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Introduction

The development of advanced high strength materials requires optimization procedures of engineering structures and components. The optimization is carried using numerical tools, e.g., finite element (FE) simulations [START_REF] Tisza | Numerical modeling and simulation in sheet metal forming academic and industrial perspectives[END_REF]. To run reliable numerical simulations, trustworthy material properties are needed. Therefore, mechanical tests are conducted to determine material parameters.

Classical measuring devices (e.g., mechanical extensometer, load cells) provide only global data. The drawback of the latter ones is that local effects cannot be captured. The development of digital imaging and full-field measurement methods provide means to capture localized phenomena. Digital Image Correlation or DIC [START_REF] Sutton | Image Correlation for Shape, Motion and Deformation Measurements[END_REF] stands out nowadays as the most versatile and most widely used measurement technique in experimental mechanics. The application of DIC is straightforward as digital images are used as the source of information, i.e., capturing the motions of monitored surfaces. [START_REF] Besnard | Finite-element" displacement fields analysis from digital images: Application to Portevin-Le Châtelier bands[END_REF] developed FE-based DIC where FE meshes were utilized to discretize the observed region of interest, and the output were measured nodal displacements. Such approach is powerful since experimental data and numerical simulations can be directly coupled in inverse identification schemes [START_REF] Lecompte | Mixed numericalexperimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens[END_REF][START_REF] Cooreman | Identification of mechanical material behavior through inverse modeling and DIC[END_REF].

Finite Element Model Updating or FEMU [START_REF] Kavanagh | Finite element applications in the characterization of elastic solids[END_REF]) is a well-known identification procedure, which was considered in the present work. FEMU is an iterative scheme that minimizes the differences between experimentally measured and numerically computed quantities [START_REF] Prates | Inverse Strategies for Identifying the Parameters of Constitutive Laws of Metal Sheets[END_REF], Martins et al., 2018), e.g. measured and calculated displacement fields and measured load and calculated global reaction forces on the FE model. FEMU is one of the most versatile identification procedures as it can be employed for, say, uniaxial (Tomičević et al., 2016a) and biaxial (Tomičević et al., 2016b) tests. Furthermore, FEMU is not limited to macroscopic laws. [START_REF] Guery | Identification of crystal plasticity parameters using DIC measurements and weighted FEMU[END_REF] used the same framework to calibrate crystal plasticity parameters of AISI 316LN stainless steel. Compared to other inverse identification methods (e.g., Virtual Fields Method [START_REF] Grediac | Applying the Virtual Fields Method to the identification of elasto-plastic constitutive parameters[END_REF], Constitutive Equation Gap Method [START_REF] Geymonat | Identification of elastic parameters by displacement field measurement[END_REF] and the Equilibrium Gap Method [START_REF] Claire | A finite element formulation to identify damage fields: the equilibrium gap method[END_REF], FEMU was proven to provide the most accurate results in the presence of data corrupted with acquisition noise (Martins et al., 2018[START_REF] Roux | Optimal procedure for the identification of constitutive parameters from experimentally measured displacement fields[END_REF]. FEMU is a sensitivity-based identification method [START_REF] Tarantola | Inverse Problems Theory. Methods for Data Fitting and Model Parameter Estimation[END_REF], i.e., the influence of material parameter changes on observed quantities is evaluated. Therefore, FEMU was also used for sample optimization to tailor the geometry to activate specific material parameters. Bertin et al. (2016) used the aforementioned procedure to optimize the fillet radii of a cruciform specimen for biaxial testing. Furthermore, FEMU was then used to calibrate material parameters of the Hill-1948 plasticity model with a single biaxial test [START_REF] Bertin | On the identifiability of Hill-1948 plasticity model with a single biaxial test on very thin sheet[END_REF].

