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High dimensional logistic entropy clustering

Minimization of the (regularized) entropy of classification probabilities is a versatile class of discriminative clustering methods. The classification probabilities are usually defined through the use of some classical losses from supervised classification and the point is to avoid modelisation of the full data distribution by just optimizing the law of the labels conditioned on the observations. We give the first theoretical study of such methods, by specializing to logistic classification probabilities. We prove that if the observations are generated from a two-component isotropic Gaussian mixture, then minimizing the entropy risk over a Euclidean ball indeed allows to identify the separation vector of the mixture. Furthermore, if this separation vector is sparse, then penalizing the empirical risk by a 1 -regularization term allows to infer the separation in a high-dimensional space and to recover its support, at standard rates of sparsity problems. Our approach is based on the local convexity of the logistic entropy risk, that occurs if the separation vector is large enough, with a condition on its norm that is independent from the space dimension. This local convexity property also guarantees fast rates in a classical, low-dimensional setting.

Introduction

The clustering problem can be described as follows: given a measurable space X , a sample (X 1 , ..., X n ) ∈ X n , and an integer K ≥ 2, define a (random) labelling function Y : X → {1, ..., K}. In particular, to each data X i , associate a label Y i . If the function Y is deterministic, then the task is termed "hard clustering".

If the function Y is random, the distribution of the labels Y (x), for x ∈ X , being characterized by the uplets (P(Y (x) = 1), ..., P(Y (x) = K)), then the clustering task is said to be "soft". In the soft clustering case, a common approach -called the modelling approach -is to model the distribution of the data, typically as a mixture distribution, and to directly relate the probabilities (P(Y (x) = 1), ..., P(Y (x) = K))

to the parameters of the mixture [START_REF] Bouveyron | Model-based clustering and classification for data science[END_REF]. One can then reduce to a hard clustering by assigning each point

x to the maximizer of classification probabilities (or choose one at random amongst the maximizers if it is non-unique). Hard clustering algorithms include the celebrated K-means [START_REF] Lloyd | Least squares quantization in PCM[END_REF][START_REF] Edward | Microbial controlâĂŤthe emergence of an idea. a brief history of insect pathology through the nineteenth century[END_REF][START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF], hierachical clustering [START_REF] Anil K Jain | Data clustering: a review[END_REF], spectral clustering [START_REF] Andrew | On spectral clustering: Analysis and an algorithm[END_REF]) among others.

Particularly developed in the machine learning community for its flexibility when addressing complex data, the so-called "discriminative approach" to clustering amounts to model the classification probabilities (P(Y (x) = 1), ..., P(Y (x) = K)), which can be understood as the conditional probabilities of the labels with respect to the position x. Proceeding this way indeed avoids the modelling of the whole distribution of data and often reduces to encode in the classification probabilities, the frontiers separating the clusters.

In general, this is done through the use of classical learning losses such as the logistic, the Hinge or the Conditional Random Fields loss [START_REF] Dai | Minimum conditional entropy clustering: A discriminative framework for clustering[END_REF][START_REF] Gomes | Discriminative clustering by regularized information maximization[END_REF]. More formally, one puts the constraint of P(Y (x) = k), k ∈ {1, ..., K}, being proportional to exp( (β k , x)), for a vector β k and a loss . For instance the logistic loss gives classification probabilities proportional to exp(w t k x + b k ) and the Hinge loss (for K = 2) induces probabilities of a form proportional to exp(-[1 -(w t k ϕ(x) + b k )] + ) for some feature map ϕ and with (w 1 , b 1 ) = (-w 2 , -b 2 ) in this binary case.

In addition, these losses were primarily introduced for supervised learning and in order to transfer them to the unsupervised setting, one has to define what would be a desirable (unobserved) label. Arguably, when classifying data, one would prefer to be as sure as possible of its cluster choice. This is equivalent to saying that the maximum of classification probabilities would be as close to one as possible. Hence, a natural criterion to infer a labelling function, would be to define Ỹ through the probabilities P( Ỹ (x) = k) = Z -1 β (x) exp( ( βk , x)), with a normalizing constant Z β (x) = K k=1 exp( ( βk , x)), such that ( β1 , ..., βK ) ∈ arg max

(β 1 ,...,β K ) 1 n n i=1 1 Z β (x i ) max k∈{1,...,K} [exp( (β k , x i ))] . (1) 
The associated theoretical target is P(Y * (x) = k) = exp( (β * ,k , x)) with, (β * ,1 , ..., β * ,K ) ∈ arg max

(β 1 ,...,β K ) E 1 Z β (X) max k∈{1,...,K} [exp( (β k , X))] ,
where X follows the unknown -and not modeled -distribution of data.

But the maximum is not a smooth function and it may cause difficulties when trying to optimize [START_REF] Aldana | A clustering method based on the maximum entropy principle[END_REF].

As a smooth proxy, one can try to minimize the entropy of the classification probabilities, since it achieves its minimum value when the latter probabilities are all equal to zero or one. This amounts to search for a labelling function Ŷ satisfying P( Ŷ (x) = k) = Z -1 β (x) exp( ( βk , x)) with ( β1 , ..., βK ) ∈ arg min

(β 1 ,...,β K ) 1 n n i=1
Ent {P(Y β (x i ) = 1), ..., P(Y

β (x i ) = K)} , (2) 
where

Ent {P(Y β (x i ) = 1), ..., P(Y β (x i ) = K)} = K k=1 - exp( (β k , x i )) Z β (x i ) log exp( (β k , x i )) Z β (x i ) . (3) 
Often, one has to restrict the search among vectors (β 1 , ..., β K ) in a compact set, or to add to the entropy a regularization term encoding the complexity of the vectors (β 1 , ..., β K ) [START_REF] Gomes | Discriminative clustering by regularized information maximization[END_REF][START_REF] Dai | Minimum conditional entropy clustering: A discriminative framework for clustering[END_REF]. In this second formulation, the theoretical target (β 0,1 , ..., β 0,K ) of estimation is,

The use of entropy terms in semi-supervised and unsupervised learning is indeed natural and has been the object of active research [START_REF] Grandvalet | Semi-supervised learning by entropy minimization[END_REF][START_REF] Gomes | Discriminative clustering by regularized information maximization[END_REF][START_REF] Dai | Minimum conditional entropy clustering: A discriminative framework for clustering[END_REF][START_REF] Sugiyama | On informationmaximization clustering: Tuning parameter selection and analytic solution[END_REF][START_REF] Sugiyama | Informationmaximization clustering based on squared-loss mutual information[END_REF][START_REF] Shi | Information-theoretical learning of discriminative clusters for unsupervised domain adaptation[END_REF][START_REF] Li | Minimum entropy clustering and applications to gene expression analysis[END_REF][START_REF] Aldana | A clustering method based on the maximum entropy principle[END_REF][START_REF] Müller | Information theoretic clustering using minimum spanning trees[END_REF]. Furthermore, this approach is at the core of some state-of-the-art deep clustering approaches [START_REF] Jabi | Deep clustering: On the link between discriminative models and k-means[END_REF]. Another fruitful approach in discriminative clustering consists in considering convex relaxations of some initial, untractable criteria and this methodology often comes with strong theoretical guarantees [START_REF] Flammarion | Robust discriminative clustering with sparse regularizers[END_REF][START_REF] Joulin | Discriminative clustering for image co-segmentation[END_REF][START_REF] Bach | Diffrac: a discriminative and flexible framework for clustering[END_REF][START_REF] Peng | Approximating k-means-type clustering via semidefinite programming[END_REF][START_REF] Giraud | Introduction to high-dimensional statistics[END_REF][START_REF] Bunea | Pecok: a convex optimization approach to variable clustering[END_REF][START_REF] Bunea | Model assisted variable clustering: minimax-optimal recovery and algorithms[END_REF][START_REF] Giraud | Partial recovery bounds for clustering with the relaxed k-means[END_REF][START_REF] Dustin G Mixon | Clustering subgaussian mixtures by semidefinite programming[END_REF][START_REF] Royer | Adaptive clustering through semidefinite programming[END_REF][START_REF] Chen | Cutoff for exact recovery of gaussian mixture models[END_REF].

The starting point of our work consists in the following observation: to our knowledge, no theoretical guarantee -of the type of convergence rates -exists in the literature for (regularized) minimum entropy estimators [START_REF] Azizyan | Minimax theory for high-dimensional gaussian mixtures with sparse mean separation[END_REF]. This a weakness compared to other approaches, such as convex relaxations techniques for instance. But from a practical perspective, estimators of the form of (2) have already proved to be efficient and flexible -allowing for instance feature maps embedding and the use of deep architectures -and the lack of theoretical studies needs to be filled.

We consider the unsupervised classification of a bipartite high-dimensional Gaussian mixture, with sparse means. This framework is indeed a good benchmark, since on the one hand, it is sufficiently simple to allow us to understand the nature of the target (β 0,1 , ..., β 0,K ) -with K = 2 and β 0,1 = -β 0,2 in our bipartite framework -and to investigate the rate of convergence of estimators of the form of (2), suitably regularized by a 1 -penalty. On the other hand, the two-component high-dimensional Gaussian mixture has received recently at lot of attention [START_REF] Bouveyron | Discriminative variable selection for clustering with the sparse fisher-em algorithm[END_REF][START_REF] Azizyan | Minimax theory for high-dimensional gaussian mixtures with sparse mean separation[END_REF][START_REF] Ndaoud | Sharp optimal recovery in the two gaussian mixture model[END_REF][START_REF] Li | Minimax gaussian classification & clustering[END_REF][START_REF] Jin | Phase transitions for high dimensional clustering and related problems[END_REF][START_REF] Fan | Curse of heterogeneity: Computational barriers in sparse mixture models and phase retrieval[END_REF][START_REF] Cai | Chime: Clustering of high-dimensional gaussian mixtures with em algorithm and its optimality[END_REF][START_REF] Azizyan | Efficient sparse clustering of high-dimensional non-spherical gaussian mixtures[END_REF][START_REF] Jin | Influential features pca for high dimensional clustering[END_REF][START_REF] Brennan | Average-case lower bounds for learning sparse mixtures, robust estimation and semirandom adversaries[END_REF][START_REF] Löffler | Computationally efficient sparse clustering[END_REF]. Let us emphasize that our goal is not a priori to provide a state-of-the-art method, specifically designed to solve the high-dimensional

Gaussian mixture clustering, but to explore for the first time the theoretical behavior of discriminative estimators that minimize the (regularized) classification entropy and see how they can adapt to a sparse setting.

Some notations and definitions

Let a := (a 1 , ..., a d ) ∈ R d and X be a random variable valued in R d , with distribution P . More precisely X := εZ with ε ∼ Rad 1 2 and Z ∼ N (a, I d ) a Gaussian vector independent from ε, with normalized variance equal to the identity matrix I d . Take n ∈ N * , X (1) , ..., X (n) are observations of X independent and identically distributed according to P . Our goal is to estimate the labelling function Y * (x) = sign(x t a), or its opposite, which gives the same hard clustering. This amounts to estimate the separation vector a.

To do this, we will use an entropy criterion.

Set the logistic probability p β (X) := 1/(1 + e X t β ) where β ∈ R d and its complementary probability q β (X) := e X t β /(1 + e X t β ). The logistic entropy ρ β is defined as follows,

ρ β (X) := ρ β t X = -p β (X) log p β (X) -q β (X) log q β (X). The associated risk is R (β) := E [ρ β (X)].
The latter expectation will also be denoted P ρ β for short. Let • 1 , • 2 and • ∞ be respectively the L 1 ,L 2 and L ∞ -norm, and denote B 1 (0, R), B 2 (0, R) and B ∞ (0, R) their corresponding balls centered at 0 with radius R in R d . We consider the minimizer β 0 of the risk R (β) over a L 2 -ball B 2 (0, R) -where the radius R will be fixed latter -, β 0 ∈ arg min

β∈B 2 (0,R) {R (β)}, with excess risk E (β, β 0 ) := R (β) -R (β 0 ), for β ∈ B 2 (0, R). The empirical distribution of X (1) , ..., X (n) is P n := 1 n n i=1 δ X (i)
, where δ X (i) is the Dirac distribution on X (i) , and the quantity Rn (β) :

= P n ρ β = 1 n n i=1 ρ β X (i) is the empirical counterpart of R (β), called the empirical risk.
We denote by γ the probability density function of a centered standard real Gaussian variable N (0, 1).

