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Layout and Object ProposalsNoisy RGB-D Scan Our Retrieved CAD-like Representation

Figure 1: In this paper, we advocate for the use of Monte Carlo Tree Search (MCTS) for 3D scene understanding problems.
Given a noisy 3D point cloud recovered from an RGB-D sequence, our approach recovers accurate 3D models and poses
for the objects, walls, and floor with minimal training data, even in challenging conditions. We first generate proposals for
the layout components and the objects, and rely on Monte Carlo Tree Search (MCTS) adapted to the problem to identify
the proposals that best explain the RGB-D sequence. We retrieve correctly the arrangement of chairs on the left-hand side
of the scene despite them being close to each other and the thin wall on the top. Our adapted MCTS algorithm has few
hyperparameters and can be applied to wide variety of scenes with minimal tuning effort. For visualization purposes only,
we texture the objects and the layout using the colors of the 3D points close-by.

Abstract

We explore how a general AI algorithm can be used
for 3D scene understanding to reduce the need for train-
ing data. More exactly, we propose a modification
of the Monte Carlo Tree Search (MCTS) algorithm to
retrieve objects and room layouts from noisy RGB-D
scans. While MCTS was developed as a game-playing
algorithm, we show it can also be used for complex
perception problems. Our adapted MCTS algorithm
has few easy-to-tune hyperparameters and can optimise
general losses. We use it to optimise the posterior prob-

ability of objects and room layout hypotheses given the
RGB-D data. This results in an analysis-by-synthesis
approach that explores the solution space by rendering
the current solution and comparing it to the RGB-D
observations. To perform this exploration even more
efficiently, we propose simple changes to the standard
MCTS’ tree construction and exploration policy. We
demonstrate our approach on the ScanNet dataset. Our
method often retrieves configurations that are better
than some manual annotations, especially on layouts.

*The first two authors contributed equally.
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1. Introduction
3D scene understanding is a fundamental problem in

Computer Vision [41, 53]. In the case of indoor scenes,
one usually aims at recognizing the objects and their prop-
erties such as their 3D pose and geometry [2, 3, 15], or the
room layouts [57, 31, 62, 59, 30, 36, 50, 60, 62, 54, 55],
or both [4, 18, 35, 45, 51, 56]. With the development of
deep learning approaches, the field has made a remarkable
progress. Unfortunately, all recent methods are trained in
a supervised way on 3D annotated data. Such a supervised
approach has several drawbacks: 3D manual annotations
are particularly cumbersome to create and creating realis-
tic virtual 3D scenes also has a high cost [42]. Moreover,
supervised methods also tend to generalize poorly to other
datasets. Even more importantly, they can only be as good
as the training 3D annotations, and mistakes in manual an-
notations are actually common in existing datasets, as we
will show. If one wants to go further and consider more
scenes without creating real or synthetic training datasets, it
seems important to be able to develop methods that do not
rely too much on 3D scenes for training.

Over the history of 3D scene understanding, many non-
supervised approaches have already been proposed, in-
cluding recently to leverage deep learning object detec-
tion methods. They typically combine generative mod-
els and the optimization of their parameters. Genera-
tive methods for 3D scene understanding indeed often in-
volve optimization problems with high complexity, and
many optimization tools have thus been investigated, in-
cluding Markov Random Fields (MRFs) and Conditional
Random Fields (CRFs) [22, 52, 32], Markov Chains Monte
Carlo (MCMCs) [9, 19, 10, 58], tree search [28], or hill
climbing [61, 21]. However, there does not seem to be a
clear method of choice: MRFs and CRFs impose strong
constraints on the objective function; MCMCs depend on
many hyperparameters that are difficult to tune and can re-
sult in slow convergence; hill climbing can easily get stuck
in a local optimum. The tree search method used by [28]
uses a fixed width search tree that can miss good solutions.

In this paper, we advocate for the use of Monte Carlo
Tree Search (MCTS) [12, 5], which is a general discrete AI
algorithm for learning to play games [46], for optimization
in 3D scene understanding problems. We propose to see
perception as a (single-player) game, where the goal is to
identify the right 3D elements that explain the scene. In
such cases where the search problem can be organized into
a tree structure which is too large for exhaustive evaluation,
MCTS becomes a very attractive option. It also depends on
very few easy-to-tune hyperparameters. Moreover, it can be
interrupted at any time to return the best solution found so
far, which can be useful for robotics applications. A parallel
implementation is also possible for high efficiency [8]. In
short, MCTS is a powerful optimization algorithm, but to

the best of our knowledge, it has never been applied to 3D
perception problems.

To apply MCTS to 3D scene understanding, as shown in
Fig. 1, we generate proposals for possible objects and layout
components using the point cloud generated from the RGB-
D sequence, as previous works do from a single RGB-D
frame [28, 61]. MCTS can be used to optimize general loss
functions, which do not even have to be differentiable. This
allows us to rely on a loss function based on an analysis-by-
synthesis (or “render-and-compare”) approach to select the
proposals that correspond best to the observations. Our loss
function compares (non-realistic) renderings of a set of pro-
posals to the input images and can incorporate constraints
between the proposals. This turns MCTS into an analysis-
by-synthesis method that explores possible sets of proposals
for the observations, possibly back-tracking to better solu-
tions when an exploration does not appear promising.

We adapted the original MCTS algorithm to the 3D
scene understanding problem to guide it towards the cor-
rect solution faster, and call the resulting method “MCSS”,
for Monte Carlo Scene Search. First, it is possible to struc-
ture the search tree so that it does not contain any impossi-
ble solutions, for example, solutions with intersecting pro-
posals. We also enforce the exploration of proposals which
are close spatially to proposals in the same path to the root
node. Second, we introduce a score based on how the pro-
posal improves the solution locally to increase the efficiency
of search.

