Enguerrand Prebet 
  
On Up-to Context Techniques in the π-calculus

We present a variant of the theory of compatible functions on relations, due to Sangiorgi and Pous. We show that the up-to context proof technique for bisimulation is compatible in this setting for two subsets of the pi-calculus: the asynchronous pi-calculus and a pi-calculus with immediately available names.

Proving that two elements are bisimilar is usually done by relying on a relation that is a bisimulation and also contains the corresponding pair of elements. Up-to techniques provide a powerful way of simplifying such proofs, by requiring that a relation is only included in a bisimulation. One such example is the up-to context technique which allows us to remove contexts when playing along the bisimulation game. A general theory of those techniques is developed in [START_REF] Pous | Coinduction all the way up[END_REF], by focusing on the class of compatible functions on relations, that are both sound up-to techniques and have nice compositional properties.

In the π-calculus, up-to context is not a sound technique. In fact, bisimilarity is not even a congruence, due to the input prefix creating substitutions. However, in subcalculi like the Asynchronous π-calculus (Aπ), bisimilarity is closed by substitution making it a congruence. Thus, the question of soundness of the up-to context technique for this subcalculus arises again. It is known that up-to substitution is not compatible, and not even below the greatest compatible function (called the companion in [START_REF] Pous | Coinduction all the way up[END_REF]). Thus it seemed that even if up-to substitution is sound, it could not be used in conjunction with other techniques without having to redo the proofs all over again.

Intuitively, the reason why compatibility fails for up-to substitution is that compatibility assumes the knowledge about one step of transitions in the bisimulation game, while in the proof of the congruence for Aπ, the substitution is dealt with by looking at two successive transitions to deduce the behaviour of the next step of the program after substitution. More precisely, we need to look at two visible transitions to reason about an internal step. There is thus a distinction to be made between visible and internal steps which leads us to define the usual bisimulation function as the intersection of the two bisimulation functions represented by the diagrams below, with α ranging over visible actions.

P R Q P ′ R Q ′ α α P R Q P ′ R Q ′ τ τ
In this paper, we propose a new notion of compatibility for a bisimulation function defined as f ∩ g (above f would be the visible actions while g would be the silent ones). The key idea is to impose a stronger condition on f and a weaker condition on g while preserving soundness. This allows us to define a framework where standard up-to techniques, including full up-to context, are both compatible and sound.

We show this result for two subcalculi where bisimilarity is a congruence and similarly for weak bisimilarity.

We thank Damien Pous and Davide Sangiorgi for helpful discussions about this work.

Compatibility and Soundness

In this section, we present some standard results about compatibility and their usage to show the soundness of up-to techniques (Section 1.1). Then we introduce compatibility with a function that is a generalisation of compatibility (Section 1.2). This notion still provides a soundness result while keeping nice properties of compatible functions (like being composable).

Previous work

Here, we recall standard results for compatibility from [START_REF] Pous | Coinduction all the way up[END_REF].

Definition 1 (Compatibility). f is g-compatible if f • g ⊆ g • f Definition 2 (Soundness). f is g-sound via f ′ if f ′ is extensive and R ⊆ (g •f )(R) implies f ′ (R) ⊆ b(f ′ (R))
Compatible functions can be composed freely in a modular fashion.

Lemma 3. If f 1 , f 2 are g-compatible, then f 1 • f 2 is g-compatible.
If g is monotone, we also have that

f 1 ∪ f 2 is g-compatible.
Compatible functions are useful as they are sound up-to techniques.

Lemma 4. If f is monotone and g-compatible, then f is g-sound via f ω .

However, there are sound up-to techniques that are not exactly compatible. We can recover some of them using compatibility up-to.

Definition 5 (Compatible up-to). f is g-compatible up to f ′ when f ′ is expansive and f • g ⊆ g • f ′ • f .
Compatible functions up to f ′ can be related to compatible functions when f ′ is also compatible ensuring the soundness of such functions. Lemma 6. If f ′ is idempotent, monotone and expansive, g-compatible and f is g-compatible up to f ′ , then

f ′ • f is g-compatible. Proof. f • g ⊆ g • f ′ • f f ′ • f • g ⊆ f ′ • g • f ′ • f f ′ is monotone ⊆ g • f ′ • f ′ • f f ′ is g-compatible ⊆ g • f ′ • f f ′ is idempotent
In fact, compatible functions are a subset of compatible functions up to f ′ for any expansive f ′ .