Φ is its cumulative distribution function and Φ c : t → ∞ t γ (u) du the tail distribution of the density γ. In addition, we write G the so-called Gaussian Mill's ratio G (x) := Φ c (x) γ(x) . In this article α : x → -e x (1+e x ) 2 1 + x 1-e x 1+e x and x 1 is the unique element of {x > 0 : α(x) = 0}, satisfying x 1 ∈ [1.54, 1.55]. ∀u, v ∈ R, u ∧ v := min (u, v) and u ∨ v := max (u, v). For a vector β = (β 1 , ..., β p ) t ∈ R p , we define its support as the set S of indices such that S = {i ∈ {1, ..., p}; β i = 0}. The vector β is said to be s-sparse if Card(S) ≤ s. Furthermore, for a set of indices I ⊂ {1, ..., p}, we denote β I ∈ R p the vector such that

β I i = β i if i ∈ I and β I j = 0 if j ∈ I.
3 Minimising the risk over a L 2 -ball

Recall that

β 0 ∈ arg min β∈B 2 (0,R) {R (β)} ,
where the radius R will be fixed later. Let us investigate the geometry of the risk R defined by the logistic entropy.

Proposition 1. The risk is symmetric, R (β) = R (-β), and the risk value R (β) with β 2 = r fixed is decreasing with respect to β t a .

Proposition 1 states that the risk is symmetric around zero, and that its values on a sphere are increasing with respect to the distance to the line Ra. Its proof can be found in Section 5.1.

Proposition 2. The function λ → R (λβ) is decreasing for λ ∈ R + .
In Proposition 2, it is proved that the risk is decreasing on semi-lines starting at zero. For a proof of this result, see Section 5.1. From Propositions 1 and 2, we characterize the minimizers of the risk over a

L 2 -ball. Corollary 3. The minimum of R (β) on B 2 (0, R) is reached at ±β 0 where β 0 := Ra/ a 2 .
From Corollary 3, we deduce that estimating β 0 or its opposite directly gives an estimation of the best labelling function Y * for our clustering problem. A look at the proof of Propositions 1 and 2 shows that these results, and hence Corollary 3, hold true in the more general setting where the distribution of Z is only assumed to be spherically symmetric.

In order to tackle the estimation of a sparse separation vector a, the following property will be helpful.

Theorem 4. Let β 0 = Ra/ a 2 and let Λ min be the smallest eigenvalue of the Hessian d 2 β 0 R at β 0 . Take a parameter ν = 0.95, R ≥ √ x 1 + 0.08 (R = 1.28 for instance) and assume that a 2 ≥ 2R, then

Λ min ≥ ν 4 Φ c a 2 - x 1 R -Φ c a 2 + x 1 R .
Theorem 4 states that if the radius R and the mean vector a are sufficiently large, then the risk defined by the logistic entropy is locally strongly convex around β 0 . The risk is not convex over the whole L 2 -ball B 2 (0, R), but this local convexity is very convenient, since it allows to deduce a quadratic growth of the excess risk pointed on β 0 , as follows.

variable uniformly distributed on the unit L 2 -ball. Assume that R ≥ √ x 1 + 0.08 and a 2 ≥ 2R. We have

inf β∈Ψ U E (β, β 0 ) β -β 0 2 2 ≥ c 0 > 0 with c 0 = L 0 ( a 2 -R) 6 a 8 2 R 2 . exp -a 2 R -2R 2
for a numerical constant L 0 (L 0 = 9 × 2 22 holds).

The quadratic growth of the excess risk stated in Lemma 5 will turn out to be a keystone to prove the oracle inequality for the excess risk of the minimizer of empirical risk regularized by a 1 penalty (see Section 4). The proof of Lemma 5 is postponed to Section 5.1.

An oracle inequality in high dimension

Recall that β 0 = Ra/ a 2 is a minimizer of the risk over the L 2 -ball of radius R: β 0 ∈ arg min

β∈B 2 (0,R) R (β).
Set Ψ U := β ∈ B 2 (0, R) : β t U > 0 and where U is a random variable uniformly distributed on the unit Euclidean sphere, independent from the observations. We have P(β t 0 U = 0) = 0 and so β 0 or its opposite belongs to Ψ U . Without loss of generality, we assume that β 0 ∈ Ψ U and analyze the situation conditionnally on the choice of U .

We investigate the behavior of the following estimator,

β := arg min β∈Ψ U {R n (β) + λ β 1 } . (4) 
Set also the empirical process V n (β) := (P n -P ) (ρ β ). For some T > 1, define the event

T := sup β∈B 2 (0,R) |V n (β) -V n (β 0 )| β -β 0 1 ∨ λ 0 ≤ 2T λ 0 , (5) 
where λ 0 >0 is to be fixed in the following theorem.

Theorem 6. Fix n ≥ 2. Assume that β 0 -or equivalently a -is s-sparse, for some integer s ≥ 1, and denote S its support. Assume also that R = √ x 1 + 0.08 and a 2 ≥ 2R.

Set M n := a ∞ + √ 2 log d + 2 log (1 + n) and λ 0 := 3LM n 5 3 log (2d) log n + 4 n -1/2 .
When the event T occurs, it holds: ∀λ > 2T λ 0 ,

E β, β 0 + 4 (λ -2T λ 0 ) βS c 1 ≤ A a 2 ,R s (T λ 0 + λ) 2 , ( 6 
)
where A a 2 ,R is a constant depending only on a 2 and R. More precisely, for a numerical constant A 0 , one can take

A a 2 ,R = A 0 a 8 2 ( a 2 -R) -6 R 2 e a 2 R+2R 2 .
Furthermore, the event T occurs with probability at least

1 - 3 4 log 4R 2 nd L 2 M 2 n exp -21 (T -1) 2 log (2d) log 2 n - 1 25T 2 log (2d) n log 2 n .
According to Theorem 6, if the regularization parameter λ is equal for instance to 3T λ 0 , then the rate of convergence of the excess risk is of the order

s log d log 2 n log (d ∨ n) n ,
with a pre-factor that only depends on a 2 and R. Thus the estimator β adapts to sparsity and is able to estimate β 0 even if d >> n. Furthermore, the rate of convergence of βS c 1 would be given by

s log d log 2 n log (d ∨ n) n ,
with also a pre-factor that only depends on a 2 and R. This means that if s and d are such that this rate (for a bounded a 2 ) goes to zero with n growing to infinity, then the support S of β 0 is recovered in the sense that βS c 1 goes to zero.

Note however that the dependence in a 2 is exponential in our bounds. This due to our argument of proof, which uses the local convexity of the risk around β 0 . But when a 2 is large, the risk tends to be flat (see Theorem 4). This local convexity argument is also at the core the approach, developed in [START_REF] Städler | 1 -penalization for mixture regression models[END_REF],

to the non-convex 1 -penalized loss in mixture regression (see also [START_REF] Bühlmann | Statistics for high-dimensional data: methods, theory and applications[END_REF]Chapter 9]). Note that the needed lower bound on a 2 is independent from the dimension d.

A careful look at the proofs also shows that when the conclusion of Lemma 5 holds, that is the excess risk dominates the square of the Euclidean distance, then Theorem 6 still holds for a general, bounded and Lipschitz loss.

It is also worth noting that in a classical, non-sparse case where the dimension is (much) smaller than the sample size, a convergence bound could also be obtained, by standard empirical process techniques.

Indeed, the loss ρ is bounded and Lipschitz, so the rate of convergence of the following estimator,

β ∈ arg min β∈B 2 (0,R) Rn (β) , is of the order Rd n + log(1/δ) n + log(1/δ) n ,
up to a numerical pre-factor and on an event of probability at least 1 -δ for δ ∈ (0, 1). An important remark is that the latter rate in d/n holds without any assumption on R and a 2 , because the local convexity of the risk on β 0 -that is Theorem 4 -is not needed to prove it. If Theorem 4 furthermore holds, it is easy to see that the rate is actually d/n, up to a pre-factor. Indeed, Theorem induces a so-called margin relation for the excess risk, which in turn induces a fast rate, since the loss is bounded (see for instance [START_REF] Massart | Concentration inequalities and model selection[END_REF]).

Also, one can consider the adaptive selection of the regularization parameter. For this, a sensible idea is to consider a BIC-type criterion defined with the active set of the estimators corresponding to different values of the regularization parameter.

We postpone to a forthcoming addition the practical implementation of the estimator, together with comparisons in the sparse two-component Gaussian mixture model with other available algorithms.

Proofs

Define the empirical process V n (β) = (P n -P ) (ρ β ) and V trunc n (β) = (P n -P ) ρ β I {G(X)≤Mn} where G (X) := X ∞ and note that ρ β : β → ρ(β t X) is L-lipschitz (with L < 2.5).

Proofs of the main results

Proof of Proposition 1. Take X = εZ where ε ∼ Rad (1/2) and Z ∼ N (a, I d ), with a ∈ R d and also

N ∼ N (0, 1). Because expression (11) of Lemma 7 is symmetric in X, one has R (β) = R (-β) and R (β) = E log 1 + e Z t β - Z t βe Z t β 1 + e Z t β .
The distribution of the real-valued random variable Z t β is N β t a, β 2 2 and we assume that β 2 = r.

The criterion can be seen as a function of µ := β t a and r:

R (β) = E log 1 + e µ+rN - (µ + rN ) e µ+rN 1 + e µ+rN =: R (µ, r) . (7) 
Its derivative with respect to µ is: 

∂ µ R (µ,
∂ µ R (µ, r) = -E (µ + rN ) e µ+rN (1 + e µ+rN ) 2 .
Let us define g :

x → xe x (1+e x ) 2 so that ∂ µ R (µ, r) = -E [g (µ + rN )].
We use the lemma 8 and the fact that g is odd and positive on (0, +∞) to conclude that E [g (µ + rN )] has the sign of µ, which gives the result.

Proof of Proposition 2. Take β ∈ R d , there is u ∈ R such that β t a = u β 2 . Recall Identity [START_REF] Bouveyron | Discriminative variable selection for clustering with the sparse fisher-em algorithm[END_REF] above, where R can be seen as a function of µ and r with Z t β ∼ N µ, r 2 . Then we have

∂R (λβ) ∂λ = ∂R λβ t a, λβ 2 ∂λ = ∂R (ru, r) ∂r β 2 .
We set ∀u ∈ R, N u ∼ N (u, 1) and Equation [START_REF] Bouveyron | Discriminative variable selection for clustering with the sparse fisher-em algorithm[END_REF] gives:

∂R (ru, r) ∂r = ∂ ∂r E log 1 + e ru+rN 0 - (ru + rN 0 ) e (ru+rN 0 ) 1 + e (ru+rN 0 ) = E ∂ ∂r log 1 + e rNu - ∂ ∂r rN u e rNu 1 + e rNu = E N u e rNu 1 + e rNu - N u e rNu 1 + e rNu + rN u N u e rNu 1 + e rNu + rN u e rNu -N u e rNu (1 + e rNu ) 2 = E - rN u N u e rNu 1 + e rNu + rN u e rNu N u e rNu (1 + e rNu ) 2 = E rN u N u e rNu 1 + e rNu e rNu 1 + e rNu -1 = E rN u N u e rNu 1 + e rNu -1 1 + e rNu = -E rN 2 u e rNu (1 + e rNu ) 2 < 0.
Hence ∂R(λβ) ∂λ < 0 as required.

Proof of Theorem 4. We make use of Equation ( 21) from Lemma 14:

∀a ∈ R d , R, ν > 0, R 1 -R -a 2 + x 1 + 8 100 R G x 1 R + R -a 2 ≥ (1 + ν) e x 1 4 G a 2 - x 1 R , (8) 
where, see Section 2, x 1 is a positive numerical constant and the function G is the so-called Gaussian Mill's ratio. By Proposition 24, we also have that G is decreasing on R. Hence, if Equation ( 8) is satisfied for some values of a 2 , R and ν such that

a 2 -R + (x 1 + 0.08) R -1 > 0, then it is satisfied for any triplet ( a 2 + h, R, ν) with h > 0.
In addition, we know from Lemma 26 that a 2 = 2R ≈ 2.548,

R = √ x 1 + 0.08 ≈ 1.
2741 and ν = 0.95 make Equation (8) hold true. Consequently, it also holds true when a 2 ≥ 2R ≈ 2.548, R = √ x 1 + 0.08 ≈ 1.2741 and ν = 0.95.

According to lemma 14, when Equation ( 8) holds, one can control from below the values of

d 2 β 0 R (h, h).
More precisely,

Λ min := inf h =1 d 2 β 0 R (h, h) ≥ inf h =1 η= h ν 4 η 2 x 2 1 R 2 + 1 -η 2 Φ c a 2 - x 1 R -Φ c a 2 + x 1 R = ν 4 Φ c a 2 - x 1 R -Φ c a 2 + x 1 R inf 0≤η≤1 η 2 x 2 1 R 2 + 1 -η 2 =1 because x 1 /R ≥ 1.
This proves the result.

Proof of Lemma 5. The risk R admits two minima β 0 and -β 0 on B 2 (0, R). We consider

Ψ U = β ∈ B 2 (0, R) : β t U > 0 ,
where U is a random variable uniformly distributed on the unit L 2 -ball. The probability that U ∈ β ⊥ 0 is 0 then with probability 1 we have U / ∈ β ⊥ 0 and there is therefore only one vector among β 0 and -β 0 that satisfies β t 0 U > 0. We call β 0 the vector satisfying both R (β 0 ) is the minimum of R (•) and β t 0 U > 0.

