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ABSTRACT
We study an iterative beam search algorithm for the permutation flowshop (makespan and flow-
time minimization). This algorithm combines branching strategies inspired by recent branch-
and-bounds and a guidance strategy inspired by the LR heuristic. It obtains competitive results
on large instances compared to the state-of-the-art algorithms, reports many new-best-so-far so-
lutions on the VFR benchmark (makespan minimization) and the Taillard benchmark (flowtime
minimization) without using any NEH-based branching or iterative-greedy strategy.
The source code is available at: https://github.com/librallu/dogs-pfsp.

1. Introduction
In the flowshop problem, one has to schedule jobs, where each job has to follow the same route of machines. The

goal is to find a job order that minimizes some criteria. The Permutation FlowShop Problem (PFSP) is a common (and
fundamental) variant that imposes the machines to process jobs in the same order (thus, a permutation of jobs is enough
to describe a solution). The permutation flowshop has been one of the most studied problems in the literature [36, 32]
and has been considered on various industrial applications [17, 43]. We may also note that the permutation flowshop
is at the origin of multiple other variants, for instance, the blocking permutation flowshop [46], the multiobjective
permutation flowshop [21], the distributed permutation flowshop [12], the no-idle permutation flowshop [33], the
permutation flowshop with buffers [29] and many others. Regarding the criteria to minimize, in this paper, we study
two of the most studied objectives: the makespan (minimizing the completion time of the last job on the last machine)
and the flowtime (equivalent to minimizing the sum of completion times of each job on the last machine if we do not
consider the releasing date of the jobs). According to the scheduling notation introduced by Graham, Lawler, Lenstra,
and Rinnooy Kan [14], the makespan criterion is denoted Fm|prmu|Cmax and the flowtime criterion Fm|prmu|∑Ci.Consider the following example instancewithm = 3machines with n = 4 jobs (j1, j2, j3, j4) with the job processingtime matrix P defined as follows where Pj,m indicates the processing time of job j on machine m:

P =
⎛

⎜

⎜

⎝

3 2 1 3
3 4 3 1
2 1 3 2

⎞

⎟

⎟

⎠

One possible solution can be described in Figure 1. This solution has a makespan (completion time of the last job
on the last machine) of 18 and a flowtime (sum of completion times on the last machine) of 8 + 11 + 16 + 18 = 53.

m1

m2

m3

j1

j1

j1

j2

j2

j2

j3

j3

j3

j4

j4

j4
0 8 11 16 18

Figure 1: A solution for the example instance with a job order � = j1, j2, j3, j4
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Regarding resolutionmethods, themakespanminimization permutation flowshop problem has beenmassively studied
over the last 50 years and numerous numerical methods have been applied.

In 1983, Nawaz, Enscore, Ham proposed an insertion-based heuristic (later called NEH) [28]. This heuristic sorts
jobs by some criterion (usually by a non-decreasing sum of processing times), then, it adds them one by one at the
position that minimizes the objective function. The NEH, obtained, at the time, excellent results compared to other
heuristics and can be used to perform greedy algorithms and perturbation-based algorithms as well. It has been largely
considered as an essential component producing excellent solutions for large-scale permutation flowshop instances,
and multiple methods have been built using it. One of the most famous ones is Taillard’s acceleration [40]. It reduces
the cost of inserting a job at all possible positions from O(n2.k) to O(n.k). Considering these results, multiple works
aim to improve the NEH heuristic [11, 27, 15, 4, 37, 45, 26] to quote a few.

The (meta-)heuristics state-of-the-art methods for the makespan minimization usually perform an iterated-greedy
algorithm [39, 8]. Such algorithms start with a NEH heuristic to build an initial solution. Then, destroy a part of it and
reconstruct it using again a NEH heuristic. To the best of our knowledge, the current state-of-the-art algorithms for
the makespan minimization criterion are: the variable block insertion heuristic [16], the best-of-breed Iterated-Greedy
[8], and, an automatically designed algorithm using the EMILI framework [30]. We may note that other algorithms
exist to solve the makespan minimization. To quote a few, we can find some hybrid algorithms [47] (a combination
of the NEH heuristic as a part of the initial population, a genetic algorithm, and simulated annealing to replace the
mutation), memetic algorithms [18], an automatically designed local-search scheme [30].

The (meta-)heuristics methods for the flowtime minimization also involve the NEH heuristic, but some other con-
structive methods as well. For instance, the Liu and Reeve’s method (LR) [25] performs a forward search (i.e. append-
ing jobs at the end of the partial schedule). It was later improved to reduce its complexity from O(n3m) to O(n2m),
later called the FF algorithm [6]. Later, this scheme was integrated into a beam search algorithm (more on that later)
that obtained state-of-the-art performance [7]. Recently, this beam search was integrated within a biased random-key
genetic algorithm as a warm-start procedure [1]. In parallel, the authors of the EMILI framework also proposed an
efficient algorithm for the flowtime minimization. These are, to the best of our knowledge, the state-of-the-art methods
for the flowtime minimization alongside the algorithms proposed in [31].
Regarding exact-methods, a recent branch-and-bound [13] brought light on a bi-directional branching (i.e. construct-

ing the candidate solution from the beginning and the end at the same time) combined with a simple yet efficient
bounding scheme to solve the makespan minimization criterion. The resulting branch-and-bound obtained excellent
performance and was even able to solve to optimality almost all large VFR instances with 20 machines.

Moreover, recently, an iterative beam search has been proposed and, successfully applied to various combinatorial
optimization problems as guillotine 2D packing problems [23, 10], the sequential ordering problem [22] and the longest
common subsequence problem [24]. This iterative beam search scheme, at the beginning of the search, behaves as a
greedy algorithm and then, more and more, as a branch-and-bound algorithm as time goes (it performs a series of beam
search iterations with a geometric growth). It naturally combines search-space reductions from branch-and-bounds and
guidance strategies from classical (meta-)heuristics. Considering the success of recent branch-and-bound branching
schemes and the performance of greedy-like algorithms to solve the permutation flowshop, it would be a natural idea to
combine them. However, to the best of our knowledge, it has not been studied before. This paper aims to fill this gap.
For the makespan criterion, we implemented a bi-directional branching scheme and combined it with a variant of the
LR [25] guidance strategy and use an iterative beam-search algorithm to perform the search. We report competitive
results compared to the state-of-the-art algorithms and find new best-known solutions on many large VFR instances
(we improve the best-known solution for almost all instances with 400 jobs or more and 40 machines or more orders
of magnitude faster than previous works). Note that these results are interesting and new, as almost all the efficient
algorithms in the literature are based on the NEH heuristic or the iterated greedy algorithm. This is not the case for
our algorithm, as it is based on a variant of the LR heuristic and an exact-method branching scheme (bi-directional
branching).

Regarding the flowtime criterion, the bi-directional branching cannot be directly applied (the bounding procedure
is less efficient than for the makespan criterion). However, we show that an iterative beam search with a simple forward
search (modified LR algorithm) is efficient, outperforms the current state-of-the-art algorithms, and, reports new best-
solutions for the Taillard’s benchmark orders of magnitude faster than previous works (almost all solutions for instances
with 100 jobs or more were improved).

This paper is structured as follows: Section 2 presents the iterative beam search strategy. Section 3 presents the
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branching schemes we implement (the forward and bi-directional search). Section 4 present the guides we implement
(the bound guide, the idle-time guide, and mixes between these two first guides) and Section 5 presents the results
obtained by running all variants described in this paper, showing that an iterative beam search combined with a simple
variant of the LR heuristic can outperform the state-of-the-art.

2. The search strategy: Iterative beam search
Beam Search is a tree search algorithm that uses a parameter called the beam size (D). Beam Search behaves like

a truncated Breadth First Search (BrFS). It only considers the best D nodes on a given level. The other nodes are
discarded. Usually, we use the bound of a node to choose the most promising nodes. It generalizes both a greedy
algorithm (if D = 1) and a BrFS (if D = ∞). Figure 2 presents an example of beam search execution with a beam
width D = 3.
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Figure 2: Beam Search Iterations with a beam width D = 3

Beam Search was originally proposed in [35] and used in speech recognition. It is an incomplete (i.e. performing a
partial tree exploration and can miss optimal solutions) tree search parametrized by the beam width D. Thus, it is not
an anytime algorithm. The parameter D allows controlling the quality of the solutions and the execution time. The
larger D is, the longer it will take to reach feasible solutions, and the better these solutions will be.
Recently, a variant of beam search, called iterative beam search, was proposed and obtained state-of-the-art results

on various combinatorial optimization problems [22, 23, 24, 10]. Iterative beam search performs a series of restarting
beam search with geometrically increasing beam size until the time limit is reached. Algorithm 2.1 shows the pseudo-
code of an iterative beam search. The algorithm runs multiple beam-searches starting withD = 1 (line 1) and increases
the beam size (line 8) geometrically. Each run explores the tree with the given parameter D. In the pseudo-code, we
increase geometrically the beam size by 2. This parameter can be tuned, however, we did not notice a significant
variation in the performance while adjusting this parameter. This parameter (that can be a real number) should be
strictly larger than 1 (for the beam to expand) and should not be too large, say less than 3 or 5 (otherwise, the beam
grows too fast and when the time limit is reached, most of the computational time was possibly wasted in the last
incomplete beam, without providing any solution).
Notes about the implementation: We use two mechanisms to limit the memory usage and speed-up the iterative
beam search:
L. Libralesso et al.: Page 3 of 17
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Algorithm 2.1: Iterative Beam Search algorithm
Input: root node

1 D ← 1
2 while stopping criterion not met do
3 Candidates ← {root}
4 while Candidates ≠ ∅ do
5 nextLevel ← ⋃

n∈Candidates children(n)
6 Candidates ← best D nodes among nextLevel
7 end
8 D ← D× 2
9 end

1. A naive way to store the partial job order in each node would be to use an array within each node. However, this
can be costly in memory on larger runs. We propose instead to store a decision tree that stores each decision
taken at each iteration. All nodes contain a pointer towards a node of this tree. One can obtain a solution by
backtracking from a node to the root of this decision tree. This mechanism limit the number of copies performed
within the iterative beam search.

2. When a level of the beam search is expanded, it generates in average n.D nodes but onlyD will be expanded. We
propose a “lazy node compute” that only computes the bounds and guides for a given node, and only computes
the remaining parts (i.e. the fronts) if the node is expanded. This mechanism allows reducing even further the
memory requirements and improve the running times.

The Section 3 presents the branching schemes used to generate children (Algorithm 2.1, line 5) and the Section 4
presents ways to identify the best nodes (Algorithm 2.1, line 6).

