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Abstract.  The accurate prediction of elastoplasticity under prescribed workloads is essential in the optimization of 
engineering structures. Mechanical experiments are carried out with the goal of obtaining reliable sets of material 
parameters for a chosen constitutive law via inverse identification. In this work, two sample geometries made of high 
strength steel plates were evaluated to determine the optimal configuration for the identification of Ludwik’s nonlinear 
isotropic hardening law. Finite element model updating (FEMU) was used to calibrate the material parameters. FEMU 
computes the parameter changes based on the Hessian matrix, and the sensitivity fields that report changes of computed 
fields with respect to material parameter changes. A sensitivity analysis was performed to determine the influence of 
the sample geometry on parameter identifiability. It was concluded that the sample with thinned gauge region with a 
large curvature radius provided more reliable material parameters. 
 

Keywords: sensitivity analysis; inverse identification; full-field measurements; HARDOX 450; sample 

geometry 

 
 
1. Introduction 
 

The development of advanced high strength materials requires optimization procedures of 

engineering structures and components. The optimization is carried using numerical tools, e.g., finite 

element (FE) simulations (Tisza, 2005). To run reliable numerical simulations, trustworthy material 

properties are needed. Therefore, mechanical tests are conducted to determine material parameters. 

Classical measuring devices (e.g., mechanical extensometer, load cells) provide only global data. 

The drawback of the latter ones is that local effects cannot be captured. The development of digital 

imaging and full-field measurement methods provide means to capture localized phenomena. Digital 

Image Correlation or DIC (Sutton et al., 2009) stands out nowadays as the most versatile and most 

widely used measurement technique in experimental mechanics. The application of DIC is 

straightforward as digital images are used as the source of information, i.e., capturing the motions 
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of monitored surfaces. Besnard et al. (2006) developed FE-based DIC where FE meshes were 

utilized to discretize the observed region of interest, and the output were measured nodal 

displacements. Such approach is powerful since experimental data and numerical simulations can 

be directly coupled in inverse identification schemes (Lecompte et al., 2007, Cooreman et al., 2008).  

Finite Element Model Updating or FEMU (Kavanagh and Clough, 1971) is a well-known 

identification procedure, which was considered in the present work. FEMU is an iterative scheme 

that minimizes the differences between experimentally measured and numerically computed 

quantities (Prates et al., 2016, Martins et al., 2018), e.g. measured and calculated displacement fields 

and measured load and calculated global reaction forces on the FE model. FEMU is one of the most 

versatile identification procedures as it can be employed for, say, uniaxial (Tomičević et al., 2016a) 

and biaxial (Tomičević et al., 2016b) tests. Furthermore, FEMU is not limited to macroscopic laws. 

Guery et al. (2016) used the same framework to calibrate crystal plasticity parameters of AISI 

316LN stainless steel. Compared to other inverse identification methods (e.g., Virtual Fields Method 

(Grediac and Pierron, 2006), Constitutive Equation Gap Method (Geymonat et al., 2002) and the 

Equilibrium Gap Method (Claire et al., 2004), FEMU was proven to provide the most accurate 

results in the presence of data corrupted with acquisition noise (Martins et al., 2018, Roux et al., 

2020). FEMU is a sensitivity-based identification method (Tarantola 1987), i.e., the influence of 

material parameter changes on observed quantities is evaluated. Therefore, FEMU was also used for 

sample optimization to tailor the geometry to activate specific material parameters. Bertin et al. 

(2016) used the aforementioned procedure to optimize the fillet radii of a cruciform specimen for 

biaxial testing. Furthermore, FEMU was then used to calibrate material parameters of the Hill-1948 

plasticity model with a single biaxial test (Bertin et al., 2017). 

The aim of this paper is to evaluate two distinct sample geometries used in tensile tests for 

parameter identification. The samples were made from high strength steel plates. The goal was to 

determine the best of the two geometries for calibrating Ludwik’s nonlinear isotropic hardening law. 

FEMU was deemed a suitable choice for the sensitivity analysis. Using FEMU, sensitivity fields 

(Neggers et al., 2017, Ahmed et al., 2019, Prates et al., 2019) and the Hessian matrices (Bertin et 

al., 2016) were extracted to evaluate the parameter sensitivity with respect to the sample geometry.  

