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Abstract: Electricity-distribution network operators face several operational constraints in the pro-
vision of safe and reliable power given that investments for network area reinforcement must be
commensurate with improvements in network reliability. This paper provides an integrated approach
for assessing the impact of different operational constraints on distribution-network reliability by
incorporating component lifetime models, time-varying component failure rates, as well as the
monetary cost of customer interruptions in an all-inclusive probabilistic methodology that applies a
time-sequential Monte Carlo simulation. A test distribution network based on the Roy Billinton test
system was modelled to investigate the system performance when overloading limits are exceeded
as well as when preventive maintenance is performed. Standard reliability indices measuring the fre-
quency and duration of interruptions and the energy not supplied were complemented with a novel
monetary reliability index. The comprehensive assessment includes not only average indices but
also their probability distributions to adequately describe the risk of customer interruptions. Results
demonstrate the effectiveness of this holistic approach, as the impacts of operational decisions are
assessed from both reliability and monetary perspectives. This informs network planning decisions
through optimum investments and consideration of customer outage costs.

Keywords: component lifetime models; Monte Carlo simulation; network reliability; overloading
violations; preventive maintenance; risk assessment; time-varying failure rates

1. Introduction

There is increasing pressure on utilities and regulators to improve the quality of supply
for customers at the lowest marginal cost. This would ensure that the level of reliability
corresponds with the customer needs and expectations, i.e., if the investment required to
improve the level of reliability exceeds the economic value of the service improvements
the customer experiences, then the investment is unnecessary and should not be made [1].
Furthermore, any decision making in the design, planning, operation, and maintenance of
power systems requires appropriate assessment tools, reliability models, and component
reliability data [2].

Power-system planners and operators must balance the costs the utility will require
to develop, operate, and maintain the power system against the economic value of the
reliability improvement to customers to achieve socio-economically efficient investments.
While network investment costs can be attained using standard engineering cost-estimation
procedures [3], the economic value of reliability is measured by the customer interruption
costs [4]. Optimum reliability is achieved when the additional costs for improving reliability
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are proportionate to the resulting decrease in customer interruption costs. However,
customer interruption costs vary widely due to the diversity of customer reliability needs
and are thus not commonly considered in reliability assessments. This results in inefficient
network investments because the reliability improvements do not necessarily benefit those
who need them.

Methods of distribution reliability assessment have had to adapt to recent changes in
distribution infrastructure, e.g., bi-directional power flow, due to significant distributed
generation and deregulation of electricity markets. Emphasis has been put on assessing
the reliability performance of the overall system by deriving standard reliability indices
evolving from analysing the failure of individual power components (PCs). Conventional
reliability analyses consider a simple constant value to characterise failure rates and have
been producing valuable results for power-system planning [5], but this approach is ineffec-
tive, as a constant failure rate might underestimate the system reliability for some periods
while overestimating it for others [6]. This is because failure rates vary widely depending
on the ageing pattern of the PCs, their geographical location, operating characteristics, and
weather conditions. Utility experience has demonstrated that failures follow a “bathtub”
pattern in their lifecycle [7]. Furthermore, the expected lifetime of PCs has been assumed
to be the same for all PCs in most reliability studies, e.g., [1,7–10]. However, consideration
for different expected lifetimes for each PC based on historical utility data provides a more
accurate representation of the failure distribution and thus a more realistic approach [11].
There is a need to model the time-varying failure rates considering the expected lifetimes
of PCs to quantify the impact on distribution reliability. Such reliability models could
potentially incentivise utilities to keep historical records of PC failures that can be utilised
to make reliability investment decisions.

During a PC’s lifetime, the operating conditions affect its failure pattern, which in
turn impacts the system reliability [7]. The reliability impact of operating the distribution
network under different constraints has been the subject of many studies [3,9,12–14]. Pro-
longed overloading of some PC’s above-set limits significantly increases the likelihood
of failure and leads to accelerated ageing [15]. However, there is a need to ascertain the
extent to which distribution reliability is affected by violating these limits using established
reliability-assessment techniques. Many authors have investigated the effect of different
maintenance strategies on system reliability, proposing different approaches aimed at
minimising the cost of maintenance while delivering the best reliability results by focusing
on critical components [16–19]. To make appropriate decisions regarding maintenance,
reliability modelling considering component lifetime models is required to more accurately
quantify the reliability benefits from implementing different reliability-centred mainte-
nance (RCM) approaches. This research adopts probabilistic methods [20,21] compared
to analytical methods [22–24] because they express output reliability indices as probabil-
ity distributions rather than simple average values and standard deviations [25]. This
allows for the inclusion of uncertainties in the reliability modelling that better represent
the stochastic behaviour of the distribution network [11].

To provide a link between the level of network investment required and the resulting
system reliability, monetary reliability indices can be derived by accurately calculating
the interruption costs using probabilistic methods derived from historical information [1].
These monetary reliability indices can enable utilities to derive the economic value attached
to a given level of reliability for each customer segment when conducting power-system
reliability planning to ensure economic efficiency and sustainability [3]. This research
proposes the derivation of a new, cost-based index that will complement the standard
reliability indices and better inform utilities’ decisions to invest more efficiently in their
networks towards reliability improvement.

The contributions of this research are as follows:

• A new reliability modelling methodology that incorporates different expected lifetimes
for each power component and different network operational modes;
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• Use of probabilistic curve fitting to model overloading violations and maintenance
actions in distribution network operation;

• A new monetary reliability index to assess the impact of different network operation
modes on customer interruption costs; and

• Reliability cost-benefit analysis of operating the network under different opera-
tional constraints.

This paper is organised as follows: Section 2 provides the integrated probabilistic
methodology for reliability assessment that incorporates time-varying component failure
rates, different component expected lifetimes, and the cost of customer interruptions.
Section 3 presents the validation and network modelling detailing the different network
scenarios adopted to depict varying operational conditions. The derived reliability indices
are analysed and presented in Section 4, while the conclusions and key outcomes are
discussed in Section 5.

