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Enumerating Isotopy Classes of Tilings guided by the symmetry of
Triply-Periodic Minimal Surfaces

Benedikt Kolbe · Myfanwy E. Evans

Abstract We present a technique for the enumeration of all isotopically distinct ways of tiling
a hyperbolic surface of finite genus, possibly nonorientable and with punctures and boundary.
This generalizes the enumeration using Delaney-Dress combinatorial tiling theory of combinato-
rial classes of tilings to isotopy classes of tilings. To accomplish this, we derive an action of the
mapping class group of the orbifold associated to the symmetry group of a tiling on the set of
tilings. We explicitly give descriptions and presentations of semi-pure mapping class groups and
of tilings as decorations on orbifolds. We apply this enumerative result to generate an array of
isotopically distinct tilings of the hyperbolic plane with symmetries generated by rotations that
are commensurate with the three-dimensional symmetries of the primitive, diamond and gyroid
triply-periodic minimal surfaces, which have relevance to a variety of physical systems.

Keywords Isotopic tiling theory, mapping class group, orbifolds, group presentations, represen-
tations of groups as automorphism groups of algebraic systems, triply-periodic minimal surface,
Delaney-Dress tiling theory, Hyperbolic tilings, 2-dimensional topology
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1 Introduction

Hyperbolic tilings have found a spectacular niche in describing complicated three-dimensional
structure in both structural chemistry and polymer self-assembly [30,31,9,37]. These disparate
systems are united by a common geometric thread of symmetric tilings on some particular hyper-
bolic triply-periodic minimal surfaces (TPMS), minimal surfaces embedded in R3 invariant under
three linearly independent translations. This provides motivation for a geometric exploration of
related structures, in particular, the enumeration of possible tilings of the gyroid, the diamond,
the primitive, and other genus 3 TPMS.

An extensive enumerative technique, called the EPINET project (Euclidean Patterns in Non-
Euclidean Tilings)) [1], uses TPMS decorated with hyperbolic tilings as a blueprint for complicated
structures, including crystallographic nets, in R3 [64,53,63,32,59,8]. Upon discarding the surface
and only retaining the boundary of the tile edges, one obtains a net in R3. The hyperbolic in-
surface symmetries of TPMS manifest as ambient Euclidean symmetries of R3 [58] (see Figure 1),
so that symmetric tilings of TPMS give rise to symmetric graph embeddings in R3. These ideas
have been used to enumerate crystalline structures resulting from bounded hyperbolic tilings with
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a symmetry group generated entirely by reflections [35,59], also known as a Coxeter group. An
example of the construction process is shown in Figure 2.

(a) (b) (c)

Fig. 1: The symmetries of the diamond triply-periodic minimal surface (D-surface) in R3 and its
uniformization in H2. (a) Tesselation of H2 by dodecagons corresponding to the genus 3 hyperbolic
surface (after identifying opposite edges) that gives rise to the D-surface. (b) The tiling of H2

by triangles with a symmetry group ?246, which is the symmetry of the D-surface. Each line
represents a mirror symmetry. (c) A periodic unit cell of the D-surface in R3, together with its
smallest asymmetric triangle patches. These correspond to the ?246 tiles in H2 in the neighbouring
image.

(a) (b) (c)

Fig. 2: The cubic structure of the mineral Sodalite (c) can be described by a hyperbolic tiling
projected to the primitive cubic triply-periodic minimal surface (P-surface). (a) A tiling of the
hyperbolic plane with symmetry group ∗246, represented by the solid black lines, with a tiling by
triangles with ?246 symmetry shown in blue in the background. (b) The tiling from (a) shown
as a decoration of the P-surface. The triangles illustrate the symmetries of the surface. (c) The
resulting net in R3 when the tile boundaries are considered as curves in 3-dimensional Euclidean
space rather than curves on the surface, which is the structure of Sodalite.

Beyond this enumeration, various sets of structures with purely rotational symmetry and various
tile types have been explored in different contexts [33,34,16,17,15,56]. A particular example relates
to the complicated geometry of a simulated self-assembled block copolymer system that has been
recently characterised [37]. The mutual repulsion of different polymer chain species in the star-
shaped molecule causes an arrangement into complicated domains in R3. These domains can be
described by hyperbolic tilings composed of unbounded tiles with a network-like boundary and
rotational symmetry, decorating the gyroid TPMS [16], see Figure 3. These mesostructures are
among the most topologically complex morphologies simulated in polymer sciences to date. More
recently, hyperbolic honeycombs with rotational symmetry reticulated over TPMS have been used
to construct new infinite deltahedra [57].
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Fig. 3: A hyperbolic tiling in H2 with unbounded tiles and purely rotational symmetry (orbifold
2223). The tiling is then shown in the gyroid triply-periodic minimal surface, which describes the
domains formed in a numerical simulation of polymer self-assembly, shown on the right [37].

The varied and physically relevant structures that arise from moving away from Coxeter sym-
metry groups of the hyperbolic tilings motivate the extension of the EPINET enumeration to a
broader range of symmetries. So far, all approaches to enumerations for tilings with a symmetry
group not generated entirely by reflections have involved ad-hoc ideas for specific groups and have
only met with success in a small number of restricted cases. Here, we develop a general framework
to systematically enumerate isotopically distinct hyperbolic tilings with arbitrary symmetry groups
of a given hyperbolic surface, which we consider as a finite-area Riemannian surface locally iso-
metric to the hyperbolic plane. An isotopy class of a tiling can be thought of as all tilings that can
be deformed into one another on the surface. We specifically apply this enumerative technique to
construct isotopically distinct hyperbolic tilings with purely rotational symmetry as candidates for
reticulation over the candidate TPMS. Since every Riemannian surface carries a natural hyperbolic
structure by the uniformization theorem, the enumerative techniques developed here can be used
for an enumeration of isotopy classes of tilings of arbitrary Riemannian surfaces. Note that every
isometry of a Riemannian surface has a corresponding isometry in the uniformized surface [39,
Lemma 2.2.1].

Delaney-Dress combinatorial tiling theory [13,29,12] is an essential tool of the enumerative
process. It deals with the classification of equivariant equivalence classes (see Section 2.3) of equiv-
ariant tilings, i.e. tilings with a specified symmetry group, of simply connected spaces, in which
every tile is a bounded disk. Equivariant equivalence among equivariant tilings roughly refers to
tilings that have equivalent symmetry and topology. Our recent generalization of combinatorial
tiling theory allows, in theory, the enumeration of isotopy classes of tilings on hyperbolic sur-
faces [38]. This generalization uses the notion of orbifolds and mapping class groups (MCGs), and
interprets tilings as decorations, or piece-wise linear/geodesic embeddings of graphs, on orbifolds,
with Delaney-Dress (D-)symbols representing topological equivalence classes of triangulations of
orbifolds.

In this paper, we use this generalization to derive a methodology to completely enumerate all
isotopy classes of equivariant tilings with symmetry groups commensurate with some fixed hyper-
bolic surface, meaning that the symmetry group is isomorphic to a subgroup of the isometry group
of that surface. In practice, our enumerative approach requires the conversion of the above theoret-
ical framework (from [38]) into a practical setting, making use of topological ideas, computational
group theory, braid theory, and presentations of MCGs. We describe the non-trivial transition to
a setting that allows for applications of the theory in detail, alongside limitations. Applying these
results, we will show how to enumerate isotopy classes of equivariant tilings with a stellate sym-
metry group, generated entirely by rotations (we also call any orbifold with a symmetry group
generated entirely by rotations a stellate orbifold). We focus on the enumeration of isotopy classes
of tilings that are commensurate with a genus-3 hyperbolic surface with a symmetry group equal
to ?246 (see Section 2.1 for notation), whereby we mean that the edge graph of the hyperbolic
tiling projects to an edge graph of the hyperbolic surface homomorphically. This surface plays
the role of the uniformized version of the surface within a unit cell for the gyroid, diamond, and
primitive TPMS, so the enumerated tilings give rise to physically relevant structures of interest to
the natural sciences.

This paper is structured into four sections which cumulatively build towards the enumeration
process of isotopy classes of tilings, culminating in the application to explicit tilings of stellate
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symmetry. Section 2 will be a recollection of orbifolds, combinatorial tiling theory, the framework
from [38] for isotopic tiling theory as well as fundamental considerations for our enumeration. In
section 3, we relate the geometry of orbifolds to the sets of generators of its symmetry group
and derive an action of the MCG on these sets of generators that works for arbitrary orbifolds.
The statement of our results depend heavily on the orbifold under consideration, so to avoid a
lengthy presentation with many special cases, we instead separated the many different situations
into different subsections. Section 4 then uses the connection of the semi-pure braid group on the
sphere to the MCG to find presentations of MCGs. We subsequently introduce a natural data
structure for tilings and move to an enumerative setting for tilings with stellate symmetry, and
conclude by presenting a collection of examples of tilings in section 5, illustrating the approach.

2 Preliminaries

2.1 The standard presentation of orbifolds

Throughout this paper, let Γ be a discrete group of isometries of H2. For simplicity, we restrict
to the case where Γ admits a compact fundamental domain, in which case Γ is an NEC (non-
Euclidean crystallographic) group. Note that our results retain their validity in more generality for
groups with a fundamental domain of finite-area, as we point out along the way. We identify the
isomorphism class of an NEC group using Conway’s orbifold symbol [10,48].

Definition 1 Let Γ be an NEC group. A (hyperbolic) orbifold, O, is topologically the quotient
space H2/Γ obtained by identifying points of H2 under the action of Γ . The orbifold structure re-
tains the metric information carried by the particular isometries of Γ , by keeping track of the types
of branching of the canonical projection map p : H2 → H2/Γ, and an atlas of charts compatible
with the Γ action. The group Γ is also known as the orbifold’s symmetry group.

For more detailed definitions of the concepts involved, refer to [60]. We distinguish between the
underlying topological space and an orbifold with the additional structure by denoting them with
O and O, respectively. We call O orientable if O is orientable, and the nowhere dense set of branch
points in H2/Γ of the covering p the singular locus of the orbifold O. We refer to the isolated
points of the singular locus as marked points.

Note that for more general finite-area orbifolds, cusps of the action of Γ correspond to punctures
in O and can be treated as marked points. Moreover, for orbifolds with boundary components in
O, the universal covering space Ũ is not H2 but a totally geodesic subspace thereof, i.e. where all
geodesics in Ũ are geodesics in H2 [36,2] and where the boundaries of Ũ are geodesics in H2.