 

2. Experimental investigation 
 

Within this research, the experimental investigation was carried out on 2 mm thick samples made 

of HARDOX 450 steel. Two distinct sample geometries were considered for the mechanical tests. 

The DIN sample (Fig. 1(a)) was designed with two parallel edges located in the entire gauge region. 

Near the ends, the sample was widened to ensure larger gripping surfaces and to disable any sample 

slip. Furthermore, the design induced two regions with increased stress concentrations. The second 

dogbone sample (Fig. 1(b)) was thinned in the center of the gauge area with a radius of 75 mm, thus 

ensuring a unique region where strain localization may occur.  

 



  
(a)  (b)  

Fig. 1 Considered geometries. (a) DIN and (b) dogbone samples with specific geometric characte

ristics highlighted with red lines 

 

Two mechanical tests were carried out on a uniaxial testing machine (Messphysik Beta 50-5, 

Fig. 2(T)). The samples were subjected to uniaxial and monotonic tensile loadings under 

displacement control with a prescribed rate of 1 mm / min.  

 

 
Fig. 2 Experimental setup consisting of two light sources and a single digital camera. See text for the 

description of the labels 

 

The surfaces of the samples were monitored by a single CCD Dalsa Falcon camera (Fig. 2(C)) with 

a definition of 2358 × 1728 pixels and an image acquisition rate of 1 fps. Two light sources (Fig. 2(L)) 

were used to ensure uniform sample illumination. The hardware parameters of the optical setup are 

listed in Table 1. 



Table 1. Hardware parameters of the optical setup 

Camera Dalsa Falcon 4M60 

Definition 2358 × 1728 pixels (B/W images) 

Color filter None 

Digitization 8 bits 

Lens Titanar 50 mm 

Aperture f/2.8 

Field of view 44.4 cm2 

Stand-off distance 30 cm 

Image acquisition rate 1 fps 

Patterning technique B/W paints 

Pattern feature size 15 px 

 

2.1 Full-field measurement results 
 
For this study, Finite element (FE) based DIC was employed to measure displacement fields on 

the observed Region of Interest (ROI). The correlation framework Correli 3.0. (Leclerc et al., 2015) 

was used. The ROI was discretized with 3-noded triangular (T3) elements (Fig. 3). Furthermore, 

mechanical regularization (Tomičević et al., 2013) was implemented within the algorithm. The full 

analysis parameters are reported in Table 2.  

Before each experiment, 10 images were acquired in the unloaded state to obtain the noise floor 

estimates by calculating the standard deviations of the nodal displacements and strains. For the DIN 

sample, the displacement noise floor was slightly lower than for the dogbone sample. On the other 

hand, the strain noise floor was lower for the dogbone sample. However, both displacement and 

strain noise floors were of the same order of magnitude. 

 

  
(a)  (b)  

Fig. 3 Three noded finite element meshes used in the DIC procedure for (a) DIN and (b) dogbo

ne sample 

 

 

 



Table 2. DIC analysis parameters 

DIC software Correli 3.0 

Image filtering None 

Average element length 20 pixels 

Shape functions Linear (T3 elements) 

Matching criterion Penalized sum of squared differences 

Regularization length 
Bulk Edge 

100 pixels 200 pixels 

Displacement noise floor  
DIN Dogbone 

0.6 µm 0.7 µm 

Strain noise floor 2 × 10-4 10-4 

 

The analysis of the calculated Green-Lagrange strain fields revealed two strained bands forming 

an X. A single dominant band developed fully until failure for both cases (Fig. 4). Strain localization 

occurred in different regions. For the DIN sample, the strains localized on the left side near the 

widening area close to the grips. For the dogbone sample, strain localization developed in the 

ligament, as expected from its geometry. A first advantage of dogbone samples is that they allow for 

a direct control of the location of the strained zone. With the DIN sample, localization may occur 

near each end of the sample. Therefore, to monitor both possible concentration zones, a larger ROI 

needs to be considered. Conversely, since for the dogbone sample the location is known in advance, 

the optical setup can be put closer to the sample to capture strain localization in greater details. 

Moreover, multi-scale DIC (Passieux et al., 2015) can also be employed since the strained band 

location is known a priori.  