2. Risk and Reliability Modelling

The proposed methodology is based on a stochastic approach and predictive analysis
that uses probabilistic variables arising from available data on outages. The reliability
parameters for individual PCs can be obtained through data mining and processing of
historical equipment failure records or utility outage-management systems [26]. Failure
rates and mean repair times (MTTR) are the basic inputs to the reliability assessment
and are modelled as probability distributions over the expected lifetime of all network
PCs. A stochastic simulation is performed to derive the standard reliability indices, i.e.,
system average interruption duration index (SAIDI), system average interruption frequency
index (SAIFI), and energy not supplied (ENS), which are expressed using their average
values and probability distributions. This paper provides a comprehensive comparison
between reliability modelling techniques for overloading violations and maintenance
actions considering practical lifetime probabilistic models to provide a better understanding
of their impact on distribution reliability.

2.1. Time-Sequential Simulation

This research adopts the Monte Carlo simulation (MCS) method [27] for stochastic
simulation due to its ability to model the power-system network using known historical
values and then provide the random behaviour of network PCs over a prescribed period
with due consideration for the relevant input data [10]. The decision-making methodol-
ogy proposed in this paper applies time-sequential MCS, which is characterised by the
chronological transitions of network components from normal operation states to faulted
states and vice versa depending on the input failure rates (λ) and mean repair times (µ)
(expressed as probability distributions). These distributions are modelled in MATLAB by
probabilistic processing of input failure rates and repair times incorporating the component
lifetime models presented in Section 2.2.

Building from previous developments of the MCS technique in [8], the operating
and failure stages of PCs are established through the use of a random generator, which is
assigned to an inverse probability density function (PDF) to convert the input failure rates
(λ) and MTTR (µ) values into system states. In this research, the λ values are considered
to follow an exponential distribution, while the µ values are modelled using the Weibull
distribution, with the two corresponding scale/shape parameters according to [28]. The
expressions in (1) and (2). provide general formulae of the PDFs to be considered as inputs
for MCS.

TTFExponential= inv{1− exp(λt)} (1)

TTRRayleigh= inv

{
1− exp

(
−0.5

(
t
σ

)2
)}

(2)

where σ is the standard deviation of the PDF, and t is the time step.
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The simulation is performed on a year-by-year time basis to ascertain the number of
customers interrupted and the actual demand not met when a PC fails. For each simulation
case, the output data obtained from the probabilistic processing in MATLAB are used as
input parameters for representing the stochastic behaviour of the network by applying risk
assessment and a power-flow analysis. A simulation loop corresponding to the expected
lifetime is introduced following the failure probability distribution. The simulation is halted
when convergence is met or when 1000 years elapse. A simulation time of 1000 years in
the MCS with a resolution of one-hour time steps is considered sufficient to randomise the
behaviour of the network based on a sufficiently low coefficient of variation [29]. Every
time a PC fails to operate, a power-flow algorithm is run to check and quantify the number
of loads affected. The algorithm is implemented using PSS/E software, automated by
Python, to model the analysed distribution network and solve the power flows at each
iteration. The frequency and duration of customer interruptions are then assessed and used
to compute the standard reliability indicators that depict the overall system’s reliability [30].

This analysis considers time-varying demand profiles that more accurately represent
the active and reactive power demands at each load point because they contain hourly
demand decomposition into different load types [9]. This results in a more realistic as-
sessment of customer interruptions because, at the point of PC failure, the actual demand
interrupted is computed and used in deriving energy reliability indices [8]. This MCS
procedure also considers the extent to which the probability of network outages is affected
by the overall system loading; hence, the time of the day when interruptions occur can be
incorporated in the MCS algorithm [29]. This approach for risk and reliability modelling
uses relative reliability indices that ensure that any uncertainties in data and system require-
ments are embedded in all network scenarios. This means that there is high confidence in
the relative differences between the indices, which will accurately represent typical system
behaviour when maintenance actions are done, or PC operational limits are violated. The
next subsections describe the different modelling techniques explored in this paper by
probabilistic curve fitting of the failure distribution of PCs.

2.2. Power Component Ageing

Power component ageing directly affects the failure pattern of a PC, as it increases
its likelihood to fail and thus negatively impacts system reliability [7]. It is important to
emphasise that the age profile of each PC (collected from the utility’s historical data) is
necessary to allow for an accurate estimation of its probability of failure at a given point
during its lifetime [31]. This informs maintenance schedules while feeding into the total
asset management of the distribution network.

Previous research considered one value for the expected lifetime for all PCs, e.g.,
30 years in [7] and 40 years in [9]. This corresponded to their maximum operating lifetime,
and it was assumed that all the components were afterwards replaced. However, this
research considers different expected lifetimes for each PC because this ensures that com-
ponent replacement times are more realistically modelled [11], leading to more accurate
reliability results.

2.3. Impact of Time-Varying Failure Rates

Time-varying failure rates are more realistic than average values, as they capture the
higher likelihood of failure when the PC has just been installed and when it is near the end
of its lifetime [32]. While time-varying failure rates can be reasonably approximated by the
mean failure rate, they result in more accurate reliability results when additional system
conditions are introduced to the analysis—such as weather-related events, time-varying
repair rates and maintenance, and customer interruption costs [7]. Following a bathtub
distribution, the PCs will have a reasonably high failure rate following installation during
the break-in period that settles to nearly constant during the functional time of the PC
before rising towards the end of the PC’s lifetime during the wear-out period. This bathtub
distribution of the failure rate λ(t) is modelled by incorporating a time-varying scaling
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factor α(t) to the constant failure rate, λ(c) as in (3). This scaling factor follows a beta
distribution with a mean value equal to the constant failure rate and is derived considering
its fundamental parameters αB = βB = 0.5, as detailed in the model expression (4) [10].
Although α(t) is restricted within the range [0, 1], the failure rates are extrapolated to the
PC’s expected lifetime to give a more accurate representation than the constant value [22].