3. Branching schemes
We present in this section the two branching schemes we use (i.e. the search tree structure): the forward search

(i.e. constructing the solution from the beginning) and the bi-directional search (i.e. constructing the solution from
the beginning and the end).
3.1. Forward branching

The forward branching assigns jobs at the first free position in the partial sequences (it constructs the solutions from
the beginning). The root corresponds to a situation where the candidate solution contains no job (i.e. c.STARTING = ∅).
Each of the search-tree nodes correspond to the first jobs in the resulting solution. Children of a given node correspond
to a possible insertion of each job that is not scheduled yet at the end of the schedule. Each node stores information
about the partial candidate solution (jobs already added), the release time of each machine, and the partial makespan
(resp. flowtime). A candidate solution (or node) c is considered as “goal” or “feasible” if all jobs are inserted (i.e.
c.STARTING = J ) and contains the following information:

• STARTING: vector of jobs inserted that lead to the candidate c (first jobs of the sequence we want to generate).
• FRONTSTARTING: vector of times when machines are first available after appending STARTING jobs.
Before presenting the forward children-generation, we present how to insert a job j ∈ J in a candidate solution c

(Algorithm 3.1). This insertion can be done in O(m) where m is the number of machines.
Algorithm 3.2 presents the forward branching pseudo-code (how to generate all children of a candidate solution

c).
3.2. Bi-directional branching

To the best of our knowledge, bi-directional branching was first introduced in 1980 [34]. The bi-directional search
appends jobs at the beginning and the end of the candidate solution. It aims to exploit the property of the inverse
problem (job order inverted and machine order inverted). Since then, the efficiency of this scheme has been largely
L. Libralesso et al.: Page 4 of 17
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Algorithm 3.1: Forward search: insertion of job j in candidate solution c (INSERTFORWARD(c, j))
Input: candidate solution (or node) c
Input: job to be inserted j ∈ J

1 c.FRONTSTARTING1 ← c.FRONTSTARTING1 + Pj,1
2 for i ∈ {2,…m} do
3 if c.FRONTSTARTINGi−1 > c.FRONTSTARTINGi then

/* there is some idle time on machine i */
4 idle ← c.FRONTSTARTINGi−1 − c.FRONTSTARTINGi
5 c.FRONTSTARTINGi ← c.FRONTSTARTINGi−1 + Pj,i
6 else

/* no idle time on machine i */
7 c.FRONTSTARTINGi ← c.FRONTSTARTINGi + Pj,i
8 end
9 end

10 c.STARTING ← c.STARTING ∪ {j}

Algorithm 3.2: Forward search children generation from a candidate solution c (CHILDREN(c))
Input: candidate solution (or node) c

1 children ← ∅
2 for j ∈ unscheduled jobs do
3 children ← children ∪ INSERTFORWARD(Copy(c), j)
4 end
5 return children

recognized to solve the makespan minimization optimally [2, 19, 20, 5, 3, 38]. Recently, a parallel branch-and-bound
was successfully used to solve the makespan minimization criterion [13] using this bi-directional scheme. Multiple
ways to decide if the algorithm performs a forward or backward insertionwere studied (for instance, alternating between
a forward insertion and backward insertion). This study found out that the best way is selecting the insertion type that
has the less remaining children after the bounding pruning step. Ties are broken by selecting the type of insertion that
maximizes the sum of the lower bounds, as large lower bounds are usually a more precise estimation.

A candidate solution (or node) c is considered as “goal” or “feasible” if all jobs are inserted (i.e. c.STARTING ∪
c.FINISHING = J ) and contains the following information:

• STARTING: vector of jobs inserted at the beginning of the partial permutation that lead to the candidate c (first
jobs of the sequence we want to generate).

• FRONTSTARTING: vector of times when machines are first available after appending STARTING jobs.
• FINISHING: (inverted) vector of jobs inserted at the end of the partial permutation that lead to the candidate c

(last jobs of the sequence we want to generate).
• FRONTFINISHING: vector of times when machines are no more available after appending STARTING jobs.
Algorithm 3.3 presents the bi-directional branching pseudo-code. We use INSERTFORWARD (Algorithm 3.1) to

insert a job within the STARTING vector and INSERTBACKWARD that inserts a job within the FINISHING vector. This
procedure is almost similar to INSERTFORWARD but iterates over machines in an inverted order (m → 2 instead of
2 → m). It generates children of both the forward and backward search (lines 1-6), prunes nodes that are dominated by
the best-known solution (or upper-bound, lines 7-8). Then, it chooses the scheme that has fewer children (thus, usually
a smaller search-space) and breaks ties by selecting the scheme having the more precise lower bounds (sum of lower
bounds).

L. Libralesso et al.: Page 5 of 17
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Algorithm 3.3: Bi-directional search children generation from a candidate solution c (CHILDREN(c))
Input: candidate solution (or node) c

1 F ← ∅ /* F correspond to the children obtained by forward search */
2 B ← ∅ /* B correspond to the children obtained by backward search */
3 for j ∈ unscheduled jobs do
4 F ← F ∪ INSERTFORWARD(Copy(c), j)
5 B ← B ∪ INSERTBACKWARD(Copy(c), j)
6 end
7 F ← {c|c ∈ F if BOUND(c) < best known solution} /* removing forward nodes dominated by the UB */
8 B ← {c|c ∈ B if BOUND(c) < best known solution} /* removing backward nodes dominated by the UB */
9 if |F| < |B| ∨ (|F| = |B| ∧

∑

c∈F BOUND(c) > ∑

c∈B BOUND(c)) then
10 return F /* choosing the forward search */
11 else
12 return B /* choosing the backward search */
13 end

4. Guides
In the previous section, we discussed the branching rules that define a search tree. As such trees are usually large,

a way to tell which node is apriori more desirable is needed. In branch-and-bounds, this mechanism is called “bound”
and also constitutes an optimistic estimate of the best solution that can be achieved in a given sub-tree. In constructive
meta-heuristics, the guidance strategy is usually not an optimistic estimate, which often allows finding better solutions
(for instance the LR [25] greedy guidance strategy). In this section, we present several guidance strategies for both the
makespan and flowtime criteria.
4.1. Bound

We define the bound guidance strategy for the forward search and makespan minimization as follows. It measures
the first time the last machine (machine m) is available and assumes that each remaining job can be scheduled without
any idle time.

Fgbound = Cmaxf,m + Rm

The bound guidance strategy for the bi-directional search and makespan minimization is defined as follows. It
generalizes the bound for the forward search by also taking into account the backward front. We may note that the
bi-directional branching allows computing a better bound as all machines are relevant for this bound (compared to the
forward branching bound in which only the last machine is used to compute a bound).

FBgbound = max
i∈M

(Cmaxf,i + Ri + Cmaxb,i)

The flowtime bound is defined as the sum of end times for each job scheduled in the forward search. Each time a
job is added to the candidate solution, the flowtime value is modified.
4.2. Idle time

The bound guide is an effective guidance strategy, but is known to be imprecise at the beginning of the search (i.e.
the first levels of the search tree). Another guide that is usually considered as a part of effective greedy strategies (for
instance, the LR heuristic) is to use the idle time of the partial solution. Usually, a solution with a small idle time
reaches good performance on both the makespan or flowtime criteria.

The idle time can be defined as follows:

FBgidle =
∑

i∈M
If,i + Ib,i

L. Libralesso et al.: Page 6 of 17



Iterative beam search algorithms for the permutation flowshop

4.3. Bound and idle time
As it is noted in many works [25, 7], another interesting guidance strategy is to combine both guidance strategies

discussed earlier (i.e. the bound and idle time guides). Indeed, while the bound guide is usually ineffective to guide the
search close to the root, it is very precise close to feasible solutions. Inversely, the idle time is an efficient guide close
to the root but relatively inefficient close to feasible solutions. We study the bound and idle time guide that linearly
reduces the contribution of the idle time to favor the bound, depending on the completion level of the candidate solution.

The bound and idle time guide can be defined as follows, where C is a value used to make the idle time and bound
comparable (C = �|J |

m ):

galpha = � . gbound + (1 − �) . C . gidle

� corresponds to the proportion of jobs added (i.e. 0 if no jobs are added, 1 if all jobs are added). It is defined as
follows: � = |F |+|B|

|J | for the bi-directional branching or � = |F |
|J | for the forward branching.

4.4. Bound and weighted idle time
Another useful remark found in greedy algorithms for the permutation flowshop problem [25] is to add additional

weight to the idle time produced by the first machines at the beginning of the search (as it will have a greater impact on
the objective function than the others). However, the LR heuristic cannot be directly applied in a general tree search
context. Indeed, it is sometimes noted [7] that algorithms like the beam search usually compare nodes from different
parents, thus, it is needed to adapt the LR heuristic guidance that only compares nodes with the same parent. We
propose a simple yet efficient ways to implement similar ideas. The search is guided by a combination of a weighted
idle time and by the bounding procedure.

We present a new weighted idle time guidance strategy that considers the sum of idle time percentage divided by
the position of each front. Doing this, it allows making idle time on the first machines more important to the forward
search and the idle time on the last machines more important to the backward search. The bound and weighted idle
time guide for the bi-directional search is defined as follows:

gwalpha = �.gbound + (1 − �).

(

∑

i∈M

If,i
Cmaxf,i

+
Ib,i

Cmaxb,i

)

.gbound

Notice that, during the bi-directional search, if only one direction is used (all jobs are inserted in the forward part
(resp. backward part)), gwalpha is not defined. We choose to consider that gwalpha = ∞ in this case. Indeed, using both
fronts allows better bounds and guides, thus nodes using only one front should be not chosen over nodes that use both.
4.5. Bound and gap

While solving some instances using a bi-directional branch-and-bound, we may notice that sometimes, the bound
is very tight (thus is also a good guide). We propose a new guide that uses the gap between the best solution found,
and the node bound (UB−LBUB ). If the gap is small (close to 0) the bound will be used more as a guide. If the gap is
large, the idle time will be more considered. The “gap” guide is defined as follows:

ggap =
UB

UB − LB
.gbound +

UB − LB
UB

.

(

∑

i∈M

If,i
Cmaxf,i

+
Ib,i

Cmaxb,i

)

Similarly to gwalpha, ggap = ∞ if only one direction has been taken by the node.

5. Numerical results
In this section, we perform various experiments to evaluate the efficiency of the algorithms discussed in the pre-

vious sections. In Subsection 5.1, we present numerical results obtained in the makespan minimization version and
Subsection 5.2, the results obtained in the flowtime minimization version. All algorithms have been implemented in
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rust (IGbob is available online [8]) and executed on an Intel Xeon Gold 5118 @ 2.30 GHz with 32 GB RAM. As
the CPU has multiple physical cores, we ran 20 tests in parallel. For both objectives, we study the ARPD (Average
Relative Percentage Deviation), defined as follows:

ARPDIa =
∑

i∈I

Mai −M∗
i

M∗
i

. 100
|I|

where I is a set of instances with similar characteristics, Mai corresponds to the objective obtained by algorithm a
on instance i. And M∗

i the reference solution objective for the instance i. The ARPD describes the performance
of a given algorithm on a given instance type. For the makespan minimization (Taillard benchmark), we used the
best upper-bounds provided on Taillard’s website1. For the makespan minimization (VFR benchmark, we used the
best-results provided by [30]2). For the flowtime minimization, we used the best solutions reported in [31].