 

  
(a)  (b)  

Fig. 4 Major principal strain fields for the last image captured before fracture for the DIN (a) 

and dogbone (b) samples. The white boxes denote the virtual strain gauge used to calcula

te average strain levels 

 

The macroscopic stress-strain curves of both experiments are reported in Fig. 5. The engineering 

stress was calculated by dividing the measured force by the initial cross-sectional area. The Green-

Lagrange strain levels were obtained by using virtual strain gauges (Fig. 4) positioned over the 

captured strain localization zones. In the virtual gauge, the nodal strains within the gauge were 



averaged for each temporal registration.  

 
Fig. 5 Macroscopic engineering stress vs. Green Lagrange strain curves. The green circles denote the 

ultimate stresses where the numerical analyses were stopped 

 

The dogbone sample displayed slightly prolonged elasticity (i.e., higher yield stress) than the DIN 

sample. However, for the DIN sample, 2% larger strains at failure were achieved (the dogbone 

sample fractured earlier due to increased strains in the localization band (Nam Do et al., 2015)). 

Moreover, a higher ultimate tensile strength was reached with the dogbone sample. Beyond the stress 

peak, material softening was very similar in both tests, which is confirmed by the strain field patterns 

shown in Fig. 4. 

 

3. Finite element model updating 

 

The goal of FEMU is to iteratively minimize differences between experimentally measured and 

numerically calculated quantities. The minimization framework iteratively updates the desired 

material parameters by calculating Hessian matrices that are based on sensitivity fields (Tarantola, 

1987). In the present analyses, measured and calculated displacement fields were considered, as well 

as measured forces and global reaction forces extracted from the FE model. The employed FE 

meshes (Fig. 5) were prepared for the identification scheme by prescribing measured nodal 

displacements as Dirichlet boundary conditions on the stressed edges of the model (outlined by red 

lines in Fig. 6).  

 

 

 



  
(a)  (b)  

Fig. 6 Finite element meshes used in the identification procedure for the DIN (a) and dogbone  

samples. The red lines depict areas where measured nodal displacements were defined as 

Dirichlet boundary conditions 

 

The FEMU mesh was constructed from the DIC mesh. The T3 mesh was converted into four-

noded quadrilateral elements (Q4). Lindner et al. (2015) reported that 3D meshes were necessary to 

accurately evaluate stress states in plasticity. Therefore, the Q4 mesh was extruded to obtain a 3D 

mesh made of C3D8R elements with reduced integration. 

In the minimization procedure, the cost function considering measured displacements is 

formulated as the weighted squared difference between the measured um and calculated uc nodal 

displacements 
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where {p} is the vector column gathering all the sought material parameters, [Cu] the covariance 

matrix equal to 2𝛾𝑓
2[M]-1, [M] the global DIC matrix (Hild and Roux, 2012), 𝛾𝑓

2 the variance of 

Gaussian white noise associated with image acquisition, and Nu the number of kinematic degrees of 

freedom (Mathieu et al., 2015). 

The cost function considering measured load and extracted reaction forces from the stressed 

edges of the FE mesh are expressed as 
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where γF is the standard uncertainty of the load cell, and NF the number of load data. 

By introducing a weight ω, the two previous cost functions are combined as 

 2 2 2
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For the present study, ω was set to 0.5 to provide equal weight to kinematic and static data. 

The minimization of the kinematic cost function was carried out thanks to the evaluation of 

kinematic sensitivity fields. The computed displacement vector, for any iteration i, is Taylor 

expanded as 
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where {∂p} is the increment to the sought parameters, and from Eq. (4), the displacement sensitivity 

matrix becomes 
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The displacement sensitivity matrix accounts for changes in displacement fields due to a small 

variation of each sought material parameter, and is updated for each iteration. The parameter 

increment is then expressed as a function of the sensitivity matrix 
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where [Hu
(i-1)] is the Hessian matrix expressed as a function of the sensitivity matrix 
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The parameter increment considering only measured loads and computed global reaction forces 

reads 
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where [SF] denotes the force sensitivity matrix. The Hessian matrix considering force data is 

expressed as 

     F 2
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For the proposed FEMU-UF (Mathieu et al., 2015, Tomičević et al., 2016) approach, the global 

Hessian matrix [HUF] then becomes the sum of the kinematic and static Hessian matrices 

     .= +
UF U F

H H H                              (10) 

In the following, the total Hessian matrix [HUF], displacement and force sensitivity fields are 

evaluated and compared for both considered sample geometries. 