λ(t)= α(t) · λ(c) (3)

α(t) = BetaPDF= f(t,αB,βB)= f(t, 0.5, 0.5) =
1

Π
√

t(1− t)
, for t ε [0, 1] (4)

An example of such a bathtub distribution for a primary transformer with a mean
failure rate λ = 0.01 failures/year and an expected lifetime of 20 years is shown in Figure 1,
where the bathtub distribution is compared to the constant failure rate. Additionally, the
failure pattern of PCs depends on a variety of factors: operational conditions, maintenance
activities, weather conditions, among others. In this research, the reliability impact of
overloading violations and maintenance actions is assessed by probabilistic curve fitting of
the aforementioned bathtub distribution to model the resulting failure rate, as described in
the following sub-sections.

Figure 1. Bathtub distribution for a 33/11 kV primary transformer with a 20-year expected lifetime.

2.4. Impact of Overloading Violations

The problems associated with ageing equipment, such as the increased likelihood
of failure previously presented in Section 2.2, are compounded by increased loading [28].
Violations due to overloading accelerate PC deterioration by increasing the failure rate
above otherwise expected levels, thus increasing the need for maintenance. It has been
shown that lightly loaded transformers and circuit breakers remain in service for longer
periods, and their ageing is accelerated by increased loading [15,33,34]. Accordingly, this
research only considers circuit breakers and transformers as having their failure rates
impacted by overloading violations. Two modelling techniques are proposed: a linear
approach where the expected lifetime of the PC is reduced and a nonlinear method that
involves skewing the bathtub distribution to have a longer wear-out period and a reduced
useful lifetime by incorporating different scaling factors for the break-in period, useful
lifetime, and wear-out period.

The proposed nonlinear method involves skewing the bathtub distribution by ex-
tending the wear-out period at the expense of the useful lifetime so that the failure rate
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deteriorates much earlier in the PC life because of accelerated ageing. In practice, as with
the linear method, the extent to which the wear-out period is increased (and useful lifetime
reduced) for a particular PC depends on available records from the utility on component
age profiles. This failure distribution is modelled by introducing different scaling factors
to the constant failure rate during the break-in, useful life, and wear-out periods as in [7].
During the break-in period, the scaling factor decreases exponentially from the maximum
to one, where it remains constant for the useful lifetime before increasing exponentially
during the wear-out period to the maximum value. The failure rate distribution λ(t) is
modelled as in (3), with the scaling factor taking on three different shapes as (5)–(7). The
scaling factors for the break-in and wear-out periods are chosen to take on decreasing and
increasing exponential distributions, respectively, modelled as beta distributions with mean
equal to the constant failure rate considering the fundamental parameters αB = 1, βB = 3
for the break-in period and αB = 5, βB = 1 for the wear-out period [35]. The model
expressions for the scaling factors are detailed in (5) and (7).

α(t)break−in = BetaPDF= f(t,αB,βB)= f(t, 1, 3)= 3(1− t) 2 for t ε [0, 1] (5)

α(t)useful lifetime= 1 (6)

α(t)wear−out= BetaPDF = f(t,αB,βB)= f(t, 5, 1)= 5t 4 for t ε [0, 1] (7)

An example of the skewed bathtub distribution for a primary transformer with a
constant failure rate of 0.01 failures/year and an expected lifetime of 20 years is shown in
Figure 2a and compared with the standard bathtub. The mean failure rate for the skewed
bathtub (0.012 failures/year) is higher than that of the standard bathtub distribution
(0.01 failures/year), implying that degradation in the reliability levels is expected due to an
increase in the number of failures experienced by the PC towards the end of its service life.

Figure 2. Failure rate distribution functions for a 33/11 kV primary transformer; (a) skewed bathtub distribution; (b) saw-
tooth bathtub distribution.

In the linear method, accelerated ageing of PCs owing to overloading violations is
considered to reduce the expected lifetime and is thus modelled by narrowing the bathtub
distribution to vary over a reduced expected lifetime. The extent of the reduction in the
expected lifetime is determined from available records on PC replacement and reasonable
engineering judgement. In this approach, the distribution of failures over the PC lifetime
remains unchanged albeit requiring more frequent replacement. This implies that the
system reliability is not expected to change significantly if PCs are replaced at the end of
their useful lifetime. However, in practice, the cost of more frequent replacement of PCs is
mitigated by increased maintenance to repair faulted PCs.
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2.5. Impact of Maintenance Actions

Preventive maintenance (PM) is planned and scheduled maintenance that aims to
postpone or reduce failures of a system. A cost-effective approach described in [16] focuses
on PCs that have a significant impact on system reliability (and dominant causes of failures)
to ensure that the right PCs are maintained at the right time and with the right maintenance
activity. This reliability-centred maintenance (RCM) impacts reliability by either improving
the working condition of PCs or prolonging their lifetime since the probability of failure is
lowered. This paper models the impact of maintenance using two approaches: first, linearly
by reducing the mean value of the bathtub distribution to depict the improved working
condition of the PCs and then, by a nonlinear approach that introduces the sawtooth
bathtub distribution.

In the linear approach, the extent of reduction in the mean failure rate due to mainte-
nance actions depends on the utility’s historical information on PC failures and mainte-
nance. Research in [16] proposes that RCM can deliver reliability benefits of up to 10–20%
reduction in failure rates of given PCs. Therefore, for this research, the introduction of
maintenance is assumed to lead to a 20% reduction in the mean failure rate of all the PCs,
thus lowering the bathtub curve and leading to improved reliability results. It is worth
noting that PM requires a significant investment that would need to be subjected to a cost-
benefit analysis against the resulting reliability benefits to justify the additional investment
before any decision is made. Furthermore, consideration for time-varying effects of mainte-
nance actions on failure rates, as in [36], could reveal more about the relationship between
maintenance and system reliability to better inform utilities’ maintenance strategies.

