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Abstract— This paper describes the study of an integrated 

system for the detection of the B-C-X characteristic points of 

impedance cardiography (ICG) signals, to evaluate the stroke 

volume of a patient. It compares a discrete-time digital approach 

and a continuous-time digital architecture, using a level-crossing 

Analog-to-Digital Conversion (LC-ADC).  The results show that 

the measurement accuracy of the stroke volume, with a relative 

error between 9% and 13%, is sufficient for practical use and 

opens the opportunity for future fully integrated circuit solutions. 

This study also points out that, unlike ECG, the continuous-time 

digital approach does not bring any improvements for ICG-based 

systems.  

Keywords—ICG, Stroke Volume, wearable, biosignal 

monitoring 

I. INTRODUCTION 

Impedance cardiography (ICG) is a common method for 
estimation and monitoring of multiple hemodynamic features 
including the Stroke Volume (SV) [1], [2], [3]. ICG combined 
with electrocardiography (ECG) shows opportunities for cost-
effective cardiac monitoring [4], [5]. SV monitoring 
applications are numerous, and studies exhibit the interest in 
wearable low-power solutions for cardiac monitoring [6],[7]. 
The study of literature and commercial solutions show that there 

is no low-power and low-complexity  wearable integrated circuit 
alternative for ICG SV monitoring, the closest implementations 
to wearable devices use discrete components such as Raspberry 
PI 3 [8] or are more portable than wearable [9] or consists in 
wearable ICG sensing with processing of SV done by computer 
[10]. The objective of this paper is to study the feasibility and 
accuracy of a low-complexity integrated low-power solution for 
SV wearable monitoring using ICG signal for further integrated 
circuit implementation. Two solution schemes for the detection 
of the ICG characteristic points and the extraction of 
hemodynamic features are studied in the Discrete-Time (DT) 
and Continuous-Time (CT) digital domains. The comparison 
between the two propositions is highlighted as a trade-off 
between accuracy and power consumption. 

We will first introduce and define the characteristics of ICG 
signals and the hemodynamic features that can be extracted, 
including SV. Then, in Section III, the two system architectures 
in DT and CT digital domains will be described. Finally, Section 
IV will present the simulation method and the obtained results, 
followed by their interpretation. 
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Fig.1. Overview of an ICG system for hemodynamic monitoring with two architectureproposals 

 for B-C-X points detection and features extraction in DT and CT digital domains. 

 



II. STROKE VOLUME, HEMODYNAMIC FEATURES, AND ICG 

CHARACTERISTIC POINTS 

A. ICG and characteristic points 

ICG is a non-invasive method of assessment of heart 
operation. Typically, it measures the impedance variation on 
the body caused by changes in blood volume by applying a 20-
100 kHz AC current of low intensity between two electrodes, 
as shown in Fig. 1. The resulting voltage is sensed with another 
pair of electrodes. ICG is often combined with other 
measurements such as electrocardiography (ECG) or 
photoplethysmography (PPG) [11]. 

The acquired ICG signal Z is not used directly. Most of the 
ICG applications rely on the derivative 𝑑𝑍 𝑑𝑇⁄ , because it is 
directly linked to the variation of blood volume and contains 
characteristic points representing different steps of the cardiac 
activity. There are typically 5 ICG 𝑠ignal characteristics points 
extracted per heartbeat from 𝑑𝑍 𝑑𝑇⁄  [1], as illustrated in Fig. 2. 

Point A is related to the contraction of the atria. Point B is 
associated with the aortic valve opening and can be defined as 
the  𝑑𝑍 𝑑𝑇⁄  zero-crossing before maximum. Point C is the 
ventricular contraction and defined as (𝑑𝑍 𝑑𝑇⁄ )𝑚𝑎𝑥 . Point X 
relates to the closure of the aortic valve with ventricular 
contraction and is defined as (𝑑𝑍 𝑑𝑇⁄ )𝑚𝑖𝑛. Finally, point O is 
the opening of the mitral valve. 