The Conway symbol for Γ has the form A · · ·?abc · · ·×· · · ◦, where the different symbols give rise
to special elements of Γ that correspond to features of O, or transformations of H2 that generate
Γ . For example, the symmetry group 2226 is the symmetry group generated by four rotations
of order 2, 2, 2, and 6, respectively. Using the Conway symbol, one can effectively compute the
Euler-Poincaré characteristic of Γ , to ascertain whether it represents an NEC-group.

The symmetry group Γ of an orbifold O is also called the fundamental group of O, denoted as
usual by π1(O). Additionally to acting as deck transformations on the cover p : H2 → O, elements
of Γ also have an interpretation as homotopy classes of based closed curves in O [10,60]. In this
interpretation, we can picture the elements of Γ as homotopy equivalence classes of closed curves
in the underlying topological space O of O. To make sense of this, one needs to keep track of
the types of branch points of O and introduce further rules for homotopies of such curves, as for
example the relation γA = 1 for some γ ∈ Γ means that the curve representing γ is homotopically
trivial when traversed A times. Moreover, curves that touch a mirror boundary (corresponding to
a substring of the Conway symbol of the form ?abc...) in O transversally must lift to a path that
crosses over the mirror in the covering space.

We briefly recall how the Conway symbol of an orbifold O gives rise to what we shall refer
to as the standard presentation of the orbifold symmetry group. There are two generators for the
translations associated to each handle ◦, given by, say, X and Y , and there is an oriented curve
going around a handle that traces the commutator [X,Y ] = XYX−1Y −1 =: α. There are also
generators for each gyration point of order A, and for a curve γ in O going around the gyration
point once we have γA = 1. Furthermore, for each mirror we have the usual Coxeter group relations,
which depend on the angles of the intersecting mirrors. This means that each substring of the form
?abc corresponds to a sequence of mirrors that together form a boundary component. Each of the
letters a, ... corresponds to a mirror a with relation a2 = 1, ... and the mirror a meets the mirror
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b at an angle of π/a, which yields the relation (ab)a = 1. As closed curves, each generator of a
mirror corresponds to a closed curve from a base point that touches that mirror transversally and
backtracks. In the case where the interior of the orbifold contains nontrivial features, we choose
one mirror per boundary component that we give two generators, say P and S, corresponding to
the two ways of going around the mirror boundary component, and one generator λ for the curve
that goes around this boundary component once in positive orientation. We then add the relation
S = λ−1Pλ. In the literature, λ is known as a connecting generator. Figure 4 illustrates the curves
in O representing the generators discussed here.

X
Y

α

· · ·· · ·

γ

a b c
A

P Q R S

λ

Z

ω

· · · · · ·

γ...λ...ω...α... = 1

Fig. 4: Closed paths in a compact orbifold that lift to generators of its symmetry group. The shown
rectangular region R contains all features of the orbifold under consideration and the paths that
lead to the standard presentation of the fundamental group of the orbifold for each type of feature.
The closed paths are based at a point outside of R. Here, γ represents a curve going around a
gyration point once. Likewise, the curve λ encircles a mirror boundary component, whereas ω
goes around a cross-cap, with Z traversing the cross-cap once. Lastly, α corresponds to a curve
going around a handle, where this means that α = XYX−1Y −1, where X and Y are curves that
correspond to the homotopy classes of the meridian and equator of the handle, respectively.

As a deck transformation, λ corresponds to a hyperbolic transformation, whenever O has more
than one nontrivial feature in its interior, or whenever there is another boundary component. Next,
going around a crosscap corresponds to a group element ω with Z2 = ω, where Z is a generator,
corresponding to the curve passing through the crosscap once. In case O has (nonmirror) boundary
components, every boundary curve gives rise to a generator hi, a hyperbolic transformation, known
as a boundary hyperbolic transformation. For every puncture, we add a generator pj , which is a
parabolic deck transformation acting on H2 [19] and corresponds to a curve around the puncture.
There is one global relation for an orbifold, namely, the product of the generating transformations
discussed above has to be trivial:

γ...hi...pj ...λ...ω...α... = 1. (1)

We refer to the presentation thus obtained as the standard presentation of the fundamental group
of O. For example, the symmetry group 2226 discussed previously has the natural relations for the
orders of its elements and one extra relation, namely r21r22r23r6 = 1, where r21 is a rotation about
the first 2-fold rotation center and the subscripts are simply to keep track of the order.

While a Conway symbol uniquely defines an isomorphism class of groups, this is not unam-
biguous as different symbols describe the same class. Most of these ambiguities are related to the
order of the symbols, but there are also others [10]. In particular, for convenience, we can assume
that in the presence of a crosscap, all handles are replaced by two crosscaps each [20]. From now
on, when we talk about a set of generators for an orbifold, we usually mean a set of generators as
provided by the Conway symbol like above. For emphasis, we will sometimes also write geometric
generators. Depending on the context, the generators may show up in a different order, which leads
to a slightly different global relation (1), with a permutation of the symbols. For our purposes, we
need to fix an arbitrary ordering of the generators for the symmetry group under consideration.
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2.2 Isotopic tiling theory

The mathematical framework that serves for the enumeration of isotopy classes of tilings we present
here is based on results on isotopic tiling theory [38]. We recall the most important relevant
results. The elements of an orbifold fundamental group Γ can be assigned types according to their
algebraic properties and their action on the hyperbolic plane. For our purposes, we define the MCG
Mod(O) of a hyperbolic orbifold O with symmetry group Γ ⊂ Iso(H2) as the isotopy classes of
homeomorphisms f of O that induce a homeomorphism of (a totally geodesic subspace of) H2

which induces an automorphism of Γ. This corresponds to homeomorphisms of the underlying
quotient space of O that preserve the types of branchings of the universal covering. For example,
for stellate orbifolds, this means that the homeomorphisms can only map one gyration point to
another if their orders of rotation agree. Recall also that the group of outer automorphisms of Γ
is defined as Out(Γ ) = Aut(Γ )/ Inn(Γ ). Note that when the underlying topological space O of O
is orientable, we require the homeomorphisms in Mod(O) to be orientation-preserving. We shall
refer to the following theorem as the MCG isomorphism in this paper.

Theorem 1 [38] Let O be a nonorientable hyperbolic finite-area orbifold, with nonorientable un-
derlying topological space. Then the MCG Mod(O) is isomorphic to Outt(π1(O)), the group of
type-preserving outer automorphisms. If O is orientable, possibly containing mirrors, then the ori-
entable MCG Mod(O) is isomorphic to Out+(π1(O)), the group of orientation and type-preserving
automorphisms.

The enumeration of isotopy classes of tilings we present in the following sections is based primarily
on this theorem and the standard presentation of the symmetry group discussed in the previous
section. Given a set of geometric generators, by applying an outer automorphism to it, one obtains a
conjugacy class of geometric generators. Using theorem 1, one can show that different isotopy classes
of tilings correspond to mutually non-conjugate sets of geometric generators for the symmetry
group of the tiling that yield a priori distinct isotopy classes of tilings [38]. To ensure that the non-
conjugate sets of geometric generators corresponding to Out+(π1(O)) (Outt(π1(O))) yield distinct
tilings, we need to assume that each edge orbit is given a different colour, for distinguishability,
which gets rid of the at most finitely many ambiguities encountered. What is missing from this
framework is more than a simple implementation. How an element of the MCG can be used
to actually produce, effectively, the isotopy class of tiling it encodes still needs to be clarified,
alongside a method to enumerate these MCG elements. Moreover, any such enumeration requires
a presentation of the MCG, often for nonstandard surfaces, so we will derive presentations for some
of these in section 4. Our avenue of approach to an enumeration is to successively apply elements
of the MCG to a set of geometric generators.

2.3 Enumerative aspects of isotopic tiling theory

A tiling is a partitioning of a metric space X into a locally finite collection of closed and bounded
disks whose interiors are mutually disjoint. We call a point that is contained in at least 3 tiles a
vertex, and the closures of connected components of the boundary of a tile with the vertices removed
edges. Let T be a tiling of X and let Γ be a discrete subgroup of Iso(X ). If T = γT := {γT | T ∈ T }
for all γ ∈ Γ then we call the pair (T , Γ ) an equivariant tiling. Two tiles T1, T2 ∈ T are equivalent
or symmetry-related if there exists γ ∈ Γ such that γT1 = T2. The orbit, or equivalence class, of a
tile is the subset of T given by images of T : Γ.T = {γT for γ ∈ Γ}. Given a particular tile T ∈ T ,
the stabilizer subgroup ΓT is the subgroup of Γ that fixes T , i.e. ΓT = {γ ∈ Γ | γT = T}. Notice
that the stabilizer subgroup of a tiling with closed disks is necessarily finite.

A tile is called fundamental if ΓT is trivial and we call the whole tiling fundamental if this is
true for all tiles. An equivariant tiling is called tile-k-transitive, when k is the number of equivalence
classes of tiles under the action of Γ . Note that the above definitions do not require Γ to be the
maximal symmetry group for the tiling T .

Two equivariant tilings (T1, Γ1) and (T2, Γ2) of X are equivariantly equivalent if there is a
homeomorphism, φ, of X such that φ(T1) ∈ T2 for all T1 ∈ T1 and such that φ induces a group
isomorphism of Γ1 onto Γ2 by Γ2 = φΓ1φ

−1. Dress [13] shows that there is a complete invariant that
detects when two tilings are equivariantly equivalent, for tilings of simply connected manifolds. This
invariant is called the D-symbol and consists of a coloured graph that records adjacencies between
tiles and their faces, augmented by weights that encode the group action of Γ on T .
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The enumeration of D-symbols up to a certain complexity is computationally tractable and was
investigated in [29,12], allowing for efficient enumerations.

We call two equivariantly equivalent tilings on a hyperbolic surface S isotopic if their edge
graphs are isotopic in S [38]. This is equivalent to the condition that the edge graphs projected to
the orbifold O are isotopic in O [38, Proposition 3].