Remark 7. If f ′ is expansive, g is monotone and f is g-compatible, then f is also g-compatible up to f ′ .

Compatibility with a function

Unfortunately, substitution is not a compatible function not even up to some compatible f ′ . To see why, we call b the bisimulation function associated to bisimilarity for the π-calculus (see Section 2.1). We need the following lemma where ⊤ is the universal relation: Being compatible up-to some compatible function implies being smaller than some other compatible function (f ⊆ f ′ • f in Lemma 5). So it is enough to show that substitution is not included in the companion t, which is the greatest compatible function. As t is compatible, we have that t • b 2 (⊤) ⊆ b 2 (⊤). Thus, Lemma 8 implies that sub(b 2 (⊤)) ⊆ t(b 2 (⊤)). This entails that up-to context is not compatible in the π-calculus.

Lemma 8. Taking notations from CCS, we have (a. c | c, a | c) ∈ b 2 (⊤) but ((a. c | c){ a /c}, (a | c){ a /c}) / ∈ b 2 (⊤)
This example is asynchronous and as we will see later, up-to substitution is sound for Aπ. Our goal is to adapt the notion of compatibility so that it captures up-to substitution.

The main idea is to proceed in two steps. We first focus on visible actions and establish compatibility with respect to the corresponding bisimulation function. Then, we exploit that result to prove a weaker version of compatibility on internal actions, which we define now.

Definition 9 (Compatibility with). We say that f is h-compatible with g (or

g, h-compatible) if f • (g ∩h) ⊆ h • f .
Intuitively, with the knowledge we have about g, we are able to prove a sort of compatibility result on h. The main use of "compatibility with" is to prove g ∩ h-soundness, in which case we do not need to prove exactly g, h-compatibility. For instance g-compatibility and g 2 , h-compatibility is sufficient (see Thereom 15).

In Section 2, we exploit this approach taking g as the bisimulation function restricted to visible actions and h the one restricted to internal actions.

"Compatibility with" can be linked back to standard compatibility as follows:

Lemma 10. If f is g ∩ h-compatible, then f is g, h-compatible and h, g-compatible. If f is monotone, g-compatible and g, h-compatible, then f is g ∩ h-compatible.
Proof.

• f • (g ∩ h) ⊆ (g ∩ h) • f ⊆ g • f (and h • f respectively)
• The following proof uses Lemma 11, presented below.

f • (g ∩ h) = f • (g ∩ (g ∩ h)) ⊆ f • g ∩ f • (g ∩ h) by Lemma 11 ⊆ g • f ∩ f • (g ∩ h) f is g-compatible ⊆ g • f ∩ h • f f is g, h-compatible = (g ∩ h) • f
If f is a compatible function for g ∩ h, like it is the case in Section 2, we cannot show directly that f is both g-compatible and g, h-compatible. Indeed, we only have the latter by Lemma 10. We show in Section 2 that in the case of the π-calculus, things can be handled smoothly.

Since we often use monotone functions and intersections, we rely on the following lemma:

Lemma 11. If f is monotone, then for any set A, B, f (A ∩ B) ⊆ f (A) ∩ f (B). Similarly, for any function g, h, f • (g ∩ h) ⊆ f • h ∩ f • g. Conversely, for any g, h, f • g ∪ f • h ⊆ f • (g ∪ h).
We can also build the composition and union of g, h-compatible functions under mild assumptions.

Lemma 12. If f 1 , f 2 are g-compatible, g, h-compatible and monontone, then

f 1 • f 2 is g, h-compatible.
Proof. By Lemma 10, f 1 and

f 2 are g ∩ h-compatible, so f 1 • f 2 is too, meaning that f 1 • f 2 is g, h- compatible. Lemma 13. If f 1 , f 2 , h are monotone and f 1 , f 2 are both g, h-compatible, then f 1 ∪ f 2 is g, h-compatible.
Proof.