The aim of this paper is to evaluate two distinct sample geometries used in tensile tests for parameter identification. The samples were made from high strength steel plates. The goal was to determine the best of the two geometries for calibrating Ludwik's nonlinear isotropic hardening law. FEMU was deemed a suitable choice for the sensitivity analysis. Using FEMU, sensitivity fields [START_REF] Neggers | Improving full-field identification using progressive model enrichments[END_REF][START_REF] Ahmed | Effects of the geometrical parameters of the core on the mechanical behavior of sandwich honeycomb panel[END_REF][START_REF] Prates | Analytical sensitivity matrix for the inverse identification of hardening parameters of metal sheets[END_REF] and the Hessian matrices (Bertin et al., 2016) were extracted to evaluate the parameter sensitivity with respect to the sample geometry.

Experimental investigation

Within this research, the experimental investigation was carried out on 2 mm thick samples made of HARDOX 450 steel. Two distinct sample geometries were considered for the mechanical tests. The DIN sample (Fig. 1(a)) was designed with two parallel edges located in the entire gauge region. Near the ends, the sample was widened to ensure larger gripping surfaces and to disable any sample slip. Furthermore, the design induced two regions with increased stress concentrations. The second dogbone sample (Fig. 1(b)) was thinned in the center of the gauge area with a radius of 75 mm, thus ensuring a unique region where strain localization may occur. were used to ensure uniform sample illumination. The hardware parameters of the optical setup are listed in Table 1. 

Full-field measurement results

For this study, Finite element (FE) based DIC was employed to measure displacement fields on the observed Region of Interest (ROI). The correlation framework Correli 3.0. [START_REF] Leclerc | Correli 3.0[END_REF] was used. The ROI was discretized with 3-noded triangular (T3) elements (Fig. 3). Furthermore, mechanical regularization [START_REF] Tomičević | Mechanics-aided digital image correlation[END_REF] was implemented within the algorithm. The full analysis parameters are reported in Table 2.

Before each experiment, 10 images were acquired in the unloaded state to obtain the noise floor estimates by calculating the standard deviations of the nodal displacements and strains. For the DIN sample, the displacement noise floor was slightly lower than for the dogbone sample. On the other hand, the strain noise floor was lower for the dogbone sample. However, both displacement and strain noise floors were of the same order of magnitude. The analysis of the calculated Green-Lagrange strain fields revealed two strained bands forming an X. A single dominant band developed fully until failure for both cases (Fig. 4). Strain localization occurred in different regions. For the DIN sample, the strains localized on the left side near the widening area close to the grips. For the dogbone sample, strain localization developed in the ligament, as expected from its geometry. A first advantage of dogbone samples is that they allow for a direct control of the location of the strained zone. With the DIN sample, localization may occur near each end of the sample. Therefore, to monitor both possible concentration zones, a larger ROI needs to be considered. Conversely, since for the dogbone sample the location is known in advance, the optical setup can be put closer to the sample to capture strain localization in greater details. Moreover, multi-scale DIC [START_REF] Passieux | Multiscale Displacement Field Measurement Using Digital Image Correlation: Application to the Identification of Elastic Properties[END_REF] can also be employed since the strained band location is known a priori. The macroscopic stress-strain curves of both experiments are reported in Fig. 5. The engineering stress was calculated by dividing the measured force by the initial cross-sectional area. The Green-Lagrange strain levels were obtained by using virtual strain gauges (Fig. 4) positioned over the captured strain localization zones. In the virtual gauge, the nodal strains within the gauge were averaged for each temporal registration. The dogbone sample displayed slightly prolonged elasticity (i.e., higher yield stress) than the DIN sample. However, for the DIN sample, 2% larger strains at failure were achieved (the dogbone sample fractured earlier due to increased strains in the localization band [START_REF] Do | Combined hardening and localized failure with softening plasticity in dynamics[END_REF]). Moreover, a higher ultimate tensile strength was reached with the dogbone sample. Beyond the stress peak, material softening was very similar in both tests, which is confirmed by the strain field patterns shown in Fig. 4.