Once one specifies a set of geometric generators of Γ as transformations of H2, from a D-symbol
one can find a (nonunique) corresponding decoration in terms of a combinatorial description of
vertices and their connectivity that gives rise to a tiling of H2 with that D-symbol [38]. Other
isotopy classes of tilings with the same D-symbol are a result of changing the set of geometric
generators according to the MCG isomorphism and using the same combinatorial description of
the decoration. See figure 9 for an illustration of different tilings resulting from such a combinatorial
description.

Every equivariant equivalence class of tilings can be built by successive applications of cer-
tain operations on tile-1-transitive tilings or their D-symbols, called the GLUE and SPLIT op-
erations [29,38]. A fundamental tile-1-transitive tiling can be built from any one chosen tile, the
starting tile, by applying elements of the symmetry group, resulting in a tessellation of the whole
space. We therefore focus on the enumeration of tile-1-transitive tilings by constructing the dec-
oration of a fundamental domain that gives rise to the tiling by enforcing the symmetries of the
symmetry group.

There are essentially two choices involved in the enumeration. The first is a choice of starting
generators of a symmetry group that the MCG acts on to produce all other admissible sets of
generators. This choice directly relates to the choice of method to produce a fundamental domain
with given combinatorial structure in H2 from a given set of generators as a combinatorial de-
scription. Note that there are methods to produce any isotopy class of tilings from a given set of
generators, just as it is possible to construct every possible tiling with a given symmetry group
by decorating a single fixed fundamental domain, so the choice of starting generators only makes
sense after having fixed the method of construction. As a first step, we restrict ourselves to methods
that yield a minimal total word length description of the Wilkie generators [69] of the symmetry
group corresponding to edge traversals across boundaries of the fundamental starting tile in terms
of the given geometric generators. Moreover, we can simplify the situation by requiring that the
given generators act on a subset of the boundary of the starting tile or its neighbours (tiles with
non-empty intersection) by mapping some part of it to itself. This subset of the boundary can
consist of one edge, two edges, or a point, depending on the generators. These choices leave at
most a finite number of methods to produce isotopy classes of fundamental domains from given
geometric generators. In practice, we will make an ad-hoc choice among these to produce a funda-
mental domain from a D-symbol that satisfy these conditions. We will discuss these in more detail
for stellate symmetry groups below.

The second choice is that of an action of the MCG on sets of geometric generators on the
symmetry group and, closely related, the presentation of the MCG that gives rise to the enumer-
ation of its elements. The enumeration of MCG elements uses the fact that MCGs of orbifolds
have solvable word problem [38]. We will discuss well-known generators of MCGs in section 3 and
derive presentations of MCGs in section 4. In section 3, we also explain how to enumerate the
possible realizations of the geometric generators of Γ = π1(O) as isometries of H2, subsequently
also referred to as the placements of the generators, starting from a given one by deriving an action
of Mod(O) on the sets of generators.

Given a closed hyperbolic surface S (such as the uniformized genus 3 Riemannian surface that
gives rise to the unit cell of the gyroid surface family), to enumerate all symmetric embeddings
of graphs that lead to tilings with a nontrivial symmetry group in S, one first has to identify all
of the hyperbolic symmetry groups of S. Since S is hyperbolic, by Hurwitz’ theorem, there is a
biggest discrete symmetry group ΓS that contains every symmetry of S and whose fundamental
domains in H2 have the smallest hyperbolic area amongst all symmetry groups of S.

In practice, we find all admissible symmetry groups of S by finding all of the finitely many
groups G with T ⊂ G ⊂ ΓS ⊂ Iso(H2), where T is the group of deck transformations of the
universal Riemannian cover of S by H2. For the purposes of EPINET, where S is embedded in
R3 into a unit cell such that it gives rise to a triply-periodic surface, T is normal in ΓS . This can
be readily checked by using the property of the unit cell that all translations under which the
triply-periodic surface is invariant are a result of composing translations of the unit cell. Whence,
we find all admissible subgroups by enumerating the finitely many subgroups of the finite group
ΓS/T and adding generators for T .
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For the purposes of enumerations of structures in R3 through isotopy classes of tilings it is
important to check when two subgroups of ΓS are conjugate, since the symmetries of ΓS either lift
to isometries of R3, or there is an index 2 subgroup of ΓS that lifts [58,51]. When two symmetry
groups are related by a symmetry of ΓS that lifts to an ambient isometry in R3, then the resulting
structures in R3 will also be related by a symmetry, so are either continuously deformable into
one another, or are mirror images of each other. Using results on the existence of lifts of intrinsic
symmetries of the diamond family of TPMS [51, Section 5], with symmetry group ?246, we see
that we can disregard subgroups of ?246 that are conjugate by an element of ?246 in the case of
the primitive and diamond surfaces, as these symmetries lift to isometries of R3. In case of the
gyroid, we need to construct all tilings that are related by some mirror symmetry of ?246, as such
a symmetry does not lift to an ambient isometry of R3. On the other hand, for the enumeration of
isotopy classes of equivariant tilings on TPMS, one also needs to account for conjugate but distinct
subgroups of symmetry groups ?246.

For the diamond, primitive and gyroid TPMS, the 131 conjugacy classes of subgroups of the
smallest (area-wise) symmetry group ΓS = ?246 have been listed [61] and the fundamental tile-1-
transitive tilings for the Coxeter groups, generated entirely by reflections, have been enumerated
and projected onto the diamond, primitive and gyroid TPMS [59]. Note that there is only one
combinatorial class of fundamental tile-1-transitive tilings for Coxeter groups [46, Theorem 5.1],
with a unique isotopy class [38].

For a general hyperbolic symmetry group, there are only a finite number of fundamental tile-1-
transitive equivariant equivalence classes of tilings [38, Proposition 4], which can be enumerated as
D-symbols for tilings [14]. Fixing the methods to produce a combinatorial class of tiling from each
of the finitely many D-symbols, this translates to there only being a finite number of isotopically
distinct fundamental tile-1-transitive tilings that arise from a given set of generators given as
isometries of a hyperbolic group in Iso(H2). In the remainder of this section, we describe a method
to find a nice starting set of generators for the symmetry group of a tiling that is related to
minimizing the total edge length of the tiling on the surface.

Intuitively, we want to start with generators that act on subsets of tile edges and lead to a
tiling on the surface S with minimal total edge length, or minimal shearing. Given a fundamental
domain for π1(S) in H2 with minimal total edge length, this condition translates to starting with a
minimally sheared tiling in H2. The minimization procedures described here, including that outlined
above for finding a method of construction of a combinatorial class of fundamental domain from
given geometric generators as well as that for finding a starting set of generators described below
cut down the possible choices of starting point for an enumeration to a finite number of equally
suitable choices. The approach is based on the the fact that there are only finitely many isotopy
classes of curves on a finite-area hyperbolic orbifold of length smaller than a given bound. In theory,
it is therefore possible to choose a representative of minimal total edge length out of the collection
of curves that cut the orbifold into a disk that gives rise to a tile-1-transitive tiling.

Let

T ⊂ G ⊂ ΓS ⊂ Iso(H2) (2)

be NEC groups, with T the realization in Iso(H2) as deck transformations of the fundamental
group of a closed hyperbolic surface S and ΓS its smallest (area-wise) symmetry supergroup. Then
there is a fundamental domain FG for G produced by gluing copies of a fundamental domain of ΓS ,
where for FΓS , we choose a least-sheared representative. For T , we take a geodesical fundamental
polygon p in H2 that is least sheared.

We obtain a placement Q of a set of geometric generators for any G satisfying (2), induced
by a set of geometric generators for ΓS by requiring that elements of Q act on the boundary
of FG (or, depending on the context, a neighbouring tile) by mapping a subset of it to some
subset of the boundary. One such set of generators will be our starting point and serve as a
reference frame. See figures 16a and 17a for an illustration of a fundamental polygon for a genus 3
hyperbolic surface along with such a starting set of generators for the symmetry group G = 2233
and G = 2224, respectively. The fundamental domains are a result of gluing together copies of the
uniquely determined (up to isometry) fundamental triangle for the ?246 symmetry group, which
plays the role of ΓS for the genus 3 hyperbolic surface depicted. In both cases, the fundamental
domain admits a mirror symmetry, which maps the generators to other generators of the group.
For 2233, the index 2 supergroup 2 ? 33 is generated by the elements of 2233 and the reflection
symmetry of the fundamental domain. For 2224, it is the index 2 supergroup ?2224.

In more complicated cases with multiple such choices, we choose some starting set of generators
minimizing the infimum of the length of the circumference of a fixed fundamental tile in H2
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constructed in a fixed way, again with generators acting on subsets of tile edges that are incident
to the fundamental tile. If we choose a minimally sheared version of p in H2 to begin with, these
two methods of finding a starting set roughly agree where they overlap. Summarizing, the idea
is simply to use a least-sheared version of a tiling on S resulting from a fixed construction as a
starting point and choose a set of generators that acts on subsets of tile edges incident to one
of the tiles. For stellate groups, using generators acting on the boundary of the index 2 Coxeter
supergroup gives a natural starting point, see Figures 19 and 20, where the indicated generators
of 22222 act on the boundary of a fundamental tile that is the result of doubling the fundamental
domain for the Coxeter supergroup ?22222.

A phenomenon related to the ambiguity of the starting set of generators and illustrated by
the examples above occurs when some equivariant tiling of H2 with symmetry group G exhibits
symmetries that are not elements of G. For example, consider a surface S that admits a symmetry
group R generated solely by rotations. A fundamental domain that admits a reflectional symmetry
for R is obtained by mirroring the fundamental domain of the Coxeter supergroup of R that
is generated solely by reflections. The emergence of such ‘accidental’ symmetries is a result of
combinatorial tiling theory being cast in terms of equivariant tilings, where some symmetry group
of a tiling must be specified, possibly without being the full group of symmetries of the tiling.
These accidental symmetries may easily be broken by adding extra edges to the tiles, but because
of their existence, some tilings are invariant w.r.t. a change of generators and associated decoration
of the orbifold. We will see further examples of this in section 5 below. Notice that the emerging
symmetries do not have to be part of the isometry group of the tiled surface S. The possible
ambiguities in the description of isotopy classes of classical tilings with the MCG of their symmetry
group relate to finite subgroups of the MCG [38, Section 7]. It is because of these finitely many
ambiguities that the enumeration that results from isotopic tiling theory as presented here is,
strictly speaking, an enumeration of coloured tilings, where each edge orbit is given a different
colour, for distinguishability.