The nonlinear approach incorporates PM activities into the failure patterns of PCs
using the more detailed sawtooth bathtub distribution that models the increasing failure
rate between periods after maintenance and shows a reliability improvement after main-
tenance has been performed. This sawtooth bathtub distribution is modelled through
probabilistic curve fitting of the standard bathtub by applying different scaling factors for
the break-in, useful lifetime, and wear-out period, as in the nonlinear method proposed for
modelling overloading violations in Section 2.4. The failure rate distribution λ(t) would
then follow, as in (1), with the scaling factors for the break-in and wear-out period taking
on the exponential distributions that are detailed in (3) and (5). Detailed modelling of the
useful lifetime is then done by applying sawtooth curves corresponding to the periods
between maintenance actions. For each sawtooth curve, the failure decreases immediately
following the maintenance action and then exponentially increases till the next mainte-
nance action. An increasing exponential distribution, such as the one used in the wear-out
period (detailed in (5)), is used to represent the scaling factor for each sawtooth curve.
For simplicity, the modelling assumes one maintenance action is done every two years
and is adopted from [31], where the failure rate is assumed to fall to two-thirds of the
constant failure rate immediately after maintenance before exponentially increasing to
1.5 times the constant failure rate by the next maintenance action. A more accurate model
can be developed by the utility based on available records for maintenance and component
failures, for example, the more detailed hazard function presented in [31].

An example of a modelled sawtooth distribution for a primary transformer is shown
in Figure 2b compared to the standard bathtub and the constant failure rate. It is worth
noting that the mean failure rate over the PC lifetime is the same for all three distributions
0.01 failures/year, which reaffirms the assertion that the standard bathtub is an approxi-
mation of the sawtooth bathtub [31]. However, given the more accurate representation of
the distribution of failures over the PC lifetime, the impact on system reliability is worth
scrutinising to assist utilities in making reliability decisions regarding maintenance.

2.6. Reliability Cost-Benefit Analysis

Expected customer interruption cost (ECOST) has been used as a reliability cost/benefit
index to quantify the reliability of power systems in monetary terms [1,7,13,14] based on
composite customer damage functions. While it can easily be compared with ENS, as it is
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customer-specific and is calculated from the load lost during an outage, it does not compare
with other system-wide reliability indices, like SAIFI and SAIDI, that depict overall system
behaviour [37]. This paper presents the methodology for a reliability cost index that enables
the evaluation of customer reliability benefits based on estimating the avoided customer
interruption costs that result from a reduction in outage frequency and/or duration. This paper
proposes a newly defined System Average Interruption Cost Index (SAICI), which is expressed
as a probability distribution and provides a customer perspective to reliability evaluation to
facilitate decision making regarding long-term design and planning of distribution reliability.
The application of this index can also enable the prioritisation of real-time outage restoration
and scheduling of planned outages in the operational planning of distribution networks.

2.6.1. Estimation of Customer Interruption Cost

The accuracy of the calculation of any monetary reliability index is premised on how
the cost incurred by customers during outages is estimated [37]. The variability of different
customer segments, compounded by the fact that preferences change over time, gives
the utility an uphill task of accurately estimating customer interruption costs and thus
developing the network to achieve optimal reliability for all customers. A comprehensive
overview of the techniques used to estimate customer interruption costs is presented in [38].

In this research, the customer valuation method detailed in [39] is used to quantify
the interruption costs by ascertaining the maximum amount customers are willing to pay
(WTP) to avoid an interruption and the minimum amount they are willing to accept (WTA)
in compensation for an interruption. This method is preferred because it provides the cus-
tomer perspective though the bottom-up approach and leads to a deeper, more meaningful
understanding of customer interruption costs [38]. Value of lost load (VoLL) estimates
presented in [36] for residential and commercial customers are adopted in the analysis as
the customer interruption costs in £/kWh. For every interruption, the interrupted load
in kW is multiplied by the corresponding WTP estimate in £/kWh and the interruption
duration in hours to derive the interruption cost that is aggregated for each load during the
year to give the total Customer Interruption Cost (CIC) as shown in (8). In some instances,
the regulator imposes penalties to the utility (sometimes paid to affected customers) for not
meeting set reliability standards, e.g., exceeding set timelines to restore supply to customers
after an outage, as in [40]. The success of these penalties in limiting the impact of outages
on customers depends on the utility’s ability to accurately estimate interruption costs [3].

Total CIC =
n

∑
i=1

k

∑
i=1

WTP estimate× Load interrupted × Duration of interruption (8)

where k is the number of interruptions per load for n loads in the year.

2.6.2. Formulation of the Cost-Based Index

Research in [1] introduced a risk-based interruption cost index that uses time-based
probability distribution functions to model customer interruption costs at different risk
levels based on specific customer and interruption parameters. This probabilistic approach
is more realistic than the deterministic methods based on average values because its
variability more accurately depicts the expected customer costs during interruptions and
allows for the inclusion of uncertainties that can be used to relate reliability worth inputs
to derived reliability indices. However, this method requires complex modelling, and its
applicability to reliability risk assessment will only be investigated in future research.

The monetary reliability index proposed in this research, SAICI, aims to divide the
total interruption costs discussed in Section 2.6.1 across all customers to derive the average
cost of interruptions per customer during a given period (e.g., a year). SAICI is expressed in
£/customer/year and is derived by (9). This system-wide approach means that SAICI can
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be compared with SAIDI and SAIFI directly, as it correlates to the frequency and duration
of outages experienced.

SAICI =
Total CIC

Number of customers
(9)

3. Validation and Network Modelling

The reliability modelling methodology introduced in Section 2 is validated to assess
the impact of the different operational constraints on the accuracy of reliability performance
results. Different network scenarios are simulated, and the reliability results are compared
to show a decision-making approach that can be applied to integrated reliability planning
of distribution networks.

3.1. Network Design

The test network model used for the analysis is shown in Figure 3 and is extracted
from [41], with loads classified as being residential and commercial at low voltage (LV)
levels. Generic network models, as in [42], that emulate typical configurations are used
to represent the actual distribution system after the load at each network node has been
identified. The network model consists of a 2.5 MVA 33/11 kV primary transformer
supplying two feeders back-fed with an 11 kV overhead line and a normally open fuse
switch. One feeder is an overhead line that serves three residential LV load points (LP),
LP2–LP4, through 100 KVA 11/0.4 kV distribution transformers, while the other is an
underground cable that supplies a commercial LV load point LP-1 through a 100 kVA
distribution transformer.

Figure 3. Distribution test network model.