In practice, we first run MCSS only on the layout pro-
posals to recover the layout. We then run MCSS on the ob-
ject proposals using the recovered layout. The recovery of
the objects thus exploits constraints from the layout, which
we found useful as shown in our experiments. In principle,
it is possible to run a single MCSS on both the object and
layout component proposals, but constraints from the ob-
jects did not appear useful to constrain the recovery of the
layout for the scenes in ScanNet, which we use to evalu-
ate our approach. We therefore used this two-step approach
for simplicity. It is, however, possible that more complex
scenes would benefit from a single MCSS running on all
the proposals.

Running our method takes a few minutes per scene. This
is the same order of magnitude as the time required to ac-
quire an RGB-D sequence covering the scene, but defini-
tively slower than supervised methods. However, our di-
rection could lead to a solution that automatically gener-
ates annotations, which could be used to train supervised
methods for fast inference. We show in the experiments that
our method already retrieves annotations that are sometimes
more accurate than existing manual annotations, and that it
can be applied to new data without tuning any parameters.
Beyond that, MCTS is a very general algorithm, and the
approach we propose could be transposed to other percep-



tion problems and even lead to an integrated architecture
between perception and control, as MCTS has also already
been applied to robot motion planning control [25].

2. Related Work

3D scene understanding is an extremely vast topic of the
computer vision literature. We focus here on indoor layout
and object recovery, as we demonstrate our approach on this
specific problem.

2.1. Layout Estimation

The goal of layout estimation is to recover the walls,
floor(s), and ceiling(s) of a room or several rooms. This
can be very challenging as layout components are often par-
tially or completely occluded by furniture. Hence, many
methods resort to some type of prior or supervised learn-
ing. The cuboid assumption constraints the room layout
to be a box [44, 16, 27]. The Manhattan assumption re-
laxes somewhat this prior, and enforces the components to
be orthogonal or parallel. Many methods working from
panoramic images [50, 60, 62] and point clouds [20, 33, 43]
rely on such priors. Methods which utilize supervised learn-
ing [57, 31, 62, 59, 30, 36, 50, 60, 62, 54, 55] depend on
large-scale datasets, the creation of which is a challenge
on its own. When performing layout estimation from point
clouds as input data [43, 6, 20, 33, 32], one has to deal with
incomplete and noisy scans as can be found in the ScanNet
dataset [14]. Like previous work [33, 49], we first hypothe-
size layout component proposals, but relying on MCTS for
optimization lets us deal with a large number of propos-
als and be robust to noise and missing data, without special
constraints like the Manhattan assumption.

2.2. 3D Object Detection and Model Retrieval

Relevant to our work are techniques to detect objects
in the input data and to predict their 3D pose and the 3D
model. If 3D data is available, as in our case, this is usu-
ally done by first predicting 3D bounding boxes from RGB-
D [29, 47, 48] or point cloud data [38, 17, 39, 37, 48] as
input. One popular way to retrieve the geometry of objects
from indoor point clouds is to predict an embedding and
retrieve a CAD model from a database [2, 3, 13, 15, 24].

However, while 3D object category detection and pose
estimation from images is difficult due to large variations
in appearance, it is also challenging with RGB-D scans due
to incomplete depth data. Moreover, in cluttered scenar-
ios, it is still difficult to get all the objects correctly [23].
To be robust, our approach generates many 3D bounding
box proposals and multiple possible CAD models for each
bounding box. We then rely on MCTS to obtain the optimal
combination of CAD models which fits the scene.

2.3. Complete scene reconstruction

Methods for complete scene reconstruction consider
both layout and objects. Previous methods fall into two
main categories, generative and discriminative methods.

Generative methods often rely on an analysis-by-
synthesis approach. A recent example for this is [21]
in which the room layout (under cuboid assumption) and
alignment of the objects are optimized using a hill-climbing
method. Some methods rely on a parse graph as a prior on
the underlying structure of the scene [9, 19, 10, 58], and
rely on a stochastic Markov Chain Monte Carlo (MCMC)
method to find the optimal structure of the parse graph and
the component parameters. Such a prior can be very useful
to retrieve the correct configuration, unfortunately MCMCs
can be difficult to tune so that they work well on all scenes
with the same parameters.

Like us, other works deal with an unstructured list of
proposals [28, 61], and search for an optimal set which
minimizes a fitting cost defined on the RGB-D data. Find-
ing the optimal configuration of components constitutes a
subset selection problem. In [61], due to its complexity,
it is solved using a greedy hill-climbing search algorithm.
In [28], it is solved using beam search on the generated hy-
pothesis tree with a fixed width for efficiency, which can
miss good solutions in complex cases. Our approach is sim-
ilar to [28, 61] as we also first generate proposals and aim
at selecting the correct ones, but for the exploration of the
search tree, we propose to utilize a variant of Monte Carlo
Tree Search, which is known to work well even for very
large trees thanks to a guided sampling of the tree.

Discriminative methods can exploit large training
datasets to learn to classify scene components from input
data such as RGB and RGB-D images [4, 18, 35, 51, 56].
By introducing clever Deep Learning architectures applied
to point clouds or voxel-based representations, these meth-
ods can achieve very good results. However, supervised
methods have practical drawbacks: They are limited by the
accuracy of the annotations on which they are trained, and
high-quality 3D annotations are difficult to create in prac-
tice; generalizing to new data outside the dataset is also
challenging. In the experiments, we show that without any
manually annotated data, our method can retrieve accurate
3D scene configurations on both ScanNet and our own cap-
tures even for cluttered scenes, and with the same hyperpa-
rameters.