The following three sections successively build towards the enumeration of isotopy classes of
(coloured) tilings. In section 3, we relate the structure of orbifolds to the sets of generators of its
group. In particular, we derive an action of the mapping class group of the orbifold associated to
the symmetry group of a tiling on the set of sets of geometric generators. Section 4 then uses the
connection of the semi-pure braid group on the sphere to its MCG to move to an enumerative
setting for tilings with stellate symmetry. We also explicitly give descriptions of certain subgroups
of mapping class groups and of tilings as decorations on orbifolds. This culminates, in section 5, in
an array of examples of isotopically distinct tilings of the hyperbolic plane with symmetries that
are commensurate with the primitive, diamond and gyroid triply-periodic minimal surfaces.

3 Relating the structure of orbifolds to the sets of generators of its group

The aim of this section is to explain how the MCG acts on the sets of geometric generators for the
symmetry group of a tiling. Together with a presentation of the MCG in question, this will give
rise to enumerations of isotopy classes of tilings with a given symmetry group.

3.1 The MCG isomorphism

The set of sets of generators of Γ that is relevant for producing isotopically distinct tilings of a
(finite-area) hyperbolic surface M with symmetry group Γ is in one-to-one correspondence to the
orbifold MCG by theorem 1. Just knowing that such an abstract correspondence exists is insufficient
for applications though, hence we begin by making the definition of the MCG isomorphism more
suitable to our purposes.

We will describe the MCG isomorphism from theorem 1 by relating the action of certain gen-
erators of the MCG on curves to the resulting group elements in the orbifold fundamental group
Γ , using the interpretation of group elements in Γ as homotopy classes of curves in the associated
orbifold O. The main point is that one can interpret elements of the symmetry group Γ of the
orbifold as homotopy classes of closed curves in the labelled quotient space O = H2/Γ that avoids
the singular locus of O, except possibly at one point on a mirror boundary, see Figure 4.

The following well-known result for covering spaces holds in greater generality for orbifold
covering spaces.
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Let f be a homeomorphism of a surface S with base point p not in the singular locus, which
lifts to a homeomorphism f̃ of the universal covering space. Fix a base point p̃ in the fiber above
p. Denote the deck transformation corresponding to the closed curve α, with homotopy class
[α] ∈ π1(S, p), by δ[α],p, and the homomorphism f induced on the fundamental group by f∗. We
then have the relation

f̃ ◦ δ[α],p ◦ f̃−1 = δf∗([α]),f(p). (3)

The relation (3) can be checked directly by applying both sides to f̃(p̃), where p is not in the
singular locus. Then note that deck transformations are uniquely determined by where they map a
single point (not in the singular locus) [26, Proposition 1.34]. One can use equation (3) to interpret
the form the MCG isomorphism takes in [38], where it agrees with the left hand side of the equation,
to match the classical formulation of the Dehn-Nielsen-Baer theorem in [19, Theorem 8.1], where
it corresponds to the right hand side of (3).

The above suggests a method to construct the automorphisms of Γ that are the images of
homeomorphisms of O explicitly. First interpret a set of geometric generators of Γ as homotopy
classes of closed paths in the orbifold. One can now simply draw pictures of these generators as
curves in O, look at how these are changed by a homeomorphism, and read off the new word
representing the resulting path. Doing this for all curves representing generators of Γ defines an
induced automorphism of Γ and, in particular, a new generating set. We treat the generating set of
Γ that corresponds to the set of curves such that cutting O along these yields the standard global
group relation (1), which we shall write as Π = 1 in the following. See figure 5 for an illustration of
such curves on orientable surfaces. Compare this picture with figure 6(a), which shows the surface
cut open along the set of curves in figure 5 for a genus 3 surface, where the Si can represent
boundary components, punctures, or mirrors. Different presentations of the fundamental group
correspond to a different set of generators in the orbifold and different actions of automorphisms
on the sets of generators. In case one is interested in other presentations, the results can be
translated to the presentation of interest, by cutting and gluing the orbifold suitably to obtain
the standard presentation [71], or by expressing the given generators in terms of the standard
presentation’s generators. Figure 7 shows an example of another set of curves that cut a genus 3
surface into a disk. These correspond to opposite edge identifications for a fundamental domain
that is a dodecagon, as shown in Figure 6(b). The fundamental dodecagon shown there glued up
according to the opposite edge identifications becomes the uniformized version of the surface giving
rise to the primitive, diamond and gyroid surface family.

. . .

. . .

Y1

Sn S1
X1

X2
Y2 X3

Y3 Xg

Yg

Fig. 5: Closed curves on surfaces Sg,n of genus g ≤ 3 with n marked points that generate π1(Sg,n)
such that cutting along the curves produces a disk with marked points, yielding the global relation
(1).

It is worth pointing out that one could, in theory, also attempt to use the method described
in [50] to try to find an algebraic representation of some MCGs as a set of operations on the sets
of generators of Γ . Moreover, the related but simpler algorithm in [11] finds a generating set of
algebraic operations, but without relations. However, we are interested in a presentation that also
captures our intuition of what a complexity ordering for decorations on surfaces might look like.
For this, generators for the MCG with a geometric interpretation are important. For example, the
MCG of a classical surface can be generated by as few as two torsion elements [41], which is not very
illuminating. Also, the method in [50] is very involved and most probably results in a presentation
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X1

Y1

X1Y1

X2

Y2

X2

Y2

X3 Y3

X3

Y3

S2

S1

(a)
(b)

Fig. 6: (a) A surface of genus 3, cut open into a disk along the curves of figure 5. (b) Another
way of cutting a genus 3 surface into a disk, corresponding to the presentation of the fundamental
dodecagon giving rise to the gyroid family of TPMS as the embedding of a genus 3 surface into
the three-torus. A set of curves on a genus 3 surface that gives rise to the presentation in (b) is
illustrated in Figure 7.

A

F

E
D C

B

Fig. 7: A surface of genus 3 and a set of embedded closed curves that give rise to the presentation
of the fundamental group shown in Figure 6(b), where opposite edges of the fundamental domain
are identified by generators of the group of deck transformations.

that is too complicated for most computational algorithms to handle. As far as we are aware, no
explicit presentation has been derived from these methods [19, p. 130]. Note that computational
group theory packages in computer algebra programs available today such as GAP, a programming
language well-suited to studying problems in group theory [21], can only solve relatively simple
problems. For example, even the word problem for the classical MCG for genus-3 surfaces using
the well-known Gervais presentation [22] is computationally too involved to comprehensively solve
for the Knuth-Bendix program for GAP, despite it being well-known that the word problem is
solvable [19, Theorem 4.2].

Last but not least, the geometric generators of the MCG that we use relate to the twisting of
the decoration around handles of the hyperbolic surface covering, making it easier to relate them
to the entanglement of the graphs produced.
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3.2 The action of the MCG on sets of generators

The MCGs of interest to us are extensions of classical MCGs in the general case [38, Section 5],
but even when they are subgroups of classical MCGs, when the orbifold in question does not have
mirror symmetries, their presentations are not treated in the literature. We present an example
illustrating the situation, which will be the main focus of this paper. This is the case where the
orbifold is stellate, the only features it contains being gyration points. This restriction means
that topologically, O is a sphere with some marked points. Note, on the other hand, that once a
presentation of the symmetry group is fixed, the cyclic ordering of the gyration points is fixed and
gyration points have neighbours, corresponding to the neighbouring factors of the cyclic word Π,
which in the following denotes the left hand side of the global group relation (1) of Γ .

3.2.1 Half-twists and Dehn twists around separating curves

First assume that Γ is generated by rotations of the same order such that Π = S1 · · ·Sn is a
product of rotations Si. For any instance of (SiSk) in Π define Φ(Si) := SiSkS

−1
i , Φ(Sk) := Si

and Φ(Sj) := Sj for j 6= k, i and ΠΦ as the word where all Sj are replaced by Φ(Sj). Since Si
and Sk appear only next to each other in Π, we see that ΠΦ = Π. So, as long as the involved
rotations Si and Sk are of the same order, Φ induces an automorphism of Γ . This automorphism
is called a half-twist. It is well-known that this automorphism corresponds directly to the action of
the standard generators of the Braid group Bn on the word Π, which also serves as a definition for
Bn [42, Section 1.1.17]. The presentation of the braid group with these generators is given by [3,7]

Bn = 〈σ1, ..., σn−1|[σi, σj ] = 1 |i− j| > 1,
σiσi+1σi = σi+1σiσi+1〉.

(4)

Note that there are three other major ways to define the braid group [19, Chapter 9], and the
different perspectives yield different insights into their structure.

Stellate orbifolds are topologically spheres with marked points, leading to phenomena such as
the existence of Dirac braids [52] for braids on the sphere. The presentation of the orientable MCG
Mod(Sn) of the sphere Sn with n marked points is again classical and given as [19, p. 128]

Mod(Sn) = 〈σ1, ..., σn−1|[σi, σj ] = 1 |i− j| > 1,
σiσi+1σi = σi+1σiσi+1,

(σ1 · · ·σn−1)n = 1,
(σ1 · · ·σn−1σn−1 · · ·σ1) = 1〉.

(5)

We will come back to discuss the relationship between the braid group and MCGs in more detail
below in section 4, where we derive group presentations of certain subgroups. The link between
braid groups and MCGs on surfaces extends to more general surface braid groups and MCGs of
more complicated surfaces [6], see also the short exact sequence (25) below.

We now explain how to find automorphisms realizing general permutations using half-twists,
which is useful for applying the presentation (31) below to stellate symmetry groups. Assume that
not all gyration points are of the same order. The above action of the generators of the braid group
does not make sense for elements Si, Sk that are not of the same order. Instead, we have to consider
appropriate subgroups of the braid group that only account for allowed permutations, and these
correspond to subgroups of the MCG of finite index. Indeed, there is a well-known [19] short exact
sequence induced by the action of Mod(O) on marked points of O:

1→ PMod(O)→ Mod(O)→ Σn → 1, (6)

where Σn is the symmetric group on n elements and PMod is the pure mapping class group of
transformations that fix all marked points. Note that (6) is valid for both only the orientation
preserving transformations as well as the full MCG. The problem of finding appropriate subgroups
realizing only allowed permutations could be solved geometrically, starting with the fact that Dehn
twists around essential1 closed loops generate the orientable pure MCG of closed orientable surfaces.
Then a decomposition of a permutation into transpositions of only neighbouring gyration points
yields half twists for exchanging two arbitrary marked points. In cyclic notation for permutations,

1 A closed curve in a surface is called essential if it is not homotopic into the neighbourhood of a single, possibly
marked, point.