The network model is selected to consist of the two feeders to provide insights into the
difference in reliability performance of loads supplied by overhead lines and underground
cables. Detailed data about the parameters of the PCs are provided in [21], and the reliability
data showing the component failure rates (λ) mean time to repair (µ) and expected lifetime
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(EL) are shown in Table 1. This research uses real PC reliability data (failure rates and repair
times) that accurately represent the realistic behaviour of typical distribution networks.
A comprehensive simulation of sustained outages in a realistic distribution network is
performed considering all the technical issues at the time of assessing the reliability and
economic performance of the system.

Table 1. Component reliability data.

Power Component λ (/year) µ (h) EL (years)

33 kV bus 0.08 140 25
11 kV bus 0.05 120 25
415 V bus 0.05 24 25

33/11 kV Transformer 0.01 205.5 20
11/0.4 kV Transformer 0.002 75 10

Circuit breaker 0.0033 120.9 10
Fuse (11 kV and LV) 0.0004 35.3 20

Overhead line 0.091 * 9.5 25
Underground cable 0.051 * 56.2 25

* Failure rates for are per km and are multiplied by line length.

The daily demand curve for the loads is derived from the after diversity maximum
demand (ADMD) for each load point that is defined as the maximum demand per customer
as the number of customers approaches infinity. The ADMD is derived from the maximum
yearly nodal demand on the distribution network divided by the number of customers at
the node, providing a much more representative load model [43]. This paper models the
ADMD for residential and commercial loads as 40 kW and 50 kW, respectively [43]. The
resulting typical aggregate daily load demand curves for each load category are shown in
Figure 4. It can be seen that the commercial daily load curve has a high demand during
the day when business activities are ongoing, while the residential load curve has a higher
demand in the evening and early morning (albeit to a lower extent), when people are
typically active at home.

Figure 4. Aggregate daily load demand curves for commercial and residential loads [43].

3.2. Network Scenarios

The network presented in Figure 3 is modelled in the PSS/E software package, auto-
mated by Python, while the different network scenarios and functionalities are scripted
in MATLAB to model the probability distributions of the input failure rates and repair
times for time-sequential MCS, as in [9]. The reliability performance between different
scenarios is evaluated by comparing the average values of the reliability indices as well as
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their Probability Distribution Functions (PDFs). Table 2 summarises the network scenarios
with their detailed descriptions provided in the subsequent subsections.

Table 2. Network scenarios.

ID Scenario Description

S-1 Constant failure rates Fixed failure rates
S-2 Base case Time-varying failure rates
S-3 Overloading violations; non-linear method Longer wear-out
S-4 Overloading violations; linear method Reduced lifetime
S-5 High-frequency maintenance; linear method Reduced failure rate
S-6 Low-frequency maintenance; nonlinear method Sawtooth bathtub curves

3.2.1. S-1 Constant Failure Rates

The basic case considers PCs to have constant failure rates. This scenario represents
oversimplified modelling, which does not accurately account for changing operational
conditions throughout the PC’s expected lifetime. Accordingly, results from this scenario
are only indicative of system behaviour but do not offer appreciable benefits in terms of
accuracy for the analysis.

3.2.2. S-2 Base Case

The base case is used as a point of reference to determine the benefits/drawbacks
of other considered scenarios when the reliability performance of the network model
shown in Figure 3 is assessed. This is because it accurately represents the behaviour of
the network under normal conditions. This base case is modelled with the failure rate
of each PC following the bathtub distribution over its expected lifetime, as presented in
Section 2.3. The calculated reliability indices from the other scenarios are compared against
each other and against the base case to quantify the reliability improvement/detriment in
percentage terms. This approach ensures that uncertainties in data and system requirements
are embedded in all the indices, thereby affording reasonable confidence in the relative
differences between scenarios upon which the conclusions and recommendations from the
analysis are made [11].

3.2.3. Violations Due to Overloading

A. S-3 Non-linear Method Modelled by Skewing Bathtub

In S-3, the failure distribution is modelled by skewing the bathtub distribution to have
a longer wear-out period as the nonlinear method presented in Section 2.4. This scenario
is expected to worsen reliability significantly and support the reasoning that overloading
an electric circuit supplying commercial and domestic customers for extended periods
worsens system reliability by increasing the duration and frequency of interruptions [44].
This is because the mean failure rate is higher than the constant failure rate. In this scenario,
the bulk of the additional cost imposed by continuously violating overloading limits is
expected to be incurred by the customers due to the deteriorated reliability, as additional
network costs for replacing PCs faster would be minimal since PCs are replaced at the end
of their expected lifetime albeit having a prolonged wear-out period.

B. S-4 Linear method modelled by reducing PC lifetime

In S-4, the accelerated ageing caused by the violation of overloading limits is modelled
by reducing the expected lifetime as the linear method described in Section 2.4. There is
no significant deterioration in reliability expected in this scenario, as the mean failure rate
over the PC lifetime is the same as the base case, but higher network costs for replacing
PCs more frequently will invariably be incurred by the utility. The bulk of the additional
cost for violating overloading limits would then be incurred when replacing PCs, with a
minimal increment in the interruption cost to customers.
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3.2.4. Maintenance Actions

A. S-5 High-frequency maintenance modelled by a linear method of lowering bathtub

High-frequency maintenance is modelled in S-5 by reducing the mean failure rate of
the bathtub distribution to depict the improved working condition of the PCs. A resulting
improvement in the system reliability is expected; however, an analysis of the costs is
required to ensure the resulting reliability improvement outweighs the incremental cost of
the maintenance. This is required to justify the additional investment required.

B. S-6 Low-frequency maintenance modelled by a nonlinear method of sawtooth bath-
tub distribution

Low-frequency maintenance is modelled as a sawtooth bathtub distribution (described
in Section 2.5) with exponential distributions after each maintenance action during the
useful lifetime. While this distribution depicts periodic maintenance that is conducted
irrespective of the increase in failures, utilities often adopt different maintenance strategies,
such as condition-based and reliability-centred maintenance, detailed in [36], that responds
to the condition of the PCs. The sawtooth distribution is expected to produce reliable
results close to those when the standard bathtub is considered. Scrutinising the costs
also allows for a cost-benefit analysis of the reliability benefits vis-à-vis the maintenance
investment cost to provide economic justification for the utility. Further analysis based
on more accurate information on the behaviour of PCs can be focused on comparing the
reliability benefits of adopting different maintenance strategies.