 
3.1 Identification results 
 

The identification procedure was carried out for both samples independently. The FE analyses 

were carried out until the ultimate strength was reached, i.e., before strain softening. For the DIN 

sample, the analyses were performed until the strain levels reached 4% (i.e., time step 435) and for 

the dogbone geometry up to 3.2% (i.e., time step 220), see Fig. 5. In the FE simulations, plasticity 



was described with Ludwik’s isotropic hardening law (Ludwik, 1909) 

eq y pl ,
nK   −= +                                  (11) 

where σeq corresponds to von Mises’ equivalent stress, and εpl the cumulated plastic strain. The 

sought material parameters were the Young’s modulus E, yield stress σy, hardening modulus K and 

hardening exponent n. The Poisson’s ratio was not calibrated and was kept constant at 0.3 since it 

was difficult to calibrate (Tomičević et al., 2016a). However, the sensitivity of the latter to sample 

geometry was evaluated. 

For both samples, the initial parameters were identical. After the FEMU-UF procedure was run, 

it was observed that the sample geometry led to significant differences in calibrated parameters 

(Table 3). For both samples, the Young’s modulus increased; for the dogbone geometry the value 

increased more. Moreover, for the latter, the calibrated values of the yield stress σy and hardening 

exponent n were higher than for the DIN sample. For both samples, the hardening modulus K 

increased; for the DIN sample it increased more. Lower identification residuals were achieved for 

the dogbone sample. 

 
Table 3 Calibrated material parameters for the studied geometries 

 E, GPa σY, MPa K, MPa n, - χtotal 

Initial 210 1200 700 0.2 -  

DIN 211 1060 980 0.18 41.3 

Dogbone 219 1150 920 0.19 33.3 

 

The identification procedure led to parameters that provided a good description of the nonlinear 

behavior for both samples. In Fig. 7, the global reaction forces are displayed for the initial and 

calibrated material parameters. For the DIN sample, the onset of plasticity was not described as 

accurately, which led to increased global FEMU-UF residuals (i.e., χtotal). Conversely, for the 

dogbone geometry lower deviations from the Reference curve were observed for the reaction force 

with the calibrated parameters. 

 

  
(a)  (b)  

Fig. 7 Comparison of measured load (Reference) and reaction forces extracted from the FE model for the 

initial and calibrated elastoplastic parameters via FEMU-UF. (a) DIN and (b) dogbone samples 

 



4. Sensitivity analysis 
 

The parameter sensitivity for the two considered sample geometries (i.e., DIN and dogbone) was 

evaluated with the Hessian matrices calculated within FEMU framework. The Hessian matrix is of 

size n × n, where n corresponds to the number of sought parameters. Furthermore, the Hessian 

matrix gathers displacement and force sensitivities to parameter changes. The diagonal terms in the 

Hessian matrices describe the parameter sensitivities when considered independently, whereas the 

off-diagonal terms report on correlative influences of parameters. The evaluation of the Hessian 

matrix was performed prior to the identification procedure to determine the optimal strategy for 

material parameter calibration. 

The Hessian matrices are shown in Fig. 8. For the DIN sample, twice as much images were 

captured and analyzed (i.e., 435 images) compared to the dogbone sample (i.e., 220 images). 

Therefore, a first order approximation was carried out on the DIN Hessian so it could be compared 

to the dogbone Hessian. First, all members of the DIN Hessian matrix were divided by the number 

of images (i.e., 435) and then multiplied by the number of images captured for the dogbone sample. 

 

  
(a) 

  
(b) 

Fig. 8 Decimal logarithm of Hessian matrices [HUF] (first column) and corresponding 

diagonalized matrices (second column) for the DIN (a) and dogbone (b) geometries 

 

It is observed that for the Young’s E, the highest sensitivity is achieved by the dogbone geometry. 

This result also applies for the Poisson’s ratio ν and hardening exponent n. The correlative influences 

between E and other parameters are slightly higher for the DIN sample. Furthermore, for the 

Poisson’s ratio, the dogbone sample provided the highest sensitivity. This property can also be stated 

for the correlative influences, which are higher than for the DIN sample. The yield stress σy 



sensitivity is similar for both geometries, although it is slightly higher for the DIN sample. Opposite 

trends are observed for the correlative influences between σy and E. For the DIN sample, they are 

correlated, whereas for the dogbone sample they are anti-correlated. The hardening parameter K 

exhibits greater sensitivity for the DIN sample than for its counterpart. However, the correlative 

influences of other parameters on K also need to be considered, which are on average higher for the 

dogbone sample. For the latter, the sensitivity of the hardening exponent n is seven times higher than 

for the DIN sample, thus rendering it easier to calibrate.  