Some algorithms in the literature do not provide their implementation but provide their ARPDs. To make a fair
comparison, we regularize the CPU times using the PassMark database 3. This database allows to compare the relative
speed of CPU and provide an estimation of the running time of the literature algorithms on our CPU using the CPU fre-
quency, the caches, etc. As all algorithms we compare with are single-threaded, we use the single-thread performance.
More precisely, we used the following conversions:

• For the results presented for IGirms, IGall, ALGirtct and IGA [30], the authors used an AMD Opteron 6272 @
2.1 GHz. Our CPU is estimated to run 2.4 times faster, thus we artificially slow down our CPU by this amount
while comparing with these algorithms. For instance, for a 1000 seconds run of either IGirms, IGall, ALGirtct
or IGA, we compare them to an iterative beam search run with time limit set to 1000

2.4 = 416 seconds.
• For the results presented for MRSILS and BSCH [7], the authors used an Intel Core i7-3770 @ 3.40GHz. Their

CPU is estimated to run 1.17 times faster than our CPU, thus, we artificially speed up our CPU by a factor of
1.17.

• For the results presented for VBIH [16], the authors used an Intel Core i5 @ 3.40GHz. Their CPU is estimated
to run 1.16 times faster than our CPU, thus, we artificially speed up our CPU by a factor of 1.16.

For each instance and each criterion, we ran our algorithms for n.m.45milliseconds, where n is the number of jobs
andm the number of machines as it is usually done in the literature. We evaluate our algorithms on the famous Taillard
benchmark [41] (makespan and flowtime minimization) and on the famous VFR benchmark [44]. The first consists of
sets of 10 instances with a job number n ∈ {20, 50, 100, 200, 500} and machine number m ∈ {5, 10, 20}. The latter
consists of sets of 10 instances with a job number n ∈ {100, 200…800}, a machine number m ∈ {20, 40, 60}. For
each variant, we compare our algorithms with state-of-the-art algorithms.
5.1. Makespan minimization
5.1.1. Iterative beam search performance comparison

In Sections 3,4, we presented multiple variants of the Iterative beam search (forward and bi-directional search, 5
different guides). Figure 3 presents a performance comparison of the different iterative beam search algorithms we
proposed.
Discussions: Regarding the forward branching procedures, we observe a significant improvement by including the
idle time in the guide and obtain the best results by including a weighted idle time within the guide (similarly to the
principles presented in the LR heuristic [25]). Indeed, ARPD ranges from 17% to 25% for the bound guide, and goes
down between 1% to 5% for the idle and gap guides on the VFR instances. We note that the walpha and gap guides do
not contribute much to the algorithm performance, and, surprisingly, simple guides (idle, alpha) perform better.

Regarding the bi-directional branching procedures, we observe that the bound guide performs well in most cases,
from 0.16% to 8% ARPD. This can be explained as the bound gets tighter when the number of machines is low. Using
the idle time in the guide (idle time only or idle time combined with the bound) decreases the performance of the
algorithm (performances ranging from 2% to 17%). It seems to indicate that the idle time is a less efficient guide than

1http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/flowshop.dir/best_lb_up.txt
2http://iridia.ulb.ac.be/supp/IridiaSupp2018-002/
3https://www.cpubenchmark.net/
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Forward search bi-directional search
instance sets bound idle alpha walpha gap bound idle alpha walpha gap
TAI20_5 1.92 1.45 1.31 1.13 1.53 0.0 0.0 0.0 0.0 0.0
TAI20_10 2.12 0.52 0.6 0.1 2.08 0.0 0.27 0.27 0.0 0.0
TAI20_20 3.47 0.8 0.85 0.93 3.79 0.67 2.04 2.02 0.28 0.64
TAI50_5 0.54 0.86 0.97 2.0 1.47 0.0 0.0 0.0 0.06 0.0
TAI50_10 5.6 3.4 3.35 2.61 4.38 0.09 4.42 3.49 0.64 0.09
TAI50_20 9.79 2.32 2.43 2.25 9.59 2.54 7.14 7.36 0.45 2.5
TAI100_5 0.36 0.26 0.29 0.99 1.02 0.0 0.09 0.1 0.08 0.0
TAI100_10 2.79 1.32 1.38 1.55 1.9 0.0 2.42 1.97 0.86 0.0
TAI100_20 11.68 3.29 2.93 2.29 10.01 1.97 8.65 8.62 1.52 1.14
TAI200_10 1.88 1.07 1.13 1.66 1.22 0.0 1.42 1.38 1.74 0.87
TAI200_20 9.62 2.29 2.53 2.04 3.58 1.13 7.79 7.34 1.81 0.59
TAI500_20 3.97 1.6 1.62 1.69 1.87 0.46 4.56 4.58 1.43 0.06
VFR100_20 12.02 3.07 2.94 1.23 11.98 1.79 10.41 9.66 0.43 1.78
VFR100_40 15.5 4.33 4.71 5.55 15.56 4.96 8.87 8.49 1.32 4.99
VFR100_60 15.54 4.59 4.59 8.23 14.92 5.84 8.89 8.24 2.55 5.72
VFR200_20 9.48 2.57 2.4 1.52 6.76 0.9 10.99 10.01 0.97 0.55
VFR200_40 17.86 3.7 3.79 2.15 17.5 4.73 14.79 13.94 -0.26 4.75
VFR200_60 17.84 4.65 5.12 6.68 17.76 6.99 15.04 15.07 1.19 7.06
VFR300_20 6.04 1.72 1.8 1.26 2.52 0.42 7.71 7.29 1.15 0.01
VFR300_40 17.3 3.68 4.14 1.36 17.06 5.2 16.95 15.91 -0.69 5.11
VFR300_60 18.13 5.0 5.49 5.26 18.05 7.56 12.47 12.0 0.41 7.34
VFR400_20 4.88 1.41 1.46 1.25 2.35 0.32 4.31 4.0 0.83 -0.17
VFR400_40 15.31 2.78 3.32 0.61 15.19 4.75 15.87 15.88 -1.04 5.16
VFR400_60 17.5 4.45 4.89 3.5 17.62 7.66 17.34 17.46 -0.45 7.42
VFR500_20 4.11 1.0 1.06 1.14 1.68 0.22 3.18 3.14 0.88 -0.14
VFR500_40 14.69 2.84 3.16 0.35 14.63 5.04 13.67 13.93 -0.69 4.91
VFR500_60 17.08 5.4 5.97 2.22 17.21 8.09 17.08 16.84 -1.04 7.63
VFR600_20 3.33 1.0 0.78 1.06 1.42 0.28 3.53 3.34 0.87 -0.12
VFR600_40 13.89 2.58 2.58 0.53 13.44 5.05 16.17 16.81 -0.57 4.72
VFR600_60 17.47 5.02 5.6 2.01 16.91 8.09 12.78 12.34 -1.15 7.38
VFR700_20 3.05 0.87 0.89 1.34 1.34 0.16 2.45 2.23 0.95 -0.12
VFR700_40 12.82 2.15 2.38 0.0 12.7 4.6 12.59 11.9 -0.44 4.11
VFR700_60 16.22 4.9 4.64 1.2 16.17 7.93 15.99 15.51 -1.38 7.46
VFR800_20 2.8 0.81 0.84 1.19 1.07 0.21 2.12 2.05 0.78 -0.11
VFR800_40 11.05 2.2 2.25 0.16 11.0 4.08 14.59 13.62 -0.46 3.9
VFR800_60 15.45 4.61 4.99 0.36 15.87 7.84 16.04 16.35 -1.42 7.67

Figure 3: Average Relative Percentage Deviation (ARPD) of all the presented algorithms on the Taillard and VFR instances
for the makespan minimization version. Bold values indicate that the algorithm obtained significantly better results than
the other 9 algorithms according to the Wilcoxon signed-rank test with a 95% confidence interval (time limit: n.m.90∕2).

the bound for this branching strategy. Finally, using the weighted idle time proves to be a significant bonus and largely
improves the quality of the solutions, from −1.42% to 2.55% ARPD. The gap guide also allows improving the results
obtained by the bound guide. These results show that the bi-directional search with the walpha guide performs well
on most instances (especially those with a high number of machines) and the gap guide performs well on instances
with fewer machines. Thus, we use these algorithms to compare with the state-of-the-art algorithms.
5.1.2. Comparison with the state-of-the-art algorithms

The best performing algorithms in the literature are: The Variable Block Insertion Heuristic (VBIH) [16], the
Best-of-Breed Iterated Greedy algorithm (IGbob) [8], and, the Iterated Greedy designed using the EMILI framework
(IGirms) [30]. Figure 4 compares the performance of our algorithms with the VBIH algorithm. VBIH results are
obtained from the supplementary materials of [16]. CPU times are regularized to make a fair comparison. We do not
include results on the Taillard dataset as the authors of VBIH only compared it using the VFR benchmark. Figure 5
compares the performance of our algorithms with the IGirms algorithm. IGirms results are obtained from the supple-

L. Libralesso et al.: Page 9 of 17



Iterative beam search algorithms for the permutation flowshop

mentary materials of [30]4. IGirms authors provide their ARPD values but not the solutions obtained for each instance
(thus, we cannot apply theWilcoxon signed-rank test). Figure 6 compares the performance of our algorithms compared
to the IGbob algorithm [8]. As the authors provide their source-code, we executed their algorithm on our machine.
Figure 7 presents Pareto diagrams showing the time/performance trade off of our algorithms and the state-of-the-art
algorithms for 2 of the largest instance families (VFR800_20, VFR800_60).

n.m.30∕2 CPU-regularized ms n.m.60∕2 CPU-regularized ms n.m.90∕2 CPU-regularized ms
instance set VBIH IBS walpha IBS gap VBIH IBS walpha IBS gap VBIH IBS walpha IBS gap