4. Reliability Performance Assessment

The reliability results from the study are presented in this section using standard
reliability indices for interruption duration (SAIDI), interruption frequency (SAIFI), inter-
ruption cost (SAICI), and energy not supplied (ENS). These indices are presented using
average values and probability density functions (PDFs) to highlight the stochastic vari-
ability of network performance while providing insight into the potential benefits that may
not be immediately obvious with average values. It is validated that constant failure rates
overestimate reliability results by up to 36.7% for SAIDI, 36.8% for ENS, 36.5% for SAICI,
and 13.7% for SAIFI. LP-1 experiences the longest and highest number of interruptions
because it is supplied by a radial underground cable, followed by LP-4, which is furthest
from the primary transformer. There is a consistent reduction in all reliability indices
when overloading violations are modelled, with S-3 producing less realistic results than S-4
due to its more realistic non-linear modelling approach. Preventive maintenance actions
modelled in S-5 and S-6 lead to an improvement in all reliability indices, with a smaller
rise for S-6 because the sawtooth distribution is an approximation of the standard bathtub.

4.1. Constant vs. Time-Varying Failure Rates

Table 3 shows an improvement in all reliability indices when time-varying failure
rates that follow a bathtub distribution are considered over the expected lifetime as in S-2
(base case) compared to the S-1 (basic case) that models constant failure rates. There is a
significant reduction in the duration of interruptions (36.7%), energy not supplied (36.8%),
and interruption cost (36.6%), with a smaller reduction in the frequency of interruptions
(13.7%). This means that when the simplified constant failure rates are used in a reliability
performance assessment, reliability results are expected to be overestimated by up to 36%
for interruption duration and 13% for interruption frequency. While the development of
a failure distribution over the PC lifetime hinges on the collection of component failure
and outage records over time, the improved accuracy in reliability results is justifiable, as
decisions on reliability investments can be better informed.
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Table 3. Comparison of reliability indices for constant and time-varying PC failure rates.

ID Scenario SAIFI
(int/cust/yr)

SAIDI
(h/cust/yr)

ENS
(kWh/cust/yr)

SAICI
(£/cust/yr)

S-1 Constant failure rates 0.153 12.731 392.63 2844.40
S-2 Bathtub beta distribution 0.132 8.060 248.02 1804.56

Percent decrease 13.70% 36.70% 36.83% 36.55%

cust, customer; int, interruption; yr, year; h, hours.

Figure 5 demonstrates that customers at LP-1 and LP-4 experience longer interruptions
(8.630 h and 8.634 h, respectively) than customers at LP-2 and LP-3 (7.177 h and 7.798 h,
respectively). This is because LP1 is solely fed by an underground cable compared to
the overhead lines supplying LPs 2–4. Although cables typically have lower failure rates
than overhead lines because they are protected from common causes of failures, like
vegetation, adverse weather, and above the ground obstructions, they also usually require
long restoration/repair times for point-of-fault identification. Not to mention, repair
works involving cable jointing are usually extensive. Therefore, the network configuration
should ensure underground networks are either meshed or supported by another supply
point when radial to improve reliability to connected customers. LP-4 experiences longer
interruptions because it is further from the primary transformer than all other load points,
meaning that customers who are located along with the feeders further away from the
grid substations will tend to experience longer durations than those at the beginning of the
feeder, which is nearer to the grid supply point.

Figure 5. Comparison between average interruption durations for S-1 and S-2.

4.2. Impact of Overloading Violations

There is a consistent reduction in all reliability indices when overloading violations are
modelled. The non-linear approach, modelled by skewing the bathtub distribution, yields
a more significant reduction than the linear approach, which is modelled by reducing the
PC lifetime. Table 4 shows that while SAIDI and SAIFI in S-3 increase by 18.54% and 7.34%,
respectively, these reductions are only 5.15% and 1.65% in S-4. The increased frequency
and duration of interruptions are due to the increased probability of failure of PCs brought
about by violating overloading limits. S-4 presents a lower reduction in reliability indices
than S-3 when compared to the base case because the failure distribution is not altered, but
rather the frequency of PC replacement is increased, whereas in S-3, the failure distribution
of the PCs is skewed for the exponential rise in failures (typically in the wear-out period) to
begin earlier in the PC lifetime than in the base case. It follows that the reliability results for
ENS and SAICI increase by 19.32% and 26.06% in S-3, respectively, presenting only 5.22%
and 4.59% increments in S-4.
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Table 4. Reliability indices due to violations of overloading limits.

ID Scenario SAIFI
(int/cust/yr)

SAIDI
(h/cust/yr)

ENS
(kWh/cust/yr)

SAICI
(£/cust/yr)

S-2 Base case 0.132 8.059 248.02 1804.56

S-3 Overloading violations by skewing
bathtub to have longer wear-out 0.143 9.554 295.93 2274.80

Percent increase from the base case 7.34% 18.54% 19.32% 26.06%

S-4 Overloading violations by reducing
PC lifetime 0.135 8.475 260.97 1887.45

Percent increase from the base case 1.65% 5.15% 5.22% 4.59%

cust, customer; int, interruption; yr, year; h, hours.

S-3 is a more realistic representation of overloading violations, as utilities will not
typically replace PCs before their expected lifetime due to economic constraints. They
usually opt for longer wear-out periods, when failures are highest, before replacement.
Further, S-3 assesses the impact of overloading on the failure pattern over the PC’s lifetime,
i.e., accelerated ageing, thus providing a more accurate representation of the impact on
reliability. This incentives utilities to further investigate the behaviour of PCs based on
historical information and enact data-driven planning and operational decisions for the
improvement of the reliability of the electricity supply.