Last, the conditioning of the two matrices was estimated from the spectrum of eigen values 

(Fig. 8). For the DIN sample, the condition number was equal to 3, whereas for the dogbone it was 

4. The condition number is preferred to be as small as possible thus indicating that the eigen values 

for all parameters are similar, and therefore easier to calibrate. In this case, the DIN sample provides 

the smallest condition number and all eigen values are greater than 1. On the other hand, for the 

dogbone sample, the lowest eigenvalue expressed in decimal logarithm is below 1. Furthermore, the 

largest eigenvalue was found for the dogbone sample. Moreover, the first two eigenvalues are much 

higher for the dogbone sample than for the DIN sample. From the presented data, it is observed that 

the dogbone sample provides the highest sensitivities (as observed from the Hessian and its eigen 

values). Yet, with the aforementioned sample, the lowest eigenvalue is also achieved, which is a 

drawback. 

Figures 9-13 display the displacement sensitivity fields [Su] for each considered material 

parameter and for each sample geometry. A parameter offset  =  was considered. Each figure is 

composed of two subfigures, which are divided into four sensitivity fields. Each figure is also 

divided into two rows, where the first one displays sensitivities with respect to the x-axis, and the 

second to the y-axis. On each sensitivity field, a vertical dashed line is depicted, which corresponds 

to the column of pixels used to create the sensitivity history with respect to analyzed images (i.e., 

subfigures next to sensitivity fields). The positive x-axis is oriented to the right, whereas the positive 

y-axis is oriented toward the top of the page. For most parameters, the sensitivities in elasticity are 

small in comparison to plasticity. To calibrate the Young’s modulus, elasticity is sufficient.  

The Young’s modulus sensitivity fields for both samples are different in terms of distribution 

(Fig. 9). For the dogbone sample, increased sensitivities occur around the strain localization zone 

(i.e., in plasticity). For the DIN sample, increased sensitivities occur in the center of the specimen, 

away from the localization zones. In the x-direction, the dogbone geometry displays more 

heterogeneous sensitivities. For the y-direction, the DIN sample also displays heterogeneous 

distributions. Yet, it is more uniform through the loading history for the dogbone sample. The 

dogbone sensitivity fields are more pronounced than for the for DIN sample. 



  

  
(a)  (b)  

Fig. 9 Displacement sensitivity fields for E in terms of x (first row) and y (second row) displacements 

expressed in pixel/ε. The sensitivity fields are displayed for the last analyzed image. A line of pixels 

is plotted for each analyzed image next to the sensitivity field 

 

The Poisson’s ratio displacement sensitivity fields [Su] in the x-direction are similar for both 

geometries (Fig. 10). From the sensitivity history plot, it is observed that for the dogbone sample the 

sensitivity levels are slightly higher. For the y-direction, the sensitivities are smaller, thereby 

indicating, as expected, lower sensitivities in the loading direction. The Poisson’s ratio sensitivities 

are the lowest compared to the other parameters. 

 



  

  
(a)  (b)  

Fig. 10 Displacement sensitivity fields for ν in terms of x (first row) and y (second row) displacements 

expressed in pixel/ε. The sensitivity fields are displayed for the last analyzed image. A line of pixel 

values is plotted for each analyzed image next to the sensitivity field 

 

The yield stress displacement sensitivity [Su] is more pronounced for the DIN sample in both 

directions, whereas for the dogbone sample the y-direction is more noticeable (Fig. 11). The latter 

exhibits more uniformly distributed and higher sensitivities in the history plot than its DIN 

counterpart. Increased sensitivities are present around the strain localization zone. For the DIN 

sample, throughout the sensitivity history, nonuniform distributions are observed. Moreover, a 

change in sensitivity values from negative to positive occurred at both ends (i.e., areas of increased 

stress concentration) of the DIN sample in both directions. 



  

  
(a)  (b)  

Fig. 11 Displacement sensitivity fields for σY in terms of the x (first row) and y (second row) displacements 

expressed in pixel/ε. The sensitivity fields are displayed for the last analyzed image respectively. A 

line of pixel values is plotted for each analyzed image next to the sensitivity field 

 

For the hardening modulus K, the dogbone sample displays localized areas of increased positive 

sensitivities, whereas in the DIN sample they encompass almost the entire region of interest. 