VFR100_20 0.31 0.56 1.92 0.26 0.43 1.78 0.06 0.43 1.78
VFR100_40 0.52 1.66 5.57 0.46 1.43 5.29 0.24 1.32 4.99
VFR100_60 0.65 3.04 6.59 0.58 2.75 6.15 0.29 2.55 5.72
VFR200_20 0.22 1.08 0.72 0.2 1.03 0.55 0.09 0.97 0.55
VFR200_40 0.57 0.07 5.47 0.52 -0.16 5.12 0.24 -0.26 4.75
VFR200_60 0.61 1.52 7.45 0.58 1.23 7.28 0.29 1.19 7.06
VFR300_20 0.21 1.2 0.12 0.17 1.15 0.01 0.12 1.15 0.01
VFR300_40 0.53 -0.6 5.41 0.49 -0.69 5.11 0.31 -0.69 5.11
VFR300_60 0.66 0.66 7.76 0.62 0.41 7.34 0.33 0.41 7.34
VFR400_20 0.16 0.91 -0.01 0.13 0.86 -0.09 0.04 0.83 -0.17
VFR400_40 0.47 -0.84 5.81 0.43 -0.93 5.31 0.21 -1.04 5.16
VFR400_60 0.58 -0.11 8.04 0.54 -0.24 8.04 0.2 -0.45 7.42
VFR500_20 0.13 0.91 -0.04 0.12 0.88 -0.14 0.05 0.88 -0.14
VFR500_40 0.55 -0.66 5.12 0.49 -0.68 4.91 0.3 -0.69 4.91
VFR500_60 0.41 -0.61 7.92 0.37 -0.79 7.68 0.15 -1.04 7.63
VFR600_20 0.12 0.89 -0.1 0.11 0.87 -0.12 0.07 0.87 -0.12
VFR600_40 0.5 -0.52 4.83 0.38 -0.57 4.72 0.23 -0.57 4.72
VFR600_60 0.64 -1.01 7.38 0.5 -1.15 7.38 0.27 -1.15 7.38
VFR700_20 0.1 1.01 -0.11 0.06 0.98 -0.12 0.04 0.95 -0.12
VFR700_40 0.42 -0.39 4.14 0.29 -0.44 4.11 0.17 -0.44 4.11
VFR700_60 0.56 -1.2 7.7 0.41 -1.38 7.46 0.31 -1.38 7.46
VFR800_20 0.07 0.82 -0.08 0.06 0.8 -0.1 0.03 0.78 -0.11
VFR800_40 0.32 -0.38 3.99 0.3 -0.4 3.9 0.22 -0.46 3.9
VFR800_60 0.41 -1.29 7.76 0.37 -1.37 7.76 0.28 -1.42 7.67

Figure 4: Comparison of Average Relative Percentage Deviation (ARPD) with VBIH. Bold values indicate that the algorithm
obtained significantly better results than the others according to the Wilcoxon signed-rank test with a 95% confidence
interval (makespan minimization).

Discussions: From Tables 4,5,6, we remark that the walpha iterative beam search perform significantly better on
large instances (more than 500 jobs and 40 machines). It often reports negative ARPD (meaning that it was able
to consistently report new-best-known solutions compared to IGirms), even on short computation times. Notice, on
the Pareto diagrams 7, that the iterative beam searches find better solutions in shorter computation times on large
instances than all the reported state-of-the-art results. We also notice that the CPU time to strictly improve the best-
known solutions by Iterative Beam Search has a median of 25 seconds on VFR_800_60 class (83 times faster than the
time limit), and 13 seconds on the VFR_800_40 class (106 times faster than the time limit).
5.2. Flowtime minimization
5.2.1. Comparison with the state-of-the-art algorithms

The best performing algorithms in the literature are: IGA [31], ALGirtct [30], MRSILS(BSCH) [7] and Shake-LS
[1]. Figure 8 compares our algorithms with ALGirtct and IGA with the results presented in [30]. Figure 9 compares
our algorithms with MRSILS(BSCH). For both tables, the authors provide their ARPD values but not the solutions
obtained for each instance (thus, we cannot apply the Wilcoxon signed-rank test). Figure 7 presents Pareto diagrams
to evaluate our algorithms with state-of-the-art algorithms. Finally, the authors of Shake-LS report the best results
obtained by their algorithm (30 independent runs of 1 hour). We do not directly compare our running times (that

4http://iridia.ulb.ac.be/supp/IridiaSupp2018-002/
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n.m.60∕2 CPU-regularized ms n.m.120∕2 CPU-regularized ms n.m.240∕2 CPU-regularized ms
instance set IGirms IBS walpha IBS gap IGirms IBS walpha IBS gap IGirms IBS walpha IBS gap
TAI20_5 0.03 0.0 0.0 0.02 0.0 0.0 0.01 0.0 0.0
TAI20_10 0.01 0.0 0.07 0.01 0.0 0.03 0.01 0.0 0.0
TAI20_20 0.01 0.45 0.75 0.01 0.3 0.66 0.01 0.28 0.64
TAI50_5 0.0 0.1 0.0 0.0 0.08 0.0 0.0 0.06 0.0
TAI50_10 0.3 1.02 0.11 0.28 0.89 0.1 0.25 0.64 0.09
TAI50_20 0.47 0.62 2.92 0.39 0.52 2.81 0.34 0.45 2.5
TAI100_5 0.0 0.09 0.0 0.0 0.08 0.0 0.0 0.08 0.0
TAI100_10 0.03 1.18 0.0 0.03 1.07 0.0 0.02 0.86 0.0
TAI100_20 0.62 1.65 1.42 0.52 1.52 1.15 0.44 1.52 1.14
TAI200_10 0.03 2.24 1.05 0.03 1.95 0.94 0.03 1.74 0.87
TAI200_20 0.66 1.88 0.92 0.57 1.85 0.7 0.51 1.81 0.59
TAI500_20 0.29 1.49 0.18 0.26 1.47 0.09 0.24 1.43 0.06
VFR100_20 0.57 0.56 2.06 0.42 0.43 1.88 0.29 0.43 1.78
VFR100_40 0.67 1.66 5.57 0.49 1.43 5.29 0.35 1.32 4.99
VFR100_60 0.64 3.04 6.59 0.48 2.75 6.15 0.34 2.55 5.72
VFR200_20 0.45 1.08 0.72 0.32 1.03 0.55 0.22 0.97 0.55
VFR200_40 0.79 0.07 5.47 0.52 -0.16 5.12 0.3 -0.26 4.75
VFR200_60 0.74 1.82 7.85 0.5 1.49 7.45 0.28 1.19 7.06
VFR300_20 0.35 1.24 0.13 0.24 1.2 0.1 0.17 1.15 0.01
VFR300_40 0.7 -0.48 5.75 0.48 -0.6 5.41 0.24 -0.69 5.11
VFR300_60 0.77 1.08 7.97 0.53 0.66 7.76 0.29 0.41 7.34
VFR400_20 0.21 0.91 -0.01 0.16 0.86 -0.07 0.12 0.83 -0.17
VFR400_40 0.62 -0.84 5.81 0.42 -0.93 5.31 0.22 -1.04 5.16
VFR400_60 0.68 0.07 8.37 0.46 -0.19 8.04 0.23 -0.45 7.42
VFR500_20 0.17 0.95 -0.0 0.13 0.91 -0.14 0.09 0.88 -0.14
VFR500_40 0.54 -0.66 5.12 0.37 -0.68 4.91 0.2 -0.69 4.91
VFR500_60 0.61 -0.61 7.92 0.41 -0.79 7.68 0.21 -1.04 7.63
VFR600_20 0.17 0.92 -0.08 0.13 0.89 -0.1 0.09 0.87 -0.12
VFR600_40 0.52 -0.49 5.41 0.34 -0.52 4.83 0.17 -0.57 4.72
VFR600_60 0.62 -0.69 7.59 0.42 -1.01 7.38 0.21 -1.15 7.38
VFR700_20 0.14 1.01 -0.11 0.1 0.98 -0.11 0.07 0.95 -0.12
VFR700_40 0.48 -0.37 4.33 0.31 -0.39 4.14 0.15 -0.44 4.11
VFR700_60 0.57 -1.06 7.95 0.37 -1.2 7.7 0.19 -1.38 7.46
VFR800_20 0.15 0.82 -0.08 0.1 0.8 -0.1 0.07 0.78 -0.11
VFR800_40 0.46 -0.38 3.99 0.29 -0.4 3.9 0.14 -0.46 3.9
VFR800_60 0.51 -1.11 7.94 0.32 -1.29 7.76 0.15 -1.42 7.67

Figure 5: Comparison of Average Relative Percentage Deviation (ARPD) with IGirms using the ARPD presented in the
literature [30]. CPU times are regularized as described in Section 5 (makespan minimization).

are much shorter), but we are still able to report many new-best-known solutions in Appendix B showing that our
algorithm can compete with Shake-LS. All the algorithms presented above perform their experiments on the Taillard
dataset [41].
Discussion: We observe that the iterative beam search performs well for many instances and finds new-best-known
solutions. Compared to existing beam search in the literature [7], our beam search has a simpler guidance strategy that
only considers the flowtime of the partial solution and an estimation of the idle time. It also has a geometric growth
that allows regularly improving the best-so-far solution during the search (anytime performance).