In S-4, while the modelling does not result in a significant rise in reliability indices, the
impact on utilities is through the more frequent replacement of PCs required to maintain
the reliability levels as PCs age faster. Notably, the cost to the utility from the more frequent
replacement of PCs due to the reduced lifetime is worth more scrutiny, as discussed
in Section 4.2.2.

Figure 6 shows that the commercial load point LP-1 is affected most by violations due
to overloading, as it presents the highest rise in average interruption duration (25.98%)
from S-2 to S-3 compared to the other load points LP-2 (20.80%), LP-3 (21.12%), and LP-4
(6.87%). As previously discussed in Section 4.1, LP-1 experiences longer durations than
other LPs owing to its underground cable supply that is characterised by long repair times,
and this is exacerbated by overloading violations. This signifies that the utility should focus
its efforts to ensure overloading limits are not violated in parts of the networks with longer
and more frequent interruptions, as they will experience worse reliability degradation than
more reliable parts of the network irrespective of the driver of the PC failures.

Figure 6. Percentage increase in average interruption duration from S-2 to S-3.
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4.2.1. Interruption Duration and Frequency

There is a 7.34% rise in SAIFI from S-2 to S-3 and a 2.07% rise from S-2 to S-4 where
overloading violations are introduced, indicating an increased number of sustained in-
terruptions per customer. SAIDI rises by 18.54% and 5.15% from S-2 to S-3 and S-4,
respectively, as shown in Table 4. This significant deterioration in SAIDI and SAIFI arises
from a higher mean failure rate in S-3 as a result of the overloading violations that lead to a
prolonged wear-out period, where failure rates increase exponentially at the expense of
reduced useful lifetime, where failure rates are constant, i.e., accelerated ageing. There is a
higher increase in the average duration of interruptions (18.54% for S-3) than in the average
number of interruptions (7.34% for S-3). This means that while customers may experience
a small increase in the number of interruptions, their duration will be significantly longer
when the network is operated such that overloading limits are exceeded.

The reliability degradation evidenced by increased frequency and duration of inter-
ruptions due to violation of overloading limits underpins the need for increased regulatory
scrutiny on the operating conditions of the various parts of the network to ensure reliability
improvement investments by the utility are directed towards de-congesting overloaded
parts of the network. This result also provides additional justification for utilities to collect
accurate outage records that can inform strategies to reduce outage costs and lost revenue
due to poor continuity of supply.

The probability distribution functions of SAIFI for the base case (S-2), S-3, and S-4
shown in Figure 7a reveal that S-3 has a shorter tail than the base case, reducing the
largest plausible number of interruptions that can be experienced by a customer in a
year from 2.8 to 2.2. While the average number of interruptions per customer increases
in S-3, the distribution of failures is such that the worst affected customers experience
fewer interruptions than in the base case. This observation explains why the impact of
overloading violations may often go unnoticed when benchmarked against the number of
interruptions experienced by the worst-affected customer. Figure 7a also shows that the
failure distribution of the frequency of interruptions in S-4 does not differ much from S-2
since it follows an identical bathtub distribution (described in Section 2.4).

Figure 7. PDFs of S-2, S-3, and S-4 for (a) SAIFI; (b) SAIDI.

Figure 7b shows the resulting PDF for SAIDI that reveals a shorter tail for S-3
(264 h/customer/year) in contrast to a longer tail for S-4 (451 h/customer/year) when
compared to the base case (400 h/customer/year). This translates to the longest plausible
interruption duration experienced by the worst-affected customer increasing in S-4 and
reducing in S-3 when compared to the base case, meaning the worst-affected customer will
incur shorter outages in S-3 and longer outages in S-4 than in the base case.
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4.2.2. Energy Not Supplied and Interruption Cost

Table 4 shows that ENS increases by 19.32% in S-3 and by 5.22% in S-4 compared
to the base case, which is consistent with the degradation of SAIDI and SAIFI discussed
previously in Section 4.2.1, where customers experience more frequent and sustained
interruptions as a result of PCs failing more often when they are overloaded above their
limits. In turn, SAICI increases by 26.06% for S-3 and 4.59% for S-4 from the base case.
Figure 8 shows that the increase in SAICI from S-2 to S-3 is significantly higher than the
increases in SAIFI (7.34%), SAIDI (18.54%), and ENS (19.32%). This reveals that customers
are impacted the most by the onset of overloading violations because they endure longer
durations of outages. In the public interest, the regulator ought to incentivise the utility to
minimise the additional customer cost imposed by the overloading violations by making
optimal reliability investments, for example, when penalties are imposed for outages
lasting longer than a prescribed limit, utilities will incur higher penalties for the prolonged
interruptions when overloading limits are violated.

Figure 8. Percentage changes in SAIDI, ENS, and SAICI for S-3 and S-4 from the base case.

The PDFs for ENS shown in Figure 9 are consistent with the results for SAIDI, with
S-3 having a shorter tail and S-4 having a slightly longer tail when compared to the base
case. This is consistent with the observed trend from Figure 7b of the longest plausible
interruption durations increasing for S-4 with a longer tail and reducing for S-3 with
a shorter tail; the shorter tail in S-3 means that overloading violations will reduce the
ENS for the worst-affected customer in S-3 while increasing in S-4. This emphasises the
importance of utilities not basing the reliability performance of the system on the worst-
affected customers but rather system-wide averages for more informed decisions. It is
worth noting that while the modelling in S-4 where PC lifetimes are reduced may appear
to have a small impact on the reliability indices considered in this study, the fact that PCs
are replaced in a shorter time would mean a significant impact on network costs.

4.3. Impact of Maintenance Actions

The results from the reliability performance assessment of the network show an
improvement in all reliability indices when maintenance actions are introduced. However,
the high-rate maintenance modelled in S-5 shows a larger improvement in reliability results
as compared to the low-rate maintenance in S-6, where a sawtooth distribution is modelled.
This is because the sawtooth modelling considers the momentary rise in the probability of
failure immediately after a maintenance action, equivalent to the break-in period, owing
to maintenance crews’ remedial works during installation and re-assembly. Reliability
improvements in S-5 are a result of a reduced mean failure rate resulting from preventive



Sustainability 2021, 13, 9579 17 of 22

maintenance. Table 5 provides a summary of the reliability indices derived from the
performance assessment of S-5 and S-6.