B. Stroke Volume definition and Hemodynamic features 

The stroke volume is the volume ejected by the heart during 
each beat and is considered as one of the main hemodynamic 
parameters. Stroke volume typical values stand between 70 mL 
and 150 mL. There are numerous definitions of the SV 
calculation, but the most common formula is the one established 
by Kubicek [1] [3]. It depends on the B, C, and X points values 
and timings and a few constants: 

 𝑆𝑉 = 𝑝 (
𝐿

𝑍0
)

2
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 p is the blood resistivity, assumed constant for SV 
calculation. The typical value is 135 Ω.cm. L is the length of 

the conductor (distance between electrodes) and is 
approximated as 17% of the patient’s height. Zo is the mean 
basal impedance and is typically the transthoracic quasi-static 
base impedance (20-50 Ω). LVET is the Left Ventricular 

Ejection Time (time between B and X points). (𝑑𝑍 𝑑𝑇⁄ )𝑚𝑎𝑥 is 
equal to the point C value. According to Bernstein’s data [3], 

mean values of L, Zo, LVET, and (𝑑𝑍 𝑑𝑇⁄ )𝑚𝑎𝑥 are respectively 
29.07 cm, 22.7 Ω, 0.26 s, and 0.661 Ω.s-1. By removing the 
constant components, a simplified SV formula is obtained: 

 𝑆𝑉 = 𝐿𝑉𝐸𝑇. (
𝑑𝑍

𝑑𝑇
)𝑚𝑎𝑥  (2) ;    𝑆𝑉 = (𝐵 − 𝑋)𝑡𝑖𝑚𝑒 .𝐶𝑣𝑎𝑙𝑢𝑒  (3)    

SV calculation allows the calculation of derived 

hemodynamic parameters such as the Cardiac Output (CO) and 
the Cardiac Index (CI), provided the heart rate is extracted by 
ECG or ICG and that the body surface area is constant for a 
given patient. The ICG B, C, and X characteristics points have 
been manually detected for each record. The corresponding 
time value, the B-X interval value, the C point amplitude, and 

the calculated SV are used as our reference data. 

 
Fig.3. Discrete Time architecture B-C-X and Hemodynamic features detection. 

 

Fig.4. Behavior of the architecture showing the detection of point B, the timer output, 

and the detection of new minimums to achieve SV calculation. 

 

 

Fig.2. ICG signals dZ, dZ dT⁄  with its characteristic points and a 

related ECG beat from [1]. 
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Considering the simplified SV formula (3), our study will focus 
only on the detection of the ICG B, C, and X characteristic 

points. 

C. Database  

The study uses a database acquired by Andrei Krivošei at 
TalTech, Tallinn, Estonia. This database contains 56 ICG 
records measured from the wrist and sampled at 200 Hz with a 
16-bits resolution, some are annotated with arrhythmia or 

motion artifacts. The duration of the records varies from 20 
seconds to a few minutes. This database is advantageous 
because the ICG signal is sensed at the wrist, making it easier 
to envision a wearable wrist-worn system. 

III. ARCHITECTURES FOR POINTS DETECTION AND STROKE 

VOLUME EXTRACTION  

A. ICG measurement system architecture proposal 

For ICG impedance signal sensing, a low-intensity 20-
100 kHz AC current is generated by a current generator and 
applied between two electrodes on the body. This current is 
sensed through another pair of electrodes to measure the 
impedance Z, as shown in Fig. 1. The Analog Front-End (AFE) 
amplifies and mixes down the sensed Z signal before filtering. 
Filtering removes parasitics, motion artifacts, and non-ICG-
related frequencies. A differentiator generates the 
𝑑𝑍 𝑑𝑇⁄  signal. This signal is then converted into the digital 
domain using either a Nyquist-based ADC in the DT reference 
architecture or a Level-Crossing ADC (LC-ADC) in the CT 
reference architecture. 

After analog-to-digital conversion, a fully digital system, 
that is similar in both DT and CT cases, will detect the ICG B, 
C, and X points and extract hemodynamic features such as SV. 
The main difference between the DT and CT digital 
architectures lies in the presence of a clock in the DT case, while 
the CT case is an event-driven version of the digital 
computations. This study will focus on the digital part of the ICG 
system, to prove that a simple and low-power digital 
implementation can achieve a sufficient SV measurement 
accuracy leading to the opportunity of a SoC design. Also, we 
want to determine if event-driven CT is advantageous or not in 
the case of ICG. This is motivated by the fact that this signal 
processing scheme is very beneficial for processing signals that 
are sparse in time, such as ECG signals [12]. 

B. Discrete-Time Architecture 

This part describes the B-C-X detection and Hemodynamic 
Features blocks in Fig. 2. The system of Fig. 3 takes as input the 
ADC output data to detect the ICG B-C-X characteristic points 
and to process the LVET time and C value to achieve SV 
calculation. 