(f 1 ∪ f 2 ) • (g ∩ h) = f 1 • (g ∩ h) ∪ f 2 • (g ∩ h) ⊆ h • f 1 ∪ h • f 2 f 1 , f 2 are g, h-compatible ⊆ h • (f 1 ∪ f 2 )
by Lemma 11

Corollary 14. If f, h are monotone, g-compatible and g, h-compatible, then f ω is g, h-compatible.
Here, we state the theorem that is the equivalent of Lemma 4 for compatibility with. Intuitively, if f is g-compatible, then we can use g any number of times to show the compatibility of f with respect to h (i.e f is g m , h-compatible), and this is enough to prove that f is a sound up-to technique for g ∩ h.

Theorem 15. If f, g, h are monotone and

f is both g-compatible, g m , h-compatible (with m ≥ 1) then f is g ∩ h-sound via f ′ω with f ′ = i≤m f i . Proof. First, notice that R ⊆ ((g ∩ h) • f )(R) implies R ⊆ (g • f )(R) and R ⊆ (h • f )(R).
On one side, we then have R ⊆

(g • f ) m (R), meaning R ⊆ (g m • f m )(R) by compatibility and so R ⊆ (g m • f ′ )(R). On the other side, we have that R ⊆ (h • f ′ )(R) as h is monotone and m ≥ 1. Therefore, R ⊆ ((g m ∩ h) • f ′ )(R). By Lemma 10, f is g m ∩ h-compatible, so f ′ is too. Thus f ′ is g m ∩ h-sound via f ′ω meaning f ′ω (R) ⊆ (g m ∩ h)(f ′ω (R)). Therefore we have f ′ω (R) ⊆ h(f ′ω (R)). As f is g-compatible, we can also prove that f ′ω (R) ⊆ g(f ′ω (R)).
By combining the two, we obtain that

f ′ω (R) ⊆ (g ∩ h)(f ′ω (R)).
To prove g ∩ h-soundness, we are thus interested in showing g-compatibility, and g m , h-compatibility. By showing a weakening of compatibility with, we are able to compose functions with different m.

Lemma 16. If f is monotone, is g, h-compatible, and g ′ ⊆ g, then f is g ′ , h-compatible. Proof. As f is monotone, f • (g ′ ∩ h) ⊆ f • (g ∩ h). So f • (g ′ ∩ h) ⊆ h • f . Lemma 17. If f 1 , f 2 are monotone, g-compatible, f 1 is g m , h-compatible, f 2 is g n , h-compatible with m ≥ n and g ⊆ id, then f 1 • f 2 and f 2 • f 1 are g m , h-compatible.
Proof. As g ⊆ id, so is g m-n meaning g m ⊆ g n . Thus, we have that f 2 is g m , h-compatible.

Also, f 1 , f 2 being g-compatible, they are also g m -compatible. Therefore, by Lemma 12,

f 1 • f 2 and f 2 • f 1 are g m , h-compatible.
Compatibility with can also be combined with compatibility up to (see Definition 5):

Definition 18. f is g, h-compatible up to f ′ when f ′ is expansive and f • (g ∩ h) ⊆ h • f ′ • f . Lemma 19. If f ′ is idempotent, monotone, g, h-compatible and f is g-compatible up to f ′ , g, h-compatible up to f ′ , then f ′ • f is g, h-compatible. Proof. f • (g ∩ h) = f • (g ∩ g ∩ h) ⊆ f • g ∩ f • (g ∩ h) by Lemma 11 ⊆ g • f ′ • f ∩ h • f ′ • f = (g ∩ h) • f ′ • f f ′ • f • (g ∩ h) ⊆ f ′ • (g ∩ h) • f ′ • f f ′ is monotone ⊆ h • f ′ • f ′ • f f ′ is g, h-compatible ⊆ h • f ′ • f f ′ is idempotent Lemma 20. If f ′ is idempotent, g, h-compatible up to f ′′ and f is g, h-compatible up to f ′ , then f ′ • f is g, h-compatible up to f ′′ . Proof. f • (g ∩ h) = f • (g ∩ g ∩ h) ⊆ f • g ∩ f • (g ∩ h) by Lemma 11 ⊆ g • f ′ • f ∩ h • f ′ • f = (g ∩ h) • f ′ • f f ′ • f • (g ∩ h) ⊆ f ′ • (g ∩ h) • f ′ • f f ′ is monotone ⊆ h • f ′′ • f ′ • f ′ • f f ′ is g, h-compatible up to f ′′ ⊆ h • f ′′ • f ′ • f f ′ is idempotent 2 Up-to context in the π-calculus
We apply the theory developed above to the π-calculus. We recall the syntax and operational semantics of the π-calculus in Figure 1 (symmetric transitions have omitted).