It is worth noticing that IBS reports better ARPDs on all instance classes compared to MRSILS(BSCH), IGA, or
ALGirtct (Figures 9,8). IBS also provides better ARPD on all instance classes with 100 jobs or more than BSCH, with
similar running times (Figures 9,10). We may also note that there exists some work that provide some acceleration
to insertion-based algorithms (thus IGA or MRSILS could benefit from it) [9]. This work could provide a speed-up
up to 3 times faster. However, despite this speed-up, it is unlikely that either IGA or MRSILS can outperform the
iterative beam search. Indeed, for IGA, on instances with 100 jobs or more, the iterative beam search provides better
L. Libralesso et al.: Page 11 of 17
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n.m.30∕2 ms n.m.45∕2 ms n.m.90∕2 ms
instance set IGbob IBS walpha IBS gap IGbob IBS walpha IBS gap IGbob IBS walpha IBS gap
TAI20_5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TAI20_10 0.0 0.0 0.07 0.0 0.0 0.03 0.0 0.0 0.0
TAI20_20 0.0 0.34 0.72 0.0 0.34 0.66 0.0 0.28 0.64
TAI50_5 0.0 0.08 0.0 0.0 0.08 0.0 0.0 0.06 0.0
TAI50_10 0.34 1.02 0.11 0.32 0.89 0.1 0.3 0.64 0.09
TAI50_20 0.46 0.55 2.81 0.43 0.55 2.81 0.33 0.45 2.5
TAI100_5 0.0 0.09 0.0 0.0 0.09 0.0 0.0 0.08 0.0
TAI100_10 0.03 1.18 0.0 0.02 1.07 0.0 0.02 0.86 0.0
TAI100_20 0.63 1.65 1.24 0.58 1.65 1.24 0.54 1.52 1.14
TAI200_10 0.03 2.22 1.05 0.03 1.95 0.94 0.03 1.74 0.87
TAI200_20 0.67 1.88 0.92 0.64 1.85 0.92 0.54 1.81 0.59
TAI500_20 0.27 1.47 0.09 0.27 1.47 0.09 0.24 1.43 0.06
VFR100_20 0.61 0.56 1.92 0.55 0.56 1.92 0.47 0.43 1.78
VFR100_40 0.73 1.66 5.57 0.68 1.43 5.29 0.52 1.32 4.99
VFR100_60 0.8 3.04 6.59 0.65 2.75 6.15 0.48 2.55 5.72
VFR200_20 0.45 1.08 0.72 0.42 1.05 0.63 0.28 0.97 0.55
VFR200_40 0.85 0.07 5.47 0.69 -0.16 5.12 0.52 -0.26 4.75
VFR200_60 0.8 1.82 7.85 0.65 1.49 7.45 0.43 1.19 7.06
VFR300_20 0.44 1.24 0.13 0.35 1.2 0.12 0.27 1.15 0.01
VFR300_40 0.73 -0.6 5.41 0.6 -0.6 5.41 0.43 -0.69 5.11
VFR300_60 0.79 0.66 7.76 0.67 0.66 7.76 0.48 0.41 7.34
VFR400_20 0.27 0.91 -0.01 0.2 0.86 -0.07 0.16 0.83 -0.17
VFR400_40 0.61 -0.84 5.81 0.49 -0.93 5.31 0.28 -1.04 5.16
VFR400_60 0.64 0.07 8.37 0.53 -0.19 8.04 0.32 -0.45 7.42
VFR500_20 0.21 0.91 -0.04 0.19 0.91 -0.1 0.14 0.88 -0.14
VFR500_40 0.6 -0.66 5.12 0.49 -0.68 5.12 0.32 -0.69 4.91
VFR500_60 0.45 -0.61 7.92 0.36 -0.75 7.68 0.2 -1.04 7.63
VFR600_20 0.17 0.92 -0.09 0.14 0.89 -0.1 0.1 0.87 -0.12
VFR600_40 0.4 -0.52 4.83 0.3 -0.52 4.83 0.16 -0.57 4.72
VFR600_60 0.55 -1.01 7.38 0.44 -1.01 7.38 0.27 -1.15 7.38
VFR700_20 0.12 1.01 -0.11 0.1 0.98 -0.11 0.08 0.95 -0.12
VFR700_40 0.39 -0.37 4.33 0.31 -0.39 4.14 0.16 -0.44 4.11
VFR700_60 0.45 -1.06 7.95 0.36 -1.2 7.7 0.2 -1.38 7.46
VFR800_20 0.1 0.82 -0.08 0.08 0.8 -0.1 0.06 0.78 -0.11
VFR800_40 0.36 -0.38 3.99 0.27 -0.4 3.9 0.15 -0.46 3.9
VFR800_60 0.45 -1.11 7.94 0.35 -1.29 7.76 0.21 -1.42 7.67

Figure 6: Comparison of Average Relative Percentage Deviation (ARPD) with IGbob. Bold values indicate that the
algorithm obtained significantly better results than the others according to the Wilcoxon signed-rank test with a 95%
confidence interval (makespan minimization).

ARPDs than the IGA more than 200 times faster (see 10). For MRSILS, the iterative beam search outperforms its
ARPDs even before its initialization (BSCH) finishes (see 9). Moreover, IBS only requires a fraction of the time limit
to report new-best-known solutions. Indeed, for the TAI_500_20 class, the median time required to report new-best-
known solutions is of 25 seconds while the time limit is of 450 seconds, thus 18 times faster (56 times faster for the
TAI_200_20 class). For these reasons, this speed-up mechanism is certainly not enough for insertion-based algorithms
to outperform iterative beam search.

6. Conclusions & perspectives
In this paper, we present some iterative beam search algorithms applied to the permutation flowshop problem

(makespan and flowtime minimization). These algorithms use branching strategies inspired by the LR heuristic (for-
ward branching) and recent branch-and-bound schemes [13] (bi-directional branching). We compare several guidance
strategies (starting from the bound as commonly done inmost branch-and-bounds) to more advanced ones (LR-inspired
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(a) Aggregated results for VFR800_20_X instances (b) Aggregated results for VFR800_60_X instances
Figure 7: solution-quality/regularized-CPU time Pareto diagram comparing IBS algorithms with the state-of-the-art meta-
heuristics on the largest VFR instances (makespan minimization).

n.m.30 n.m.60 n.m.120
instance set IGA ALGirtct IBS alpha IGA ALGirtct IBS alpha IGA ALGirtct IBS alpha

TAI20_5 0.15 0.0 0.0 0.15 0.0 0.0 0.15 0.0 0.0
TAI20_10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TAI20_20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TAI50_5 0.64 0.47 0.13 0.54 0.38 0.12 0.48 0.31 0.11
TAI50_10 1.1 0.51 0.1 1.04 0.41 0.07 0.99 0.35 0.07
TAI50_20 0.72 0.45 0.17 0.66 0.35 0.13 0.61 0.29 0.12
TAI100_5 1.17 0.99 -0.14 1.08 0.89 -0.15 0.99 0.81 -0.16
TAI100_10 1.49 1.03 -0.33 1.37 0.9 -0.38 1.29 0.79 -0.4
TAI100_20 1.54 1.15 -0.21 1.4 0.97 -0.3 1.3 0.83 -0.3
TAI200_10 1.27 0.86 -1.01 1.17 0.73 -1.07 1.09 0.64 -1.1
TAI200_20 1.09 0.7 -1.66 0.92 0.53 -1.72 0.8 0.39 -1.75
TAI500_20 0.49 0.63 -2.33 0.42 0.42 -2.39 0.36 0.24 -2.47

Figure 8: Comparison of Average Relative Percentage Deviation (ARPD) with ALGirtct and IGA for the flowtime mini-
mization variant (Taillard benchmark, flowtime minimization)

guidance). We show that the combination of all of these components obtains state-of-the-art performance on large in-
stances. Furthermore, we report 111 new-best-so-far solutions for the permutation flowshop (makespan minimization)
on the open instances of the VFR benchmark and 58 new-best-so-far solutions for the permutation flowshop (flowtime
minimization) on the open instances of the Taillard benchmark 1 to 2 orders of magnitude faster than previous works.
These algorithms compare, and sometimes perform better, than the algorithms based on the NEH branching scheme
(which is usually considered as “the most efficient constructive heuristic for the problem” [8]) and the iterated greedy
algorithm (again considered as “the most efficient approximate algorithm for the problem” [8]). We believe that the
performance of the bi-directional branching combined to the iterative beam search highlighted in this paper could draw
the interest of the community for these techniques as they are rather unexplored, although simple and efficient. On the
makespan minimization, we recommend using an iterative beam search on large instances (300 jobs or more) and an
iterated greedy algorithm on instances with less than 300 jobs to obtain state-of-the-art performance on all the bench-
mark instances. Studying these techniques leads to a few other questions: we considered the iterative beam search
and showed that it is competitive with classical meta-heuristics for the permutation flowshop. However, many others
exist. For instance Iterative Memory Bounded A* [10, 23], Beam Stack Search [48], Anytime Column Search [42].
To the best of our knowledge, they have not been tested yet for the permutation flowshop. In this paper, we studied the
makespan and flowtime minimization criteria and achieved competitive results. Many more flowshop variants have
been studied. For instance, the blocking flowshop, the distributed permutation flowshop and many others. It could be
interesting to assess the performance of the LR-based beam search on these variants.
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instance set BSCH IBS alpha MRSILS(BSCH) IBS alpha
TAI20_5 1.25 0.91 0.01 0.0
TAI20_10 0.75 1.27 0.0 0.0
TAI20_20 0.75 1.44 0.0 0.0
TAI50_5 0.75 0.63 0.28 0.12
TAI50_10 1.04 1.66 0.47 0.07
TAI50_20 1.48 1.73 0.63 0.12
TAI100_5 0.3 -0.0 0.22 -0.15
TAI100_10 0.57 0.06 0.27 -0.38
TAI100_20 1.14 0.58 0.83 -0.3
TAI200_10 -0.61 -0.92 -0.71 -1.07
TAI200_20 -0.76 -1.29 -0.83 -1.72
TAI500_20 -1.87 -2.39 -1.9 -2.39

Figure 9: Comparison of Average Relative Percentage Deviation (ARPD) with BSCH and MRSILS(BSCH) (flowtime mini-
mization). We compare IBS with BSCH using the same time when BSCH finishes. We compare IBS with MRSILS(BSCH)
with the same running times (n.m.30 CPU-regularized ms)

(a) Aggregated results for TAI500_20_X instances (b) Aggregated results for TAI200_20_X instances
Figure 10: solution-quality/regularized-CPU time Pareto diagram comparing IBS algorithms with the state-of-the-art
meta-heuristics on the largest Taillard instances (flowtime minimization).
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A. Notations
• J : all the jobs
• M : all the machines
• n: job number (n = |J |)
• m: machine number (m = |M|)
• F (resp. B): all the jobs scheduled in the prefix (resp. suffix)
• CmaxF ,i: first availability of machine i in the forward search
• CmaxB,i: first availability of machine i in the backward search
• Ri: remaining processing time on machine i. Ri = ∑

j∈J⧵{F∪B} pij

• If,i: total idle time on machine i in the forward search (If,i = Cmaxf,i −
∑

j∈F pi,j)
• Ib,i: total idle time on machine i in the backward search (Ib,i = Cmaxb,i −

∑

j∈B pi,j)
• �: proportion of scheduled jobs. � = |F |+|B|

|J | on bi-directional branching or � = |F |
|J | on forward branching.