Considering that we focus on the estimation of SV, and 
according to Equation (3), the system needs to detect and 
measure the E amplitude value and the time interval between 
points B and X, also named LVET time. 

 
Fig.5. Improvement of the architecture of Fig. 3, to consider non-ideal signal shapes. 

 

Fig.6. Behavior of the architecture showing the detection of point B, the timer 

output, the zero and upper thresholds and the detection of new minimums to achieve 

SV calculation.  
 

 

Fig.7. Continuous Time architecture of blocks B-E-X detection and  

Hemodynamic features from Fig. 2. 

 

 



Fig. 3 shows the block-level schematic and Fig. 4 details its 
behavior. The B point is detected using a rising-edge zero-
crossing detector that activates the detection of E and X points 
and starts a timer. Point E is detected as the maximum. Each new 

𝑑𝑍 𝑑𝑇⁄  sample is compared to the previous sample to verify if it 
is a new maximum or not. If the condition is satisfied, then the 
value of point E is stored in a dedicated register. The detection 

of the X point is similar but defined as a minimum detection. 
When the X point is detected, the timer output is stored and 
represents the actual B-X time interval. When a new B point is 
detected, the SV value is calculated as the multiplication of the 

B-X time by the point E value and the system is reset. 

Since ICG signal waveforms are not always consistent and 

vary largely between individuals, there are particular signal 
shapes that corrupt the calculated SV value. For instance, there 
can be multiple zero-crossing points happening between two 
annotated B points and being detected as a new B point. Also, 

the minimum value of 𝑑𝑍 𝑑𝑇⁄   (X point) is not necessarily the 
first minimum inflexion point after E point and can be preceded 
by a local maximum. 

To work with real ICG data, the proposed architecture of Fig. 
3 is modified, as shown in Fig. 5, to include additional circuitry 
to deal with the mentioned particularities. Its behavior is 

described in Fig. 6 and summarized here. In a first step 1, the B 
point is detected as a rising-edge zero-crossing and Timer 0 is 
started. Next, the detected B point is considered correct if the 
signal crosses an upper-level threshold, Timer 0 stops and 
Timer 1 starts with an initial loaded value corresponding to the 
output of Timer 0. This process avoids the detection of false B 

points, as it can be seen in example of Fig. 6. The third step 
consists of detecting E and X points, respectively as maximum 
and minimum, like in Fig 3. When a new minimum is detected, 
the output value of Timer 1 is stored in a dedicated register. 
Finally, when a new B point is validated, the SV value is 
computed, and the system is reset. 

C. Event-driven Continuous Time Architecture 

To quantify the benefits of the event-driven continuous-time 
digital architecture, Table I shows the number of generated 
samples using an LC-ADC applied on an oversampled ICG 
signal. The power consumption of the feature extraction circuits 
is proportional to the number of samples. This Table shows that 
a 7-bit LC-ADC generates an equivalent number of samples 
compared to a 200 Hz DT processing, while a 5-bit LC-ADC 
corresponds to an 80 Hz DT system. In addition, study of the 
power-efficiency of LC-ADC on biosignals such as ECG [12] 
highlights that for low resolution (<8-bit) applications, an LC-
ADC is more power-efficient than a SAR-ADC. Thus, an event-
driven CT system could decrease consumption at system-level 
(decreased consumption for the ADC) as well as a reduction of 
the number of operations because the number of samples is 
reduced. These two considerations should be beneficial for ICG-
based integrated feature extraction. 

 Fig. 7 presents the architecture of the event-driven CT 
system. It is very similar to the DT architecture, except that the 
output of the LC-ADC is now asynchronous and that the E and 
X detection registers are using the changes in the LC-ADC 
output as an asynchronous clock. The measurement of SV is 

dependent on B-X time interval. For simplicity and comparison, 
clocked timers are still used for this purpose, thus the detailed 
system is partly asynchronous (clockless) and partly clocked for 
the timers. It is to note that clockless time measurement schemes 
can replace the traditional clocked timers to realize a totally 
clockless architecture [13].  

IV. SIMULATION AND RESULTS 

After the text edit has been completed, the paper is ready for 
the template. Duplicate the template file by using the Save As 
command, and use the naming convention prescribed by your 
conference for the name of your paper. In this newly created file, 
highlight all of the contents and import your prepared text file. 
You are now ready to style your paper; use the scroll down 
window on the left of the MS Word Formatting toolbar. 