Take β ∈ Ψ U and let ε ∈ (0, R), we are about to control E (β, β 0 ) on B 2 (β 0 , ε) and ν ∈ B 2 (0, R) :

β t 0 ν > 0 \
B 2 (β 0 , ε) but these two sets may not be included Ψ U . To bypass this issue, remark that the risk R is symmetric with respect to 0. Hence, in the case where β / ∈ ν ∈ B 2 (0, R) : β t 0 ν > 0 , we will have

E (β, β 0 ) = E (-β, β 0 ) where -β ∈ ν ∈ B 2 (0, R) : β t 0 ν > 0 . Consequently, one can always control E (•, β 0 ) on Ψ U with its values on ν ∈ B 2 (0, R) : β t 0 ν > 0 ,
and without loss of generality we will focus

on the control of E (•, β 0 ) on ν ∈ B 2 (0, R) : β t 0 ν > 0 . Case 1: β ∈ B 2 (β 0 , ε)
We know from Lemma 30 that ∀β ∈ B 2 (β 0 , ε),

E (β, β 0 ) e -( a 2 R-R 2 /2) β -β 0 2 2 ≥ 1 16 1 + ( a 2 -R) 2 -24 a 4 e R 2 /2 e ε a 2 β -β 0 2 . When β -β 0 2 ≤ 1 2 1 16 1+( a 2 -R) 2 24 a 4 e R 2 /2 e ε a 2 , one has E (β, β 0 ) e -( a 2 R-R 2 /2) β -β 0 2 2 ≥ 1 + ( a 2 -R) 2 16 .
In particular, the latter inequality holds when

ε ≤ 1 768 1 + ( a 2 -R) 2 a 4 2 e R 2 /2 e -ε a 2 ,
which is satisfied for

ε ≤ 1 768 1 + ( a 2 -R) 2 a 4 2 e R 2 /2 exp - 1 384 1 + ( a 2 -R) 2 a 4 2 e R 2 /2 a 2 = 1 768 1 + ( a 2 -R) 2 a 4 2 exp -R 2 /2 - 1 + ( a 2 -R) 2 384 a 3 2 e R 2 /2 =: ε max .
Then for all β ∈ B 2 (β 0 , ε max ), we have

E (β, β 0 ) β -β 0 2 2 ≥ 1 32 1 + ( a 2 -R) 2 e -( a 2 R-R 2 /2) . Case 2: β ∈ ν ∈ B 2 (0, R) : β t 0 ν > 0 \ B 2 (β 0 , ε max ). Lemmas 1 and 2 imply that ∀λ > 1, E (λβ, β 0 ) < E (β, β 0 ) and if ν ∈ µ ∈ B 2 (0, R) : µ = β & β t 0 µ > β t 0 β , E (ν, β 0 ) < E (β, β 0 ) .
With these two properties, we are always able to control E (β, β 0 ) with another value E (ν, β 0 ) where

ν ∈ B 2 (β 0 , ε max ). Indeed, if R • β intersects B 2 (β 0 , ε max ), there there exists λ > 1 such that E (β, β 0 ) > E (λβ, β 0 ), where λβ ∈ B 2 (β 0 , ε max ). Oherwise, we have E (β, β 0 ) ≥ E R β β 2 , β 0 and E R β 0 β 0 2 , β 0 > E (β inter , β 0 ) where β inter is the rotation of R β 0 β 0 2 towards β 0 so that β inter is at the frontier of B 2 (β 0 , ε max ). Moreover, ∀β ∈ ν ∈ B 2 (0, R) : β t 0 ν > 0 we have β -β 0 2 2 ≤ 2R 2 . Consequently, for all β ∈ ν ∈ B 2 (0, R) : β t 0 ν > 0 \ B 2 (β 0 , ε max ) , there exists ν ∈ B 2 (β 0 , ε max ) such that ν -β 0 2 = ε max and E (β, β 0 ) β -β 0 2 2 ≥ E (β, β 0 ) 2R 2 ≥ E (ν, β 0 ) 2R 2 .
Furthermmore, from Case 1 above, we have that ∀ν ∈ B 2 (β 0 , ε max ) such that ν -

β 0 2 = ε max , E (ν, β 0 ) ≥ 1 32 1 + ( a 2 -R) 2 e -( a 2 R-R 2 /2) ε 2 max .
Hence, for all β ∈ ν ∈ B 2 (0, R) :

β t 0 ν > 0 \ B 2 (β 0 , ε max ), E (β, β 0 ) β -β 0 2 2 ≥ 1 + ( a 2 -R) 2 e -( a 2 R-R 2 /2) ε 2 max 64R 2 .
Finally, from the two cases, we get

inf β∈{ν∈B 2 (0,R):β t 0 ν>0} E (β, β 0 ) β -β 0 2 2 ≥ 1 + ( a 2 -R) 2 e -( a 2 R-R 2 /2) ε 2 max 64R 2 .
Consequently, the result is also true when one takes the infimum over Ψ U :

inf β∈Ψ U E (β, β 0 ) β -β 0 2 2 ≥ 1 + ( a 2 -R) 2 e -( a 2 R-R 2 /2) 64R 2 1 768 1 + ( a 2 -R) 2 a 4 2 exp -R 2 /2 - 1 + ( a 2 -R) 2 384 a 3 2 e R 2 /2 2 = 1 + ( a 2 -R) 2 3 9 • 2 22 a 8 2 R 2 . exp -a 2 R -R 2 /2 -R 2 - 1 + ( a 2 -R) 2 384 a 3 2 e R 2 /2 ≥ ( a 2 -R) 6 9 • 2 22 a 8 2 R 2 . exp -a 2 R -R 2 /2 -R 2 -R 2 /2 ≥ ( a 2 -R) 6 9 • 2 22 a 8 2 R 2 . exp -a 2 R -2R 2 .
We present now the proof of our main result, that is the oracle inequality stated in Section 4.

Proof of Theorem 6. We know from Lemma 10 that

E β, β 0 + λ β 1 ≤ V n β -V n (β 0 ) + λ β 0 1 (9) 
We set ourselves in the event T defined in [START_REF] Wilhelm | An inequality for mill's ratio[END_REF]. It holds

sup β∈B 2 (0,R) |V n (β) -V n (β 0 )| β -β 0 1 ∨ λ 0 ≤ 2T λ 0
and, as β ∈ B 2 (0, R), Equation ( 9) gives

E β, β 0 + λ β 1 ≤ 2T λ 0 β -β 0 1 ∨ λ 0 + λ β 0 1 . Case 1: β -β 0 1 ∨ λ 0 = λ 0 . We successively have E β, β 0 ≤ 2T λ 2 0 + λ β 0 1 -β 1 ≤ 2T λ 2 0 + λ β 0 1 -β 1 ≤ 2T λ 2 0 + λ β 0 -β 1 .
Hence,

E β, β 0 + 2λ β 0 -β 1 ≤ 2T λ 2 0 + 3λ β 0 -β 1 ≤ 2T λ 2 0 + 3λλ 0 ≤ 2 (T λ 0 + λ) 2 . Finally, since 2 (λ -2T λ 0 ) ≤ 2λ and βS c 1 = β S c 0 -βS c 1 ≤ β 0 -β 1 E β, β 0 + 2 (λ -2T λ 0 ) βS c 1 ≤ 3 (T λ 0 + λ) 2 .
Case 2:

β -β 0 1 ∨ λ 0 = β -β 0 1
. We have

β 1 = βS 1 + βS c 1 , β 0 1 = β S 0 1 and β -β 0 1 = βS -β S 0 1 + βS c 1 = βS -β 0 1 + βS c 1 . Consequently, it holds successively E β, β 0 + λ β 1 ≤ 2T λ 0 β -β 0 1 + λ β 0 1 , E β, β 0 + λ βS 1 + λ βS c 1 ≤ 2T λ 0 βS -β 0 1 + 2T λ 0 βS c 1 + λ β S 0 1 , E β, β 0 + λ βS c 1 -2T λ 0 βS c 1 ≤ 2T λ 0 βS -β 0 1 + λ β S 0 1 -λ βS 1 , E β, β 0 + (λ -2T λ 0 ) βS c 1 ≤ 2T λ 0 βS -β 0 1 + λ β S 0 -βS 1 , E β, β 0 + (λ -2T λ 0 ) βS c 1 ≤ (2T λ 0 + λ) β 0 -βS 1 .
Since β 0 -βS has at most s non-zero coordinates, one has β 0 -βS

1 ≤ √ s β 0 -βS 2 ≤ √ s β 0 -β 2 .
Hence, for any c 0 > 0,

E β, β 0 + (λ -2T λ 0 ) βS c 1 ≤ (T λ 0 + λ) s c 0 √ c 0 β 0 -β 2 . Now use the fact that ∀a, b, 2ab ≤ a 2 + b 2 to get E β, β 0 + (λ -2T λ 0 ) βS c 1 ≤ (T λ 0 + λ) 2 s 2c 0 + c 0 β 0 -β 2 2
2 .

So we can use Lemma 5 and have E β,

β 0 ≥ c 0 β 0 -β 2 2 where c 0 = ( a 2 -R) 6 9•2 22 a 8 2 R 2 e -a 2 R-2R 2 . Conse- quently, for this choice of c 0 , E β, β 0 + (λ -2T λ 0 ) βS c 1 ≤ (T λ 0 + λ) 2 s 2c 0 + E β, β 0 2 ,
which gives

E β, β 0 + 2 (λ -2T λ 0 ) βS c 1 ≤ (T λ 0 + λ) 2 . s c 0 .
Finally, combining the two cases, we obtain

E β, β 0 + 2 (λ -2T λ 0 ) βS c 1 ≤ (T λ 0 + λ) 2 . max s c 0 , 2 .
The bound on the probability of the event T is given in Theorem 9.

Auxiliary results

Let us first state the following basic lemma, where we compute the derivatives of the loss and its risk.

Lemma 7. With notations of section 2, it holds

ρ β (X) = -log q β (X) + X t β.p β (X) (10) 
ρ β (X) = log 1 + e X t β - X t βe X t β 1 + e X t β (11) ∂p β (X) ∂β u = -X u p β (X) q β (X) (12) 
∂q β (X) ∂β u = X u p β (X) q β (X) (13) 
∂ρ β (X) ∂β u = -X t βX u p β (X) q β (X) (14) 
∂ ∂β v ∂ ∂β u ρ β (X) = = -X v X u α X t β (15) ∂ ∂β w ∂ ∂β v ∂ ∂β u ρ β (X) = -X w X v X u α X t β (16) 
(d β R) (h) = E -X t β.p β (X) q β (X) X t h (17) 
d 2 β R (h, k) = E X t h.X t k.α X t β (18) 
d 3 β R (h, k, l) = E X t h.X t k.X t l.α X t β (19) 
Proof. Consider X, β ∈ R d , ρ β (X) is defined in section 2. For simplicity, p and q stand for p β (X) and q β (X) recall that p β (X) = q β (X) e -Xβ :

ρ β (X) = -p log p -q log q = -qe -Xβ log qe -Xβ -q log q = -qe -X t β log q + X t βqe -X t β -q log q = -q 1 + e -X t β log q + X t βqe -X t β = -log q + X t βp = log 1 + e X t β - X t βe X t β 1 + e X t β .
Denote β u the u-th component of β. We have,

∂p β (X) ∂β u = ∂ ∂β u 1 1 + e X t β = - X u e X t β 1 + e X t β 2 = -X u p β (X) q β (X) and ∂q β (X) ∂β u = ∂ ∂β u [1 -p β (X)] = - ∂p β (X) ∂β u = X u p β (X) q β (X) .
Secondly, we use Equation [START_REF] Bunea | Pecok: a convex optimization approach to variable clustering[END_REF] to have

∂ρ β (X) ∂β u = - ∂ log q ∂β u + ∂ X t βp ∂β u = - ∂q ∂βu q + ∂ X t β ∂β u p + X t β ∂p ∂β u = - (X u pq) q + X u p + X t β (-X u pq) = -X t βX u p β (X) q β (X) . 20 
The second derivatives are

∂ ∂β v ∂ ∂β u ρ β (X) = - ∂ (Xβ) ∂β v X u pq -X t βX u ∂p ∂β v q -X t βX u p ∂q ∂β v = -(X v ) X u pq -X t βX u (-X v pq) q -X t βX u p (X v qp) = -X v X u pq 1 -X t β (q -p) = -X v X u e X t β 1 + e X t β 2 1 + X t β 1 -e X t β 1 + e X t β = X v X u α X t β .
The third derivatives are

∂ ∂β w ∂ ∂β v ∂ ∂β u ρ β (X) = X v X u ∂ ∂β w α X t β = X w X v X u α X t β .
As the derivatives are uniformly bounded with respect to β, the theorem of derivation under integral can be applied and it comes that ∀h, k, l, ∈ R d ,

(d β R) (h) = E -X t β.p β (X) q β (X) X t h , d 2 β R (h, k) = E X t h.X t k.α X t β , d 3 β R (h, k, l) = E X t h.X t k.X t l.α X t β .
Lemma 8. Take r > 0. For any function g odd on R, positive on (0, +∞) and when U is a symetric random variable with a density γ decreasing on R + , the quantity E [g (µ + rU )] has the sign of µ.