• gbound: guidance function based on the bound (makespan or flowtime)
• gidle: guidance function based only by the idle time
• galpha: guidance function based on both the bound and idle time
• gwalpha: guidance function based on both the bound and the proportion of idle time in the partial solution
• ggap: guidance function based on both the gap, bound, and weighted idle time

B. Detailed numerical results
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instance best-known IGrms VBIH GmysBB IGbob IBS_bimin_walpha IBS_bimin_gap time_to_improve_bks (s)

VFR100_20_1 6.121 6.176 6.173 6.121 6.188 6.163 6.229 -
VFR100_20_2 6.119 6.119 6.221 6.224 6.282 6.282 6.350 -
VFR100_20_3 6.157 6.267 6.227 6.157 6.221 6.231 6.296 -
VFR100_20_4 6.173 6.210 6.264 6.173 6.237 6.250 6.287 -
VFR100_20_5 6.221 6.223 6.285 6.221 6.268 6.319 6.404 -
VFR100_20_6 6.247 6.260 6.401 6.247 6.301 6.333 6.445 -
VFR100_20_7 6.074 6.274 6.074 6.358 6.419 6.394 6.561 -
VFR100_20_8 6.023 6.411 6.328 6.023 6.091 6.091 6.149 -
VFR100_20_9 6.074 6.074 6.125 6.286 6.345 6.345 6.443 -
VFR100_20_10 6.048 6.324 6.267 6.048 6.136 6.175 6.266 -
VFR100_40_1 7.840 7.840 7.846 - 7.836 7.947 8.223 -
VFR100_40_2 7.894 7.894 7.894 - 7.981 8.014 8.294 -
VFR100_40_3 7.913 7.957 7.913 - 7.893 7.963 8.261 -
VFR100_40_4 7.889 7.889 7.997 - 7.920 7.981 8.240 -
VFR100_40_5 7.895 7.895 7.993 - 8.002 8.045 8.357 -
VFR100_40_6 7.968 7.968 7.980 - 8.013 8.096 8.415 -
VFR100_40_7 7.957 7.988 7.957 - 7.982 8.117 8.369 -
VFR100_40_8 7.888 7.956 7.888 - 7.951 8.084 8.355 -
VFR100_40_9 7.917 7.936 7.917 - 7.899 7.963 8.344 -
VFR100_40_10 7.853 7.853 7.976 - 7.912 8.014 8.266 -
VFR100_60_1 9.326 9.326 9.353 - 9.366 9.618 9.898 -
VFR100_60_2 9.349 9.547 9.349 - 9.550 9.698 10.071 -
VFR100_60_3 9.403 9.513 9.403 - 9.315 9.596 9.802 -
VFR100_60_4 9.316 9.316 9.431 - 9.394 9.521 9.912 -
VFR100_60_5 9.366 9.366 9.630 - 9.422 9.628 9.861 -
VFR100_60_6 9.346 9.391 9.346 - 9.642 9.867 10.111 -
VFR100_60_7 9.523 9.622 9.523 - 9.367 9.609 9.944 -
VFR100_60_8 9.326 9.326 9.488 - 9.530 9.766 10.055 -
VFR100_60_9 9.507 9.507 9.572 - 9.502 9.730 10.046 -
VFR100_60_10 9.480 9.480 9.567 - 9.555 9.755 10.083 -
VFR200_20_1 11.181 11.271 11.272 11.181 11.289 11.405 11.260 -
VFR200_20_2 11.254 11.286 11.294 11.254 11.227 11.424 11.161 87.95
VFR200_20_3 11.188 11.227 11.188 11.233 11.311 11.362 11.509 -
VFR200_20_4 11.090 11.297 11.143 11.090 11.193 11.243 11.220 -
VFR200_20_5 11.076 11.175 11.310 11.076 11.168 11.254 11.274 -
VFR200_20_6 11.152 11.152 11.365 11.208 11.321 11.355 11.339 -
VFR200_20_7 11.128 11.301 11.128 11.266 11.364 11.432 11.438 -
VFR200_20_8 11.041 11.347 11.091 11.041 11.118 11.250 11.041 -
VFR200_20_9 11.008 11.107 11.294 11.008 11.085 11.243 11.278 -
VFR200_20_10 11.069 11.069 11.240 11.193 11.276 11.352 11.322 -
VFR200_40_1 13.077 13.077 13.124 - 13.125 13.049 13.653 297.70
VFR200_40_2 13.134 13.134 13.222 - 13.072 12.968 13.552 9.99
VFR200_40_3 13.027 13.027 13.163 - 13.201 13.135 13.740 -
VFR200_40_4 12.974 13.197 12.974 - 13.140 13.102 13.709 -
VFR200_40_5 13.061 13.111 13.061 - 12.964 12.899 13.518 9.39
VFR200_40_6 12.927 12.927 13.220 - 13.056 13.026 13.672 -
VFR200_40_7 13.023 13.023 13.132 - 13.190 13.156 13.825 -
VFR200_40_8 13.033 13.188 13.033 - 13.136 13.067 13.782 -
VFR200_40_9 13.089 13.089 13.146 - 13.078 13.024 13.703 18.29
VFR200_40_10 13.042 13.042 13.049 - 13.166 13.049 13.865 -
VFR200_60_1 14.861 14.861 14.906 - 14.893 14.946 15.931 -
VFR200_60_2 14.881 14.881 15.134 - 14.900 14.965 15.771 -
VFR200_60_3 14.890 14.890 14.968 - 15.129 15.446 16.410 -
VFR200_60_4 15.042 15.103 15.042 - 14.969 15.162 15.989 -
VFR200_60_5 14.918 14.918 14.996 - 15.028 15.249 16.138 -
VFR200_60_6 15.006 15.020 15.006 - 14.948 14.951 15.939 -
VFR200_60_7 14.894 14.909 14.894 - 14.982 15.063 16.094 -
VFR200_60_8 14.925 14.956 14.925 - 14.901 15.094 15.831 -
VFR200_60_9 14.852 14.852 14.908 - 14.926 15.026 15.908 -
VFR200_60_10 14.867 14.867 14.909 - 14.908 15.122 15.777 -

Figure 11: Makespan minimization, all VFR instances with 100 and 200 jobs
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instance best-known IGrms VBIH GmysBB IGbob IBS_bimin_walpha IBS_bimin_gap time_to_improve_bks (s)

VFR300_20_1 15.996 16.092 16.089 15.996 16.097 16.230 16.153 -
VFR300_20_2 16.129 16.794 16.129 16.409 16.491 16.641 16.470 -
VFR300_20_3 16.010 16.465 16.168 16.010 16.136 16.336 16.136 -
VFR300_20_4 16.052 16.115 16.307 16.052 16.167 16.307 16.052 -
VFR300_20_5 16.095 16.125 16.095 21.399 16.320 16.520 16.278 -
VFR300_20_6 16.021 16.293 16.244 16.021 16.086 16.271 16.021 -
VFR300_20_7 16.062 16.062 16.369 16.188 16.224 16.343 16.188 -
VFR300_20_8 16.228 16.228 16.324 16.287 16.372 16.498 16.407 -
VFR300_20_9 16.203 16.363 16.798 16.203 16.339 16.489 16.347 -
VFR300_20_10 16.298 16.298 16.483 16.780 16.794 17.063 16.780 -
VFR300_40_1 18.127 18.127 18.199 - 18.124 18.009 19.157 41.01
VFR300_40_2 18.253 18.253 18.348 - 18.360 18.175 19.199 20.50
VFR300_40_3 18.227 18.341 18.227 - 18.342 18.201 19.176 330.15
VFR300_40_4 18.276 18.276 18.343 - 18.240 18.095 19.146 10.71
VFR300_40_5 18.181 18.181 18.340 - 18.357 18.127 19.124 165.08
VFR300_40_6 18.320 18.320 18.396 - 18.336 18.157 19.323 10.27
VFR300_40_7 18.250 18.250 18.290 - 18.306 18.171 19.204 81.82
VFR300_40_8 18.261 18.283 18.261 - 18.209 18.119 19.148 10.18
VFR300_40_9 18.238 18.238 18.286 - 18.274 18.073 19.323 10.13
VFR300_40_10 18.226 18.226 18.373 - 18.240 18.107 19.023 40.76
VFR300_60_1 20.397 20.397 20.483 - 20.417 20.409 21.826 -
VFR300_60_2 20.290 20.290 20.328 - 20.249 20.193 21.667 469.89
VFR300_60_3 20.224 20.224 20.293 - 20.305 20.468 21.751 -
VFR300_60_4 20.200 20.244 20.200 - 20.311 20.309 21.538 -
VFR300_60_5 20.235 20.235 20.280 - 20.183 20.176 21.624 240.90
VFR300_60_6 20.156 20.156 20.358 - 20.272 20.244 21.600 -
VFR300_60_7 20.180 20.180 20.319 - 20.351 20.414 21.754 -
VFR300_60_8 20.285 20.285 20.405 - 20.314 20.490 21.959 -
VFR300_60_9 20.291 20.291 20.385 - 20.397 20.339 21.715 -
VFR300_60_10 20.249 20.326 20.249 - 20.355 20.407 22.067 -
VFR400_20_1 20.952 21.027 21.042 20.952 21.054 21.167 20.994 -
VFR400_20_2 21.346 21.524 21.428 21.346 21.429 21.578 21.375 -
VFR400_20_3 21.237 21.411 21.237 21.379 21.426 21.668 21.379 -
VFR400_20_4 21.125 21.426 21.528 21.125 21.247 21.482 21.167 -
VFR400_20_5 16.245 21.231 21.188 16.245 21.513 21.671 21.413 -
VFR400_20_6 21.075 21.497 21.599 21.075 21.183 21.274 21.168 -
VFR400_20_7 21.165 21.165 21.264 21.507 21.606 21.832 21.507 -
VFR400_20_8 21.198 21.580 21.293 21.198 21.258 21.441 21.202 -
VFR400_20_9 21.236 21.264 21.526 21.236 21.297 21.460 21.379 -
VFR400_20_10 21.301 21.301 21.411 21.456 21.527 21.618 21.456 -
VFR400_40_1 23.362 23.362 23.393 - 23.380 23.085 24.464 9.00
VFR400_40_2 23.467 23.504 23.467 - 23.293 23.004 24.523 1.50
VFR400_40_3 23.257 23.257 23.269 - 23.439 23.200 24.538 145.30
VFR400_40_4 23.213 23.405 23.213 - 23.255 22.893 24.762 2.70
VFR400_40_5 23.220 23.220 23.298 - 23.166 22.901 24.563 2.28
VFR400_40_6 23.141 23.141 23.415 - 23.305 23.034 24.456 71.52
VFR400_40_7 23.290 23.292 23.290 - 23.391 23.157 24.672 17.94
VFR400_40_8 23.364 23.364 23.424 - 23.243 23.012 24.207 2.23
VFR400_40_9 23.266 23.266 23.606 - 23.492 23.265 24.507 581.74
VFR400_40_10 23.380 23.457 23.380 - 23.578 23.278 24.597 72.10
VFR400_60_1 25.392 25.392 25.395 - 25.458 25.214 27.437 51.26
VFR400_60_2 25.618 25.618 25.707 - 25.533 25.436 27.475 210.50
VFR400_60_3 25.498 25.498 25.638 - 25.626 25.516 27.751 -
VFR400_60_4 25.590 25.590 25.669 - 25.683 25.554 27.361 835.99
VFR400_60_5 25.407 25.608 25.407 - 25.636 25.587 27.565 -
VFR400_60_6 25.415 25.615 25.415 - 25.331 25.246 26.753 207.96
VFR400_60_7 25.358 25.358 25.603 - 25.410 25.173 27.114 435.55
VFR400_60_8 25.372 25.372 25.673 - 25.616 25.364 27.632 826.64
VFR400_60_9 25.541 25.541 25.658 - 25.639 25.474 27.443 831.93
VFR400_60_10 25.549 25.622 25.549 - 25.626 25.494 27.624 832.37