3. Overview of MCTS

For the sake of completeness, we provide here a brief
overview of MCTS. An in-depth survey can be found in [5].
MCTS solves problems of high complexity that can be for-
malized as tree search by sampling paths throughout the tree
and evaluating their scores. Starting from a tree only con-



taining the root node, this tree is gradually expanded in the
most promising directions. To identify the most promis-
ing solutions (i.e. paths from the root node to a leaf node),
a score for each created node is evaluated through “sim-
ulations” of complete games. A traversal starting from a
node can choose to continue with an already visited node
with a high score (exploitation) or to try a new node (explo-
ration). MCTS performs a large number of tree traversals,
each starting from the root node following four consecu-
tive phases we describe below. The pseudo-code for single-
player non-random MCTS, which corresponds to our prob-
lem, is given in the supplementary material.
SELECT. This step selects the next node of the tree
to traverse among the children of the current node Ncurr.
(case 1) If one or several children have not been visited yet,
one of them is selected randomly and MCTS moves to the
EXPAND step. (case 2) If all the children have been visited
at least once, the next node is selected based on some crite-
rion. The most popular criterion to balance exploitation and
exploration is the Upper Confidence Bound (UCB) [1]:

arg max
N∈C(Ncurr)

λ1
Q(N )

n(N )
+ λ2 ·

√
log n(Ncurr)

n(N )
, (1)

where C(Ncurr) is the set of children nodes for the current
node, Q(N ) is a sum of scores obtained through simula-
tions, and n(N ) is the number of times N is traversed dur-
ing the search. The selected node is assigned to Ncurr, be-
fore iterating the SELECT step. Note that in single-player
games, the maximum score is sometimes used in place of
the average for the first term, as there is less uncertainty. We
tried both options and they perform similarly in our case.
EXPAND. In case 1, this step expands the tree by adding
the randomly selected node to the tree.
SIMULATE. After the EXPAND step, many “simulations”
of the game are run to assign the new nodeN a score, stored
in Q(N ). Each simulation follows a randomly-chosen path
from the new node until the end of the game. The score can
be for example the highest score obtained by a simulation
at the end of the game.
UPDATE. After the SIMULATE step, the score is also added
to the Q values of the ancestors of N . The next MCTS
iteration will then traverse the tree from the root node using
the updated scores.

After a chosen number of iterations, in the case of non-
random single-player games, the solution returned by the
algorithm is the simulation that obtained the best score for
the game.

4. Approach

In this section, we first derive our objective and then ex-
plain how we adapt MCTS to solve it efficiently.

4.1. Formalization

Given a set I = {(Ii, Di)}NV
i=1 of NV registered RGB

images and depth maps of a 3D scene, we want to find 3D
models and their poses for the objects and walls that con-
stitute the 3D scene. This can be done by looking for a set
of objects and layout elements from a pool of proposals, Ô
that maximizes the posterior given the observations in I:

Ô = argmax
O

P (O | I) = argmax
O

logP (O | I) . (2)

The set of object proposals contains potential 3D model
candidates for each object in the scene, along with its corre-
sponding pose. The same 3D model for an object but under
two different poses constitutes two proposals. The set of
layout proposals models potential layout candidates as pla-
nar 3D polygons. More details about the proposal genera-
tion is provided later in Section 4.3.

Using the images rather than only the point cloud is
important, as shown in [37] for example, as many parts
of a scanned scene can be missing from the point cloud,
when the RGB-D camera did not return depth values for
them (this happens for dark and reflective materials, for
example). Assuming the Ii and Di are independent,
logP (O | I) is proportional to:
∑

i

(
logP (Ii | O) + logP (Di | O)

)
+ logP (O) . (3)

P (Ii | O) and P (Di | O) are the likelihoods of our
observations. To evaluate them, we compare Ii andDi with
(non-realistic) renderings of the objects and layout elements
in O from the same camera poses as the Ii and Di. For
P (Ii | O), we render the objects and layout elements in
O using their class indices in place of colors and compare
the result with a semantic segmentation of image Ii. To
evaluate P (Di | O), we render a depth map for the objects
and layout elements in O and compare it with Di. More
formally, we model logP (Ii | O) + logP (Di | O) by:

si(O) = λI
∑

c

Si(c) · SR
i (c)− λD|Di −DR

i | , (4)

up to some additive constant that does not change
the optimization problem in Eq. (2). The Si(c)
are segmentation confidence maps for classes c ∈
{wall,floor, chair, table, sofa, bed} obtained by semantic
segmentation of Ii (we use MSEG [26] for this); the SR

i (c)
are rendered segmentation maps (i.e. a pixel in SR

i (c) has
value 1 if lying on an object or layout element of class c,
0 otherwise). DR

i is the rendered depth map of the objects
and layout elements in O.

Given a setO, si(O) can be computed efficiently by pre-
rendering a segmentation map and a depth map for each pro-
posal independently: DR

i can be constructed by taking for



(a) (b)

(c) (d)

Figure 2: Examples for (a) Si, (b) SR
i , (c) Di, (d) DR

i .

each pixel the minimal depth over the pre-rendered depth
maps for the proposals inO. SR

i (c) can be constructed sim-
ilarly using both the pre-rendered segmentation and depth
maps.

Fig. 2 shows an example of Si, SR
i , Di, and DR

i . Note
that our approach considers all the objects together and
takes naturally into account the occlusions that may occur
between them, which is one of the advantages of analysis-
by-synthesis approaches. More sophisticated ways to evalu-
ate the observations likelihoods could be used, but this sim-
ple method already yields very good results.
P (O) in Eq. (3) is a prior term on the setO. We currently

use it to prevent physically impossible solutions only. In
practice, the proposals are not perfectly localised and we
tolerate some intersections. When the Intersection-Over-
Union between two objects is smaller than a threshold, we
tolerate the intersection but still penalize it. More formally,
in this case, we model logP (O) by

sp(O) = −λP
∑

O,O′∈O,O 6=O′

IoU(O,O′) (5)

up to some additive constant. IoU is the intersection-over-
Union between the 3D models for objects Oj and Ok. In
practice, we compute it using a voxel representation of the
3D models. When the Intersection-over-Union between two
object proposals is above a threshold, we take P (O) = 0,
i.e. the two proposals are incompatible. In practice, we use
a threshold of 0.3. We consider two special cases where this
is not true: chair-table and sofa-table intersections. In these
cases, we first identify the horizontal surface on which the
intersection occurs (e.g. surface of the table, seat of the sofa)
and determine the amount of intersection by calculating the
distance of the intersecting point to nearest edge of the hor-
izontal surface. The amount of intersection is normalized
by the dimension of the horizontal surface and a ratio more
than 0.3 is considered incompatible.