We now show the usage of compatibility with to prove the soundness of the up-to context techniques in subcalculi of the π-calculus. For that, we first show it using our framework on non-input contexts (Section 2.1). This result is not new, but along the way, we prove that these up-to context techniques are b α which will be required to compose it later on. Then, in Section 2.2, we isolate the key property (Definition 26) that is needed to have the soundness of up-to substitution, and show how it gives the soundness result for upto context. We end by giving two subcalculi, the Asynchronous π-calculus and a π-calculus with immediately available names, where this property holds, thus proving up-to context technique can be used for these calculi.

Up-to behavioural relations and evaluation contexts

We briefly recall the simulation (s, . . . 

--→ P Rep !G | G µ -→ G ′ !G µ -→ G ′ Open P a b --→ P ′ (νb)P a(b) --→ P ′ if b = a Sum G µ -→ G ′ G + G ′′ µ -→ G ′ Res P µ -→ P ′ (νa)P µ -→ (νa)P if a / ∈ n(µ) Par P µ -→ P ′ P | Q µ -→ P ′ | Q if bn(µ) ∩ fn(Q) = ∅ Comm P a(b) --→ P ′ Q a b --→ Q ′ P | Q τ -→ P ′ | Q ′ Close P a(b) --→ P ′ Q a(b) --→ Q ′ P | Q τ -→ (νb)(P ′ | Q ′ ) if b / ∈ fn(P )
Q ′ s.t Q µ -→ Q ′ , P ′ R Q ′ } s α (R) def = {(P, Q) for all α, P ′ , P α -→ P ′ implies there exists Q ′ s.t Q α -→ Q ′ , P ′ R Q ′ } s τ (R) def = {(P, Q) for all P ′ , P τ -→ P ′ implies there exists Q ′ s.t Q τ -→ Q ′ , P ′ R Q ′ } b(R) def = s(R) ∩ s(R -1 ) b α (R) def = s α (R) ∩ s α (R -1 ) b τ (R) def = s τ (R) ∩ s τ (R -1 ) b def = id ∩ b b α (R) def = id ∩ b α b τ (R) def = id ∩ b τ
The variant b(R) only contains pairs that are also in R, thus corresponding to the notion of respectfulness. As all the up-to techniques we use are monotone, any results for b α (resp. b τ ) also holds with their variant b α (resp. b τ ). We note ∼ for the bisimilarity.

Remark 21.

• b = b α ∩ b τ , b = b α ∩ b τ .
• All functions are monotone.

• b, b α , b τ ⊆ id

We will now define some up-to techniques corresponding to evaluation contexts and prove their b αcompatibility and b τ -compatibility with b α .

F S (R) = SRS -1 refl(R) = {(P, P )} Lemma 22. F ∼ , id, refl are b α -compatible.
Evaluation contexts contain parallel composition and restriction.

res(R) = {((ν a)P, (ν a)Q) P R Q} pcomp(R) = {(P | P ′ , Q | Q ′ ) P R Q, P ′ R Q ′ } Lemma 23. res, pcomp are b α -compatible.
By direct application of Lemma 10 and existing results of b-compatibility [START_REF] Madiot | Bisimulations up-to: Beyond first-order transition systems[END_REF], we have that F ∼ , id, refl, res are b α , bτ -compatible, and pcomp is b α , bτ -compatible up to res.