Finite element model updating

The goal of FEMU is to iteratively minimize differences between experimentally measured and numerically calculated quantities. The minimization framework iteratively updates the desired material parameters by calculating Hessian matrices that are based on sensitivity fields [START_REF] Tarantola | Inverse Problems Theory. Methods for Data Fitting and Model Parameter Estimation[END_REF]. In the present analyses, measured and calculated displacement fields were considered, as well as measured forces and global reaction forces extracted from the FE model. The employed FE meshes (Fig. 5) were prepared for the identification scheme by prescribing measured nodal displacements as Dirichlet boundary conditions on the stressed edges of the model (outlined by red lines in Fig. 6). The FEMU mesh was constructed from the DIC mesh. The T3 mesh was converted into fournoded quadrilateral elements (Q4). [START_REF] Lindner | On the evaluation of stress triaxiality fields in a notched titanium alloy sample via integrated digital image correlation[END_REF] reported that 3D meshes were necessary to accurately evaluate stress states in plasticity. Therefore, the Q4 mesh was extruded to obtain a 3D mesh made of C3D8R elements with reduced integration.

In the minimization procedure, the cost function considering measured displacements is formulated as the weighted squared difference between the measured um and calculated uc nodal displacements

      ( )       ( ) 1 2 u u 1 , t N  - = - - m c u m c p u u C u u (1)
where {p} is the vector column gathering all the sought material parameters, [Cu] the covariance matrix equal to 2𝛾 𝑓 2 [M] -1 , [M] the global DIC matrix [START_REF] Hild | Comparison of local and global approaches to digital image correlation[END_REF], 𝛾 𝑓 2 the variance of Gaussian white noise associated with image acquisition, and Nu the number of kinematic degrees of freedom [START_REF] Mathieu | Estimation of Elastoplastic Parameters via Weighted FEMU and Integrated-DIC[END_REF]. The cost function considering measured load and extracted reaction forces from the stressed edges of the FE mesh are expressed as
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where γF is the standard uncertainty of the load cell, and NF the number of load data.

By introducing a weight ω, the two previous cost functions are combined as

  2 2 2 tot u F (1 ) ,     = - + p (3)
For the present study, ω was set to 0.5 to provide equal weight to kinematic and static data.

The minimization of the kinematic cost function was carried out thanks to the evaluation of kinematic sensitivity fields. The computed displacement vector, for any iteration i, is Taylor expanded as
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where {∂p} is the increment to the sought parameters, and from Eq. ( 4), the displacement sensitivity matrix becomes

    .  =  c u u S p (5) 
The displacement sensitivity matrix accounts for changes in displacement fields due to a small variation of each sought material parameter, and is updated for each iteration. The parameter increment is then expressed as a function of the sensitivity matrix
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where [Hu (i-1) ] is the Hessian matrix expressed as a function of the sensitivity matrix
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The parameter increment considering only measured loads and computed global reaction forces reads
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where [SF] denotes the force sensitivity matrix. The Hessian matrix considering force data is expressed as
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For the proposed FEMU-UF [START_REF] Mathieu | Estimation of Elastoplastic Parameters via Weighted FEMU and Integrated-DIC[END_REF], Tomičević et al., 2016) approach, the global Hessian matrix [HUF] then becomes the sum of the kinematic and static Hessian matrices

     . =+ UF U F H H H (10) 
In the following, the total Hessian matrix [HUF], displacement and force sensitivity fields are evaluated and compared for both considered sample geometries.

Identification results

The identification procedure was carried out for both samples independently. The FE analyses were carried out until the ultimate strength was reached, i.e., before strain softening. For the DIN sample, the analyses were performed until the strain levels reached 4% (i.e., time step 435) and for the dogbone geometry up to 3.2% (i.e., time step 220), see Fig. 5. In the FE simulations, plasticity was described with Ludwik's isotropic hardening law [START_REF] Ludwik | Comparison of inverse identification strategies for constitutive mechanical models using full-field measurements[END_REF] eq y pl ,

n K    - =+ (11) 
where σeq corresponds to von Mises' equivalent stress, and εpl the cumulated plastic strain. The sought material parameters were the Young's modulus E, yield stress σy, hardening modulus K and hardening exponent n. The Poisson's ratio was not calibrated and was kept constant at 0.3 since it was difficult to calibrate (Tomičević et al., 2016a). However, the sensitivity of the latter to sample geometry was evaluated.