A. SV accuracy and comparison parameters 

The Discrete Time and Continuous Time architecture 
presented in the previous section have been modelled in Matlab 
Simulink. The simulations have been done on 13 records, one 

of them marked with arrhythmia, for a total of 312 heartbeats. 
Stroke Volume is computed on both architectures, associated 

with the corresponding median and standard deviation. The 
measured Stroke Volume is normalized to its reference value: 

𝑆𝑉𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑆𝑉𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑆𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 

The median represents the value where the measurement 
values tend to be centered, knowing that the difference between 

the reference and the median can be compensated by system 
calibration. The standard deviation is thus the main parameter 
for the system measurement accuracy. It shows the 
measurement deviation from the reference and thus the error 
probability. The results are shown in Table II. 

B. Discrete Time Results Interpretation 

The results from Table II show different trends for the 
Discrete Time architecture: 

TABLE I.  NUMBER OF ICG SAMPLES GENERATED BY LC-ADC 

LC-ADC bits 7 6 5 

Generated 
samples/min 

11 184 7206 4894 

Equivalent 
sampling 
frequency 

200 Hz 120 Hz 80 Hz 

TABLE II.  NORMALIZED STROKE VOLUME SIMULATION RESULTS 

 DT 200 Hz DT 120 Hz DT 80 Hz CT 
 

 median std median std median std median std 
 

16-

bits 
0.9904 0.0909 0.9817 0.0919 0.9680 0.1248 - - 

 

8-

bits 
0.9756 0.0998 0.9727 0.1018 0.9602 0.1156 0.9789 0.1018 

 

7-

bits 
0.9642 0.1053 0.9616 0.1053 0.9542 0.1061 0.9681 0.1133 

 

6-

bits 
0.9463 0.1026 0.9436 0.1020 0.9381 0.1075 0.9482 0.1166 

 

5-

bits 
0.9138 0.1167 0.9116 0.1161 0.9054 0.1194 0.9199 0.1879 

 

 

 

 



- The precision decreases with the frequency for 
resolutions superior to 8 bits. 

- For resolutions lower than 7 bits (6-5 bits), decreasing 
the frequency does not affect the precision. This is due 
to the fact that the quantification impact is higher than 
sampling error. 

- Reducing the number of bits tends to have lower 
median SV value, because the C point error values 
itself tends to be reduced proportionally to the 
quantification error. 

- The standard deviation varies from 9% to 13%. 

 The results obtained in Discrete Time show that it is 

possible to obtain SV measurement with an error inferior to 
13%. using a simple system with a reduced resolution and 
sampling frequency. The measurement results for Discrete 
Time are detailed in TABLE III. 

 
B point timing error depends only on the sampling frequency. 

Its median value is equal to half the sampling period. Timing 
error is positive because the detection method for B point makes 
that it cannot be detected in advance. C point measured 
amplitude is reduced by an error of 1 LSB. We can also observe 
that the error increases when we decrease the sampling 
frequency whereas at 5bits the sampling frequency has no more 

effect. The median value of the normalized measured Stroke 
Volume is closer to the reference when sampling frequency is 
lower. Practically it is undermined by an increased standard 
deviation. 

C. Continuous Time Results Interpretation 

The results from Table II shows different trends for the 

Continuous Time architecture. For a limited resolution (6-5 
bits) the median value of measured SV tends to be lower than 
the SV reference. This is because both the C point and the BX 
time interval measured value tends to be lowered. The C point 
value is smaller because of the quantification error. The BX 
time interval is shorter because point X tends to be detected 
before it really happens due to the resolution and the way point 

X is detected. The measurement results are detailed in Table IV. 
Standard Deviation is 11.66% at 6bits and 18.79% at 5bits. 

D. Discrete Time and Continuous Time Comparison 

After compensating the normalized SV deviation by the 
median (Table V), values that are presented in Fig.9, we can 
observe that there is no configuration in which Continuous 

Time is superior. In fact, the results show that even for an 
equivalent complexity or power consumption the deviation 
obtained with the CT architecture is higher.  
For instance, even for low-frequency 80Hz sampling, it appears 
that DT configuration is more accurate than CT at an equivalent 
complexity (13.19% deviation against 20.43%). From this 

observation, we can conclude that CT is not suited for SV 
measurement. 