Proof. Take r, µ > 0, U 1 and U 2 two independent copies of U . It holds

E [g (µ + rU )] = E [g (µ + rU 1 ) I U 1 >0 + g (µ -rU 2 ) I U 2 >0 ] = E [g (µ + rU 1 ) I U 1 >0 + g (µ -rU 2 ) I 0<U 2 < µ r + g (µ -rU 2 ) I µ r <U 2 <2 µ r + g (µ -rU 2 ) I 2 µ r <U 2 = E g (µ + rU 1 ) I U 1 >0 + g (µ -rU 2 ) I 2 µ r <U 2 +g (µ -rU 1 ) I 0<U 2 < µ r + g (µ -rU 2 ) I µ r <U 2 <2 µ r = E g (µ + rU 1 ) I U 1 >0 + g (µ -rU 2 ) I 2 µ r <U 2 + E g (µ -rU 1 ) I 0<U 2 < µ r + g (µ -rU 2 ) I µ r <U 2 <2 µ r .
Let us compute the sign of E g (µ + rU 1 )

I U 1 >0 + g (µ -rU 2 ) I 2 µ r <U 2 : E g (µ + rU 1 ) I U 1 >0 + g (µ -rU 2 ) I 2 µ r <U 2 = ∞ 0 g (µ + rx) γ (x) dx + ∞ 2 µ r g (µ -rx) γ (x) dx x=y+ 2µ r = ∞ 0 g (µ + rx) γ (x) dx + ∞ 0 g µ -r y + 2µ r γ y + 2µ r dy = ∞ 0 g (µ + rx) γ (x) dx + ∞ 0 g (-ry -µ) γ y + 2µ r dy = ∞ 0 g (µ + rx) γ (x) dx + ∞ 0 -g (µ + ry) γ y + 2µ r dy = ∞ 0 g (µ + rx) >0 γ (x) -γ x + 2µ r >0 dx > 0.
Let us now compute the sign of E g (µ -rU 1 )

I 0<U 2 < µ r + g (µ -rU 2 ) I µ r <U 2 <2 µ r : E g (µ -rU 1 ) I 0<U 2 < µ r + g (µ -rU 2 ) I µ r <U 2 <2 µ r = µ r 0 g (µ -rx) γ (x) dx + 2µ r µ r g (µ -rx) γ (x) dx x= 2µ r -y = µ r 0 g (µ -rx) γ (x) dx + µ r 0 g µ -r 2µ r -y γ 2µ r -y dy = µ r 0 g (µ -rx) γ (x) dx + µ r 0 g (ry -µ) γ 2µ r -y dy = µ r 0 g (µ -rx) γ (x) dx + µ r 0 -g (µ -ry) γ 2µ r -y dy = µ r 0 g(µ -rx) >0 >0       γ (x) -γ 2µ r -x 2µ r -x> µ r >x       >0 dx > 0 Hence E [g (µ + rU )] > 0. If µ < 0, then one has E [g (µ + rU )] = -E [g (-µ -rU )]
and the previous result applies since -µ > 0 and -U ∼ U . Thus we find that if µ < 0, E [g (µ + rU )] < 0.

Theorem 9. Set Θ = B 2 (0, R), M n = a ∞ + √ 2 log d + 2 log (1 + n) and λ 0 = 3n -1/2 LM n 5 3 log (2d) log n + 4 .
It holds ∀n ≥ 2, ∀T ≥ 1,

P sup β∈Θ |V n (β) -V n (β 0 )| β -β 0 1 ∨ λ 0 > 2T λ 0 ≤ 3 4 log 4R 2 nd L 2 M 2 n exp -21 (T -1) 2 log (2d) log 2 n + 1 25T 2 log (2d) n log 2 n .
Proof. First, the triangular inequality gives

|V n (β) -V n (β 0 )| ≤ V trunc n (β) -V trunc n (β 0 ) + V trunc n (β) -V trunc n (β 0 ) -(V n (β) -V n (β 0 )) ,
and since ∀a, b, t > 0 on has "a + b > 2t" implies "either a > t or b > t", the probability of interest can be controlled as follows:

P sup β∈Θ |V n (β) -V n (β 0 )| β -β 0 1 ∨ λ 0 > 2T λ 0 ≤ P sup β∈Θ V trunc n (β) -V trunc n (β 0 ) β -β 0 1 ∨ λ 0 > T λ 0 + P sup β∈Θ V trunc n (β) -V trunc n (β 0 ) -(V n (β) -V n (β 0 )) β -β 0 1 ∨ λ 0 > T λ 0 .
Apply now Lemma 40 to have:

P sup β∈Θ |V n (β) -V n (β 0 )| β -β 0 1 ∨ λ 0 > 2T λ 0 ≤ P sup β∈Θ V trunc n (β) -V trunc n (β 0 ) β -β 0 1 ∨ λ 0 > T λ 0 + P 1 n n i=1 F X (i) > T λ 0 L .
From Lemmas 37 and 39, we get

P sup β∈Θ |Vn (β) -Vn (β 0 )| β -β 0 1 ∨ λ 0 > 2T λ 0 ≤ 3 4 log 4R 2 nd L 2 M 2 n exp -21 (T -1) 2 log (2d) log 2 n + 4L 2 M 2 n + a ∞ + 1 n 2 λ 2 0 T 2 .
Furthermore,

4L 2 M 2 n + a ∞ + 1 n 2 λ 2 0 T 2 ≤ 4L 2 M 2 n + a ∞ + 1 n 2 9L 2 M 2 n 5 √ 3 log(2d) log n+4 2 n T 2 ≤ 4 1 + a ∞ +1 M 2 n 9 × 25 3 log (2d) log 2 n nT 2 ≤ 1 25T 2 log (2d) n log 2 n .
Hence,

P sup β∈Θ |Vn (β) -Vn (β 0 )| β -β 0 1 ∨ λ 0 > 2T λ 0 ≤ 3 4 log 4R 2 nd L 2 M 2 n exp -21 (T -1) 2 log (2d) log 2 n + 1 25T 2 log (2d) n log 2 n .
Lemma 10. Recall that β 0 = arg min

β∈Ψ U {R (β)} and β := arg min β∈Ψ U Rn (β) + λ β 1 . It holds E β, β 0 + λ β 1 ≤ V n β -V n (β 0 ) + λ β 0 1 .
Proof. By definition of β, we have:

Rn β + λ β 1 ≤ Rn (β 0 ) + λ β 0 1 .
Injecting the excess risk on both sides of the inequality gives

E β, β 0 + λ β 1 ≤ R( β) -R(β 0 ) + Rn (β 0 ) -Rn β + λ β 0 1
Then the result comes from the inequality:

R( β) -R(β 0 ) + Rn (β 0 ) -Rn β ≤ V n β -V n (β 0 ) .

Some further technical lemmas

Lemma 11. Assuming a ∈ R d , Z ∼ a + N , N ∼ N (0, I d ), β 0 = Ra/ a 2 , and h ⊥ ∈ β ⊥ 0 , then h t ⊥ Z and Z t β 0 are two independent Gaussian variables.

Proof. Note that h t ⊥ a = 0. We have

Cov h t ⊥ Z, Z t β 0 = E h t ⊥ Z -E h t ⊥ Z Z t β 0 -E Z t β 0 = E h t ⊥ (a + N ) -E h t ⊥ (a + N ) (a + N ) t β 0 -E (a + N ) t β 0 = E h t ⊥ N -E h t ⊥ N a t β 0 + N t β 0 -E a t β 0 + N t β 0 = E h t ⊥ N -h t ⊥ E [N ] N t β 0 -E N t β 0 = h t ⊥ E N N t β 0 = h t ⊥ β 0 = 0.
Lemma 12. With Z, β 0 , α and R usual notations and for all h := h + h ⊥ ∈ V ect(β 0 ) ⊕ β ⊥ 0 such that h 2 = 1 and with η := h 2 , we have

d 2 β 0 R (h, h) = η 2 E 1 R 2 Z t β 0 2 α Z t β 0 + 1 -η 2 E α Z t β 0 .
Proof. We computed d 2 β 0 R in Equation ( 18) of Lemma 7. The function α (see Section 2) is even, so the entries of the Hessian

d 2 β 0 R are ∀u, v ∈ 1, d , d 2 β 0 R u,v = E (εZ v ) (εZ u ) α εZ t β 0 = E Z v Z u α Z t β 0 .

Now, let us use the decomposition

h = h + h ⊥ and remark that h = η β 0 β 0 2 = η R β 0 with ∈ {-1, 1}. It comes d 2 β 0 R (h, h) = E h t Z 2 α Z t β 0 = E h + h ⊥ t Z 2 α Z t β 0 = E h t Z 2 + 2.h t Z.h t ⊥ Z + h t ⊥ Z 2 α Z t β 0 = E h t Z 2 α Z t β 0 + 2E h t Z.h t ⊥ Z.α Z t β 0 + E h t ⊥ Z 2 α Z t β 0 = E η R β t 0 Z 2 α Z t β 0 + 2E h t Z.h t ⊥ Z.α Z t β 0 + E h t ⊥ Z 2 α Z t β 0 = η 2 E 1 R 2 Z t β 0 2 α Z t β 0 + 2E h t Z.h t ⊥ Z.α Z t β 0 + E h t ⊥ Z 2 α Z t β 0 .
Also remark that h t ⊥ Z and Z t β 0 are Gaussian random variables, because Z is a Gaussian vector, that are independent due to lemma 11.

d 2 β 0 R (h, h) = η 2 E 1 R 2 Z t β 0 2 α Z t β 0 + 2E h t Z.h t ⊥ Z.α Z t β 0 + E h t ⊥ Z 2 α Z t β 0 = η 2 E 1 R 2 Z t β 0 2 α Z t β 0 + 2E h t Z.α Z t β 0 E h t ⊥ Z =0 + E h t ⊥ Z 2 E α Z t β 0 = η 2 E 1 R 2 Z t β 0 2 α Z t β 0 + E h t ⊥ Z 2 E α Z t β 0 . Note that E h t ⊥ Z 2 = E h t ⊥ (a + N ) 2 = E h t ⊥ N 2 = h t ⊥ E N N t h ⊥ = 1 -η 2 hence: d 2 β 0 R (h, h) = η 2 E 1 R 2 Z t β 0 2 α Z t β 0 + 1 -η 2 E α Z t β 0 .
Lemma 13. For all h := h + h ⊥ ∈ V ect(β 0 ) ⊕ β ⊥ 0 such that h 2 = 1 and with η := h 2 . The two following quantities

A := η 2 E 1 R 2 Z t β 0 2 α Z t β 0 I {Z t β 0 >x 1 } + 1 -η 2 E α Z t β 0 I {Z t β 0 >x 1 } B := η 2 E 1 R 2 Z t β 0 2 α Z t β 0 I {-x 1 <Z t β 0 <x 1 } + 1 -η 2 E α Z t β 0 I {-x 1 <Z t β 0 <x 1 } are controlled by A > η 2 x 2 1 R 2 + 1 -η 2 R + R ( a 2 -R) -x 1 + 8 100 G x 1 R + R -a 2 γ a 2 - x 1 R e -x 1 , B ≤ 1 4 η 2 x 2 1 R 2 + 1 -η 2 Φ c a 2 - x 1 R -Φ c a 2 + x 1 R .
Proof. Let us first give an upper bound for the quantity B. Recall that, from Lemma 15 we have -α(x) ∈

0, 1 4 for x ∈ [-x 1 , x 1 ]. It holds B = -η 2 E 1 R 2 Z t β 0 2 α Z t β 0 I {-x 1 <Z t β 0 <x 1 } -1 -η 2 E α Z t β I {-x 1 <Z t β 0 <x 1 } ≤ η 2 E 1 R 2 Z t β 0 2 1 4 I {-x 1 <Z t β 0 <x 1 } + 1 -η 2 E 1 4 I {-x 1 <Z t β 0 <x 1 } = 1 4 η 2 x 2 1 R 2 + 1 -η 2 P -x 1 < Z t β 0 < x 1 = 1 4 η 2 x 2 1 R 2 + 1 -η 2 P [-x 1 < R a 2 + RN (0, 1) < x 1 ] = 1 4 η 2 x 2 1 R 2 + 1 -η 2 P - x 1 R -a 2 < N (0, 1) < x 1 R -a 2 = 1 4 η 2 x 2 1 R 2 + 1 -η 2 P a 2 - x 1 R < N (0, 1) < x 1 R + a 2 = 1 4 η 2 x 2 1 R 2 + 1 -η 2 Φ c a 2 - x 1 R -Φ c a 2 + x 1 R .
Let us now turn to the lower bound for the quantity A:

A = η 2 E 1 R 2 Z t β 0 2 α Z t β 0 I {Z t β 0 >x 1 } + 1 -η 2 E α Z t β I {Z t β 0 >x 1 } ≥ η 2 E 1 R 2 x 2 1 α Z t β 0 I {Z t β 0 >x 1 } + 1 -η 2 E α Z t β 0 I {Z t β >x 1 } = η 2 x 2 1 R 2 E α Z t β 0 I {Z t β 0 >x 1 } + 1 -η 2 E α Z t β 0 I {Z t β 0 >x 1 } = η 2 x 2 1 R 2 + 1 -η 2 E α Z t β 0 I {Z t β 0 >x 1 } .
We need now to control E α Z t β 0 I {Z t β 0 >x 1 } from below. We first use Lemma 19 to get:

E α Z t β 0 I {Z t β R >x1} ≥ ∞ x1 x -x 1 - 8 100 e -x e -(x/R-a 2 ) 2 /2 √ 2πR 2 dx = ∞ x1 xe -x e -(x/R-a ) 2 /2 √ 2πR 2 dx -x 1 + 8 100 ∞ x1 e -x e -(x/R-a ) 2 /2 √ 2πR 2 dx.
Using the notations of Lemmas 20 and 21 we obtain,

E α Z t β 0 I {Z t β 0 >x 1 } ≥ J a,R (1, x 1 ) -x 1 + 8 100 K a,R (1, x 1 ) . (20) 
Hence, Lemmas 20 and 21 give:

E α Z t β 0 I {Z t β0>x1} ≥ R 1 + ( a -R) G x 1 R + R -a γ x 1 R -a e -x1 -x 1 + 8 100 γ x 1 R -a G x 1 R + R -a e -x1 ≥ R + R ( a -R) -x 1 + 8 100 G x 1 R + R -a γ a - x 1 R e -x1 .
Finally,

A > η 2 x 2 1 R 2 + 1 -η 2 R + R ( a -R) -x 1 + 8 100 G x 1 R + R -a γ a - x 1 R e -x 1 . Lemma 14. Take a ∈ R d , R, ν > 0 and β 0 := R a a 2 if inequality R 1 -R -a 2 + x 1 + 8 100 R G x 1 R + R -a 2 ≥ (1 + ν) e x 1 4 G a 2 - x 1 R (21) 
is true, then for all h := h + h ⊥ ∈ V ect(β 0 ) ⊕ β ⊥ 0 such that h 2 = 1 and η := h 2 , it also holds

d 2 β 0 R (h, h) > ν 4 η 2 x 2 1 R 2 + 1 -η 2 Φ c a 2 - x 1 R -Φ c a 2 + x 1 R .
Proof. Recall thatβ 0 := Ra/ a 2 . We proved in Lemma 12, that d 2 β 0 R (h, h) is given by the following formula:

d 2 β 0 R (h, h) = η 2 E 1 R 2 Z t β 0 2 α Z t β R + 1 -η 2 E α Z t β 0 .
We know from Lemma 15 that α is non-positive on the interval [-x 1 , x 1 ] and positive otherwise. Consequently, we study the sign of

d 2 β 0 R (h, h) on the partition R = (-∞-, x 1 ) [-x 1 , x 1 ] (x 1 , ∞): d 2 β 0 R (h, h) = η 2 E 1 R 2 Z t β 0 2 α Z t β 0 + 1 -η 2 E α Z t β 0 = η 2 E 1 R 2 Z t β 0 2 α Z t β 0 I {Z t β 0 >x 1 } + 1 -η 2 E α Z t β 0 I {Z t β 0 >x 1 } A + η 2 E 1 R 2 Z t β 0 2 α Z t β 0 I {-x 1 <Z t β 0 <x 1 } + 1 -η 2 E α Z t β 0 I {-x 1 <Z t β 0 <x 1 } -B + η 2 E 1 R 2 Z t β 0 2 α Z t β 0 I {Z t β 0 <x 1 } + 1 -η 2 E α Z t β 0 I {Z t β 0 <x 1 }
We have found in Lemma 13 two quantities a > 0 and b > 0 such that A > a and b ≥ B:

a := η 2 x 2 1 R 2 + 1 -η 2 R + R ( a 2 -R) -x 1 + 8 100 G x 1 R + R -a 2 γ a 2 - x 1 R e -x 1 , b := 1 4 η 2 x 2 1 R 2 + 1 -η 2 Φ c a 2 - x 1 R -Φ c a 2 + x 1 R . If a > (1 + ν) b for some ν > 0 then we have d 2 β 0 R (h, h) > A -B > a -b > νb. As b < 1 4 η 2 x 2 1 R 2 + 1 -η 2 Φ c a 2 - x 1 R ,
the condition "a > (1 + ν) b" is satisfied when these successive conditions are true:

η 2 x 2 1 R 2 + 1 -η 2 R + R ( a 2 -R) -x 1 + 8 100 G x 1 R + R -a 2 γ a 2 - x 1 R e -x1 > (1 + ν) 1 4 η 2 x 2 1 R 2 + 1 -η 2 Φ c a 2 - x 1 R (simplify η 2 x 2 1 R 2 + 1 -η 2 and R in factor in the left-hand side) R 1 -R -a 2 + x 1 + 8 100 R G x 1 R + R -a 2 γ a 2 - x 1 R > (1 + ν) e x1 4 Φ c a 2 - x 1 R
(divide by γ a 2 -x 1 R and make Mill's ratio appear)

R 1 -R -a 2 + x 1 + 8 100 R G x 1 R + R -a 2 ≥ (1 + ν) e x1 4 G a 2 - x 1 R .
To conclude, when the latter inequality is true, one has [START_REF] Azizyan | Efficient sparse clustering of high-dimensional non-spherical gaussian mixtures[END_REF] is the positive real where α is maximal with value α max , its derivative is bounded α ∞ ≤ 0.22 and by definition of x 1 (see Section 2), α(x 1 ) = 0 with

d 2 β 0 R (h, h) > νb. Lemma 15. Study of α(x) = -e x (1+e x ) 2 1 + x 1-e x 1+e x . At x = 0, α(0) = -1 4 is a global minimum, x αmax ∈ [2,
x 1 ≈ 1.54340463. (22) 
x Proof. First, remark that ∀x > 0,

0 x 2 1 x 1 2 x αmax ∞ sign of f - - - - --- - - - - - variations of f 1 0 -∞ sign of f + + 0 - --- - - - - - variations of f 2 f (x 2 ) 2 0 3 -e 2 -∞ sign of f + + + + + + 0 - - - - - - sign of α -1 4 - - ---0 + + + α max +
α(x) ≥ 0 ⇔ 1 + x 1 -e x 1 + e x ≤ 0 ⇔ x (1 -e x ) ≤ -(1 + e x ) ⇔ 1 + e x -xe x + x ≤ 0 ⇔ f (x) ≤ 0.
We study f : x → 1 + e x -xe x + x for x ∈ R + since α is even. First of all, f (x) = 1 -xe x and f (x) = -(x + 1) e x which gives the sign and variation table 1. It is obvious that there exists x 1 > 0 such that f (x 1 ) = 0. Set p x = (1 -e x ) -1 and q x = e x (1 -e x ) -1 . Note that p x -q x = 1-e x 1+e x = -tanh x 2 and p

x q x = 1 4 (p x + q x ) 2 -(p x -q x ) 2 = 1 4 1 -tanh 2 x 2 . α (x) = d dx [-p x q x (1 + x (p x -q x ))] = - d dx [p x ] q x (1 + x (p x -q x )) -p x d dx [q x ] (1 + x (p x -q x )) -p x q x d dx [1 + x (p x -q x )] = p x q x q x (1 + x (p x -q x )) -p x p x q x (1 + x (p x -q x )) -p x q x (p x -q x ) + x d dx [(p x -q x )] = p x q x [q x (1 + x (p x -q x )) -p x (1 + x (p x -q x )) -(p x -q x ) -x (-p x q x -p x q x )] = p x q x [-(p x -q x ) (1 + x (p x -q x )) -(p x -q x ) + 2xp x q x ] = p x q x [2xp x q x -(p x -q x ) (2 + x (p x -q x ))] ( 23 
) = p x q x x 2 1 -tanh 2 x 2 + tanh x 2 2 -x tanh x 2 = p x q x x 2 1 -3 tanh 2 x 2 + 2 tanh x 2 α (x) = 1 4 1 -tanh 2 x 2 x 2 1 -3 tanh 2 x 2 + 2 tanh x 2 .
One can see on Figure ?? that the maximum of α is attained at 2 ≤ x αmax ≤ 3. The function α is Lipschitz and one can see graphically on Figure ?? that α ∞ ≤ 0.22.

Lemma 16. α : x → -e x (1+e x ) 2 1 + x 1-e x 1+e x is concave on [x 1 , 3].
Proof. The shape of α on [x 1 , 3] can be seen on figure 1.

We use the following compact notations: p = 1 1+e x , q = 1 -p, hence α(x) = -pq (1 + x (p -q)). Recall that dp dx = -pq, dq dx = pq and that ∀x > 0, p < q. We proved in Equation ( 23) that

α (x) = pq [(q -p) (2 + x (p -q)) + 2xpq] = p(1 -p) [(1 -2p) (2 + x (p -q)) + 2xp(1 -p)]
In this proof we will also need the variations of : x → 1 + x (p -q): 

(x) = d dx (1 + x (p -q)) = (p -q) + x d dx (p -q) = (p -q) + x (-pq -pq) = (p -q) -2xpq < 0
We will want the sign of d 2 α dx 2 . First remark that

d dx α pq = dα dx 1 pq + α d dx 1 pq = dα dx 1 pq + α -1 (pq) 2 d (pq) dx = α 1 pq + α -1 (pq) 2 (-pqq + ppq) d dx α pq = α 1 pq -α 1 pq (p -q) aalgebraic rearrangment give α = p(1 -p) d dx α pq + α (2p -1)
. Now compute what is still missing: is such that 0 = α(x 1 ) = pq (x 1 )), all intervalle put together gives in case x ∈ [x 1 , 2]: (1 -2p)

d dx α pq = d dx pq [(q -p) (2 + x (p -q)) + 2xpq] pq = d dx [(q -p) (2 + x (p -q)) + 2xpq] = d dx (q -p) (2 + x (p -q)) + (q -p) d dx (2 + x (p -q)) + 2 d dx (xpq) = (pq + pq) (2 + x (p -q)) + (q -p) [(p -q) + x (-pq -pq)] + 2 (pq -xpqq + xppq) = 2pq (2 + x (p -q)) + (q -p) [(p -q) -2xpq] + 2pq (1 + x (p -q)) = 2pq (3 + 2x (p -q)) + (q -p) (p -q) -2xpq (q -p) = 2pq (3 + 2x (p -q)) -(q -p) 2 + 2xpq (p -q) = 2pq (3 + 2x (p -q) + x (p -q)) -(q -p) 2 = 6pq (1 + x (p -q)) -(q -p) 2 = 6pq (x) -(p -q) 2 d dx α pq = 6p(1 -p) (x) -(1 -2p) 2 -Case x ∈ [x 1 ,
α (x) = p(1 -p) ≥0.09   (1 -2p) ≥0.64   1 + 1 + x (p -q) ≥-0.53    + 2 x 1 ≥1.5435 p(1 -p) ≥0.09    ≥ 0.052 α (x) = p(1 -p) ≤0.15   (1 -2p) ≤0.78   1 + 1 + x (p -q) ≤0    + 2 x 1 ≤1.5436 p(1 -p) ≤0.15    ≤ 0.19 it holds d dx α pq = 2p(1 -p) (x) ≤0 -1 -2p 2 
≥-0.78 ≥ -0.26355 α is concave on [x 1 , 2].
-We do the same in the case x ∈ [2, 2.5]:

we 3), ( 2)] ⊂ [-1.125, -0.52] and

α (x) = p(1 -p) ≥0.069   (1 -2p) ≥0.76   1 + 1 + x (p -q) ≥-1.125    + 2 x 1 ≥1.5435 p(1 -p) ≥0.069    ≥ 0.008 α (x) = p(1 -p) ≤0.12   (1 -2p) ≤0.85   1 + 1 + x (p -q) ≤-0.52    + 2 x 1 ≤1.5436 p(1 -p) ≤0.12    ≤ 0.094
We now have 

d dx α pq = 2p(1 -p) ≥0.069 (x) ≤-0.52 -1 -2p 2 
α (x) = p(1 -p) ≥0.0447   (1 -2p) ≥0.848   1 + 1 + x (p -q) ≥-1.72    + 2 x 1 ≥1.5435 p(1 -p) ≥0.0447    ≥ -0.02113 α (x) = p(1 -p) ≤0.071   (1 -2p) ≤0.906   1 + 1 + x (p -q) ≤-1.12    + 2 x 1 ≤1.5436 p(1 -p) ≤0.071    ≤ 0.0079
We now have