Thus, we are able to take the union and compose while remaining sound according to Theorem 15.

Corollary 24.

(id ∪ F ∼ ∪ refl ∪ res ∪ pcomp) ω is b-sound.
Corollary 24 is not new, but we obtain it via b α -compatibility and b α , bτ -compatibility instead of bcompatibility. This is used below to compose those techniques with up-to substitution which is not bcompatible.

In fact, we can already go further and add the remaining non-input contexts.

tau(R) = {(τ . P, τ . Q) P R Q} out(R) = {(a b . P, a b . Q) P R Q} sum(R) = {(G 1 + G 2 , G ′ 1 + G ′ 2 ) G 1 R G ′ 1 , G 2 R G ′ 2 } rep(R) = {(!G, !G ′ ) G R G ′ } Lemma 25.
• tau, is b α -compatible.

• id ∪ out is bα -compatible.

• id ∪ sum is b α -compatible. 

Up-to substitution and input for subcalculi of π

Next up, we can add substitution and input related contexts. The substitution makes use of Theorem 15 with m > 1.

The proof requires an additional property that is not true in general in the π-calculus.

Definition 26 (Aliased Communication Property). We say that a set of processes P satisfies the aliased communication property if for all processes P in P, we have the following properties:

• P a b --→ c b --→ P ′ implies P σ τ -→ P ′ σ for all σ s.t. aσ = cσ. • P a(b) --→ c b --→ P ′ implies P σ τ -→ (νb)P ′ σ for all σ s.t. aσ = cσ.
This property is for instance satisfied in the asynchronous π-calculus and used to show that bisimilarity on asynchronous π-terms is closed by substitution.

sub(R) = {(P σ, Qσ) P R Q} inp(R) = {(a(b). P, a(b). Q) P R Q} Lemma 27. • sub is b α -compatible and b 2 α , b τ -compatible up to F ≡ • res. • inp is b α , b τ -compatible.
• id ∪ inp is b α -compatible up to sub. Proof.

• We rely on [START_REF] Sangiorgi | The Pi-Calculus -a theory of mobile processes[END_REF]Lemma 1.4.13]:

Lemma 28. 

′ -→ Q ′ , then Qσ α ′ σ --→ Q ′ σ.
Take a relation R and some processes P, Q such that (P, Q) ∈ b 2 α ∩ b τ (R). We want to show that for all σ, (P σ, Qσ)

∈ b τ • F ≡ • res • sub(R).
Take P σ τ -→ P ′ , by the lemma, we have three cases:

1. either P τ -→ P ′′ for some P ′′ with P ′′ σ = P ′ . Then, as (P,

Q) ∈ b τ (R), Q τ -→ Q ′ and P ′ R Q ′ . Thus, Qσ τ -→ Q ′ σ and (P ′ σ, Q ′ σ) ∈ sub(R) ⊆ F ≡ • res • sub(R). 2. or P a b --→ c b
--→ P ′′ for some P ′′ , a, b, c with aσ = cσ and P ′′ σ ≡ P ′ . Then, as (P, --→ P ′′ for some P ′′ , a, b, c with aσ = cσ and (νb)P ′′ σ ≡ P ′ . Then, as (P,

Q) ∈ b 2 α (R), Q a b --→ c b --→ Q ′′ and P ′′ R Q ′′ . Thus, by the Aliased Communication Property Qσ τ -→ Q ′′ σ and (P ′ , Q ′′ σ) ∈ F ≡ • sub(R) ⊆ F ≡ • res • sub(R).
Q) ∈ b 2 α (R), Q a(b) --→ c b --→ Q ′′ and P ′′ R Q ′′ . Thus, by the Aliased Communication Property Qσ τ -→ (νb)Q ′′ σ and (P ′ , Q ′′ σ) ∈ F ≡ • res • sub(R).
• Trivial (no transition)

• We can prove inp ⊆ b α • sub.
Then,

(id ∪ inp) • b α = b α ∪ inp • b α ⊆ b α ∪ b α • sub • b α ⊆ b α • (id ∪ sub • b α ) by Lemma 11 Thus we know that id ∪ sub • b α ⊆ sub ⊆ sub • (id ∪ inp).
On the other hand, we have (id

∪ inp) • b α ⊆ (id ∪ inp) ⊆ sub • (id ∪ inp). So (id ∪ inp) • b α ⊆ b α • sub • (id ∪ inp) ∩ sub • (id ∪ inp) = b α • sub • (id ∪ inp).
The property defined in Definition 26 is only used to show that sub is b 2 α , b τ -compatible up to res. However, because the compatibility of inp is shown up to sub, the soundness of the corresponding technique relies on the compatibility result for sub.