For both samples, the initial parameters were identical. After the FEMU-UF procedure was run, it was observed that the sample geometry led to significant differences in calibrated parameters (Table 3). For both samples, the Young's modulus increased; for the dogbone geometry the value increased more. Moreover, for the latter, the calibrated values of the yield stress σy and hardening exponent n were higher than for the DIN sample. For both samples, the hardening modulus K increased; for the DIN sample it increased more. Lower identification residuals were achieved for the dogbone sample. The identification procedure led to parameters that provided a good description of the nonlinear behavior for both samples. In Fig. 7, the global reaction forces are displayed for the initial and calibrated material parameters. For the DIN sample, the onset of plasticity was not described as accurately, which led to increased global FEMU-UF residuals (i.e., χtotal). Conversely, for the dogbone geometry lower deviations from the Reference curve were observed for the reaction force with the calibrated parameters. 

Sensitivity analysis

The parameter sensitivity for the two considered sample geometries (i.e., DIN and dogbone) was evaluated with the Hessian matrices calculated within FEMU framework. The Hessian matrix is of size n × n, where n corresponds to the number of sought parameters. Furthermore, the Hessian matrix gathers displacement and force sensitivities to parameter changes. The diagonal terms in the Hessian matrices describe the parameter sensitivities when considered independently, whereas the off-diagonal terms report on correlative influences of parameters. The evaluation of the Hessian matrix was performed prior to the identification procedure to determine the optimal strategy for material parameter calibration.

The Hessian matrices are shown in Fig. 8. For the DIN sample, twice as much images were captured and analyzed (i.e., 435 images) compared to the dogbone sample (i.e., 220 images). Therefore, a first order approximation was carried out on the DIN Hessian so it could be compared to the dogbone Hessian. First, all members of the DIN Hessian matrix were divided by the number of images (i.e., 435) and then multiplied by the number of images captured for the dogbone sample. It is observed that for the Young's E, the highest sensitivity is achieved by the dogbone geometry. This result also applies for the Poisson's ratio ν and hardening exponent n. The correlative influences between E and other parameters are slightly higher for the DIN sample. Furthermore, for the Poisson's ratio, the dogbone sample provided the highest sensitivity. This property can also be stated for the correlative influences, which are higher than for the DIN sample. The yield stress σy sensitivity is similar for both geometries, although it is slightly higher for the DIN sample. Opposite trends are observed for the correlative influences between σy and E. For the DIN sample, they are correlated, whereas for the dogbone sample they are anti-correlated. The hardening parameter K exhibits greater sensitivity for the DIN sample than for its counterpart. However, the correlative influences of other parameters on K also need to be considered, which are on average higher for the dogbone sample. For the latter, the sensitivity of the hardening exponent n is seven times higher than for the DIN sample, thus rendering it easier to calibrate.

Last, the conditioning of the two matrices was estimated from the spectrum of eigen values (Fig. 8). For the DIN sample, the condition number was equal to 3, whereas for the dogbone it was 4. The condition number is preferred to be as small as possible thus indicating that the eigen values for all parameters are similar, and therefore easier to calibrate. In this case, the DIN sample provides the smallest condition number and all eigen values are greater than 1. On the other hand, for the dogbone sample, the lowest eigenvalue expressed in decimal logarithm is below 1. Furthermore, the largest eigenvalue was found for the dogbone sample. Moreover, the first two eigenvalues are much higher for the dogbone sample than for the DIN sample. From the presented data, it is observed that the dogbone sample provides the highest sensitivities (as observed from the Hessian and its eigen values). Yet, with the aforementioned sample, the lowest eigenvalue is also achieved, which is a drawback.