d dx α pq = 2p(1 -p) ≥0.0447 (x) ≤-1.12 -1 -2p 2 ≥0.848 ≥0.5776 ≤ -0.83 d dx α pq = 2p(1 -p) ≤0.076 (x) ≥-1,72 -1 -2p 2 ≤0.906 ≤0.7225 ≥ -1, 082
Concerning α , since α ∈ [-0.02113, 0.0079], the reasonning with an intervalle containing 0 is a bit

different: p(1 -p) d dx α pq ∈ [-0.077, -0.039] and α (x) (1 -2p) ∈ [-0.0072, 0.0191], consequently α (x) = p(1 -p) d dx α pq + α (x) (1 -2p) ∈ [-0.082, -0.0199] Consequently α is concave on [2.5, 3] Lemma 17. ∀x ≥ 3, α(x) -ϕ(x) ≥ xe -x x 1 +0.08-1 x -4e -x where α : x → -e x (1+e x ) 2 1 + x 1-e x 1+e x and ϕ : x → (x -x 1 -0.08) e -x . Proof. Let us study α -ϕ α(x) -ϕ(x) = - e x (1 + e x ) 2 1 + x 1 -e x 1 + e x -(x -x 1 -0.08) e -x = - e -2x (1 + e -x ) 3 (1 + e x + x -xe x ) -(x -x 1 -0.08) e -x = xe -2x (1 + e -x ) 3 e x - e x x -1 - 1 x -x 1 - x 1 + 0.08 x e -x = xe -x e -x (1 + e -x ) 3 e x - e x x -1 - 1 x -1 - x 1 + 0.08 x = xe -x 1 (1 + e -x ) 3 1 - 1 x -e -x - e -x x -1 - x 1 + 0.08 x Set R(x) := 1 (1+e -x ) 3 -1 + 3e -x and δ = x 1 + 0.08. We get α(x) -ϕ(x) = xe -x 1 -3e -x + R(x) 1 - 1 x -e -x - e -x x -1 - δ x = xe -x (-1 + δ) 1 x + (-1 -3) e -x + (-1 + 3) e -x x + 3e -2x + 3 e -2x x + R(x) 1 - 1 x -e -x - e -x x = xe -x     δ -1 x -4e -x + 2 e -x x + 3e -2x + 3 e -2x x ≥0 + R(x) 1 - 1 x -e -x - e -x x     ≥ xe -x δ -1 x -4e -x + R(x) 1 - 1 x -e -x - e -x
x .

Let us now discuss the sign of R(x) 1 -1

x -e -xe -x

x :

R (x) = 3e -x (1 + e -x ) -4 -3e -x = 3e -x (1 + e -x ) -4 -1 < 0, R is strictly decreasing. Since lim x→+∞ R(x) = 0, necessarily R ≥ 0. In addition, since x ≥ 3, 1 - 1 x -e -x - e -x x ≥ 1 - 1 3 -e -x - e -x 3 = 2 3 1 -2e -x ≥ 0. Hence R(x) 1 -1 x -e -x -e -x
x ≥ 0 for x ≥ 3 and it comes

∀x ≥ 3, α(x) -ϕ(x) ≥ xe -x δ -1 x -4e -x . Lemma 18. The function α : x → -e x (1+e x ) 2 1 + x 1-e x 1+e x is greater than ϕ : x → (x -x 1 -0.08) e -x on [x 1 , ∞[. Proof. Let us prove that α ≥ ϕ by considering four intervals [x 1 , 2], [2, 2.5], [2.5, 3] and [3, ∞].
We know that α is concave on [x 1 , 3] according to lemma 16. It is also the case of ϕ because ϕ (x) = (x -x 1 -0.08 -2) e -x which is negative on [x 1 , 3] since x 1 + 0.08 + 2 ≈ 3.62. Hence, α is above its geometrical chords and ϕ below its tangents on 

[x 1 , 3]. Case 1 on [x 1 , 2]:
x intersection = ϕ(1.85) + α(2) 2-x 1 x 1 -1.85ϕ (1.85) α(2) 2-x 1 -ϕ (1.

85)

.

A numerical computatuion gives x intersection ≈ 2.820. The two affine functions l 1 and l 2 intersect outside the intervalle [x 1 , 2] and since at x 1 we have l 2 (x 1 ) ≈ -0.00165 < 0 = l 1 (x 1 ), we can conclude that on

[x 1 , 2], α ≥ l 1 ≥ l 2 ≥ ϕ.
Case 2 on [2, 2.5]:

The function α is above

l 1 : x → α (2) + α(2.5)-α(2) 2.5-2 (x -2) and ϕ is below l 2 : x → ϕ(2.2) + ϕ (2.2) (x -2.2). l 1 ≥ l 2 as well, one can check it with l 1 (2) ≈ 0.05493 ≥ 0.05450 ≈ l 2 (2) and l 1 (2.5) ≈ 0.0785 ≥ 0.0779 ≈ l 2 (2.5). Consequently on [2, 2.5], α ≥ l 1 ≥ l 2 ≥ ϕ.

Case 3 on [2.5, 3]:

The function α is above l 1 : x → α (2.5) + α(3)-α(2.5)
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(x -2.5) and ϕ is maximal at x 1 + 1 + 0.08 with approximate value 0.07256. And since l 1 (2.5) ≈ 0.07856 ≥ 0.07256 and l 1 (3) ≈ 0.07750 ≥ 0.07256, we can conclude that l 1 is above the maximum of ϕ. Hence, on [2.5, 3], α ≥ l 1 ≥ ϕ.

Case 4 on x ∈ [3, ∞]: Thanks to Lemma 17, we know that ∀x ≥ 3, α(x) -ϕ(x) ≥ e -x (x 1 + 0.08 -1 -4xe -x ). Let us study the sign of f : x → x 1 + 0.08 -1 -4xe -x . For any x ≥ 3,

f (x) = -4e -x + 4xe -x = 4 (x -1) e -x ≥ 0.
We also have f (3) ≈ 0.026 > 0. Consequently, ∀x ≥ 3, f (x) ≥ 0 and α(x) -ϕ(x) ≥ 0 as well.

This completes the proof: ∀x ≥ x 1 , α(x) -ϕ(x) ≥ 0.

Lemma 19. Recall that α = -e x (1+e x ) 2 1 + x 1-e x 1+e x , Z ∼ N (a, I d ) and β 0 = Ra/ a 2 , a ∈ R d . We have E α Z t β 0 I {Z t β 0 >x 1 } ≥ ∞ x 1 x -x 1 - 8 100 e -x e -(x/R-a 2 ) 2 /2 √ 2πR 2 dx. (24) 
Proof.

Recall that α(x) ≥ x -x 1 -8 100 e -x on [x 1 , ∞[ according to Lemma 18. Moreover Z t β 0 ∼ N a t β 0 , β 2 with a t β 0 = R a 2 , β 2 = R. This gives E α Z t β0 I {Z t β 0 >x 1 } = ∞ x 1 α(x) 1 √ 2πR 2 exp - (x -R a ) 2 2R 2 dx ≥ ∞ x 1 x -x1 - 8 100 e -x 1 √ 2πR 2 exp - (x/R -a ) 2 2 dx.
Lemma 20. For any a, z ∈ R d , ξ ∈ R and R > 0, it holds

Ja,R (ξ, z) := ∞ z xe -ξx 1 √ 2πR 2 e -(x/R-a 2 ) 2 /2 dx = R 1 + a 2 -Rξ G z R + Rξ -a 2 γ z R -a 2 e -ξz ,
where γ : x → (2π) -1/2 e -1 2 x 2 is the standard Gaussian density, Φ c is the standard Gaussian tail function and G : x → Φ c (x) /γ(x) is the Gaussian Mill's ratio.

Proof. We have

J a,R (ξ, z) = ∞ z xe -ξx 1 √ 2πR 2 exp - (x -R a ) 2 2R 2 dx = ∞ z x √ 2πR 2 exp - (x -R a ) 2 + 2R 2 ξx 2R 2 dx. (25) 
Moreover,

(x -R a ) 2 + 2R 2 ξx = x + R 2 ξ -R a 2 2 + R 2 ξ 2R a 2 -R 2 ξ .
Hence,

J a,R (ξ, z) = ∞ z x √ 2πR 2 exp - (x + R (Rξ -a 2 )) 2 + R 2 (2 a 2 -Rξ) Rξ 2R 2 dx = e -(2 a 2 -Rξ)Rξ 2 ∞ z x 1 √ 2πR 2 exp - (x/R + Rξ -a 2 ) 2 2 dx (26) 
By the change the variable y = x/R + Rξ -a 2 , we get

J a,R (ξ, z) = e -(2 a 2 -Rξ)Rξ 2 ∞ z/R+Rξ-a 2 R (y -(Rξ -a 2 )) 1 √ 2π exp - y 2 2 dy = e -(2 a 2 -Rξ)Rξ 2 ∞ z/R+Rξ-a 2 Ry 1 √ 2π exp - y 2 2 dy -e -(2 a 2 -Rξ)Rξ 2 ∞ z/R+Rξ-a 2 R (Rξ -a 2 ) 1 √ 2π exp - y 2 2 dy = -Re -(2 a 2 -Rξ)Rξ 2 1 √ 2π exp - y 2 2 ∞ z/R+Rξ-a 2 -R (Rξ -a 2 ) e -(2 a 2 -Rξ)Rξ 2 Φ c z R + Rξ -a 2 = Re -(2 a 2 -Rξ)Rξ 2 1 √ 2π e -1 2 ( z R +Rξ-a 2 ) 2 + ( a 2 -Rξ) Φ c z R + Rξ -a 2 = R 1 + ( a 2 -Rξ) G z R + Rξ -a 2 1 √ 2π e - Rξ(2 a 2 -Rξ)+ ( z R +Rξ-a 2) 2 2
and since

(2 a 2 -Rξ) Rξ + (z/R + Rξ -a 2 ) 2 = (z/R -a 2 ) 2 + 2zξ, (27) 
we finally get the result.

Lemma 21. For any a, z ∈ R d , ξ ∈ R and R > 0, it holds

K a,R (ξ, z) := ∞ z e -ξx 1 √ 2πR 2 e -(x/R-a 2 ) 2 /2 dx = γ z R -a 2 G z R + Rξ -a 2 e -ξz
where γ is the standard Gaussian density, Φ c is the standard Gaussian tail function and G : x → Φ c (x) /γ(x) is the Gaussian Mill's ratio.

Proof. By the same calculation as in Equation 25, we can write

∞ z 1 √ 2πR 2 exp - (x/R + Rξ -a 2 ) 2 2 dx.
By the change the variable y = x/R + Rξ -a 2 , we get

K a,R (ξ, z) = e -(2 a 2 -Rξ)Rξ 2 ∞ z/R+Rξ-a 2 1 √ 2π exp - y 2 2 dy = e -(2 a 2 -Rξ)Rξ 2 Φ c (z/R + Rξ -a 2 ) = 1 √ 2π e -(2 a 2 -Rξ)Rξ+(z/R+Rξ-a 2 ) 2 2 .G (z/R + Rξ -a 2 ) .
By Identity [START_REF] Li | Minimum entropy clustering and applications to gene expression analysis[END_REF], it follows that

K a,R (ξ, z) = 1 √ 2π e -1 2 (z/R-a 2 ) 2 -zξ G (z/R + Rξ -a 2 ) ,
as expected.

Lemma 22. Set G (x) = Φ c (x) γ(x) the Mill's ratio of the standard gaussian distribution. G satisfies: 

∀x ∈ R xG (x) -G (x) = 1 G (x) -xG (x) -G (x) = 0 G (x) -2G (x) -xG (x) = 0
G (x) = -γ (x) γ (x) -Φ c (x) (-xγ (x)) γ (x) γ (x) = -1 + x Φ c (x) γ (x) = -1 + xG (x)
and

G = xG -1 ⇒ G = G + xG ⇒ G = G + G + xG Proposition 23. The function G (x) = Φ c (x) γ(x)
is known as the Gaussian Mill's ratio and ∀x ≥ 0

0 < 2 x + √ x 2 + 4 ≤ G (x) ≤ 2 x + x 2 + 4. 2 π
Proof. Focus on the first inequality: the lower bound is due to [START_REF] Wilhelm | An inequality for mill's ratio[END_REF] and the upper bound is attributed to

Pollak [START_REF] Pollak | A remark on "Elementary inequalities for Mills' ratio" by Yûsaku Komatu[END_REF] according to [START_REF] Gasull | Approximating mills ratio[END_REF] in which one can find the inequality in the first commentar of Remark 11 p 1848.

Proposition 24. The Gaussian mill's ratio function G : x → Φ c (x) γ(x) is a strictly decreasing function on R.

Proof. We have seen in Lemma 22 that G = -1 + xG. Since G ≥ 0, it is obvious that G < 0 on ]-∞; 0].