However, around the reported strain band, the change from positive to negative sensitivities is 

observed in both x- and y-directions, as is the case for the dogbone sample. Moreover, for the DIN 

sample, the sensitivity fields are similar in both directions. The same observation applies for the 

dogbone sample. However, the sensitivities are more pronounced in the y-direction. As was the case 

in the Hessian matrix analysis, the DIN sample overall exhibits more pronounced sensitivities. 

However, it is numerically easier to describe the dogbone sample response as the strain localization 

zone is known a priori. Therefore, the FE algorithm can accurately predict where localization will 

occur. Without prescribed experimentally measured displacements, the FE algorithm may not 

predict the strain localization zone for the DIN sample. 



  

  
(a)  (b)  

Fig. 12 Displacement sensitivity fields for K in terms of x (first row) and y (second row) displacements 

expressed in pixel/ε. The sensitivity fields are displayed for the last analyzed image. A line of pixels 

is plotted for each analyzed image next to the sensitivity field 

 

When comparing the sensitivities for the hardening exponent n (Fig. 13), the fields for the DIN 

sample display more pronounced sensitivities. However, as previously displayed for the dogbone 

sample, the sensitivities are localized around the strain band location, whereas for the DIN sample 

most of the region of interest contains positive sensitivities. From the DIN sensitivity field and 

history, it is observed that the sensitivities are also localized around the detected strain band, near 

the gripped part of the sample.  

 



  

  
(a)  (b)  

Fig. 13 Displacement sensitivity fields for n in terms of x (first row) and y (second row) displacements 

expressed in pixel/ε. The sensitivity fields are displayed for the last analyzed image. A line of pixels 

is plotted for each analyzed image next to the sensitivity field 

 

Figure14 displays the influence of individual parameter changes on the computed reaction forces. 

The force sensitivities are expressed as load [N] divided by parameter offset . Similar trends are 

observed for both samples. The sensitivity levels for the dogbone sample are slightly lower than for 

the DIN geometry. For both geometries, the Young’s modulus E displays the highest sensitivity from 

all considered parameters; the highest levels are in elasticity. In plasticity, E displays reduced force 

sensitivities. As expected, the Poisson’s ratio displays negligible influence on the force and 

displacement sensitivities. The yield stress leads to the second highest sensitivity. It is the only 

parameter that provides sensitivities of the same order of magnitude as E. Conversely, the hardening 

parameters display an order of magnitude lower sensitivities. When comparing E with the plastic 

parameters, it is observed that when E reaches the lowest sensitivity values the latter ones reach their 

maximum levels. 



 
Fig. 14 Force sensitivities expressed in N/ for the DIN (left) and dogbone (right) geometries 

 

5. Conclusions 
 

An experimental and numerical comparison of the two considered configurations (i.e., DIN and 

dogbone) was performed to determine the sample geometry with highest parameter sensitivities in 

uniaxial tensile tests for the calibration of Ludwik’s law parameters. The DIN sample contained two 

parallel edges in the gauge region, whereas the dogbone sample was thinned in the center with a 

radius of 75 mm. The main results of this work are: 

• the DIN sample provided better condition number of the diagonalized Hessian matrix, 

• the dogbone sample displayed higher sensitivity for the elastic parameters (i.e., Young’s 

modulus E and Poisson’s ratio ν), 

• similar sensitivities were reported for the yield stress σy, 

• higher sensitivity for the hardening modulus K was observed for the DIN sample, whereas 

for the hardening exponent n, higher sensitivity was observed for its counterpart, 

• the Dogbone sample exhibited increased sensitivity to parameter changes around the strain 

localization zone. 

Both samples exhibited advantages and drawbacks with respect to each other, especially in the 

identifiability of material parameters. However, due to the a priori known strain localization area, 

the dogbone sample is a more suitable choice since a smaller region of the sample can be monitored 

in more detail. 

 Last, it is worth noting that the present framework, which was applied to Ludwik’s law up 

to the ultimate load, can be used to analyze different constitutive postulates as well as different 

geometries. The framework is generic and versatile provided the numerical simulations are able to 

capture the main experimental features of the considered experiment. 
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