Enumerating Isotopy Classes of Tilings guided by the symmetry of Triply-Periodic Minimal Surfaces 13

after having decomposed cycles into a product of transpositions, one readily verifies that (a, b) =
(a, a+1)−1(a+1, b)(a, a+1) gives an inductive procedure to decompose transpositions in this way.
Squaring the corresponding half twist yields the Dehn twist along a simple closed loop around the
two points involved. Taking those half twists that correspond to allowed permutations along with
all Dehn twists generated by the remaining half twists yields a generating set for such subgroups of
the MCG. With these generators, the Reidemeister-Schreier process [47, Section 2.4] can be used
to find a presentation.

The situation can be further simplified by using the known presentation of the pure braid group
PBn, which we can define here as the subgroup of Bn consisting of those elements that maps
every generator in Π to a conjugate of itself. This subgroup of the braid group is generated by the
elements [3]

ai,j = (σj−1σj−2 · · ·σi+1)σ2
i (σj−1 · · ·σi+1)−1, 1 ≤ i < j ≤ n. (7)

Regardless of the subgroup of the MCG of interest, the pure mapping class group that the pure
braid group corresponds to will always be contained in it as a finite index subgroup.

The action of the braid group on stellate orbifold symmetry groups discussed above can also be
derived in a different way that illustrates our approach, by analysing the effect of a geometrically
defined half-twist on curves in O that represent generators of Γ . From a more geometric point
of view, half-twists can be defined as elements of the MCG that interchange the positions of two
marked points and square to what is known as a Dehn twist along a curve around the two marked
points [19]. Figure 8 shows the derivation of the representation in Out(π1(O)) of a half-twist around
two neighbouring marked points, showing its effect on two curves corresponding to adjacent group
elements of the symmetry group. It is easy to see that geometrically, two half twists around the
same two gyration points yields a Dehn twist, around a curve encircling the two gyration points.
The ordering of the gyration points in figure 8a is a result of requiring the standard presentation
of the orbifold; see also figure 5.

S2 S1. . .Sn

(a)

S1 S2. . .Sn

(b)

Fig. 8: (a) Curves representing group elements and the half-twist, indicated in red. (b) The resulting
curves after twisting.

More precisely, the half twists of figure 8 around S1 and S2 take the form{
S1 7→ S1S2S

−1
1 ,

S2 7→ S1.
(8)

Figure 9 shows the effect of a half twist and its inverse on the starting set of generators with a
fixed D-symbol for a tiling with symmetry group 2224.

We now analyse how Dehn twists and some other prominent elements of MCGs act on sets of
generators. We will use right Dehn twists in this paper.

Example 1 We first consider an example. Let S5 be the five-times punctured sphere and consider
the pure MCG PMod(S5) ⊂ Mod(S5) of classes of orientable homeomorphisms that fix all punc-
tures, with π1(S5) generated by the transformations {ej}5

i=1 associated to the punctures. It is well
known that PMod(S5) is generated by Dehn twists around some essential simple closed curves [19].
After stereographic projection, we picture all punctures as lying in an ordered row and consider the
set {ti}si=1 of Dehn twists around the set of curves {ci}si=1. We take the curves ci to be given by
those that enclose exactly two consecutive points, and s = 4. These generate the pure MCG [19].
The curves ci now enclose punctures (pk)k∈Ki with Ki ⊂ {1, ..., 5}, which in π1(S5) corresponds
to Ai := Πj∈Kiej . Under the MCG isomorphism we obtain ϕ : {ti}si=1 → Out(π1(S5)) with ϕ(ti)
the automorphism that fixes each ej for j /∈ Ki and sends ej to AiejA−1

i for j ∈ Ki.
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(a) (b) (c)

Fig. 9: The effect of two mutually inverse half twists on the isotopy class of tilings with symmetry
group 2224 (a) Starting set of generators with a tiling commensurate with the fundamental do-
decagon for the P, D and gyroid TPMS shown in green. (b) A twisted tiling, commensurate with
the same dodecagon. (c) The tiling from (a), with twist inverse to that of (b).

We are now in a position to define the action on sets of generators of some common elements and
generators of MCGs. It is well-known that the pure MCG of a surface without marked points is gen-
erated by Dehn twists along essential closed curves in the orientable case [19]. In the nonorientable
case, one additionally needs what are called boundary or crosscap slides [45,40].

Dehn twists along essential separating simple closed curves are the most straightforward to
handle and it is helpful to have an expression for such a general class of MCG elements. Similar
to the above example we treat features that are adjacent in the left hand side of (1) differently
than ones that are not. We then have a natural geometric interpretation of Dehn twists along
separating simple curves that go around a chain of adjacent elements. A Dehn twist tc along a
curve c that encloses a chain of neighbouring features, say β1, ..., βk, in that order, corresponds to
the automorphism of Γ induced by

γ 7→

{
(β1 · · ·βk)γ(β1 · · ·βk)−1 γ is inside c,
γ otherwise,

(9)

where γ is any of the generators of Γ described in section 2.1. There is some leeway in the choice of
which side is the inside of a given curve, but it is easy to see that this choice corresponds to a con-
jugation in Γ of the resulting automorphism. One readily checks that the algebraic transformation
in (8) squares to the right Dehn twist (9) around the two involved marked points.

3.2.2 Orientation reversing automorphisms by reflections

We now know how to represent simple Dehn twists and half twists around neighbouring gyration
points (or punctures, or boundary components) of the same type as automorphisms of π1(O),
and also how to combine these to obtain transformations corresponding to more complicated per-
mutations. The rest of the section deals with more complicated generators for more complicated
orbifolds.

We start with the action of a general orientation reversing homeomorphism on orbifolds whose
underlying topological space is orientable. Figure 10 shows the situation for a genus 2 surface with
two marked points, or boundary components.

From this, one derives the automorphism in (10), which gives the corresponding automorphism
for a general orientable orbifold with global relation of the form

S1S2 · · ·Sn[X1, Y1] · · · [Xg, Yg] = 1,

where both g = 0 and n = 0 are allowed. It is straightforward to verify that the resulting transfor-
mation R given by 

Si 7→ S−1
n S−1

n−1 · · ·S
−1
i+1S

−1
i Si+1 · · ·Sn,

Xj 7→ Yg−j+1,

Yj 7→ Xg−j+1.

(10)
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X1

Y1X2

Y2

X2

Y2 X1

Y1

S1

S2
−→

X1

Y1X2

Y2

X2

Y2 X1

Y1

S1

S2

Fig. 10: An orientation reversing homeomorphism on an orientable orbifold of genus 2, with two
marked points, corresponding to a reflection across the red line, illustrating the general situation.

defines an automorphism. Note that R has order two, maps each boundary component to a con-
jugate of its inverse, and thus defines an orientation reversing homeomorphism and automorphism
for all orientable orbifolds.

It is easy to see that the tile-1-transitive tiling corresponding to the set of closed curves on a
classical surface that gives rise to the standard presentation of its fundamental group is invariant
under this automorphism. The existence of an orientation reversing homeomorphism of order 2
means that, for any orientable orbifold, the short exact sequence

1→ Mod(O)→ Mod±(O)→ Z/2Z→ 1 (11)

splits, where Mod±(O) denotes the full MCG. This implies that the presentation of a MCG of
an orientable orbifold is essentially determined by a presentation of the classes of orientation
preserving transformations. To obtain a presentation of Mod±(O) from one of Mod(O) first add a
generator for the transformation R in (10) with order 2 to the generators and relators of Mod(O).
Then, add relators corresponding to conjugation by R of each other generator, where the action
of conjugation can be derived from (10).

In case one of the Si generators in (10) represents the connecting generator of a mirror boundary,
the transformation has to be adjusted slightly for each such mirror, since the curves touching
the mirror boundaries are also transformed under the orientation reversing homeomorphism. We
present an example illustrating the general situation. The homeomorphism depicted in figure 10
changes the direction of travel around the mirror boundary of the curves in O corresponding to
the mirror generators. For a boundary component ?abc with connecting generator λ, we obtain,
locally, 

a 7→ λ−1aλ,

b 7→ λ−1bλ,

c 7→ λ−1cλ,

c̃ 7→ c = λc̃λ−1,

λ 7→ λ−1.

(12)

As in section 2.1, c̃ corresponds to the curve that bounces off the same mirror as c, but travels
around the mirror boundary the other way. In case the mirror boundary component admits an extra
symmetry, as for example in the case ?2442, the reflection above can appear slightly differently,
since parts of a mirror might be mapped to another one, with straightforward adjustments. Note
that any homeomorphism corresponding to the automorphism defined by (12) generally cannot
just be supported in a small neighbourhood of the mirror boundary component, as it necessarily
reverses the orientation of the boundary curve that encircles the mirror. In order for (12) to yield
an automorphism of the symmetry group in the general case, it needs to be combined with the
transformation of the connecting generator in (10).

3.2.3 Crosscap transpositions and boundary slides

In the case of an orbifold with a nonorientable underlying quotient space, we do not need an orien-
tation reversing transformation like above as a generator, by theorem 1. We now turn to finding the
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action of the MCG on the geometric generators of π1(O) for a nonorientable orbifold O with cross-
caps. In addition to Dehn twists along two-sided curves (for which Dehn-twists are well-defined),
crosscap slides and boundary slides are needed to generate the MCG of a nonorientable surface [40].
MCGs of nonorientable surfaces have been, like their orientable counterparts, extensively studied
in the literature, but are somewhat less well understood [44,66,55,43].

Despite there being to date no known presentation for the MCG of a general nonorientable
surface in terms of these generators, they are very natural, cannot be easily decomposd any further
into simpler constituent geometric transformations of other types and are supported in very small
subsurfaces. We also look at crosscap transpositions [55]. See figure 11 for an illustration of both
a crosscap transposition and crosscap slide. Roughly speaking, crosscap and boundary slides cor-
respond to sliding the crosscap, resp. boundary along a one-sided loop [40]. The form all of these

Fig. 11: The effect on the dashed curve of a crosscap transposition on the left and a crosscap
slide on the right. The homeomorphism is supported in the Klein bottle K with one boundary
component ∂K.

transformations take as automorphisms are derived, like before, from the geometric picture of the
surface O with a set of curves such that cutting the surface along these curves yields a planar
polygon with identifications of edges to produce the global relation of the standard presentation
of π1(O) in section 2.1.