Finally, if we aggregate all the results:

Theorem 29. If the aliased communication property holds, then (

F ∼ ∪ id ∪ refl ∪ sub ∪ res ∪ pcomp ∪ sum ∪ rep ∪ tau ∪ out ∪ inp) ω is b-sound.

Subcalculi satisfying the aliased communication property

We present two subcalculi satisfying the aliased communication property. The property does not hold in general because of processes like a. b. Thus, we look at Aπ, where outputs cannot guard processes, and processes with immediately available names, where dually inputs cannot be guarded.

Asynchronous π-calculus. The asynchronous π-calculus is defined by imposing that outputs no longer guard a process, meaning that there are forbidden in sums and in a b . P , we have P = 0.

Lemma 30. Aπ satisfies the Aliased Communication Property.

Proof. This is the direct application of Lemma 5.3.2 (3) and ( 4) in [START_REF] Sangiorgi | The Pi-Calculus -a theory of mobile processes[END_REF].

Immediately available names. Immediately available names may only be used in input as soon as the name is created. This is a weaker notion than linear receptiveness or uniform receptiveness [START_REF] Sangiorgi | The name discipline of uniform receptiveness[END_REF] which impose that exactly one input (resp. replicated input) must be accessible. This discipline is formalised by the following typing rules where Γ is the set of name that can be used as input.

∅ ⊢ P Γ ⊢ τ . P, a b . P Γ ⊢ G Γ ⊢ !G ∅ ⊢ P a ∈ Γ Γ ⊢ a(b). P Γ, a ⊢ P Γ ⊢ (νa)P Γ ⊢ P Γ ⊢ Q Γ ⊢ P | Q ∅ ⊢ G ∅ ⊢ G ′ ∅ ⊢ G + G ′
Note that because of the typing rule for sum, inputs are forbidden in sums. Typable processes form a subcalculus of the π-calculus. Indeed, the set of typable processes is closed by transitions as expressed by the lemma below.

Lemma 31 (Subject Reduction). If Γ ⊢ P and P µ -→ P ′ , then Γ ∪ bn(µ) ⊢ P ′ . Lemma 32. The set of typable processes satisfies the Aliased Communication Property.

As a consequence of Theorem 29, the up-to context techniques is sound for both subcalculi.

The weak case

We show how these results can be adapted to the weak case. The weak arrows are defined as usual:

= ⇒ def = τ -→ * , α = ⇒ def = = ⇒ α -→= ⇒, α = ⇒ def = α = ⇒ and τ = ⇒ def = = ⇒.
We define the simulation functions for the weak case ws, ws α , ws τ , the corresponding bisimulation functions wb, wb α , wb τ , and their variant wb, wb α , wb τ follow as expected.

ws(R) def = {(P, Q) for all µ, P ′ , P µ -→ P ′ implies there exists Q ′ s.t Q µ = ⇒ Q ′ , P ′ R Q ′ } ws α (R) def = {(P, Q) for all α, P ′ , P α -→ P ′ implies there exists Q ′ s.t Q α = ⇒ Q ′ , P ′ R Q ′ } ws τ (R) def = {(P, Q) for all P ′ , P τ -→ P ′ implies there exists Q ′ s.t Q = ⇒ Q ′ , P ′ R Q ′ } Weak bisimilarity is noted ≈ a .
Most results true in the strong case also hold in the weak case. We give details about those whose statement or proof need to be adapted.