E. Acceptable values for Stroke Volume measurement error 

In the previous stage we have interpreted the results in 
function of the architecture configuration and compared the 

efficiency of these configurations. The question now to address 
is to determine if the SV measurement accuracy is sufficient for 
practical use. One method for this purpose is the Bland-Altman 
analysis [14]. Commonly used for determination of medical 

measurement methods [11], [15], this analysis allow to compare 
two measurement methods, one of them considered as the 
reference method, by the assessment of the agreement between 
these two methods. One common criteria for cardiac output 
(CO=SVxHR) measurement solutions is that a new 
measurement method is considered as not sufficiently accurate 

if 30% of the measurements are outside the limits of agreement 
[17]. 

 

TABLE III.  DT  DETAILED SIMULATION RESULTS  

Resolution 

Sampling 

Frequency 
(Hz) 

B 
median 

timing 
error 

(ms) 

X 
median 

timing 
error 

(ms) 

BX 
median 

timing 
error 

(ms) 

C 
amplitude 

error 
median 

value 
(LSB) 

SV 

normalized 
median 

value 

16bits 200 1.7 -0.4 -2.9 - 0.9904 

16bits 120 4 0 -4.2 - 0.9817 

16bits 80 6.2 0 -7.1 - 0.9680 

6bits 200 1.7 -8.3 -9.6 -0.57 0.9463 

6bits 120 4 -6.3 -9.6 -0.65 0.9436 

6bits 80 6.2 -5.2 -11.11 -0.76 0.9381 

5bits 200 1.7 -12.5 -15 -0.51 0.9138 

TABLE IV.  CT  DETAILED SIMULATION RESULTS 

Resolution 
B median 

timing 

error (ms) 

X median 
timing 

error (ms) 

BX 

median 
timing 

error (ms) 

C 
amplitude 

error 
median 

value 
(LSB) 

SV 

normalized 
median 

value 

CT 6bits -0.6 -10.6 -9.6 -0.53 0.9484 

CT 5bits -0.5 -14.6 -12.7 -0.47 0.9202 

 

TABLE V.  NORMALIZED STROKE VOLUME SIMULATION RESULTS  AFTER 

MEDIAN COMPENSATION 

 

DT 200 Hz DT 120 Hz DT 80 Hz CT 
 

median std median std median std median std 
 

16bits 1 0.0918 1 0.0936 1 0.1289 - - 
 

8-bits 1 0.1023 1 0.1047 1 0.1204 1 0.1040 
 

7-bits 1 0.1092 1 0.1095 1 0.1112 1 0.1170 
 

6-bits 1 0.1084 1 0.1081 1 0.1146 1 0.1230 
 

5-bits 1 0.1277 1 0.1274 1 0.1319 1 0.2043 
 

TABLE VI.  BLAND-ALTMAN ANALYSIS RESULTS (% OF SV MEASUREMENTS 

OUTSIDE THE LIMITS OF AGREEMENT) 

 16-bits 7-bits 6-bits 
5-bits 

200Hz reference 14 18 
25 

120Hz 5.7 15 18 
25 

80Hz 12 14 19 
27 

CT - 17 20 
32 

 
 



In our particular case we use the results obtained with the 
16bits-200Hz configuration as our reference measurement 
method because we consider that these results are the best that 
can be obtained giving the 200Hz sampling rate of the original 

data. After applying the Bland-Altman method to the other 
configuration results, we obtain the results of Table VI. One 
example of the Bland-Altman plot obtained with the simulated 
results is shown in Fig. 8 we observe that for all the DT 
configuration there is always less than 30% of the 
measurements outside the limits of agreement. 

V. CONCLUSION 

This paper discussed the opportunity of a simple wearable 
system for ICG Stroke Volume measurement for heart state 
monitoring purposes and the interest raised by Continuous 
Time data alternative. Results revealed that even for low 
configuration and a reduced sampling frequency, the Discrete 

Time flavor system error varies from 9% to 13% and can be 
considered as sufficient for leisure or commercial activities as 
the Bland-Altman analysis revealed at worst 27% of the 
measurements outside the limit of agreement. The second 
answer from this work is that Continuous Time alternative, that 
was supposed to be more efficient, is actually less precise than 

Discrete Time for a same system complexity and power-
consumption, thus Continuous Time data is not advantageous. 
The results lead also to the feasibility of the use of ICG in 
simple systems dedicated to heart state low-power monitoring, 
combined or not with other biosignals such as ECG. 
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Fig.8. Bland-Altman plot of results obtained with the 6bits-200Hz 

configuration. 

 

 
Fig.9. Comparison graph of the different architecture configurations 

 