Let ζ be a two sided loop that passes through two neighbouring crosscaps represented by A and
B, and encircles no other features. Let α be the curve associated with A. A crosscap transposition
Uα,ζ is supported in a neighbourhood of ζ ∪ α, which is a Klein bottle K with one boundary
component, see figure 12a, and has the following representation as an automorphism, where all
other generators are constant.

Uα,ζ : (A,B) 7→ (B, (B2)−1AB2) (13)

The Dehn twist Tζ has the representation

Tζ : (A,B) 7→ (AB−1A−1, AB2). (14)

The crosscap slide Yα,ζ = Uα,ζTζ is represented by

Yα,ζ : (A,B) 7→ (AB2, (AB2)−1B−1(AB2)). (15)

We exemplify the derivations of the above equations by drawing the picture for (14) in figure 12,
with figure 12b showing the result of the twisting, from which (14) can be read off. Outside the
shown neighbourhood, the transformation is the identity.

It is straightforward to check that these transformation yield automorphisms of Γ and that
they satisfy

Y 2
α,ζ = U2

α,ζ = T∂K ,

which constitutes an algebraic proof of this well-known geometric relation [45]. Note that (9) can
be used to compute T∂K . A boundary slide SA in a nonorientable surface that has a boundary or
puncture P neighbouring the cross cap A is represented by

(P,A) 7→ ((PA)P−1(PA)−1, PA), (16)

which again is readily seen to induce an automorphism and again comes from drawing a picture with
curves. Topologically, boundaries behave exactly like punctures and like marked (gyration) points.
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A B

ζ
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(b)

Fig. 12: Dehn twists around two sided curves in nonorientable surfaces. (a) The Klein bottle K
with boundary and two-sided curve ζ. (b) The resulting curves, in red and blue, after twisting right
around ζ.

In particular, the half-twists discussed in the context of gyration points and punctures give rise
to similar half-twists for interchanging (mirror) boundaries. Note, though, that individual mirror
components are also transformed, in the same way as the corresponding connecting generators
given by curves encircling the mirror boundary components, as (17) below illustrates. Also, the
boundary slide of a nonorientable orbifold for the case of a mirror boundary component also
reverses the orientation of the curve around the boundary and therefore uses a version of the
transformation (12) for the transformation of the individual mirrors of the boundary component,
as we now explain. We again use the example that led to (12) to illustrate the general situation. If
P in (16) represents a curve around a mirror boundary component ?abc, then SA acts on generators
as 

a 7→ (PA)P−1aP (PA)−1λ,

b 7→ (PA)P−1bP (PA)−1,

c 7→ (PA)P−1cP (PA)−1,

c̃ 7→ (PA)c(PA)−1 = SA(P )−1SA(c)SA(P ),
(P,A) 7→ ((PA)P−1(PA)−1, PA).

(17)

Boundary and crosscap slides for non-neighbouring features are a result of combining transpo-
sitions of boundaries and crosscaps appropriately, similar to the situation for gyration points in the
discussion above following (6). As far as we are aware, the only known presentations of MCGs of
some classes of nonorientable surfaces with punctures make use of the generators discussed here [54,
67].

3.2.4 Point-pushing, Dehn twists, Lickorish’s generators

In the orientable case, following [5] and [4], we use a similar approach of finding representations
of generators corresponding to sliding singular points or boundaries around handles. The pictures
one has to draw quickly become rather involved, and we again focus on geometric generators here,
for which the standard relation (1) for the orbifold groups limits the ways of choosing the curves
that represent the orbifold group elements. We work with the curves depicted in figure 5.

There are different prominent sets of generators for the MCG of a classical surface, with different
properties. We will focus on the Dehn twists around the closed curves depicted in figure 14, known
as Lickorish generators, along with point-pushes as defined in [4]. Gervais’ presentation is another
prominent presentation [22]. After some experimentation with the two presentations with GAP
and KBMAG [27], we found that the Lickorish set of generators seems to be easier to handle in
practice. Figure 14 shows Lickorish’s generators for the MCG of a classical surface [45].

Assume that Π has a subword of the form S[X,Y ]. Then, moving S around Y corresponds to
the situation of figure 13. Figure 13b shows the effect on the blue curve of pushing S around the
red curve.

Ultimately, we find that we can write the point push around of S around Y asS 7→ SY −1SY S−1

X 7→ SY −1S−1Y XS−1

Y 7→ SY S−1.

(18)
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. . .

Y

X . . .S

(a)

. . .

. . .S

(b)

Fig. 13: Point pushes in orientable surfaces. (a) Curves representing group elements (blue, green,
cyan), and both available pushes, indicated in red and violet. (b) The effect on S of pushing around
the red curve.

A similar picture for a push around X yieldsS 7→ SXSX−1S−1

X 7→ SXS−1

Y 7→ Y S−1.

(19)

We see that Y and X are mapped to hyperbolic transformations in both cases. Notice that in
both (18) and (19) ‘forgetting’ that S is a feature yields the trivial automorphism.

Assume now that Π has a subword of the form [X1, Y1][X2, Y2]. Note that the free homotopy
classes of Xi in figure 5 and those of ai in figure 14 coincide. In Lickorish’s generators for the MCG

m1 m2 m3 mg

m2

c3 cg
ag

c2
a2

c1
a1

Fig. 14: Curves corresponding to Lickorish’s generators for the MCG of a closed surface of genus
g.

of a classical surface, there are two twists per handle that leave each commutator relation invariant
on its own, corresponding to the twists around ai,mi in figure 14. In figure 13a, these are the twist
around the curves around X and Y , respectively. As automorphisms, these are respectively given
by

Tai :
{
Xi 7→ Xi

Yi 7→ YiXi,
(20)

and

Tmi :
{
Xi 7→ XiY

−1
i

Yi 7→ Yi,
(21)
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X2

Y2
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Y2

X3 Y3

X3

Y3c2
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Fig. 15: Curves correpsonding to Lickorish’s generators in figure 14, for a genus 3 surface, cut along
curves of the standard presentation of figure 5. (a) The curve c1 of Lickorish’s generators. (b) The
curve c2 of Lickorish’s generators.

for i = 1, 2. The more complicated twist among the Lickorish generators, namely the ck in figure 14,
mingles two adjacent handles. We have to treat the case k = 1 separately from the others, as
illustrated by figure 5. Figure 15 shows the curves c1 and c2 on a genus 3 surface, cut open into a
disk along the curves of the standard presentation, shown in figure 5. We obtain

Tc1 :


X1 7→ X1,

Y1 7→ X2Y
−1

2 X−1
2 Y1X1,

X2 7→ X2Y
−1

2 X−1
2 Y1X1Y

−1
1 X2,

Y2 7→ Y2,

(22)

for the twist along c1. Assuming that Π has a subword of the form [Xi, Yi][Xi+1, Yi+1] for i > 1,
we define γi := Xi+1Y

−1
i+1X

−1
i+1YiXi and find that the twist along ci for i > 1 takes the form

Tci :


Xi 7→ Xiγ

−1
i ,

Yi 7→ γiYi,

Xi+1 7→ γiXi+1,

Yi+1 7→ Yi+1.

(23)

Lastly, we need a way to represent a point push around a handle that is not neighbouring the
pushed point. Half-twists can be applied to change the ordering of the singular points and bound-
ary components, crosscap transpositions achieve the same for crosscaps, so we are only missing a
‘transposition of handles.’ For two neighbouring handles [X1, Y1][X2, Y2] like above, such a trans-
formation can easily be verified to be given by


X1 7→ [X1, Y1]X2[X1, Y1]−1,

Y1 7→ [X1, Y1]Y2[X1, Y1]−1,

X2 7→ X1,

Y2 7→ Y1.

(24)

Since this is a type-preserving automorphism of the orbifold fundamental group, theorem 1 implies
that there is a homeomorphism inducing this transformation on the fundamental group. For clas-
sical surfaces, this is also a consequence of the well-known Dehn–Nielsen–Baer theorem [19]. With
the generators and their action on sets of generators of an orbifold fundamental group derived
in this section, the presentation of any MCG can be readily translated into the form they take
as automorphisms of π1(O). We will see how to accomplish this for stellate orbifolds in the next
section, where we derive a group presentation of a class of MCGs in terms of Dehn twists and
half-twists.
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4 The semi-pure mapping class group on the sphere

In this section we derive presentations for MCGs of stellate orbifolds to produce the tilings in the
next section by exploiting a connection to braid groups Bn, where we assume n ≥ 3. Note that
braid groups in the literature do not follow functional notation and if interpreted as maps need to
be read from left to right. We follow this tradition, so implementations of the results in this section
must be translated to functional notation. We will use both the notion of the braid group as the
fundamental group of a configuration space as well as that on the MCG of homeomorphisms of a
disk with marked points fixing the boundary in the following [19].

Definition 2 Given a partition P of n ∈ N, we define the semi-pure braid group SPBP of type
P to be the subgroup of the braid group Bn that under the canonical morphism to the symmetric
group Σn yields only permutations that respect the partition of n, i.e. only permute elements
within each set in the partition. We similarly define semi-pure surface braid groups and the semi-
pure mapping class group Mod(SP) of a surface S with n marked points as the subgroup of the
MCG that fixes the partition P of the marked points.

The semi-pure braid group of the plane was studied in [49]. There is a well-known short exact
sequence that relates the braid group of an orientable surface S to the MCG of S and an n-times
punctured version of S, which we denote with S∗. This sequence is known as the Birman exact
sequence [19, Theorem 9.1] and, as long as π1(Hom+(S)) = 1, reads

1→ π1(C(S, n))→ Mod+(S∗)→ Mod+(S)→ 1, (25)

where C(S, n) is the configuration space of n distinct, unordered points in S and the MCGs
involved stem from orientable homeomorphisms. The braid group Bn is isomorphic to π1(C(C, n))
[19, Section 9.1.2] and the short exact sequence (25) generalizes to the situation of semi-pure braid
groups and the semi-pure MCG, with the same proof, where π1(C(S, n)) is replaced by the semi-
pure braid group of interest, and Mod+(S∗) is replaced by the corresponding semi-pure MCG. One
can use (25) to obtain a presentation of Mod(SP) from one of the braid group for a large class
of surfaces. There is also a similar short exact sequence for nonorientable surfaces [67, Section 7].
From now on, we restrict to the case where Mod(SP) denotes the semi-pure MCG on the sphere,
as this is the relevant case for stellate orbifolds.