First, it is known that up-to weak bisimilarity is not a sound technique. However, we can still use up-to strong bisimilarity but also use the expansion preorder . Take s ′ (R) def = {(P, Q) for all µ, P ′ , P µ -→ P ′ implies there exists

Q ′ s.t Q µ -→ Q ′ , P ′ R Q ′ } where α -→ def = α -→ and τ -→ def = τ -→ = . Then is the largest relation R such that R ⊆ ws(R) ∩ s ′ (R -1 ). Thus, if P a b = == ⇒ c b = == ⇒ P ′ , then P ⇒ a b --→ c b
--→⇒ P ′ so Aπ satisfies the weak aliased communication property.

For immediately available names, the reasoning is reversed. As inputs are immediately available, we can show that they can be preponed: --→⇒ P ′ and so we can conclude.

We can notice a symmetry between Lemmas 37 and 38, the former delays outputs while the latter anticipates inputs.

This shows that both calculi are also a congruence for the weak bisimilarity and that the up-to context technique is sound.

Remark 39. Note that, in the (weak) aliased communication property, we quantify over all names a, c, being the subject of the output and input respectively. If we impose that the property holds for only some names, for instance if only a subset of names are asynchronous or immediately available, then we have the soundness of up-to substitution restricted to those asynchronous names (resp. immediately available names), and up-to input that only carry asynchronous names (resp. immediately available names).

A Language with lookahead

Theorem 15 is sufficient to derive result with operator enabling after more than transitions.

Consider the language P ::= op(P ) a. P 0 with the following semantic a. P It is known that up-to-bisimilarity-and-context is unsound. However, one could tweak this language to make it sound.

A.1 Two prefixes

A first way would be to consider two prefixes a and b, with a. P 

A.2 Second version

First, we need to show a variation of Theorem 15. Here, we add the condition that g ⊆ id along with a rather technical condition (⋆) (stated to remain as general as possible), which is always verified in practice (for instance, if f is expansive). It allows us to show the soundness when we add an extra h in front of g m , i.e in the case where f is h • g m , h-compatible.

Theorem 40. If f, g, h are monotone, g ⊆ id and f is both g-compatible, h • g m , h-compatible (with m ≥ 1) and verifies the following: ∀n ∈ N, f n • (

i≤mn+1 f i ) ⊆ i∈N f i (⋆) then f is g ∩ h-sound via f ω . Proof. Note that if R ⊆ ((g ∩ h) • f )(R) then R ⊆ (g • f )(R) and R ⊆ (h • f )(R).
We already know that f is g-sound via f ω so f ω (R) ⊆ g(f ω (R)). As g ⊆ id, we have h • g m ∩ h = h • g m . Thus f • h • g m ⊆ h • f . Now, let's show that the same inclusion holds for h. We prove by induction on n that

f n • h • g mn ⊆ h • f n (△)
For n = 0, trivial. For n ≥ 0,

f n+1 • (h • g m(n+1) ) = f n • f • h • g m • g mn ⊆ f n • h • f • g mn f is g m , h-compatible ⊆ f n • h • g mn • f f is g-compatible ⊆ h • f n • f by induction
By monotonicity of g and f , we can prove by a simple induction that R ⊆ (g • f )(R) implies R ⊆ (g • f ) mn (R). Then, we have R ⊆ (h

• f )(R) ⊆ (h • f ) • (g • f ) mn (R)
So R ⊆ (h • g mn • f mn+1 )(R) by compatibility and if we note f ω mn+1 = i≤mn+1 f i , as g and h are monotone we have R ⊆ (h • g mn • f ω mn+1 )(R).

Proof.

  First, by definition (c, 0) ∈ ⊤ so (a. c, a), (c | c, c) ∈ b(⊤). Therefore, (a. c | c, a | c) ∈ b 2 (⊤). Then, we have (a. a | a){ a /c} = a. a | a τ -→ a and the only transition that the second process can do is (a | a){ a /c} = a | a τ -→ 0. Thus, as a a -→ but 0 a -→, we have (a, 0) / ∈ b(⊤), meaning that (a. a | a, a | a) / ∈ b 2 (⊤).