Figure 12: Makespan minimization, all VFR instances with 300 and 400 jobs
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instance best-known IGrms VBIH GmysBB IGbob IBS_bimin_walpha IBS_bimin_gap time_to_improve_bks (s)

VFR500_20_1 26.253 26.355 26.374 26.253 26.380 26.560 26.276 -
VFR500_20_2 26.043 26.043 26.359 26.555 26.620 26.846 26.575 -
VFR500_20_3 26.080 26.631 26.080 26.268 26.363 26.591 26.269 -
VFR500_20_4 25.994 26.357 26.759 25.994 26.086 26.307 25.996 -
VFR500_20_5 26.058 26.058 26.411 26.703 26.733 27.099 26.703 -
VFR500_20_6 26.325 26.729 26.409 26.325 26.428 26.555 26.325 -
VFR500_20_7 26.305 26.395 26.305 26.313 26.401 26.666 26.413 -
VFR500_20_8 26.217 26.401 26.430 26.217 26.305 26.401 26.327 -
VFR500_20_9 26.034 26.302 26.034 26.345 26.416 26.646 26.368 -
VFR500_20_10 26.345 26.410 26.641 26.345 26.052 26.292 26.024 0.10
VFR500_40_1 28.362 28.362 28.402 - 28.367 28.110 30.049 7.04
VFR500_40_2 28.526 28.585 28.526 - 28.574 28.306 29.752 14.09
VFR500_40_3 28.503 28.503 28.615 - 28.436 28.234 29.620 3.57
VFR500_40_4 28.374 28.374 28.579 - 28.562 28.327 29.824 224.73
VFR500_40_5 28.432 28.477 28.432 - 28.530 28.276 29.762 28.21
VFR500_40_6 28.543 28.543 28.553 - 28.347 28.111 29.535 1.72
VFR500_40_7 28.248 28.248 28.488 - 28.545 28.294 29.900 -
VFR500_40_8 28.486 28.486 28.640 - 28.481 28.305 30.130 28.13
VFR500_40_9 28.435 28.435 28.644 - 28.629 28.404 30.344 56.22
VFR500_40_10 28.613 28.640 28.613 - 28.592 28.322 29.697 7.14
VFR500_60_1 30.609 30.609 30.682 - 30.683 30.263 33.168 82.11
VFR500_60_2 30.828 30.828 30.852 - 30.623 30.328 32.593 40.86
VFR500_60_3 30.597 30.597 30.793 - 30.775 30.494 33.437 322.57
VFR500_60_4 30.763 30.823 30.763 - 30.817 30.512 32.712 88.27
VFR500_60_5 30.788 30.796 30.788 - 30.751 30.371 33.339 80.75
VFR500_60_6 30.700 30.700 30.826 - 30.836 30.507 33.488 161.27
VFR500_60_7 30.829 30.829 30.837 - 30.715 30.406 32.988 20.69
VFR500_60_8 30.733 30.733 30.805 - 30.751 30.389 32.901 81.03
VFR500_60_9 30.729 30.729 30.866 - 30.754 30.393 33.224 160.51
VFR500_60_10 30.664 30.785 30.664 - 30.833 30.552 33.044 1292.38
VFR600_20_1 31.303 31.359 31.372 31.303 31.361 31.523 31.303 -
VFR600_20_2 31.107 31.107 31.429 31.281 31.386 31.684 31.281 -
VFR600_20_3 31.372 31.372 31.487 31.374 31.414 31.670 31.374 -
VFR600_20_4 31.407 31.412 31.407 31.417 31.491 31.679 31.440 -
VFR600_20_5 31.323 31.480 31.696 31.323 31.396 31.657 31.476 -
VFR600_20_6 31.387 31.387 31.527 31.613 31.685 31.973 31.613 -
VFR600_20_7 31.461 31.668 31.523 31.461 31.527 31.885 31.461 -
VFR600_20_8 31.414 31.483 31.532 31.414 31.489 31.700 31.425 -
VFR600_20_9 31.107 31.465 31.107 31.473 31.528 31.931 31.477 -
VFR600_20_10 31.021 31.514 31.397 31.021 31.107 31.264 31.021 -
VFR600_40_1 33.618 33.618 33.683 - 33.598 33.337 35.264 5.24
VFR600_40_2 33.396 33.396 33.713 - 33.362 33.155 34.765 5.08
VFR600_40_3 33.356 33.356 33.584 - 33.591 33.404 35.364 -
VFR600_40_4 33.401 33.612 33.401 - 33.522 33.231 34.777 10.23
VFR600_40_5 33.477 33.477 33.626 - 33.307 33.157 34.809 2.53
VFR600_40_6 33.307 33.307 33.545 - 33.598 33.420 35.006 -
VFR600_40_7 33.298 33.552 33.298 - 33.502 33.320 35.204 -
VFR600_40_8 33.492 33.492 33.567 - 33.303 33.052 34.590 1.21
VFR600_40_9 33.282 33.282 33.473 - 33.445 33.268 35.346 81.09
VFR600_40_10 33.405 33.422 33.405 - 33.417 33.257 35.186 20.35
VFR600_60_1 35.863 35.863 35.976 - 35.867 35.450 38.094 29.20
VFR600_60_2 35.804 35.804 35.917 - 35.796 35.450 38.503 58.71
VFR600_60_3 35.791 35.791 36.000 - 35.958 35.584 38.501 234.12
VFR600_60_4 35.896 35.896 36.004 - 35.855 35.454 38.457 29.13
VFR600_60_5 35.883 35.883 35.943 - 35.888 35.466 38.104 58.15
VFR600_60_6 35.929 35.929 35.965 - 35.844 35.370 38.848 58.26
VFR600_60_7 35.828 35.828 35.894 - 36.009 35.500 38.517 117.99
VFR600_60_8 35.882 35.882 35.987 - 35.932 35.368 38.558 28.91
VFR600_60_9 35.784 35.784 35.943 - 35.906 35.466 39.184 118.13
VFR600_60_10 35.923 35.935 35.923 - 35.926 35.366 38.297 14.48

Figure 13: Makespan minimization, all VFR instances with 500 and 600 jobs
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Iterative beam search algorithms for the permutation flowshop

instance best-known IGrms VBIH GmysBB IGbob IBS_bimin_walpha IBS_bimin_gap time_to_improve_bks (s)

VFR700_20_1 36.285 36.354 36.388 36.285 36.355 36.759 36.294 -
VFR700_20_2 36.220 36.376 36.519 36.220 36.316 36.721 36.226 -
VFR700_20_3 36.303 36.303 36.380 36.419 36.509 36.829 36.534 -
VFR700_20_4 36.361 36.487 36.556 36.361 36.385 36.782 36.361 -
VFR700_20_5 36.379 36.379 36.645 36.496 36.578 36.867 36.496 -
VFR700_20_6 36.547 36.547 36.597 36.556 36.607 36.899 36.556 -
VFR700_20_7 36.492 36.610 36.492 36.540 36.608 36.901 36.540 -
VFR700_20_8 36.315 36.609 36.315 36.418 36.484 36.775 36.418 -
VFR700_20_9 36.212 36.481 36.386 36.212 36.296 36.576 36.215 -
VFR700_20_10 36.290 36.290 36.316 36.362 36.374 36.800 36.362 -
VFR700_40_1 38.720 38.720 38.767 - 38.707 38.501 40.141 6.94
VFR700_40_2 38.460 38.647 38.460 - 38.521 38.246 40.378 6.92
VFR700_40_3 38.499 38.499 38.597 - 38.371 38.127 40.543 3.36
VFR700_40_4 38.393 38.393 38.490 - 38.611 38.386 40.352 446.18
VFR700_40_5 38.440 38.593 38.440 - 38.449 38.250 39.973 6.87
VFR700_40_6 38.355 38.430 38.355 - 38.388 38.203 39.721 55.24
VFR700_40_7 38.336 38.336 38.817 - 38.312 38.056 40.051 13.58
VFR700_40_8 38.287 38.287 38.569 - 38.773 38.691 40.102 -
VFR700_40_9 38.712 38.766 38.712 - 38.527 38.411 39.661 1.62
VFR700_40_10 38.452 38.452 38.560 - 38.632 38.564 40.012 -
VFR700_60_1 41.125 41.125 41.192 - 41.107 40.438 44.623 39.30
VFR700_60_2 41.093 41.093 41.173 - 41.028 40.588 43.069 39.34
VFR700_60_3 41.008 41.008 41.120 - 41.038 40.450 43.595 20.02
VFR700_60_4 40.961 40.961 41.167 - 41.068 40.472 43.830 84.80
VFR700_60_5 41.070 41.070 41.159 - 41.057 40.367 44.522 40.20
VFR700_60_6 40.734 41.022 40.734 - 40.970 40.396 44.039 78.92
VFR700_60_7 40.994 40.994 41.305 - 40.629 40.028 43.977 9.84
VFR700_60_8 40.572 40.572 41.111 - 41.170 40.650 44.205 -
VFR700_60_9 41.121 41.121 41.186 - 40.980 40.367 44.611 10.14
VFR700_60_10 40.930 40.930 41.002 - 41.100 40.480 43.981 79.81
VFR800_20_1 41.413 41.477 41.479 41.413 41.501 41.764 41.415 -
VFR800_20_2 41.282 41.561 41.399 41.282 41.337 41.611 41.282 -
VFR800_20_3 41.319 41.337 41.426 41.319 41.389 41.577 41.319 -
VFR800_20_4 41.362 41.362 41.705 41.375 41.426 41.892 41.433 -
VFR800_20_5 41.426 41.426 41.961 41.626 41.705 41.939 41.626 -
VFR800_20_6 41.395 41.702 41.395 41.919 41.953 42.334 41.919 -
VFR800_20_7 41.342 41.959 41.435 41.342 41.379 41.666 41.352 -
VFR800_20_8 41.379 41.379 41.783 41.390 41.420 41.950 41.394 -
VFR800_20_9 41.429 41.429 41.568 41.697 41.783 42.033 41.697 -
VFR800_20_10 41.345 41.753 41.345 41.489 41.564 41.844 41.489 -
VFR800_40_1 43.456 43.456 43.466 - 43.446 43.219 45.354 18.08
VFR800_40_2 43.592 43.592 43.596 - 43.557 43.324 45.309 4.42
VFR800_40_3 43.483 43.483 43.743 - 43.465 43.233 45.066 4.40
VFR800_40_4 43.512 43.512 43.794 - 43.675 43.430 44.981 287.31
VFR800_40_5 43.557 43.557 43.638 - 43.657 43.510 45.670 1152.49
VFR800_40_6 43.484 43.635 43.484 - 43.575 43.226 45.450 8.90
VFR800_40_7 43.549 43.549 43.666 - 43.445 43.307 45.455 2.18
VFR800_40_8 43.458 43.458 43.643 - 43.572 43.335 44.615 143.53
VFR800_40_9 43.548 43.548 43.630 - 43.505 43.387 45.269 8.94
VFR800_40_10 43.497 43.497 43.575 - 43.588 43.321 45.091 36.06
VFR800_60_1 46.130 46.130 46.279 - 46.126 45.402 49.927 51.59
VFR800_60_2 46.004 46.004 46.258 - 46.176 45.551 49.520 51.86
VFR800_60_3 46.164 46.164 46.261 - 46.160 45.494 49.057 12.82
VFR800_60_4 46.108 46.108 46.164 - 46.148 45.454 49.133 25.92
VFR800_60_5 46.035 46.035 46.288 - 46.110 45.382 49.600 25.74
VFR800_60_6 46.061 46.101 46.061 - 46.151 45.384 50.056 25.74
VFR800_60_7 46.110 46.110 46.257 - 46.060 45.423 49.273 12.75
VFR800_60_8 45.986 45.986 46.279 - 46.207 45.465 49.679 54.92
VFR800_60_9 46.136 46.136 46.211 - 46.254 45.591 50.036 102.95
VFR800_60_10 46.226 46.226 46.232 - 46.026 45.304 50.099 12.84