Figures 9-13 display the displacement sensitivity fields [Su] for each considered material parameter and for each sample geometry. A parameter offset  =  was considered. Each figure is composed of two subfigures, which are divided into four sensitivity fields. Each figure is also divided into two rows, where the first one displays sensitivities with respect to the x-axis, and the second to the y-axis. On each sensitivity field, a vertical dashed line is depicted, which corresponds to the column of pixels used to create the sensitivity history with respect to analyzed images (i.e., subfigures next to sensitivity fields). The positive x-axis is oriented to the right, whereas the positive y-axis is oriented toward the top of the page. For most parameters, the sensitivities in elasticity are small in comparison to plasticity. To calibrate the Young's modulus, elasticity is sufficient. The Young's modulus sensitivity fields for both samples are different in terms of distribution (Fig. 9). For the dogbone sample, increased sensitivities occur around the strain localization zone (i.e., in plasticity). For the DIN sample, increased sensitivities occur in the center of the specimen, away from the localization zones. In the x-direction, the dogbone geometry displays more heterogeneous sensitivities. For the y-direction, the DIN sample also displays heterogeneous distributions. Yet, it is more uniform through the loading history for the dogbone sample. The dogbone sensitivity fields are more pronounced than for the for DIN sample. The Poisson's ratio displacement sensitivity fields [Su] in the x-direction are similar for both geometries (Fig. 10). From the sensitivity history plot, it is observed that for the dogbone sample the sensitivity levels are slightly higher. For the y-direction, the sensitivities are smaller, thereby indicating, as expected, lower sensitivities in the loading direction. The Poisson's ratio sensitivities are the lowest compared to the other The yield stress displacement sensitivity [Su] is more pronounced for the DIN sample in both directions, whereas for the dogbone sample the y-direction is more noticeable (Fig. 11). The latter exhibits more uniformly distributed and higher sensitivities in the history plot than its DIN counterpart. Increased sensitivities are present around the strain localization zone. For the DIN sample, throughout the sensitivity history, nonuniform distributions are observed. Moreover, a change in sensitivity values from negative to positive occurred at both ends (i.e., areas of increased stress concentration) of the DIN sample in both directions. For the hardening modulus K, the dogbone sample displays localized areas of increased positive sensitivities, whereas in the DIN sample they encompass almost the entire region of interest. However, around the reported strain band, the change from positive to negative sensitivities is observed in both xand y-directions, as is the case for the dogbone sample. Moreover, for the DIN sample, the sensitivity fields are similar in both directions. The same observation applies for the dogbone sample. However, the sensitivities are more pronounced in the y-direction. As was the case in the Hessian matrix analysis, the DIN sample overall exhibits more pronounced sensitivities. However, it is numerically easier to describe the dogbone sample response as the strain localization zone is known a priori. Therefore, the FE algorithm can accurately predict where localization will occur. Without prescribed experimentally measured displacements, the FE algorithm may not predict the strain localization zone for the DIN sample. When comparing the sensitivities for the hardening exponent n (Fig. 13), the fields for the DIN sample display more pronounced sensitivities. However, as previously displayed for the dogbone sample, the sensitivities are localized around the strain band location, whereas for the DIN sample most of the region of interest contains positive sensitivities. From the DIN sensitivity field and history, it is observed that the sensitivities are also localized around the detected strain band, near the gripped part of the sample. Figure14 displays the influence of individual parameter changes on the computed reaction forces. The force sensitivities are expressed as load [N] divided by parameter offset . Similar trends are observed for both samples. The sensitivity levels for the dogbone sample are slightly lower than for the DIN geometry. For both geometries, the Young's modulus E displays the highest sensitivity from all considered parameters; the highest levels are in elasticity. In plasticity, E displays reduced force sensitivities. As expected, the Poisson's ratio displays negligible influence on the force and displacement sensitivities. The yield stress leads to the second highest sensitivity. It is the only parameter that provides sensitivities of the same order of magnitude as E. Conversely, the hardening parameters display an order of magnitude lower sensitivities. When comparing E with the plastic parameters, it is observed that when E reaches the lowest sensitivity values the latter ones reach their maximum levels. 