  ) and bisimulation functions b, b and introduce their weaker versions b α , b τ that only impose conditions on visible and internal actions respectively. P, Q ::= !G P | Q (νa)P G G, G ′ ::= 0 a b . P a(b). P τ . P G + G ′ α ::= a b a(b) a b µ ::= α τ Inp a(b). P a c --→ P { c /b} Out a b . P a b

Figure 1 :

 1 Figure 1: Syntax and Early Labelled Transition System of the full π-calculus

•

  id ∪ rep is b α -compatible up-to pcomp ∪ id Similarly, using Lemma 10 and existing results, we have that id ∪ tau and id ∪ out are b α , b τ -compatible, id ∪ sum is b α , b τ -compatible and id ∪ rep is b α , b τ -compatible up to pcomp ∪ id.

1 .

 1 If P σ α -→ P ′ then P α ′-→ P ′′ for some α ′ , P ′′ with α ′ σ = α and P ′′ σ = P ′ . 2. If P σ τ -→ P ′ then (a) P τ -→ P ′′ for some P ′′ with P ′′ σ = P ′ , or (P ′′ for some P ′′ , a, b, c with aσ = cσ and P ′′ σ ≡ P ′ , or (P ′′ for some P ′′ , a, b, c with aσ = cσ and (νb)P ′′ σ ≡ P ′ . b α -compatibility follows from the lemma and that if Q

  α

  ′ . One could define simply b a , b b two bisimulations using actions a and b respectively. Then with op 1 (R) = {(op 1 (P ), op 1 (Q)) P R Q}, we have op 1 • b b ⊆ b b • op 1 (there cannot be any b transition) and op 1 • (b 2 b ∩ b a ) ⊆ b a • op 1 .

Lemma 33. F ∼ , F is wb α -compatible.

The aliased communication property needs also to be changed to use weak arrows so that the proof of substitution goes without trouble.

Definition 34 (Weak Aliased Communication Property). We say that a set of processes P satisfies the weak aliased communication property if for all process P in P, we have the following properties:

= == ⇒ P ′ implies P σ = ⇒ P ′ σ for all σ s.t. σ(a) = σ(c). Weak bisimilarity is not a congruence for sum. Indeed, we have τ . a ≈ a a but τ . a+b ≈ a a+b. Congruence is usually recovered by considering non-degenerate contexts, that is, contexts where the hole is not directly under a sum operator. Therefore, we want to prove the soundness of up-to non-degenerate contexts, and thus we use the up-to guarded sum technique instead of the previous up-to sum technique:

Proof. We prove

The proof for replication needs also to be changed. We show instead that id ∪ rep is b α , b τ -compatible up to F ∼ • (pcomp ∪ id). Intuitvely, the problem is similar to the case of the sum, but because we have the law !G ∼ !G | G, it does not break soundness.

The other proofs can be carried out without any modification, and we can then conclude with the soundness of the whole up-to technique:

We can now show that both subcalculi also satisfy the weak aliased communication property. In asynchronous π-calculus, we know that outputs, being asynchronous, may always be postponed as expressed below.

In the end, we have

This 

We may also take P This approach may require a bit more redundancy to prove compatibility results, but it does make statements easier to read. Here, we aim to decompose b using more than 2 functions, so we will use this incremental approach.

This Lemma allows us to chain Lemma 10 into one compatible function. For simplicity, we will assume f is expansive.

and f is g 1 -compatible and for some (m i ) i≤n with m i ≥ 1, g mi i , g i+1 -compatible, then f is g n -sound via f ω . Proof. First, we define h i with h 1 = g 1 and h i+1 = g i+1 ∩ h mi i . We show by induction on i that f is h i -compatible.

When i = 1, this is true by assumption. For i = 2, as f is h 1 -compatible, it is also h m1 1 -compatible. Thus, by Lemma 10, f is g 2 ∩ h m1 1 -compatible. For i ≥ 2, as f is g i ∩h mi-1 i-1 -compatible and g mi i , g i+1 -compatible, by Lemma 41, f is g i+1 ∩(g i ∩h mi-1 i-1 ) micompatible.

Next, we will show by induction that R ⊆

A.4 Unverified approaches

Having integers n ≥ 1 as prefixes, i.e n. P