Figure 14: Makespan minimization, all VFR instances with 700 and 800 jobs
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Iterative beam search algorithms for the permutation flowshop

instance best-known ALGirtct shake-LS IBS_alpha time_to_improve_bks
TA20_5_0 14.033 14.033 14.033 14.033 -
TA20_5_1 15.151 15.151 15.151 15.151 -
TA20_5_2 13.301 13.301 13.301 13.301 -
TA20_5_3 15.447 15.447 15.447 15.447 -
TA20_5_4 13.529 13.529 13.529 13.529 -
TA20_5_5 13.123 13.123 13.123 13.123 -
TA20_5_6 13.548 13.548 13.548 13.548 -
TA20_5_7 13.948 13.948 13.948 13.948 -
TA20_5_8 14.295 14.295 14.295 14.295 -
TA20_5_9 12.943 12.943 12.943 12.943 -
TA20_10_0 20.911 20.911 20.911 20.911 -
TA20_10_1 22.440 22.440 22.440 22.440 -
TA20_10_2 19.833 19.833 19.833 19.833 -
TA20_10_3 18.710 18.710 18.710 18.710 -
TA20_10_4 18.641 18.641 18.641 18.641 -
TA20_10_5 19.245 19.245 19.245 19.245 -
TA20_10_6 18.363 18.363 18.363 18.363 -
TA20_10_7 20.241 20.241 20.241 20.241 -
TA20_10_8 20.330 20.330 20.330 20.330 -
TA20_10_9 21.320 21.320 21.320 21.320 -
TA20_20_0 33.623 33.623 33.623 33.623 -
TA20_20_1 31.587 31.587 31.587 31.587 -
TA20_20_2 33.920 33.920 33.920 33.920 -
TA20_20_3 31.661 31.661 31.661 31.661 -
TA20_20_4 34.557 34.557 34.557 34.557 -
TA20_20_5 32.564 32.564 32.564 32.564 -
TA20_20_6 32.922 32.922 32.922 32.922 -
TA20_20_7 32.412 32.412 32.412 32.412 -
TA20_20_8 33.600 33.600 33.600 33.600 -
TA20_20_9 32.262 32.262 32.262 32.262 -

Figure 15: Flowtime minimization, all Taillard instances TAI1 to TAI40
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Iterative beam search algorithms for the permutation flowshop

instance best-known ALGirtct shake-LS IBS_alpha time_to_improve_bks
TA50_5_0 64.802 64.802 64.802 64.886 -
TA50_5_1 68.051 68.051 68.051 68.074 -
TA50_5_2 63.162 63.162 63.162 63.162 -
TA50_5_3 68.226 68.226 68.226 68.226 -
TA50_5_4 69.351 69.351 69.351 69.490 -
TA50_5_5 66.841 66.841 66.841 66.841 -
TA50_5_6 66.253 66.253 66.253 66.287 -
TA50_5_7 64.332 64.332 64.332 64.386 -
TA50_5_8 62.981 62.981 62.981 63.317 -
TA50_5_9 68.770 68.770 68.770 68.834 -
TA50_10_0 87.114 87.114 87.114 87.140 -
TA50_10_1 82.820 82.820 82.820 82.820 -
TA50_10_2 79.931 79.931 79.931 79.987 -
TA50_10_3 86.446 86.446 86.446 86.446 -
TA50_10_4 86.377 86.377 86.377 86.388 -
TA50_10_5 86.587 86.587 86.587 86.650 -
TA50_10_6 88.750 88.750 88.750 89.046 -
TA50_10_7 86.727 86.727 86.727 86.727 -
TA50_10_8 85.441 85.441 85.441 85.548 -
TA50_10_9 87.998 87.998 87.998 88.077 -
TA50_20_0 125.831 125.831 125.831 125.831 -
TA50_20_1 119.247 119.247 119.247 119.270 -
TA50_20_2 116.459 116.459 116.459 116.536 -
TA50_20_3 120.261 120.261 120.261 120.923 -
TA50_20_4 118.184 118.184 118.184 118.379 -
TA50_20_5 120.586 120.586 120.586 120.586 -
TA50_20_6 122.880 122.880 122.880 123.120 -
TA50_20_7 122.489 122.489 122.489 122.583 -
TA50_20_8 121.872 121.872 121.872 121.872 -
TA50_20_9 123.954 123.954 123.954 124.158 -
TA100_5_0 253.167 253.167 253.167 252.687 0.12
TA100_5_1 241.925 241.989 241.925 241.593 0.95
TA100_5_2 237.832 237.832 237.832 237.289 0.06
TA100_5_3 227.522 227.738 227.522 227.345 0.56
TA100_5_4 240.301 240.301 240.301 240.138 0.91
TA100_5_5 232.247 232.247 232.342 231.973 0.56
TA100_5_6 240.366 240.366 240.366 240.111 0.94
TA100_5_7 230.866 230.866 230.945 230.290 0.03
TA100_5_8 247.526 247.771 247.526 247.362 1.88
TA100_5_9 242.933 242.933 242.933 243.209 -
TA100_10_0 298.385 298.385 298.385 296.990 0.30
TA100_10_1 273.674 273.674 273.674 273.014 0.57
TA100_10_2 288.114 288.114 288.114 287.420 2.07
TA100_10_3 301.044 301.044 301.044 299.467 0.29
TA100_10_4 284.148 284.148 284.233 283.260 0.29
TA100_10_5 269.686 269.686 269.686 268.324 1.98
TA100_10_6 279.463 279.463 279.463 279.565 -
TA100_10_7 290.703 290.703 290.908 289.334 0.12
TA100_10_8 301.970 301.970 301.970 301.005 1.05
TA100_10_9 291.283 291.283 291.283 290.038 0.54

Figure 16: Flowtime minimization, all Taillard instances TAI41 to TAI80
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Iterative beam search algorithms for the permutation flowshop

instance best-known ALGirtct shake-LS IBS_alpha time_to_improve_bks
TA100_20_0 365.463 365.463 365.463 365.333 43.03
TA100_20_1 372.001 372.001 372.449 370.605 2.43
TA100_20_2 370.027 370.027 370.027 368.971 2.47
TA100_20_3 372.393 372.393 372.393 371.738 43.56
TA100_20_4 368.915 368.915 368.915 367.702 4.80
TA100_20_5 370.908 370.908 370.908 369.821 1.19
TA100_20_6 373.408 373.408 373.408 372.176 9.85
TA100_20_7 384.525 384.525 384.525 382.766 4.99
TA100_20_8 374.423 374.423 374.423 372.817 2.42
TA100_20_9 379.296 379.296 379.296 378.566 20.59
TA200_10_0 1.041.023 1.042.452 1.041.023 1.035.999 1.90
TA200_10_1 1.028.775 1.028.775 1.028.828 1.024.752 1.82
TA200_10_2 1.042.357 1.043.631 1.042.357 1.038.814 7.20
TA200_10_3 1.023.188 1.023.188 1.025.564 1.019.215 1.85
TA200_10_4 1.028.506 1.028.506 1.028.963 1.024.759 1.76
TA200_10_5 998.340 998.686 998.340 994.661 0.96
TA200_10_6 1.042.570 1.042.570 1.042.570 1.038.357 0.43
TA200_10_7 1.035.915 1.035.945 1.035.915 1.033.303 1.94
TA200_10_8 1.015.280 1.015.560 1.015.280 1.011.878 1.86
TA200_10_9 1.021.633 1.021.633 1.021.865 1.017.386 0.91
TA200_20_0 1.219.341 1.221.768 1.219.341 1.205.091 0.63
TA200_20_1 1.231.880 1.231.880 1.233.161 1.224.536 4.28
TA200_20_2 1.254.822 1.254.822 1.259.605 1.248.190 4.22
TA200_20_3 1.226.654 1.226.654 1.228.027 1.217.648 8.63
TA200_20_4 1.215.411 1.215.411 1.215.854 1.203.033 1.06
TA200_20_5 1.218.757 1.219.698 1.218.757 1.207.770 2.12
TA200_20_6 1.234.330 1.237.014 1.234.330 1.224.492 1.06
TA200_20_7 1.233.257 1.233.257 1.240.105 1.222.559 1.05
TA200_20_8 1.220.058 1.222.431 1.220.058 1.212.081 8.53
TA200_20_9 1.234.864 1.234.864 1.235.113 1.229.039 4.33
TA500_20_0 6.558.109 6.562.522 6.558.109 6.529.840 50.11
TA500_20_1 6.678.713 6.678.713 6.679.339 6.642.805 24.67
TA500_20_2 6.624.644 6.632.299 6.624.644 6.585.806 12.42
TA500_20_3 6.633.622 6.633.622 6.646.006 6.601.961 24.71
TA500_20_4 6.587.110 6.609.322 6.587.110 6.556.492 24.96
TA500_20_5 6.602.685 6.605.982 6.602.685 6.563.223 6.12
TA500_20_6 6.576.047 6.576.412 6.576.047 6.530.456 12.44
TA500_20_7 6.628.915 6.628.915 6.629.065 6.594.903 25.15
TA500_20_8 6.569.013 6.569.013 6.587.638 6.532.742 50.58
TA500_20_9 6.614.629 6.614.629 6.623.849 6.589.096 49.59

Figure 17: Flowtime minimization, all Taillard instances TAI81 to TAI120
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