Similarly, when two layout proposals intersect or when
a layout proposal and an object proposal intersect, we take
also P (O) = 0. In contrast to object proposals where small
intersections are still tolerated, we do not tolerate any inter-
sections for the layout proposals as their locations tend to
be predicted more accurately.

As discussed in the introduction, to find a set Ô that max-
imizes Eq. (2), we build a pool Opool of proposals, and se-
lect Ô as the subset ofOpool that maximizes the global score
S(O) =∑i si(O) + sP (O). We empirically set λI = λD
= 1 and λP = 2.5 in our experiments to balance the three
terms in Eq. (3).

4.2. Monte Carlo Scene Search

We now explain how we adapted MCTS to perform an
efficient optimization of the problem in Eq. (3). We call
this variant “Monte Carlo Scene Search” (MCSS).

4.2.1 Tree Structure

In the case of standard MCTS, the search tree follows di-
rectly from the rules of the game. We define the search
tree explored by MCSS to adapt to the scene understanding
problem and to allow for an efficient exploration as follows.

Proposal fitness. Each proposal P is assigned a fitness
value obtained by evaluating si in Eq. (4) only over the pixel
locations where the proposal reprojects. Note that this fit-
ness is associated with a proposal and not a node. This fit-
ness will guide both the definition and the exploration of the
search tree during the simulations.

Except for the root node, a node N in the scene tree is
associated with a proposal P(N ) from the poolOpool. Each
path from the root node to a leaf node thus corresponds to a
set of proposalsO that is a potential solution to Eq. (2). We
define the tree so that no path can correspond to an impossi-
ble solution i.e. to setO with P (O) = 0. This simplifies the
search space to the set of possible solutions only. We also
found that considering first proposals that are close spatially
to proposals in a current path significantly speeds up the
search, and we also organize the tree by spatial neighbour-
hood. The child nodes of the root node are made of a node
containing the proposalO with the highest fitness among all
proposals, and a node for each proposal that is incompatible
with O. The child nodes of every other node N contain the
closest proposal O to the proposal in N , and the propos-
als O′ incompatible with O, under the constraint that O and
proposalsO′ are compatible with all the proposals inN and
its ancestors.

Two layout proposals are considered incompatible if they
intersect and are not spatial neighbours. They are spatial
neighbors if they share an edge and are not on the same 3D
plane. Therefore, if P(N ) is a layout proposal, the children
nodes are always layout components that are connected by
an edge to P(N ). By doing so, we enforce that each path
in the tree enforces structured layouts, i.e. the layout com-
ponents are connected. Note that this strategy will miss dis-
connected layout structures such as pillars in the middle of
a room but works well on ScanNet.

In the case of objects, the spatial distance between two



object proposals is computed by taking the Euclidean dis-
tance between the centers of the 3D bounding boxes. The
incompatibility between two object proposals is determined
as explained in Section 4.1. Since all the object proposals
in the children of a node may be all incorrect, we add a spe-
cial node that does not contain a proposal to avoid having
to select an incorrect proposal. The children nodes of the
special node are based on the proximity to its parent node
excluding the proposals in its sibling nodes.

As mentioned in the introduction, we first run MCSS on
the layout component proposals only to select the correct
layout components first. Then, we run MCSS on the object
proposals, with the selected layout components in O. The
selection of the object proposals therefore benefits from the
recovered layout.

4.2.2 Local node scores

Usually with MCTS,Q in the UCB criterion given in Eq. (1)
and stored in each node is taken as the sum of the game
final scores obtained after visiting the node. We noticed
during our experiments that exploration is more efficient if
Q focuses more on views where the proposal in the node is
visible. Thus, in MCSS, after a simulation returns O, the
score s is added to Q of a node containing a proposal O. s
is a local score calculated as follows to focus on O:

s =
1∑

i wi(O)

∑

i

wi(O)si(O) + λps
P (O,O) , (6)

where wi(O) = 1 if O is visible in view i and 0 otherwise,
and

sp(O,O) = −
∑

O′∈O,O 6=O′

IoU(O,O′) . (7)

4.2.3 Running simulations

While running the simulations, instead of randomly pick-
ing the nodes, we use a “roulette wheel selection” based on
their proposals: the probability for picking a node is directly
proportional to the fitness of the proposal it contains.

4.2.4 MCSS output

Besides the tree definition and the local score given in
Eq. (6) used in the SELECT criterion, MCSS runs as MCTS
to return the best set O of proposals found by the simu-
lations according to the final score S(O) =

∑
i si(O) +

sP (O). In practice, we perform 20,000 iterations of MCSS.

4.3. Generating Proposals

We resort here on off-the-shelf techniques. For the
object proposals, we first create a set of synthetic point
clouds using ShapeNet [7] CAD models and the ScanNet

dataset [14] (we provide more details in the suppl. mat.).
We train VoteNet [38] on this dataset to generate 3D bound-
ing boxes with their predicted classes. Note that we do not
need VoteNet to work very well as we will prune the false
positives anyway, which makes the approach generalizable.
Using simple heuristics, we create additional 3D bounding
boxes by splitting and merging the detections from VoteNet,
which we found useful to deal with cluttered scenes. We
also train MinkowskiNet [11] on the same synthetic dataset
which we use to remove the points inside the bounding
boxes that do not belong to the Votenet predicted class.
We then trained a network based on PointNet++ [40] on
the same synthetic data to predict an embedding for a CAD
model from ShapeNet [7] and a 6D pose+scale from sam-
plings of the remaining points. Different samplings result
in slightly different embeddings and we generate a proposal
with each of the corresponding CAD models. We refine the
pose and scale estimates by performing a small grid search
around the predicted values using the Chamfer distance be-
tween the CAD model and the point cloud.