Conclusions

An experimental and numerical comparison of the two considered configurations (i.e., DIN and dogbone) was performed to determine the sample geometry with highest parameter sensitivities in uniaxial tensile tests for the calibration of Ludwik's law parameters. The DIN sample contained two parallel edges in the gauge region, whereas the dogbone sample was thinned in the center with a radius of 75 mm. The main results of this work are:

• the DIN sample provided better condition number of the diagonalized Hessian matrix,

• the dogbone sample displayed higher sensitivity for the elastic parameters (i.e., Young's modulus E and Poisson's ratio ν), • similar sensitivities were reported for the yield stress σy, • higher sensitivity for the hardening modulus K was observed for the DIN sample, whereas for the hardening exponent n, higher sensitivity was observed for its counterpart, • the Dogbone sample exhibited increased sensitivity to parameter changes around the strain localization zone. Both samples exhibited advantages and drawbacks with respect to each other, especially in the identifiability of material parameters. However, due to the a priori known strain localization area, the dogbone sample is a more suitable choice since a smaller region of the sample can be monitored in more detail.

Last, it is worth noting that the present framework, which was applied to Ludwik's law up to the ultimate load, can be used to analyze different constitutive postulates as well as different geometries. The framework is generic and versatile provided the numerical simulations are able to capture the main experimental features of the considered experiment.

  geometries. (a) DIN and (b) dogbone samples with specific geometric characte ristics highlighted with red lines Two mechanical tests were carried out on a uniaxial testing machine (Messphysik Beta 50-5, Fig. 2(T)). The samples were subjected to uniaxial and monotonic tensile loadings under displacement control with a prescribed rate of 1 mm / min.
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 5 Fig. 5 Macroscopic engineering stress vs. Green Lagrange strain curves. The green circles denote the ultimate stresses where the numerical analyses were stopped

  Fig. 6 Finite element meshes used in the identification procedure for the DIN (a) and dogbone samples. The red lines depict areas where measured nodal displacements were defined as Dirichlet boundary conditions
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  logarithm of Hessian matrices [HUF] (first column) and corresponding diagonalized matrices (second column) for the DIN (a) and dogbone (b) geometries

  sensitivity fields for E in terms of x (first row) and y (second row) displacements expressed in pixel/ε. The sensitivity fields are displayed for the last analyzed image. A line of pixels is plotted for each analyzed image next to the sensitivity field

  sensitivity fields for ν in terms of x (first row) and y (second row) displacements expressed in pixel/ε. The sensitivity fields are displayed for the last analyzed image. A line of pixel values is plotted for each analyzed image next to the sensitivity field

  sensitivity fields for σY in terms of the x (first row) and y (second row) displacements expressed in pixel/ε. The sensitivity fields are displayed for the last analyzed image respectively. A line of pixel values is plotted for each analyzed image next to the sensitivity field

  sensitivity fields for K in terms of x (first row) and y (second row) displacements expressed in pixel/ε. The sensitivity fields are displayed for the last analyzed image. A line of pixels is plotted for each analyzed image next to the sensitivity field

  sensitivity fields for n in terms of x (first row) and y (second row) displacements expressed in pixel/ε. The sensitivity fields are displayed for the last analyzed image. A line of pixels is plotted for each analyzed image next to the sensitivity field
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 14 Fig. 14 Force sensitivities expressed in N/ for the DIN (left) and dogbone (right) geometries
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	. DIC analysis parameters			
	DIC software	Correli 3.0	
	Image filtering	None		
	Average element length	20 pixels	
	Shape functions	Linear (T3 elements)	
	Matching criterion	Penalized sum of squared differences
	Regularization length	Bulk 100 pixels	Edge 200 pixels
	Displacement noise floor	0.6 µm	DIN	Dogbone 0.7 µm
	Strain noise floor	2 × 10 -4	10 -4

Table 3

 3 Calibrated material parameters for the studied geometries

		E, GPa	σY, MPa	K, MPa	n, -	χtotal
	Initial	210	1200	700	0.2	-
	DIN	211	1060	980	0.18	41.3
	Dogbone	219	1150	920	0.19	33.3
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