Figure 9. PDFs of ENS for SAIDI and SAIFI.

Table 5. Reliability indices due to implementation of maintenance actions.

ID Scenario SAIFI
(int/cust/yr)

SAIDI
(h/cust/yr)

ENS
(kWh/cust/yr)

SAICI
(£/cust/yr)

S-2 Base case 0.132 8.06 248.02 1804.56

S-5 High-frequency maintenance actions by
lowering bathtub 0.112 7.13 219.12 1560.41

Percent decrease from the base case 15.25% 11.57% 11.65% 13.53%

S-6 Low-frequency maintenance actions by
sawtooth curves 0.131 7.88 239.74 1721.19

Percent decrease from the base case 1.02% 2.29% 3.34% 4.62%

cust, customer; int, interruption; yr, year; h—hours.

4.3.1. Interruption Duration and Frequency

Table 5 shows an 11.57% and 15.25% reduction in SAIDI and SAIFI, respectively,
for S-5 from the base case, while in S-6, SAIDI and SAIFI reduced by 2.29% and 1.02%,
respectively. It can be seen that the relative reductions in SAIDI and SAIFI are within
the same range for both scenarios, meaning the introduction of maintenance reduces
the interruption frequency and duration proportionately. Figure 10 shows the average
duration of interruptions experienced at each of the load points for S-5 and S-6, highlighting
consistent reductions from the base case.

It is expected that following introduction of maintenance actions, LP-2 and LP-3 will
experience bigger improvements in interruption duration since they were least affected by
overloading violation in Section 4.2, where LP-1 and LP-4 experience the longest and most
frequent outages. Accordingly, customers with already reliable supply will benefit most
from maintenance. Additionally, the modelling assumes maintenance to be conducted on
the entire network uniformly, while in practice, maintenance crews tend to focus on the
parts of the network with many failures.
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Figure 10. Comparison between the interruption durations for each LP in S-5 and S-6.

A closer look at the PDFs for SAIFI shown in Figure 11a reveals that S-5 and S-6 have
shorter tails than the base case, meaning a reduction in the highest number of interruptions
experienced by a customer from 2.8 in S-2 to 2.5 in S-6 and 1.8 in S-5. This implies that the
introduction of maintenance actions reduces the probability of very many interruptions
to customers, as maintenance reduces the probability of PCs failing. Figure 11b shows
the PDF of SAIDI for S-5 and S-6 and the base case, and it reveals that the introduction of
maintenance actions increases the probability of the longest possible interruption. While
the longest possible interruption duration experienced in a year is 400 h in the base case, it
increases to 540 h for S-5 and S-6, a 35% increase. This means that maintenance causes an
increase in the interruption duration for the worst-affected customers albeit reducing the
average for all customers.

Figure 11. PDFs of S-2, S-5, and S-6 for (a) SAIFI; (b) SAIDI.

4.3.2. Energy Not Supplied and Interruption Cost

Table 5 shows a reduction in ENS of 11.65% for S-5 and 3.34% for S-6 when compared
to the base case (S-2). This is due to the reduction in the duration of interruptions when
maintenance is introduced, as discussed in Section 4.3.1, where S-5 shows a bigger im-
provement than S-6. It is worth noting that the improvements in ENS are proportionate
to the reductions in SAIDI for both scenarios, as they are both duration-based indices.
SAICI reduces by 13.53% for S-5 and 4.62% for S-6 when compared with the base case.
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This is consistent with the observation in Section 4.2, and it follows that improvements
in SAICI are greater than those in ENS, SAIDI, and SAIFI when maintenance is intro-
duced. This is important because it shows that customers benefit more than the utility
from reliability improvements (shorter and less frequent interruptions) arising from the
maintenance actions.

The PDFs of ENS for S-5 and S-6 when compared to the base case are shown in
Figure 12 and reveal that introduction of maintenance leads to a longer tail than the base
case, with the maximum possible ENS increasing from 12.8 MWh for S-2 to 16.4 MWh for S-
5 and S-6. This is consistent with the observation from Section 4.3.1, where the PDF of SAIDI
(Figure 11b) showed that the probability of the longest possible interruptions increases.

Figure 12. PDFs of ENS for S-2, S-5, and S-6.

5. Conclusions

This paper conducts a lifetime beta modelling of failure rates in the reliability risk
assessment of distribution networks. This study builds on conventional reliability analyses
by considering different expected lifetimes for each component to more realistically depict
utility practice. A novel technique is introduced to model different operational constraints
by the probabilistic fitting of the bathtub distributions of PC failure rates. The stochastic
behaviour of a network model is simulated, and a reliability performance assessment is
conducted to calculate the system-wide reliability indices.

A new cost index, SAICI, is derived and expressed as a probability distribution to
be compared with standard reliability indices to provide a customer perspective to the
reliability performance results. The study shows that customers experience longer and
more frequent outages when the network is overloaded above rated limits because the
probability of failure of PCs is significantly increased. The cost-benefit analysis reveals that
customers are impacted most by the onset of overloading violations because they endure
longer durations of outages and have to incur significant costs for alternatives. This study
provides an incentive for utilities to track cost-based reliability metrics to provide a wider
understanding of the total cost of reliability to network planning and operation.

Key contributions from the research include:

• Novel component lifetime modelling of failure rate distributions;
• Modelling of different network operational conditions using probabilistic curve fitting

of the bathtub distribution; and
• Reliability cost-benefit analysis of operating the distribution network under different

operational constraints.
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The findings from this research will provide new considerations for utilities and reg-
ulators to make better-informed decisions regarding reliability investments. Reliability
planners can utilise historical records of outages and component failures to build more
accurate component age profiles that can be incorporated into reliability assessments for
more dependable results. This research can be expanded for a larger network while incor-
porating more technical factors, such as more individualised component lifetimes based
on manufacturer specifications and utility data and location-based overloading violations
that account for security-constrained economic dispatch, among others. The impact of
operating the network under different operational constraints on the system reliability will
be a key criterion for investments to improve the quality of supply to customers.
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