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Abstract

We propose a novel method for reconstructing floor plans
from noisy 3D point clouds. Our main contribution is a
principled approach that relies on the Monte Carlo Tree
Search (MCTS) algorithm to maximize a suitable objective
function efficiently despite the complexity of the problem.
Like previous work, we first project the input point cloud to
a top view to create a density map and extract room propos-
als from it. Our method selects and optimizes the polygo-
nal shapes of these room proposals jointly to fit the density
map and outputs an accurate vectorized floor map even for
large complex scenes. To do this, we adapt MCTS, an al-
gorithm originally designed to learn to play games, to se-
lect the room proposals by maximizing an objective function
combining the fitness with the density map as predicted by
a deep network and regularizing terms on the room shapes.
We also introduce a refinement step to MCTS that adjusts
the shape of the room proposals. For this step, we propose
a novel differentiable method for rendering the polygonal
shapes of these proposals. We evaluate our method on the
recent and challenging Structured3D and Floor-SP datasets
and show a significant improvement over the state-of-the-
art, without imposing any hard constraints nor assumptions
on the floor plan configurations.

1. Introduction

Scene understanding from images is one of the main top-
ics in computer vision, as it aims both at replicating one of
the key abilities of human beings and producing solutions
for many applications such as robotics or augmented re-
ality. We focus here on the creation of a structured floor
plan where each room of an indoor environment is repre-
sented as a polygon with one edge per wall. Many types of
input have been considered: Monocular perspective color
views [18, 19, 22, 31], panoramic views [32, 38, 40], depth

Point cloud Density map Our result
Figure 1: Given a density map i.e. the top view of the 3D
point cloud of a floor, we retrieve an accurate floor map that
successfully recovers a variety of room shapes.

maps [36, 39]. Here, we focus on unstructured 3D point
clouds as in [2, 7, 23, 26], as they can now be generated
easily with an RGB-D camera and can cover an entire floor.

To estimate the floor plan from a given point cloud,
[7, 23] proposes to first project the point cloud into a vir-
tual top view to create a ’density map’, as the walls, the
main features for creating the floor map, appear relatively
clearly in the density map. As shown in Figure 1, the den-
sity maps can be noisy, and it is still challenging to repre-
sent the rooms as vector drawings with a minimal number
of edges as a human designer would do especially for non-
Manhattan floor maps. To deal with this complexity, [7]
proposes a graph-based solution with a sound energy term
but still assumes the existence of some dominant wall direc-
tions in the scene.

In this paper, we also aim at estimating a floor plan from
a density map. Our contribution is a method, which we call
MonteFloor, that is conceptually simple and robust and re-
turns high-quality floor plans. Figure 1 shows an example
from the Floor-SP test set that demonstrates we can recon-
struct complex floor maps, including very large ones with
complex room shapes without having to tune hyperparame-
ters.

Like [7], our method starts from room proposals gener-
ated by Mask-RCNN [17] from the density map. However,
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the way we handle these room proposals is fundamentally
different from [7]. Where [7] adjusts the room walls and
corners in a greedy fashion, we select the correct room pro-
posals jointly while adjusting their locations and shapes,
guided by a learned scoring function.

This is possible thanks to two main contributions.
Our first contribution is based on the Monte Carlo Tree
Search (MCTS) algorithm [3, 8]. MCTS is a stochas-
tic algorithm that efficiently explores search trees and has
been used for example in AlphaGo and AlphaZero to select
moves when playing Go or other games with high combina-
torials [30]. We use it to search among the room proposals
the ones actually belonging to the correct floor plan. In our
case, a move corresponds to the selection of a room pro-
posal. In contrast with other tree search algorithms, MCTS
is based only on the evaluations of leaves. This means that
we can select a set of proposals based on how well they
explain the density map together. After evaluating a leaf,
MCTS updates a score in the visited nodes, which will be
used to guide the next tree explorations.

To evaluate how well a set of proposals explains an in-
put density map, we introduce an objective function that
combines a ’metric score’ predicted by a deep network and
regularization terms. This network takes as input the den-
sity map and an image of the selected proposals to predict
the Intersection-over-Union between the selected proposals
and the ground truth. The regularization terms encourage
the selected room proposals to be in contact with each other
without overlapping, and angles close to 90◦ to be exactly
90◦—note this is different from enforcing Manhattan World
conditions as other angles are also accepted.

Moreover, to adapt MCTS and obtain accurate plan es-
timates, we extended it by adding a refinement step before
evaluating the objective function. The step performs an op-
timization of the objective function and adjusts the shapes
of the selected room proposals to better fit the density map.
This is made possible by our second contribution, which is
a novel differentiable method to optimize the shapes of 2D
polygons. Note that very recently, [16] has also used MCTS
for a scene understanding problem. However, it proposes a
straightforward application of MCTS. By contrast, we rely
on a learned objective function suitable to our problem, and
we introduce an optimization step to obtain accurate esti-
mates.

While we focus in this work on floor plan estimation,
we believe our approach is general and could be applied to
other scene understanding problems, as its components are
generic: We start from proposals for the target objects (the
rooms in this case). This step does not have to perform well
to obtain good final results as our MCTS-based algorithm
can deal with many false positives. This algorithm looks for
the final solution by maximizing a data-driven score, which
can thus be easily replaced to adapt to another problem. Our

solution to refine the proposals is more specific to 2D poly-
gons, but could inspire other authors to develop their own
method adapted to their target objects.