For the layout component proposals, we use the seman-
tic segmentation by MinkowskiNet to extract the 3D points
on the layout from the point cloud and rely on a sim-
ple RANSAC procedure to fit 3D planes. Like previous
works [33, 34, 61, 49], we compute the intersections be-
tween these planes to obtain 3D polygons, which we use as
layout proposals. We also include the planes of the point
cloud’s 3D bounding box faces to handle incomplete scans:
for example, long corridors are never scanned completely in
ScanNet.

5. Evaluation

We present here the evaluation of our method. We also
provide an ablation study to show the importance of our
modifications to MCTS and of the use of the retrieved lay-
outs when retrieving the objects.

Fig. 4 shows the output of our method on a custom scan,
and more qualitative results are provided in the suppl. mat.

5.1. Layouts

We first evaluate the ability of MCSS to recover general
layouts on validation scenes from the SceneCAD dataset [2]
that provides layout annotations for noisy RGBD scans
from the ScanNet dataset [14]. MCSS outperforms the
SceneCAD method by a quite substantial margin on the cor-
ner recall metric, with 84.8% compared to 71%. However,
as shown in Fig. 3(b), the SceneCAD annotations lack de-
tails, which hurts the performance of our method on other
metrics as it recovers details not in the manual annotations.

Hence, we relabelled the same set of scenes from the
SceneCAD dataset with more details. As proposed in the
SceneCAD paper, a predicted corner is considered to be



(a) (b) (c) (d)

Figure 3: (a) An RGB-D scan from the ScanNet dataset [14]. (b) Output of the VoteNet-based baseline method for the
objects, together with the layout annotations from [4]. Many objects retrieved by the baseline method are incorrect; the
layout annotations lack some details. (c) Objects and layout prediction by our MCSS method. Our predicted layout has much
more details than the manual annotations. (d) Objects annotations from [2] together with our manual layout annotations. The
supp. mat. provides more visualizations.

(a) (b)

Figure 4: Generalization to other datasets. (a) We cap-
tured an RGB-D scan of an apartment with a hallway and
a living space, and many furniture. (b) Objects and layout
found by our MCSS method. More results are provided in
the suppl. mat.

All Scenes Non-Cuboid Scenes
Prec Rec IOU Prec Rec IOU

SceneCAD GT 91.2 80.4 75.0 90.8 73.3 66.1
MCSS (Ours) 85.5 86.1 75.8 83.5 80.4 70.4

Table 1: Comparison between manual SceneCAD layout
annotations and layouts retrieved by our method, on our
more detailed layout annotations.

matching to the ground truth corner if it is within 40cm ra-
dius. We further adjust this criterion: if multiple predicted
corners are within this radius, a single corner that is closest
to the ground truth is taken and a predicted corner can be as-
signed to only one ground truth corner. We also compute the
polygons’ Intersection-Over-Union (IOU) metric from [49]
after projecting the retrieved polygons to their ground truth
polygons. Table 1 compares the layouts retrieved by our
approach to the SceneCAD annotations. These annotations
obtain very high corner precision, as most of the annotated
corners are indeed correct, but low corners recall and poly-
gon IOU because of the missing details. By contrast, our
method recovers most corners which results in high recall
without generating wrong ones, as is visible from the high
precision. Our approach does well to recover general room
structure as shown by the polygon IOU value. We show in
Fig. 3, 4 and suppl. mat. that our method successfully re-
covers a variety of layout configurations. Most errors come
from the fact that components might be completely invisible
in the scene in all of the views as our proposal generation is
not intended for this special case.

5.2. Objects

We evaluate our method on the subset of scenes from
both the test set and validation set of Scan2CAD [2]. We
consider 95 scenes in the test set and 126 unique scenes in
the validation which contains at least one object from the
chair, sofa, table, bed categories. A complete list of the
scenes used in our evaluations is provided in the suppl. mat.

We first consider a baseline which uses Votenet [38] for
object detection and retrieves a CAD model and its pose
for each 3D bounding box using the same network used for
our proposals. The performance of this baseline will show
the impact of not using multiple proposals for both object
detection and model retrieval.

We use the accuracy metric defined in [2] for evalu-
ations on the test set and compare with three methods (
Scan2CAD [2], E2E [3], and SceneCAD [4]) in Table 3.
While our method is trained only on simple synthetic data,
it still outperforms Scan2CAD and E2E on the chair and
sofa categories. The loower performance on the table cat-
egory is due to inconsistent manual annotations: Instance
level annotation of a group of tables from an incomplete
point cloud is challenging and this results in inconsistent
grouping of tables as shown in Fig. 5. Although we achieve
plausible solutions in these scenarios, it is difficult to ob-
tain similar instance-level detection as the manual annota-
tions. Moreover, SceneCAD learns to exploit object-object
and object-layout support relationships, which significantly
improves the performance. Our approach does not exploit
such constraints yet, but they could be integrated in the ob-
jective function’s prior term in future work for benefits.

Table 4 compares the Chamfer distance between the ob-
jects we retrieve and the manually annotated point cloud
of the object on the validation set of ScanNet. This metric
captures the accuracy of the retrieved CAD models. The
models we retrieve for chair and sofa are very similar to the
models chosen for the manual annotations as the Chamfer
distances have the same order of magnitude.

Table 2 reports the precision and recall for the oriented
3D bounding boxes for the pool of object proposals, for the
set of proposals selected by MCSS, and for the baseline.
MCSS improves the precision and recall from the baseline



IOU
Th.