Furthermore, take x > 0, then with proposition 23 we have

G (x) = -1 + xG(x) ≤ -1 + x 2 x + x 2 + 4. 2 π = 2 1 + 1 + 8 πx 2 -1
One can see that ∀x > 0, 

1 + (a + h) G (-b -(a + h)) > cG ((a + h) + d)
To conclude, Eq a+h,b,c,d holds also true.

Lemma 26. The equation R 1 -R -a 2 + x 1 + 8 100 R G x 1 R + R -a 2 ≥ (1 + ν) e x 1 4 G a 2 -x 1 R
holds true, in particular, for R = √ x 1 + 0.08 ≈ 1.2741, a 2 = 2R = R + x 1 +0.08 R ≈ 2.548 and ν = 0.95.

Proof. Replace the corresponding quantities to get as left side R 1 -R -a 2 +

x 1 + 8 100 R G x 1 R + R -a 2 = R = √
x 1 + 0.08 and as right side . Recall X ∼ ε Rad Z where ε Rad is a Rademacher random variable with distribution 1 2 δ -1 + 1 2 δ 1 and Z ∼ N (a, I d ). As a consequence Z t β ∼ N a t β, β 2 2 . Set also N ∼ N (0, 1), so that Z t β = a t β+ β 2 N .

(1 + ν) e x 1 4 G R + x 1 + 8 100 R -x 1 R = (1 + ν) e x
(d β R) (ν) = -E X t βp β (X) q β (X) X t ν for β ∈ B 2 (0, R) and ν ∈ R d . Assume that a t β -2 β 2 2 ≥ 0. If ν, β ≤ 0, it holds (d β R) (ν) ≥ 1 8 e -(2a t β-β 2 2 )/2 -ν, β β 2 2 β 2 2 + a t β -β 2
We have, by symmetry in X and independence between Z t β and Z t ν ⊥ ,

(d β R) (ν) = -E X t βp β (X) q β (X) X t ν = -E Z t βe -Z t β 1 + e -Z t β 2 Z t ν ⊥ + ν = -E Z t βe -Z t β 1 + e -Z t β 2 Z t ν ⊥ -E Z t βe -Z t β 1 + e -Z t β 2 Z t ν = -E Z t βe -X t β 1 + e -X t β 2 E Z t ν ⊥ =0 - λ ν β 2 E Z t βe -Z t β 1 + e -Z t β 2 Z t β = - λ ν β 2 E ζ a t β + β 2 N ,
where ζ : x → x 2 e x (1+e x ) 2 . Note that the function ζ is even and that a simple calculation gives ∀x > 0

, ζ(x) ≥ x 2 4 e -x . If λ ν ≤ 0, - λ ν β 2 E ζ a t β + β 2 N ≥ - λ ν β 2 +∞ 0 x 2 4 e -x 1 2π β 2 2 exp - x -a t β 2 2 β 2 2 dx. Set N a,β ∼ N a t β -2 β 2 2 , β 2 2 . This gives 53 E ζ a t β + β 2 2 N ≥ +∞ 0 x 2 4 e -x 1 2π β 2 2 exp - x -a t β 2 2 β 2 2 dx = +∞ 0 x 2 4 1 2π β 2 2 exp   - x -a t β -β 2 2 2 + β 2 2 2a t β -β 2 2 2 β 2 2    dx = e -(2a t β-β 2 2 )/2 +∞ 0 x 2 4 1 2π β 2 2 exp   - x -a t β -2 β 2 2 2 2 β 2 2    dx ≥ 1 8 e -(2a t β-β 2 2 )/2 E N 2 a,β = 1 8 e -(2a t β-β 2 2 )/2 V N 2 a,β + E [N a,β ] 2 = 1 8 e -(2a t β-β 2 2 )/2 β 2 2 + a t β -2 β 2 2 2
, where in the second inequality, we used the fact that a t β -2 β 2 2 ≥ 0. Therefore

(d β R) (ν) ≥ - λ ν 8 β 2 e -(2a t β-β 2 2 )/2 β 2 2 + a t β -β 2 2 2 .
Definition 28. The operator norm • op on the trilinear symmetric operator space with respect to • 2 is defined as: for all T symetric trilinear operator, T op := sup u∈∂B 2 (0,1)

|T (u, u, u)| as shown in equation [START_REF] Azizyan | Minimax theory for high-dimensional gaussian mixtures with sparse mean separation[END_REF] in both [START_REF] Zhang | The best rank-1 approximation of a symmetric tensor and related spherical optimization problems[END_REF] and [START_REF] Qi | The spectral theory of tensors (rough version)[END_REF].

Lemma 29. With trilinear symmetric operator defined above, the third derivative of the risk satisfies:

∀β ∈ R d , d 3 tβ+(1-t)β 0 R op ≤ 8e -(a t β-β 2 2 ) 2 a 6 + E N 6 0 β 2 2 + a t β -2 β 2 2 2 + a t β -2 β 2 2 + 1 ,
where N 0 ∼ N (0, 1).

Proof. if u ∈ ∂B 2 (0, 1), then for N ∼ N (0, I d ), N t u ∼ N 0 ∼ N (0, 1), and it is known that E

[|N 0 |] = 2 π and E |N 0 | 3 = 3E [|N 0 |] V [|N 0 |] + E [|N 0 |] 3 .
Owing to Equation [START_REF] Giraud | Partial recovery bounds for clustering with the relaxed k-means[END_REF] and Cauchy-Schwarz inequality, we have

d 3 β R (u, u, u) = E X t u 3 .α X t β ≤ E (X t u) 6 E (α (X t β)) 2 .
On the one hand, using the fact that ∀a, b > 0, ∀n ∈ N,

(a + b) n ≤ 2 n-1 (a n + b n ) we get E X t u 6 = E a t u + N t u 6 = E a t u + N 0 6 ≤ E 2 5 a t u 6 + N 6 0 ≤ 32 a 6 2 + E N 6 0 .
On the other hand, we have already proved in Lemma 15 that ∀x, α (x) = p x q x x 2 1 -

3 tanh 2 x 2 + 2 tanh x 2 . Hence, α (x) ≤ p x q x x 2 1 -3 tanh 2 x 2 + 2 tanh x 2 ≤ p x q x x 2 1 -3 tanh 2 x 2 + 2 ≤ e x (1 + e x ) 2 x 2 3 tanh 2 x 2 + 1 + 2 ≤ e x e x e -x/2 + e x/2 2 x 2 × 4 + 2 ≤ 2 e x/2 2 (x + 1) = 2e -x (x + 1) . Recall Z t β ∼ N a t β, β 2 2 , E α X t β 2 = E α Z t β 2 ≤ E 4e -2Z t β Z t β + 1 2 = 4 R (x + 1) 2 e -2x 1 2π β 2 exp - x -a t β 2 2 β 2 2 dx. ( 28 
) By denoting N a,β ∼ N a t β -2 β 2 2 , β 2 2 , we get E α X t β 2 = 4 R (x + 1) 2 1 2π β 2 2 exp   - x + 2 β 2 2 -a t β 2 + 2 β 2 2 2a t β -2 β 2 2 2 β 2 2    dx = 4e -2(a t β-β 2 2 ) R (x + 1) 2 1 2π β 2 2 exp   - x -a t β -2 β 2 2 2 2    dx = 4e -2(a t β-β 2 2 ) E (N a,β + 1) 2 = 4e -2(a t β-β 2 2 ) E N 2 a,β + 2E [N a,β ] + 1 = 4e -2(a t β-β 2 2 ) β 2 2 + a t β -2 β 2 2 2 + 2 a t β -2 β 2 2 + 1
Finally, we have

d 3 β R (u, u, u) ≤ 8e -(a t β-β 2 2 ) 2 a 6 + E N 6 0 β 2 2 + a t β -2 β 2 2 2 + 2 a t β -2 β 2 2 + 1 ,
which gives the result, according to definition 28.

Lemma 30. Under the condition that a 2 ≥ 2R, R = √ x 1 + 0.08, the excess risk E (•, β 0 ) satisfies around

β 0 : ∀β ∈ B 2 (β 0 , ε) B 2 (0, R), E (β, β 0 ) ≥ e -( a 2 R-R 2 /2) 1 16 1 + ( a 2 -R) 2 β -β 0 2 2 -24 a 4 e R 2 /2 e ε a 2 β -β 0 3 2 .
Proof. Fisrt note that E (β 0 , β 0 ) = 0 by definition of E (•, β 0 ). According to lemma 27 we can control

(d β R) (β -β 0 ) from below. (d β 0 R) (β -β 0 ) ≥ 1 8 e -(2a t β 0 -β 0 2 2 )/2 β 0 -β, β 0 β 0 2 2 β 0 2 2 + a t β 0 -β 0 2 2 2 ≥ 1 8 e -( a 2 R-R 2 /2) β 0 -β, β 0 1 + ( a 2 -R) 2 .
Use now Lemma 32,

(d β 0 R) (β -β 0 ) ≥ 1 16 e -( a 2 R-R 2 /2) 1 + ( a 2 -R) 2 β -β 0 2 2
According to lemma 4, we can control d2 β R (β -β 0 , β -β 0 ) from below:

d 2 β R (β -β 0 , β -β 0 ) ≥ Λ min β -β 0 2 2 ≥ 0.
In addition, we can use Lemma 29 to have

1 0 d 3 tβ+(1-t)β 0 R (β -β0, β -β0, β -β0) dt = β -β0 3 2 1 0 d 3 tβ+(1-t)β 0 R β -β0 β -β0 2 , β -β0 β -β0 2 , β -β0 β -β0 2 dt ≤ β -β0 3 2 1 0 d 3 tβ+(1-t)β 0 R op dt ≤ 8 β -β0 3 2 1 0 exp -a t (tβ + (1 -t)β0) -tβ + (1 -t)β0 2 2 C3,a (tβ + (1 -t)β0) dt,
where

C 3,a : µ ∈ R d → 2 a 6 2 + E N 6 0 µ 2 2 + a t ν -2 µ 2 2 2 + 2 a t ν -2 µ 2 2 + 1 . To bound C 3,a from above, remark that ∀µ ∈ Ψ U , µ 2 2 ≤ 4R 2 , -2R 2 ≤ a t ν -2 µ 2 2 ≤ R a 2 -2R 2 ≤
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R a 2 and remark also that owing to a ≥ 2R ≈ 2.548 and article [START_REF] Wilkelbauer | Moments and absolute moments of the normal distribution[END_REF], one has E N 6 0 = 15 with N (0, 1), so E N 6 0 ≤ 1 18 a 6 2 . Therefore, all together this leads to

C 3,a (µ) ≤ 2 a 6 2 + E N 6 0 R 2 + R 2 [max (2R, a 2 )] 2 + 2 [R a 2 -2R 2 ] + ≤ 2 a 6 2 + 1 18 a 6 2 R 2 + R 2 a 2 2 + 2 [R a 2 -2R 2 ] + 1 ≤ 19 9 a 6 2 R 2 a 2 2 + 2R a 2 -3R 2 + 1 ≤ 3 a 4 . (29) 
Hence

1 0 d 3 tβ+(1-t)β 0 R (β -β0, β -β0, β -β0) dt ≤ 24 a 4 β -β0 3 2 1 0 exp -a t (tβ + (1 -t)β0) -tβ + (1 -t)β0 2 2 dt ≤ 24 a 4 β -β0 3 2 sup β-β 0 2 ≤ε sup 0≤t≤1 exp -a t (tβ + (1 -t)β0) -tβ + (1 -t)β0 2 2 ≤ 24 a 4 β -β0 3 2 exp - inf β-β 0 2 ≤ε inf 0≤t≤1 a t (tβ + (1 -t)β0) + sup β-β 0 2 ≤ε sup 0≤t≤1 tβ + (1 -t)β0 ≤ 24 a 4 β -β0 3 2 exp -a t β0 + a 2 ε + R 2
≤ 24 a 4 e -a 2 R+R 2 e ε a 2 β -β0 3 2 .

Finally, this gives

E (β, β 0 ) > e -( a 2 R-R 2 /2) 1 16 1 + ( a 2 -R) 2 β -β 0 2 2 -24 a 4 e R 2 /2 e ε a 2 β -β 3 2 , (30) 
as required.

Lemma 31. Minoration of Φ c a 2 -

x 1 R -Φ c a 2 + x 1 R : ∀a, R, x 1 , Φ c a 2 - x 1 R -Φ c a 2 + x 1 R ≥ 2 x 1 R γ a 2 + x 1 R
Proof. Simple computations give

Φ c a 2 - x 1 R -Φ c a 2 + x 1 R = a 2 + x 1 R a 2 - x 1 R γ (x) dλ (x) ≥ a 2 + x 1 R a 2 - x 1 R γ a 2 + x 1 R dλ (x) ≥ 2 x 1 R γ a 2 + x 1 R Lemma 32. ∀β ∈ B 2 (0, R), if β 0 ∈ ∂B 2 (0, R) then β 0 -β, β 0 ≥ 1 2 β -β 0 2 2 .
Proof. Decompose β as β ⊥ + β on β ⊥ 0 ⊕ V ect (β 0 ) and note that ∃λ β ∈ [-1, 1], β = λ β β 0 . We have

β 0 -β, β 0 β -β 0 2 2 = β 0 -β , β 0 β ⊥ 2 2 + β -β 0 2 2 = (1 -λ β ) R 2 β ⊥ 2 2 + (1 -λ β ) 2 R 2
Furthermore, we have β 2 2 ≤ R 2 and by pythagora's theorem β ⊥ 2 2 ∈ 0, R 2 -λ 2 β R 2 . Therefore, Then for all u > 0 and M n > 0, the entropy of H ε,Mn with respect to the empirical-L + 1 log (2d) .