Classical surfaces with negative Euler characteristic satisfy π1(Hom+(S)) = 1 [23,24,25]. How-
ever, stellate orbifolds do not obey (25), as the orbifolds underlying topological space is the sphere
S2 and therefore π1(Hom+(S2)) = Z/2Z [65].

The standard presentation (4) of Bn is phrased in terms of the generators σi, which translate
to half-twist generators in the MCG. Each σi crosses the strand in position i in front of the strand
in position i + 1. In order to find a presentation of the spherical braid group Bn(S2), we need to
append the relation

X := σ1...σn−1σn−1...σ1 = id (26)

to the presentation of Bn in terms of the generators σi [18,70]. Notice that X represents a pure
braid.

Consider the element

z := (σ1 · · ·σn−1)n ∈ Bn. (27)

The infinite cyclic center of the pure braid group PBn and of Bn is generated by z [3]. Taking
the interpretation of Bn as the MCG of the n-times punctured disk with homeomorphisms that
fix the boundary pointwise, one sees that geometrically, z corresponds to the Dehn twist around
the boundary. Following equation (9.1) and figure 9.6 of [19], adding the relation z = id to the
relations of Bn(S2) turns this group into the corresponding MCG of the sphere Mod(Sn) with n
identical singularities.

For the semi-pure MCG on the sphere, it is essential to find an expression for the nontrivial
extra relations resulting from the topology of the sphere in terms of generators of the pure Braid
group. We start with how to express z in terms of the ai,j from (7). Using the interpretation of the
braid group as the fundamental group of a configuration space on n points, we have [19, Chapter
9]

z = (a1,2a1,3 · · · a1,n) · · · (an−2,n−1an−2,n)(an−1,n). (28)
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In this interpretation, ai,j represents the element of the braid group where the ith point is pushed
around the (i + 1)st point. We use the same ideas for X = id . The original proof in [18] that
X = id suffices as an extra relation for the full braid group on the sphere hinges on the existence
of twists that transforms the analogous relations for the other braids into this one. In terms of the
pure braid group, however, we must add back in the missing relations and express them in terms
of the pure generators. There are n such relations, and each has an interpretation as the braid
where the i-th strand passes over all n− i strands to its right, turning back to pass underneath all
strands until the first one, and back over the first i − 1 back to where it started. See [52, p. 194]
for an illustration. The first factor in the expression is ai,i+1...ai,n. The second factor, for similar
reasons, is given by ai−1,iai−2,i...a1,i and we obtain

ai,i+1...ai,nai−1,iai−2,i...a1,i, 1 ≤ i ≤ n (29)

as a set of equations corresponding to the relation for X in (26). This explains how to write the
relation corresponding to X in terms of n relations on the generators of the pure braid group.

We now list all isomorphism classes of stellate groups that are subgroups of ?246 and contain
the translations associated to the genus 3 polygon, which represents the unit cells of the gyroid,
primitive and diamond TPMS using the list of commensurate subgroups in [61]. From now on, we
restrict our attention to the orientable MCG for simplicity. A further simplification comes from the
fact that the thrice-punctured sphere S3 has trivial pure MCG [19], so the only nontrivial elements
stem from permutations of the points and every permutation is clearly realized as an orientation
preserving homeomorphism. We therefore have

Mod(S3) ∼= Σ3. (30)

Orbifold O (orientable) Mapping Class Group Mod(O)
246 Trivial
266 Z2
344 Z2
2223 Mod(S3,1)
2224 Mod(S3,1)
2226 Mod(S3,1)
2233 Mod(S2,2)
2244 Mod(S2,2)
2266 Mod(S2,2)
4444 Mod(S4)
22222 Mod(S5)
22223 Mod(S4,1)
222222 Mod(S6)

22222222 Mod(S8)

Table 1: The 14 mapping class groups of stellate orbifolds of symmetry groups of the gyroid,
primitive, and diamond surfaces.

We obtain the list in table 1 of relevant MCGs. Note that the generator of Z2 in the table is in
both cases a half-twist about the two gyration points of the same order.

Choosing generators pins down one particular presentation, which determines the ordering of
the gyration points up to cyclic permutations. The representation of a half twist involving two non-
adjacent points is more complicated than (8), but can be readily computed using the decomposition
of a permutation into adjacent transpositions from section 3.

A presentation of the subgroup SPBP of Bn consisting of exactly those elements that leave
invariant a partition P of n of the form (1...h1)(h1 + 1...h2)...(hm−1 + 1...hm) was derived in [49],
following an application of the Reidemeister-Schreier method to glean presentations for subgroups
from a presentation of the group. After reexamining theorem 4, the most general theorem in the
paper, we find that there, i can equal j for the generators Ahihj+1. Also, the braid relations in
equation (2.2) have to be replaced by the usual ones as applicable. Furthermore, in the indexing
of (2.2), i can equal hj+1 − 2. Lastly, equation (2.9) there needs to be replaced by the relevant
equation in (31) below. The rather lengthy presentation of the subgroup Mod(SP) of the MCG
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that leave invariant the partition P of n in terms of the generators σi and the artin generators ai,j
of the pure braid group from (7) is a direct consequence of the above discussion and is as follows.
Theorem 2 Let P be a partition of n of the form (1...h1)(h1 + 1...h2)...(hm−1 +
1...hm). Then, adding the extra relations (28) and (29) to the presentation (31)
below yields a presentation of the semi-pure MCG Mod(SP) for stellate orbifolds.

Generators
σi, i 6= ht, 1 ≤ t < m, ahi,hj+1, 1 ≤ i ≤ j < m

Relations
σiσj = σjσi if |i− j| ≥ 2,
σiσi+1σi = σi+1σiσi+1, if hj < i ≤ hj+1 − 2,
ahi,hj+1σk = σkahi,hj+1 if hi − 1 6= k 6= hj + 1,
ahi,hj+1ahk,hm+1 = ahk,hm+1ahi,hj+1

if hj < hk or if hi < hk < hm < hj ,

ahi,hj+1(σhj+1ahi,hj+1σhj+1) = (σhj+1ahi,hj+1σhj+1)ahi,hj+1 if hj + 1 6= hj+1,

ahi,hj+1(σhi−1ahi,hj+1σhi−1) = (σhi−1ahi,hj+1σhi−1)ahi,hj+1 if hi − 1 6= hi−1,

(σhi−1ahi,hj+1σ
−1
hi−1)(σhj+1ahi,hj+1σ

−1
hj+1) =

(σhj+1ahi,hj+1σ
−1
hj+1)(σhi−1ahi,hj+1σ

−1
hi−1) (31)

if both hi − 1 6= hi−1 and hj + 1 6= hj+1,

(σhi−1ahi,hj+1σ
−1
hi−1)ahi,hk+1 = ahi,hk+1(σhi−1ahi,hj+1σ

−1
hi−1)

if both hj < hk and hi − 1 6= hi−1,

ahk,hj+1(σhj+1ahi,hj+1σ
−1
hj+1) = (σhj+1ahi,hj+1σ

−1
hj+1)ahk,hj+1

if both hi < hk and hj + 1 6= hj+1,
ahi,hjahi,hk+1ahj ,hk+1 = ahi,hk+1ahj ,hk+1ahi,hj ,

ahi,hjahi,hk+1ahj ,hk+1 = ahj ,hk+1ahi,hjahi,hk+1,

(ahi,hjahi,hj+1a
−1
hi,hj

)(σhj+1ahk,hj+1σ
−1
hj+1) =

(σhj+1ahk,hj+1σ
−1
hj+1)(ahi,hjahi,hj+1a

−1
hi,hj

)

if both hi < hk and hj + 1 6= hj+1

(ahi,hjahi,hk+1a
−1
hi,hj

)ahj ,hl+1 = ahj ,hl+1(ahi,hjahi,hk+1a
−1
hi,hj

) if hj ≤ hk < hl.

In the last four equations, whenever hj 6= hj−1 + 1, i.e., when the symbols ahi,hj are not
generators of Bn,P , we must replace the ahi,hj by their expression in terms of the σi and ahi,hj+1.
We find the following relations for the pure generators ai,j . Here, ai,j corresponds to the Dehn
twist around the simple curve that encircles the marked points i and j (from the point of view
of viewing the braid group as the MCG of a disk, with boundary fixed pointwise). We therefore
observe that

ai,j = σj−1...σxai,xσ
−1
x ...σ−1

j−1 (32)

for x < j. Similarly, we establish

ax,j = σ−1
x ...σ−1

z−1az,jσz−1...σx (33)

for j > z > x. Note, again, that in contrast to the algebraic braid group given in terms of abstract
group elements, whose multiplication is read from left to right, MCG elements act from right to
left. This leads to (σ1...σi)−1 acting as T−1

σ1
...T−1

σi , where the Tσj are the associated twists in the
MCG of a disk corresponding to the twists σj in the braid group.

Lastly, to find a presentation for a semi-pure Braid group we assumed that the elements of the
same type are grouped together as neighbours as in the partition of n above in (31). If this is not
the case, then we must conjugate all elements of the semi-pure braid group with a braid b that
maps to an element in the symmetric group realizing the appropriate partition from the one at
hand. The ordering of the points within a part in the partition is arbitrary. The element b is then
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decomposed into neighbouring transpositions for which (8) gives a recipe to translate them into
algebraic transformations.

5 Tilings with Stellate Symmetry Groups in ?246

This section is dedicated to the explicit construction of tilings of H2 that are commensurate with the
candidate TPMS, the gyroid, primitive, and diamond surfaces. Using the computer programming
language GAP and in particular the Knuth-Bendix package KBMAG [27], we have successfully
implemented the results of the previous sections for general semi-pure MCGs for stellate orbifolds
to produce a list of MCG elements ordered by word length from a presentation of the MCG.
Together with how the generators of the MCG act on the generators of the symmetry group as
derived in section 3, we produce a list of sets of generators of the symmetry group in Iso(H2),
starting from a chosen starting set of generators. Then, from the placements of generators, we
produced hyperbolic tilings from decorations of the corresponding orbifold derived from D-symbols
encoding their equivariant equivalence class. The sequence of pictures of tilings were produced
using MATLAB and are part of an exhaustive enumeration of isotopy classes of tilings with a
given compatible symmetry group. We concentrate on the most challenging cases to highlight the
approach. Every tiling presented here is drawn on the hyperbolic plane and is commensurate with
the genus-3 hyperbolic surface S obtained by identifying opposite edges of the dodecagon illustrated
in figures 16a and 6(b).