Chair Sofa Table Bed
Prec Rec Prec Rec Prec Rec Prec Rec

All pro-
posals

0.50 0.06 0.92 0.05 0.93 0.05 0.68 0.16 0.93
0.75 0.04 0.59 0.04 0.56 0.03 0.46 0.08 0.48

Baseline
0.50 0.70 0.85 0.77 0.80 0.66 0.56 0.74 0.74
0.75 0.19 0.29 0.31 0.39 0.24 0.30 0.30 0.41

MCSS
(Ours)

0.50 0.75 0.87 0.79 0.93 0.65 0.59 0.86 0.86
0.75 0.27 0.32 0.42 0.42 0.34 0.30 0.41 0.44

Table 2: Evaluation of object model retrieval and align-
ment with bounding box IOU thresholds 0.5 and 0.75. The
recall for our method is similar to the recall with all propos-
als while precision is better than the baseline method. Our
method efficiently rejects all the incorrect proposals.

Method Obj-Obj Support Chair Sofa Table
Baseline No 42.02 27.70 18.52

Scan2CAD [2] No 44.26 30.66 30.11
E2E [3] No 73.04 76.92 48.15

SceneCAD [4] Yes 81.26 82.86 45.60
MCSS (Ours) No 74.32 78.70 24.28

Table 3: Comparison of object alignment on the
Scan2CAD benchmark. The metrics for bed alone are
not provided by the benchmark and hence not shown.
SceneCAD uses inter-object support relations to improve
their results from E2E. We do not have access to these
relationships and hence mostly compare with E2E and
Scan2CAD. The lower accuracy for table seems to be due
to the dataset bias discussed in Fig. 5.

(a) Manual Annotations (b) MCSS (ours)

Figure 5: Manual annotation of incomplete point clouds
is difficult and groups of tables are often annotated incor-
rectly in the Scan2CAD dataset, creating a dataset bias. For
example, in (a), there should be 8 tables instead of 4 in the
annotations. This hurts our performance for the table cate-
gory, though we achieve plausible solutions (b). Note that
we also often retrieve more objects than in the annotations.

in all 4 object categories. The recall remains similar while
the precision improves significantly. This proves that our
method efficiently rejects all incorrect proposals. Our qual-
itative results in Fig. 3 and 5 show the efficacy of MCSS
in rejecting many incorrect proposals compared to the base-
line method while also retaining the correct CAD models
that are similar to ground truth. We even retrieve objects
missing from the annotations.

5.3. Ablation Study
Importance of local score (Eq. 6). In Fig. 6, we plot the
best score S(O) found so far with respect to the MCTS it-

Method Chair Sofa Table Bed
Baseline 2.6 11.0 14.2 26.3

MCSS (Ours) 1.8 7.4 12.8 16.2
Manual annotations [2] 2.0 5.2 5.5 9.4

Table 4: Comparison of one-way Chamfer distance (in
mm) between scan points and retrieved models on the
validation set of Scan2CAD. Our retrieved models are
close to manual annotations for chair and sofa even though
we use only synthetic point clouds for model retrieval.

eration, in the case of a complex scene for layout recovery
and object recovery, when using the simulation score S(O)
or the local score s given in Eq. (6) to update the Q of the
nodes. We use the selection strategy of Eq. (1) in both of
these scenarios. We also plot the best score for a random
tree search. Using the local score speeds up the convergence
to a better solution, achieving on an average 9% and 15%
higher global scores for layouts and objects, respectively.
Compared to random tree search, our method achieves 15%
and 42% higher scores for layout and objects, respectively.
We consider 12 challenging scenes for this experiment.

Search Method Node Score Simulation
With Visible Views Eq. (6) Roulette Wheel

With All Views
∑

i si(O) + sP (O) Roulette Wheel
Random Search 0 Uniform Probability

Figure 6: Best score S(O) =
(∑

i si(O) + sP (O)
)

found
so far for layout and objects over MCSS iterations. Using
the local score given in Eq. (6) results in much faster and
better convergence.

Importance of layout for retrieving objects. Table 5
shows the effect of using the estimated layout in the terms
of Eq. (4) while running MCSS on objects. We considered
12 challenging scenes mainly containing chairs and tables
for this experiment and use the same precision and recall
metrics as in Table 2. Using the layout clearly helps by pro-
viding a better evaluation of image and depth likelihoods.

Chair Table
Prec Rec Prec Rec

Without layout 0.58 0.61 0.48 0.34
With layout 0.65 0.84 0.66 0.58

Table 5: Impact of using the estimated layout when run-
ning MCSS for object retrieval.
Acknowledgments. This work was supported by the Chris-
tian Doppler Laboratory for Semantic 3D Computer Vision,
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In this supplementary material:
• we suggest some possible future directions,
• we detail our methods for generating layout and ob-

ject proposals, and give the pseudocode for MCTS for
reference,

• we provide additional comparisons with existing an-
notations, the results of our MCSS approach, and a
baseline using hill climbing for the optimization of our
objective function,

• we provide more qualitative results on scans outside
the ScanNet dataset.

In addition to this document, we provide a Supplemen-
tary Video showing the improvement of the solution found
by MCSS over time, and additional qualitative demonstra-
tions.

1. Future Directions
While MCSS usually recovers all objects in a scene and

complete layouts as we can use low thresholds when gener-
ating the proposals without returning false positives, there
are still situations where it is challenging to retrieve the cor-
rect object models or layout components, when the point
cloud misses too much 3D data.

There are still many directions in which our current
method could be improved. We could generate proposals
from the perspective views as well: RGB images often con-
tain useful information that is missing in the point cloud,
and we can handle many proposals. Comparing the final
solution with the RGB-D data could also be used to detect
objects or layout components that are not explained by the
solution, and could be integrated as additional proposals in
a new run of MCSS. To improve the 3D poses and models,
it would also be interesting to develop a refinement method
that improves all the identified objects together.