β 0 -β, β 0 β -β 0 2 2 ≥ (1 -λ β ) R 2 1 -λ 2 β R 2 + (1 -λ β ) 2 R 2 ≥ 1 -λ β 1 -λ 2 β + 1 -2λ β + λ 2 β ≥ 1 
Proof. Let X i , . . . , X i be i.i.d copies of X and set B ε,Mn := f β,β : X → X t Mn (β -β ) I {G(X)≤Mn} : β, β ∈ Θ (ε) . One has ∀β, β ∈ Θ (ε), Simplify now the expression of j sup -j inf + 2,

ρ β (X) -ρ β (X) = ρ X t β -ρ X t β ≤ L X t β -X t β .
j sup -j inf + 2 = log 2 2R √ d -log 2 (λ 0 ) + 2 ≤ log 2 8R √ d + 1 -log 2 (λ 0 ) ≤ log 2 16R √ d λ 0 ≤ log 2 2R √ nd LM n 3 log (2d) log n ≤ log 2 2R √ nd LM n ≤ 3 2 log 4R 2 nd L 2 M 2 n ≤ 3 4 log 4R 2 nd L 2 M 2 n .
This finally gives the result. Proof. First note that for y ≥ a ∞ , P (G (X) > y) ≤ P max

j |Z j | > y -a ∞ ≤ dP (|Z 1 | > y -a ∞ ) ≤ 2de -(y-a ∞ ) 2 2 = 2 M 2 + a ∞ + 1 de -(M-a ∞ ) 2 2 .
Hence, for Finally, we conclude that

P 1 n n i=1 F X (i) ≥ λ 0 T L < 4L 2 M 2 n + a ∞ + 1 n 2 λ 2 0 T 2 .
Lemma 40. Recall from Lemma 36 that V trunc n (β) = (P n -P )(ρ β I {G≤Mn} ) and V n (β) = (P n -P ) ρ β .
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 1 Figure 1: Plot of α on [x 1 , 3] see online here

  Consequently α is concave on[2, 2.5] -We do the same in the case x ∈ [2.[START_REF] Wilhelm | An inequality for mill's ratio[END_REF][START_REF] Azizyan | Efficient sparse clustering of high-dimensional non-spherical gaussian mixtures[END_REF]:in that case p ∈ [0.047, 0.076], hence 1 -2p ∈ [0.848, 0.906], x → p is decreasing and p → p(1 -p) is increasing on this intervalles of interest then p(1-p) ∈ [p x=3 (1 -p x=3 ),p x=2.5 (1 -p x=2.5 )] ⊂ [0.0447, 0.071] and (x) ∈ [ (3), (2)] ⊂ [-1.72, -1.12].
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 2 Figure 2: Plot of α, ϕ and its the chord on [x 1 , 2] and see online here
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 3 Figure 3: Plot of α and the chord of ϕ on [2, 2.5] and see online here
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 4 Figure 4: Plot of α and the chord of ϕ on [2.5, 3] and see online here
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 5 Figure 5: Plot of α and ϕ on [3, 8] and see online here
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 6 Figure 6: Plot of the function G on [0, 4] and see online here

2 1+ 1+ 8 πx 2 < 1 ,

 821 hence G < 0 everywhere on ]0, ∞[. Lemma 25. Define Eq a,b,c,d : 1 + aG (-b -a) ≥ cG (a + d) where a, b, c, d ≥ 0 and G : x → Φ c (x) γ(x) is the Gaussian mill's ratio where γ and Φ c are respectively the density and the tail function of the standard univariate gaussian. If Eq a,b,c,d holds true, then ∀h > 0, Eq a+h,b,c,d holds true. Proof. Start with (a, b, c, d) such that Eq a,b,c,d holds true and take h > 0. We proved in prop 24 that G is a decreasing function,then G (-b -a) < G (-b -(a + h)), then one has 0 ≤ aG (-b -a) <(a + h) G (-b -(a + h)), hence 1 + (a + h) G (-b -(a + h)) > 1 + aG (-b -a)But (a, b, c, d) such that Eq a,b,c,d holds true, therefore1 + (a + h) G (-b -(a + h)) > cG (a + d)Finally, use again the fact that G is decreasing, to have G (a + d) > G ((a + h) + d) and it comes

2 2 . 2 so that ν = λ ν β β 2

 2222 Proof. For ν ∈ R d , decompose it on β ⊥ ⊕ V ect (β) as ν = ν ⊥ + ν , and set λ ν := ν, β β

2 . 33 .n n i=1 f 2 X.Definition 34 .Lemma 35 .

 23323435 Definition When one has P n = 1 n n i=1 δ x i with x 1 , . . . , x n ∈ X , define the following "empirical-L 2norm" as:∀f : X → R, f Pn := 1 (i) For δ > 0, the δ-covering number N (δ, H , • ) of a set H is the smallest number ofclosed balls, with respect to • with radius δ, that covers the space. The set of the centers of the balls is called a δ-covering set. The entropy of H with respect to a norm• is H (•, H , • ) = log N (•, H , • ). . Define Θ (ε) := {β ∈ B 2 (0, R) : β -β 0 1 ≤ ε} and take H ε,Mn := (ρ β -ρ β 0 ) I {G≤Mn} -E (ρ β (X) -ρ β 0 (X)) I {G(X)≤Mn} : β ∈ Θ (ε) ,where G (X) := X ∞ . Recall that L is the Lipschitz constant of ρ.

using 2 √n 5 √ A log n + 4 . 5 √ A log n + 4 +β -β 0 1

 254541 Lemma 35 and Definition 34, we havelog 1 + N u, H ε,Mn , • Pn ≤ 1 + H u, H ε,Mn , • Pn Take u := 2 -s R n where 0 ≤ s ≤ S := min s ≥ 1 : 2 -s ≤ 4 √ n (i.e. u ∈ R n , R n ), then one has ∀0 ≤ s ≤ S, log 1 + N 2 -s R n , H ε,Mn , • Pn ≤ 4L 2 M 2 n ε 2 2 -2s R 2 n + 2 log (2d) ≤ 2 2s + 2 log (2d) ≤ 2 2s 1 + 2 1-2s log (2d) ≤ 2 2s × 3 log (2d)Now one can apply[START_REF] Bühlmann | Statistics for high-dimensional data: methods, theory and applications[END_REF] Corollary 14.4], where in our case A := 3 log (2d). Note that 4 log n ≤ 3 log 2 n ≤ 5 log n. We get One can apply the Massart's concentration inequality, recalled for instance in[START_REF] Bühlmann | Statistics for high-dimensional data: methods, theory and applications[END_REF] Theorem 14.2]. ,Then, R n t ≤ e -nt 2 /8 . ∨ λ 0 ≥ T λ 0 ≤ jsup j=j inf exp -21 (T -1) 2 log (2d) log 2 n + exp -21 (T -1) 2 log (2d) log 2 n ≤ jsup -j inf + 2 exp -21 (T -1) 2 log (2d) log 2 n .

Lemma 38 . 2 √ 1 e - 2 √

 38212 With G (X) := X ∞ and a and X defined in the section Notations: ifM n = a ∞ + √ 2 log d + √ 2 log n then E G (X) I {G(X)>Mn} ≤ 2 (M n + 1) e -log d log(1+n) n and E G (X) 2 I {G(X)>Mn} ≤ 2 M 2 n + a ∞ + log d log(1+n)n .

2 ≤ 2 ( 2 ≤ 2 ( 2 √ 2 √ 2 √ 2 = 2 M 2 n + a ∞ + 1 e - 2 √ 2 I≤ 2 M 2 n + a ∞ + 1 e - 2 √ 2 √ log d log(1+n) n 2 ≤ 2L 2 M 2 n + a ∞ + 1 n 2 λ 2 0 T 2 e - 2 √ 2 √ log d log(1+n) 2 .

 22222222221222222222222 M n := a ∞ + √ 2 log d + 2 log (1 + n) ≥ a ∞ + 1, we have E G (X) I {G(X)>Mn} ≤ 2 (M n + 1) de -(Mna ∞ ) 2 M n + 1) de -( M n + 1) de -log d-log d log(1+n)-log(1+n) ≤ 2 (M n + 1) e -log d log(1+n) 1 + n ≤ 2 (M n + 1) e -log d log(1+n) n and E G (X) 2 I {G(X)>Mn} ≤ 2 M 2 n + a ∞ + 1 de -(Mna ∞ ) 2 log d log(1+n) {G(X)>Mn} n λ 0 T L -2E G (X) I {G(X)>Mn} 2 . log d log(1+n) n n λ 0 T L -4 (M n + 1) e -log d log(1+n)1 -4L Mn+1 nλ 0 T e -It holds, for n ≥ 2,

Table 1 :

 1 0 sign and variation table of f , sign table of α

  have p ∈ [0.075, 0.12], hence 1 -2p ∈ [0.76, 0.85], x → p is decreasing and p → p(1 -p) is

increasing on this intervalles of interest then p(1 -p) ∈ [p x=2.5 (1 -p x=2.5 ), p x=2 (1 -p x=2 )] ⊂ [0.069, 0.11], (x) ∈ [ (

  On can see it is then enough to takes ν = 0.95 because (1 + ν) e x 1

	1 4 G x 1 + 0.08 + 0.08 √ x 1 + 0.08 + 0.08 √ x 1 +0.08 . √ x 1 +0.08 ≈ 1.33700 and G (1.337) ≈ 0.5552. 4 G Approximation show that √ x 1 + 0.08 ≈ 1.2741, e x 1 4 ≈ 1.1701, √ √ x 1 + 0.08 + 0.08 √ x 1 +0.08 ≈
	1.2668 (the inequality holds true because 1.2741 ≥ 1.2668).
	Lemma 27. Recall that

  Pn ≤ 4L 2 M 2 n ε 2 u 2

2 -norm • Pn (see definition 33) satisfies H u, H ε,Mn , •

≥ 0, we have

With ∀a, b > 0, (a + b) 2 ≤ 2 a 2 + b 2 , it follows that

Furthermore,

One also has

Hence

This relation enables us to state

Define the convex hull of a set of vectors {e j } d j=1 as Conv {e j } d j=1 := d j=1 v j e j v i ≥ 0, v 1 = 1 and 62 take in particular the vectors {e j } d j=1 of the canonical basis in R d . Then

Owing to the definition of e j , we have ∀j, e j 1 = 1. so we can use Lemma 14.28 in [START_REF] Bühlmann | Statistics for high-dimensional data: methods, theory and applications[END_REF] to get

which gives the result.

Lemma 36. Let ε > 0 and X (1) , ..., X (i) , ..., X (n) be i.i.d. copies of X. Let also

where G (X) := X ∞ and

Recall that we set L, the Lipschitz norm of ρ. One has ∀T ≥ 1, ∀n ≥ 2,

Proof. According to equation [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF],

Consequently, ∀T ≥ 1,

Lemma 37. Grant the notations of Lemma 36 and set λ 0 := 3LM n 5 3 log (2d) log n + 4 n -1/2 . One has ∀T ≥ 1, ∀n ≥ 2,

Proof. Let λ 0 > 0, n ≥ 2 and T ≥ 1. Let us use a peeling: define Θ := B 2 (0, R) and divide it into slices as follows:

and Θ⊂B 1 β 0 , 2 -j inf -1 . One can also prove that

Use the fact that ∀j ∈ j inf , j sup , λ 0 ≤ 2 -j and ∀β ∈ B

By applying Lemma 36 with λ 0 = 3LM n 5 3 log (2d) log n + 4 n -1/2 , we get

where G (X) = X ∞ . Moreover, take the following constants:

λ 0 := 3LM n n -1/2 5 3 log (2d) log n + 4 . It holds: ∀T > 0,

Proof. Note that with our choice of λ 0 , we have by Lemma 38:λ 0 T /L ≥ 2E G (X) I {G(X)>Mn} . Hence,

From Lemma 38, we get

Recall also from Lemma 39 that F

It holds true that ∀T ≥ 1,

Proof. Basic computations and Hölder's inequality give

= (P n -P ) ρ β I {G>Mn} -(P n -P ) ρ β 0 I {G>Mn} ≤ P n (ρ β -ρ β 0 ) I {G>Mn} + P (ρ β (X) -ρ β 0 (X)) I {G(X)>Mn}

and the result directly follows.