One of the biggest challenges in working with the semi-algorithms provided in KBMAG is that
sometimes small changes in parameters can lead to very different results [27,28]. For the full MCG
of the genus 3 surface, there is a presentation known as the Gervais presentation [22], appealing
for applications because its generators are symmetric and supported in small subsurfaces. Unfortu-
nately, we did not succeed in choosing a set of parameters for KBMAG to solve the word problem
with this presentation. Nevertheless, keeping in mind that for an unambiguous enumeration it
is sometimes necessary to enumerate cosets of the MCG w.r.t. finite groups, the Knuth-Bendix
package seems like the most comprehensive option available to date.

We focus exclusively on decorations given by piece-wise geodesics on the orbifold O in its
induced metric from H2. Any other tiling can be isotoped to produce such a decoration of the
orbifold. In general, for more complicated tilings, one has to insert additional points not at vertices
of the tiling at which we allow breaks of geodesics. Viewing tilings as piece-wise geodesic decorations
on metric orbifolds lets us specify any tiling by a finite number of points P ⊂ H2 along with an
adjacency matrix A specifying which points are neighbours. This leads to a data structure similar
to other known structures for symmetric tilings, such as that for periodic structures in CGAL [68].
The idea of the ensuing data structure hinges on finding P for a piece-wise geodesic tiling T
invariant under Γ = π1(O) so that when connecting points in P according to A, one obtains a
graph G such that ΓG encompasses all edges in T . To do so, find a fundamental domain D for Γ
and a set P0 containing a unique copy of each vertex and corner of the tiling T in D. Then, for
every point p ∈ P0, find the set Ep of all edges incident to p and find its other endpoint p′, and
mark each edge by the unique element f ∈ Iso(H2) s.t. there exists a unique point p0 ∈ P0 with
f(p0) = p′. An edge in Ep can then be been as having a start and an endpoint p, p0 ∈ P0, resp.,
and the marking f . Then, the set P can be found as the (not necessarily disjoint) union of P0 and,
for all p ∈ P0, the isometries of the edges in Ep applied to their endpoint.

The enumeration presented here is, as mentioned above, an enumeration of coloured tilings,
where each edge orbit is given a different colour. Here, it is possible that two tilings appear the
same because we have not gotten rid of ambiguities as a result of internal symmetries of the
tilings, i.e. realizations of the equivariant equivalence classes that exhibit more symmetries than
shown here [38, Proposition 1]. Consider, for example, figure 22a and the identical tiling shown in
figure 22b. Observe that there are 6 points of increased symmetry on the boundary of each tile
in the associated combinatorial class of tilings. A different colouring of the edge connecting the
vertices labelled 1 and 2 in each tiling would distinguish the two, as comparing the placements
of generators in figures 22a and 22c illustrates. In general, all ambiguities in the enumeration are
a result of an automorphism of the graph representing the D-symbol, which can be efficiently
checked [38, Section 7]. Note that, for EPINET, it may well be of interest to chemists to not
eliminate this ambiguity when looking at structures with symmetrically distinct constituent parts,
as illustrating by two different edge colours in figure 3.

Figure 16 shows isotopically distinct fundamental tilings with the same realization of the sym-
metry group 2233 and the same D-symbol. Of the MCGs in table 1, 2233 and 2266 use most of the
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theoretical results discussed in the previous sections. On the other hand, groups like 22222 turn
out to be particularly simple, using only (5), (8) and the arrangements of the group elements in a
fundamental tiling. Figure 17 shows isotopically distinct fundamental tilings with symmetry group
2224 and the same combinatorial structure, continuing the enumeration started in figure 9. Fig-
ures 19, 20 and 18 show isotopically distinct tilings invariant under isomorphic symmetry groups
(in this case 22222). Figures 19 and 20 show isotopically distinct sets of tilings with the same
D-symbol, whereas figure 18 shows a further set, with a different D-symbol, of mutually combina-
torially equivalent tilings. We concentrated here on tilings with vertices only at points of increased
symmetry, to better illustrate the action of the MCG on the tilings. Figure 20 shows how the de-
gree of distortion of the initial hexagonal fundamental domain increases as one steps through the
enumeration. Notice that the starting placement of every set of geometric generators is induced by
doubling a fundamental domain for the Coxeter supergroup of the stellate group, except for that of
Figure 18a. The fundamental domain and the starting set there yield a minimally sheared domain
as a starting point for the enumeration, but the combinatorial class of the tiling w.r.t. which we
found a suitable starting set of generators is different than that of Figures 19a and 20a, illustrating
that while we can narrow down the choice of starting set to a finite number, there is no unique
canonical choice. On the other hand, note that all three starting fundamental domains with their
placements for generators from Figures 18a, 19a and 20a are a result of gluing ?246 triangles as in
Figure 1 together.

In the enumeration, each tiling has the same number of vertices with the same valency in the
fundamental dodecagon illustrated in Figure 16a and therefore on genus 3 hyperbolic surface S
that gives rise to the TPMS. On the other hand, there are many different tilings of S that are not
a result of applying a homeomorphism of S the to the graph of the tile edges. In particular, some
of the graphs of tile edges projected to S will differ by entanglement arising from their embedding
into R3, while others will be different as graphs. We leave the projection to the TPMS and analysis
of the resulting structures for future endeavours.

(a) Tiling number 1. (b) Tiling number 2. (c) Tiling number 3.

(d) Tiling number 4. (e) Tiling number 5. (f) Tiling number 40.

Fig. 16: Isotopically distinct fundamental tilings with symmetry group 2233 and the same D-
symbol. All tilings fit onto the genus-3 surface obtained by identifying opposite edges of the do-
decagon in green in figure 16a. Starting from the top left, which shows a simplest starting tiling,
the tilings to the right are a result of ‘twisting’ the tiling, and numbers 1 to 5 and 40 in our
enumeration, respectively. Figure 16a shows the placements of the generators, figures 16b to 16e
show the boundary of the fundamental tile on which the generators act, in green.
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(a) Tiling number 1. (b) Tiling number 4. (c) Tiling number 5.

(d) Tiling number 6. (e) Tiling number 7. (f) Tiling number 40.

Fig. 17: Isotopically distinct fundamental tilings with symmetry group 2224 and equivalent combi-
natorial structure. They are numbers 1, 4 through 7, and 40 in our enumeration, respectively. All
tilings are commensurate with the genus-3 dodecagon from figure 16a.

We conclude our presentation of enumerations of isotopy classes of tilings by presenting an
example illustrating a general feature of our enumerative process. The symmetry group 22223 in
table 1 is also commensurate with another class of TPMS, namely, the associated family of the
hexagonal H-surface [62]. Figure 23 shows a sample of tilings of the fundamental 18-gon that gives
rise to the H-surface with appropriate edge identifications [62], each with symmetry group 22223
and identical D-symbol. In our enumerative process, the only difference between treating the group
22223 of table 1 and that of the H-surface is the set of starting generators (and the shape of the
fundamental polygon for the hyperbolic covering surface).

6 Summary

In this paper, we described a method to unambiguously produce all isotopy classes of coloured
tilings of a hyperbolic surface starting from a set of geometric generators for the symmetry group
of a tiling and given a construction recipe for the tiling in terms of the generators. Fundamental
tile-transitive tilings provide a natural starting point for an enumeration since all other classes
of tilings are obtained using elementary operations on these [38]. The enumeration of these is
achieved by first enumerating the D-symbols that encode the equivariant equivalence classes, or
combinatorial types, of such tilings. These in turn yield decorations of the orbifold associated
to the symmetry group in terms of representations of the symmetry group Γ in Iso(H2), which
are induced by a set of geometric generators for Γ in Iso(H2). The action of the MCG on sets
of generators of Γ yields all possible sets of generators satisfying the same relations. Using the
construction of the tiling in terms of generators, all isotopy classes of tilings are produced from the
action of the MCG on the sets of generators. The action of prominent generators of all possible
MCGs of hyperbolic symmetry groups was derived under the correspondence of (type-preserving)
outer automorphisms of the symmetry group and the MCG. We further derive presentations of
MCGs for stellate orbifolds to obtain an enumeration of elements of the MCG up to a certain word
length encoding different isotopy classes of coloured tilings.

Subsequently, the results were used in section 5 to illustrate the general approach to a sys-
tematic enumeration of isotopy classes of tilings by producing an enumeration of fundamental
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(a) Tiling number 1. (b) Tiling number 2. (c) Tiling number 3.

(d) Tiling number 4. (e) Tiling number 5. (f) Tiling number 6.

(g) Tiling number 7. (h) Tiling number 8. (i) Tiling number 40.

Fig. 18: Isotopically distinct fundamental tilings of the symmetry group 22222 (no. 54 in [61]) in
one realization, with the same D-symbol. (a) shows the placements of the starting generators, with
increasingly complicated shearing (nos 1 though 8 and 40 at the bottom right in our enumeration).
All tilings are commensurate with the genus-3 dodecagon from figure 16a.

tile-1-transitive tilings related to symmetry groups generated by rotational symmetries. The im-
portance of the class of examples comes from the fact that the associated tilings all fit onto the
genus-3 hyperbolic surface that constitutes the (uniformized) parts of the diamond, primitive, and
gyroid minimal surfaces in a unit cell, with hyperbolic structure induced by the hyperbolic orbifold
group ?246.
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(a) Tiling number 1. (b) Tiling number 2. (c) Tiling number 3.

(d) Tiling number 4. (e) Tiling number 5. (f) Tiling number 40.

Fig. 19: Isotopically distinct fundamental tilings of the symmetry group 22222 (no. 76 in [61]) in
one realization, with the same D-symbol. (a) shows the placements of the starting generators, with
increasingly complicated shearing (nos 1 though 5 and 40 at the bottom right in our enumeration).
All tilings are commensurate with the genus-3 dodecagon from figure 16a.
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