Furthermore, advanced MCTS-based algorithms such as
AlphaZero [7] utilize neural networks to evaluate the qual-

*The first two authors contributed equally.

ity of state-action pairs. Similarly, it should be possible to
train a deep network to predict which proposals should be
evaluated first. We thus believe that our approach opens
new directions to explore.

2. Layout Proposal Generation
Figure 1 describes our layout proposal generation. We

first detect planes that are likely to correspond to layout
components (walls and floors in our experiments). Based
on the output from MinkowskiNet [4], we remove from
the point cloud the 3D points that do not belong to layout
classes, and perform RANSAC plane fitting on the remain-
ing points. We implemented a variant of RANSAC, using 3-
point plane fitting that determines inlier-points by their dis-
tance and their normals orientation with respect to the sam-
pled plane. We only fit a single floor plane as the SceneCAD
dataset [2] does not contain any scenes with multiple floor
planes.

At each iteration, our RANSAC procedure fits a plane to
three points that are randomly sampled from the remaining
point cloud. The inliers are defined as a set of points in
the point cloud for which the distance to the plane is less
than 10cm, and the orientation of the normal less than 15◦.
We perform 2000 iterations and select the plane with the
largest number of inliers. The final inliers are defined by
a selection criterion: A set of points in the point cloud for
which the distance to the plane is less than 20cm, and the
orientation of the normal is less than 30◦. If the number of
inliers of the plane is higher than 5000, we add the plane to
the set of layout planes and repeat the RANSAC procedure
on the remaining set of outliers. If the number is lower, we
perform a second stage RANSAC that seeks to find planes
corresponding to small layout components.

In this stage, we set the inlier criterion as follows: A set
of points in the point cloud for which the distance to the
plane is less than 100cm, and the orientation of the normal
is less than 10◦. The same criterion is used for the final
selection. If the number of inliers of the plane is higher than
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300, we add the plane to the set of layout planes and repeat
the RANSAC procedure on the remaining set of outliers. If
the number is lower, we conclude the plane fitting stage.

Then, we proceed to define the set of layout proposals by
intersecting the layout planes. More exactly, intersections
between non-parallel planes triples are candidate corners for
the layout. By connecting the vertices that share a pair of
layout planes, we get a set of candidate edges. Finally, by
connecting the edges that lie on the same layout plane, we
extract a set of valid planar polygons for each of the planes.
As the SceneCAD dataset contains only scenes with a single
floor level, it is enough to perform the search procedure on
wall proposals only: the floor polygon can be directly de-
termined afterwards from the walls. This procedure results
in a large number of proposals. For non-cuboid scenes, we
obtain between 100 and 1000 proposals, but MCSS can ef-
ficiently select the final proposals as shown in Fig. 2.

3. Object Proposal Generation
The synthetic point clouds are generated using the

ShapeNet [3] CAD models and the ScanNet [5] dataset.
More specifically, we use the instance annotations of Scan-
Net and replace the point cloud corresponding to each ob-
ject with a random CAD model from the same category.
The complete scenes with the replaced CAD models are
rendered into each of the perspective views using the cam-
era poses and are then reprojected back to 3D. This intro-
duces the incompleteness to the synthetic point cloud due
to object occlusions. Furthermore, we also introduce depth
holes on the rendered depth maps before reprojecting to 3D
to make the point clouds more realistic. Fig. 3 shows an
example of a synthetic scene.

As explained in Section 4.3 of the main paper and shown
in Fig. 4, we use VoteNet [6] and MinkowskiNet [4] to ex-
tract the point cloud of each object in the scene. A Point-
Net++ based network trained on the synthetic point clouds
is used for object model retrieval and pose estimation. The
model retrieval is performed by regressing the embeddings
which are obtained by training a PointNet++ auto-encoder
on each category of objects. The pose+scale of the object is
obtained by regressing the orientation, bounding box center
and size. We use the L2 loss with all the embedding and
pose+scale parameters.

In Fig. 5, we show the MCSS tree structure for an exam-
ple scene constructed from several object proposals.

4. MCSS Pseudocode
MCSS follows the pseudocode for generic MCTS given

in Algorithm 1 that is usually used for single-player games.
As we explain in the main paper, for the simulation step we
can run multiple simulations in practice. For objects, we run
10 simulations in parallel, for layouts we found that running

Algorithm 1: Generic MCTS for non-random
single-player games

1 iters← Number of desired runs, best moves← ∅
2 while iters > 0 do
3 Ncurr ← Nroot
4 reached terminal← False
5 while not reached terminal do
6 Ncurr ← SELECT(Ncurr)
7 if Ncurr is visited for the first time then
8 EXPAND(Ncurr)
9 best sim←argmax

sim
sc(SIMULATE(Ncurr, sim))

10 UPDATE(best sim)
11 if sc(best sim) > sc(best moves) then
12 best moves← moves of best sim

13 reached terminal← True

14 else if Ncurr is terminal then
15 reached terminal← True

16 iters← iters - 1

17 return best moves

1 simulation was already enough to achieve robust results.

5. Test Scenes used in Scan2CAD Benchmark
There are 2 scenes out of 97 scenes we do not con-

sider from the test set while evaluating on the Scan2CAD
benchmark, specifically scene0791 00 and scene0793 00.
scene0791 00 contains multiple floor planes, a special case
that we do not address in the object tree, and scene0793 00
which contains inconsistent manual annotations as the
canonical pose of the chairs in the ground truth pool are
different.

6. Computation Times
For a typical scene with 20 walls and 10 objects, the pro-

posal generation and pre-rendering requires ∼15 mins for
objects and ∼5 mins for layouts. Our MCSS tree search
takes 5 mins for 7K iterations on an Intel i7-8700 machine.
We would like to point that the proposal generation time es-
pecially for objects can be significantly improved by using
simplified object models and parallel computations.

