a perfect one with gain h = 1, along with an Additive White
Gaussian Noise (AWGN) denoted by n. Thus, the received
signal can be written as follows:

y =

K∑
i=1

bici + n (7)

where K denotes the number of users, i is the index of a
specific user, bi ∈ {0, 1} is the bit transmitted by user i, ci
is the corresponding codeword and n is the Gaussian noise
following N (µ, σ2).

The objective of the receiver is to determine the values of
all the transmitted bits b̂ = {b̂i|i ∈ {1, ...,K}}. To do so, each
user can be treated separately, but this leads to a high error
probability. On the contrary, considering all users jointly leads
to a better accuracy. In particular, when all combinations can
be observed with the same probability, it is well known that the
optimum multi-user detector is the ML (Maximum Likelihood)
one [20]. This detector identifies the most likely transmitted
bits set given the knowledge of the received signal, as in :

b̂ = argmax
b

(P(Y |b)) (8)

The ML provides the best accuracy, but at the cost of a
high complexity as all possible combinations for b = bi, i ∈
{0, 1, ...,K} have to be evaluated. However, we can observe
that as bi ∈ {0, 1}, we can exploit the superposition property
of qubit by assigning one qubit to each user transmitted bit.
This permits to evaluate simultaneously all possibilities and
select the wanted one.

B. Proposed quantum algorithm

In a noiseless case, the received signal y is a vector of
size SF containing only integer values. It can be fed into
quantum algorithm after quantification. The binary size for
each component depends on the highest value which can be
obtained in the corresponding slot.

However, when noise is taken into account, y has real
components. But, Grover’s algorithm must only be fed by
binary numbers, and will search for the b set which can create
this signature. A simple and accurate way to overcome this



issue is obtained by approximating the y to the closest integer
values. Thus, Grover’s algorithm is fed with ŷ, which is given
by:

ŷ = max(0, round(y)) (9)

All these previous operations are performed with classical
devices as the computation remains simple. The processing
in the quantum domain starts with the appropriate Grover
algorithm which is then applied. The algorithm is run with
the optimum number of iterations, and provides as an output
the set of the estimated transmitted bits.

The proposed algorithm can be summarized as follows:

Algorithm 1 Proposed Algorithm
1: Define Lopt where number of solution (S) and desired

value δ are known.
2: Observe received signal with additive noise (y)
3: Run ŷ = max(0, round(y))
4: Convert integer number to binary number int(ŷ) −→
bin(ŷ)

5: Feed bin(ŷ) into reference register. Creates value register
and index register circuit based on fig 5.

6: Iterate Grover for Lopt times

IV. SIMULATION SETUP AND RESULTS

A. Simulation setup

To validate our approach, we have considered an example.
We have been constrained to use a reduced network configu-
ration, in order to be able to use the quantum simulation tools.
Thus, we have focused on codes with a small spreading factor.
We have empirically selected codes that permit to handle the
maximum number of users, such that any 2 different subsets
of the code do not lead to the same superposed signature. With
this constraint, we thus ensure that the function which relates
the activity set b to the received signal y is injective, therefore
that, in a noiseless case, the error probability is null.
In this work, we have considered SF = 3. We have selected
4 codewords as follows; c1 = [1, 1, 0], c2 = [0, 1, 1], c3 =
[0, 0, 1], c4 = [1, 0, 1].

Based on these codes, the oracle function, which evaluates
the expected received signal as a function of the transmitted
bits has been implemented in Qiskit, leading to the circuit
presented on Fig. 4. We can note that two qbits are used to
represent each ŷ components. This is due to the fact that for the
considered codeset, the maximum value that can be reached
on any slot is 3.

B. Noiseless case performances

To evaluate the performance, we first consider the ideal case
where no noise impacts the received signal. In this case, for
the classical ML algorithm, the success probability is Ps = 1.

As for the Grover algorithm, we have plotted in Fig. 5, the
probabilities of recovering any set, when the actual transmitted
set is {0, 1, 0, 0}, after running the Grover’s algorithm with
Lopt = 3 iterations and under noiseless channel. We can

Fig. 4. Grover Circuit Function.

Fig. 5. Measurement statistics after running the Grover’s algorithm for
Lopt = 3 iterations, under noiseless channel.

Fig. 6. Quantum success probability (in %) as a function of the database size
N .



observe that the Grover’s delivers the correct solution with a
probability of detection of 96.9%. This is due to the fact that
for a small dataset size, the cancellation of the non desired
states is not possible in a small number of iterations.

On the contrary, we can see on Fig. 6 that as the database
size increases, the success probability tends to 1. Thus, the
quantum algorithm efficiency increases for larger number of
users.

C. Noisy case performances

In this part, we take the noise into account. It follows a
normal law with mean µ = 0 and a standard deviation denoted
by σ. We can encounter two situations.

In the first situation, the noise does not lead to a modifi-
cation of the signature ŷ fed into Grover’s algorithm. Indeed,
the noise contribution is small enough and is removed by the
rounding function applied to the received signal y. Thus, the
quantum computation has a high success probability to cor-
rectly identify the users, and presents the same performances
than in the noiseless case. This is often the case for small
noise standard deviation.

In the second situation, with larger noise deviation, the
signature ŷ is modified; either as another valid signature
(leading to an almost null success probability), or a non-
valid one (leading to equiprobable statistics among all the (N )
possible solutions in the database).

In practice, the system faces the two situations, with differ-
ent balancing, depending on the actual noise deviation. The
success probability is thus obtained with a linear combination
of the 2 situations.

The optimal ML detector and our proposed algorithms are
compared in Fig. 7. This figure shows the variation of the
average probability of success in detecting the active users,
as a function of the noise standard deviation σ. For each
noise variance, 400 independent noise process realizations are
tested, and averaged. We can first note that the performance
are degraded when the noise’s variance increases. The success
probability goes from the maximum one in the noiseless case
(96%), to a random selection with equiprobable variables
(% = 100/16). Besides, as expected, the ML provides the
best accuracy as it is the optimal algorithm, but one may note
that our proposal gives results that are comparable with the
ML detector and more particularly when the noise level is
relatively small. Moreover, thanks to Fig. 6, we can expect
the performance difference to be decreased for larger network
size, as Grover’s algorithm become more accurate. In addition,
our quantum proposal outperforms the ML detector in terms
of complexity, as here the ML detector requires 16 evaluation,
while Grover’s reads only. This benefit increases with the num-
ber of users. We can thus observe that our proposed solution
permits to significantly reduce the computation delay at the
cost of a reasonable impact on the performance. Moreover,
our proposal can be a promising detector of active users in a
massive communication networks.

Fig. 7. Probability of Success as a function of Noise Variance

V. CONCLUSION

In this paper, we have adapted the Grover’s quantum al-
gorithm for MUD purposes in an OCDMA communication
scheme. The adapted Grover’s algorithm is fed by noisy
received signals, which are preliminary reshaped in order to
be compliant with the Grover’s algorithm constraints. The
probability of detection of active users has been assessed as
a function of SNR (or noise variance). The obtained results
on a small network size have shown that our proposal has
comparable detection performance with the optimum ML
detector, but with a lower complexity. Interestingly, results
have proved that as the database size increases, the success
probability tends to 1 (in a noiseless case). Thus, we conclude
that the quantum algorithm will be more pertinent for a large
number of users.
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