7. Comparisons and Visual Results
7.1. Hill Climbing Baseline

In addition to the VoteNet baseline for objects (see Sec-
tion 5.2 of the main paper), for reference, we also compare
our method to a more simple hill climbing optimization al-
gorithm than MCSS for both layouts and objects. At each
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Input point cloud Layout planes segmentation Layout proposals Reconstructed Layout

Figure 1: We detect layout planes from the input point cloud using our RANSAC procedure. By intersecting these planes,
we obtain a large number of planar polygons which we take as our layout proposals. MCSS selects the optimal subset of
proposals that best fits the input scene.

Input scene Layout tree after MCSS Final solution

Figure 2: The layout proposals are organized into a tree structure such that proposals at the same level of the tree are
incompatible to each other but compatible with proposals of their ancestor nodes. Our MCSS approach builds the search tree
online and efficiently finds the optimal path, outlined blue, without exploring all candidate solutions.

iteration, the hill climbing algorithm selects the proposal
that results in the maximum increase in the scoring func-
tion. It stops when no proposal results in an increase. We
consider two different scoring functions for the hill climb-
ing algorithm:

• our scoring function S(O) used in MCSS (see Sec-
tion 4.1 of the main paper). In this case, the selection
depends also of the previously selected proposals and
the whole images, as the likelihood terms depend on
all the image locations. We do not consider propos-
als that are incompatible with the previously selected
proposals.

• the fitness of the proposal (see Section 4.2.1 of the
main paper). In this case, the scoring function depends
mainly on the proposal, but we still use the intersection
term in cases of objects, and do not consider propos-
als that are incompatible with the previously selected
proposals.

The hill climbing algorithm is very simple but provides a
local minimum.

More generally, most tree search algorithms will prune

parts of the tree based on local heuristics. By contrast,
MCTS explores the tree up to the leaves, which allows it
to look efficiently for the solution based on a global score.

7.2. Layout Estimation

Fig. 6 compares the RGB-D scans, the layout anno-
tations from [2], the layouts retrieved by our MCSS ap-
proach, and our new manual annotations for several rep-
resentative scenes from the ScanNet dataset [5]. We
show Scenes scene0645 00, scene0046 00, scene0084 00,
scene0406 00, and scene0278 00. Note that MCSS re-
trieves detailed layouts, despite noise and missing 3D data.

Fig. 7 shows typical outputs for the hill climbing algo-
rithm. Using our scoring function performs slightly better
than simply using the proposals’ fitness, however the results
are far from perfect as it focuses on the largest components,
which may be wrong.

7.3. Objects Retrieval and Pose Estimation

Fig. 8 compares the RGB-D scans, the 3D pose and
model annotations from [1], the 3D poses and models re-

3



Figure 3: An example synthetic point cloud used for training the network which generates the object proposals. The CAD
models corresponding to objects are shown on the right.
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Figure 4: Object proposals generation pipeline. We obtain 3D instance segmentation of the input point cloud using the
outputs of MinkowskiNet [4] and Votenet [6]. We then retrieve multiple CAD models proposals and their corresponding
pose+scale for each object instance using a PointNet++ network, which is trained using synthetic data.

trieved by our MCSS approach, and the output of the
VoteNet baseline (see Section 5.2 of the main paper) for sev-
eral representative scenes from the ScanNet dataset [5]. We
show Scenes scene0249 00, scene0549 00, scene0690 00,
scene0645 00, scene0342 00, and scene0518 00.

Our method retrieves objects that are not in the manual
annotations and sometimes more accurate models: See for
example the bed in the 5-th row of Fig. 8. The VoteNet
baseline often fails when the objects are close to each other.

Fig. 9 shows the results of hill climbing, compared to the
output of MCSS and manual annotations. The hill climb-
ing algorithm tends to choose large object proposals when-
ever available, leading to more simplistic solutions that of-
ten misses the finer details. Using fitness for the scoring

function does not consider the occlusions between objects
and results in even inferior results.

8. More Qualitative Results
To show that our method can be applied without retrain-

ing nor tuning, we scanned additional scene (the authors’
office and apartment), and applied MCSS. Fig. 10 shows
the scan and the retrieved layouts and objects.
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RGB-D scan Annotations from [2] MCSS output Our manual annotations

Figure 6: RGB-D scans from ScanNet [5], existing manual annotations, output of our MCSS approach, and our new manual
annotations. Note that we retrieve many details despite the noise and missing data in the scans.
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Hill climbing based Hill climbing based
RGB-D scan on fitness on our score function MCSS output our manual annotations

Figure 7: Typical results of the hill climbing optimization for layout estimation and our results. Using our full scoring
function slightly helps but the hill climbing algorithm tends to select large components first and cannot recover when they
are incorrect. By contrast, our MCSS approach recovers detailed layouts.
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RGB-D scan Annotations from [1] MCSS output VoteNet Baseline

Figure 8: RGB-D scans from ScanNet [5], existing manual annotations, output of our MCSS approach, and output of VoteNet
for object 3D pose and model retrieval. Note we retrieve objects (shown in red boxes) that are not in the manual annotations,
and that VoteNet tends to miss objects or recover an incorrect pose or model when objects are close to each other.
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Hill climbing based Hill climbing based Scan2CAD
RGB-D scan on fitness on our score function MCSS output manual annotations

Figure 9: Typical results of the hill climbing optimization for object pose and model retrieval. The Hill climbing algorithm
tends to first focus on large object proposals (shown in black boxes), which may be wrong.

(a) (b)

Figure 10: RGB-D scans of the authors’ office and apartment (a) and the automatically retrieved object models from the full
ShapeNet dataset and layout (b). Our method generalizes well to RGB-D scans outside the ScanNet dataset. Note the large
areas with missing data, in particular for the layout.
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