To evaluate our method and compare it with Floor-
SP [7], which is the state-of-the-art for our problem, we
first perform experiments on the Structured3D dataset [37]
that contains a variety of complex layout configurations. We
show significant improvements regarding both the accuracy
and time complexity over Floor-SP (after retraining their
method on Structured3D). As the authors of Floor-SP could
not provide the training set for their method (as stated on
their project page 1), we could not re-train our network for
predicting the metric specifically for this dataset, and we
had to use the one trained on Structured3D. Despite this do-
main gap, we achieve better performance on the Floor-SP
test set without imposing any hard constraints nor assump-
tions on the floor plan configurations.

2. Related Work

Early methods for floor plan creation from 3D data re-
lied on basic image processing methods such as histograms
or plane fitting [1, 4, 27, 29, 34, 35]. For example, [27] cre-
ates a floor plan by detecting vertical planes in a 3D point
cloud by building a histogram of the vertical positions of all
measured points. In a similar way, [4] creates a floor plan
from located walls in a 3D point cloud by extracting pla-
nar structures by applying sweeping techniques to identify
Manhattan-World directions. However, these techniques re-
lied heavily on heuristics and were prone to fail on noisy
data.

Significant progress has been made later by using graph-
ical models as in [5, 10, 11, 12, 20]. [10] uses graph-cuts
optimization in a volumetric MRF formulation. However,
the proposed method is vulnerable to noisy data, as regular-
ization in MRFs is based only on pairwise interaction terms.
[20] combines an MRF with Robust Principal Component
Analysis to obtain more compact 3D models. Graphical
models are also used in [12] where layouts and floor plans
are recovered from crowd-sourced image and location data.

Graph-based methods define objective functions made of
unary terms representing the elements of the plan and bi-
nary terms which involve only two elements at a time (here,
the elements are mostly walls). In our case, we use MCTS
as the optimization algorithm. MCTS does not impose re-
strictions on the form of the objective function and we use
an objective function that captures complex constraints. In
particular, the main term of our objective function is a deep
network that considers all the elements at the same time.
Moreover, we complement MCTS by adding a refinement
step to adjust the locations of the elements based on the
same objective function.

1https://github.com/woodfrog/floor-sp

https://github.com/woodfrog/floor-sp


Density map Detected Some room proposals Room selection with MCTS Final result Ground Truth
room segments from polygonization + refinement

of the room segments

Figure 2: Overview of our MonteFloor method. Given a 3D point cloud, we first create a density map of a floor. We
then detect room segments using Mask-RCNN as in Floor-SP [7]. Note the false positive at the bottom of the green segment
on the left hand side. We polygonize each segment in different ways and obtain multiple room proposals from each room
segment. We rely on MCTS and our objective function to select the correct room proposals, and our refinement step to adjust
jointly the shapes of the room proposals to the input density map.

More recent works rely on other optimization tech-
niques [6, 7, 23]. The challenges for these techniques,
however, are the definition of a cost function and the op-
timization procedure. One of these methods called Floor-
Net [23] proposes a deep network for detecting probable
corner locations from a given density map of the scene,
followed by an Integer Programming formulation. How-
ever, incorrect corner detection and misdetections result in
missing or extra walls and rooms. Moreover, the solution
space is restricted to Manhattan scenes and generalizing to
non-Manhattan scenes would lead to a much larger solu-
tion space. By contrast, our approach is scalable, as it relies
on the efficiency of MCTS to reduce the search space, and
can consider Manhattan and non-Manhattan scenes with the
same complexity. It selects room detections that best ex-
plains the input through a global optimization, and is thus
not sensitive to false positives.

The starting point of our method is inspired by Floor-
SP [7], which proposes to first segment room instances, and
then to reconstruct polygonal representations of rooms by
sequentially solving shortest path problems. In their case,
every pixel location in a discretized density map is a node
in a graph that potentially belongs to the polygonal curve of
the room. Wrong segmentations may still lead to an inac-
curate floor plan structure, while we handle incorrect room
segmentation at an early stage. Also, Floor-SP discretizes
the edge directions of rooms and models multiple Manhat-
tan frames per room, while our approach can consider any
angle. It still encourages angles close to 90◦ to be exactly
90◦, which results in better shapes when the rooms actually
follow Manhattan structures while allowing other shapes.
As we will show in the experiments, our approach outper-
forms the accuracy of Floor-SP.

Differentiable Rendering. Some works in 3D com-
puter vision have shown interest in differentiable render-
ing [13, 14, 15, 25, 28, 33]. However, these methods are
focused on the rendering of 3D representations such as point
clouds, voxels, meshes, and implicit 3D representations. In

contrast, in this work we focus on fast differentiable ren-
dering of 2D representations, i.e. polygons, and introduce a
differentiable winding algorithm for rasterization purposes.

3. Method

Figure 2 gives an overview of our MonteFloor method:
Given a 3D point cloud of a scene, we first create a top-
view density map of this point cloud, as explained later in
Section 3.6. We use Mask R-CNN [17] trained to detect
rooms in such density maps and we polygonalize the detec-
tions to obtain a set of room proposals. Some proposals will
correspond, at least coarsely, to actual rooms but others are
only false positives. We use MCTS to find which room pro-
posals make together the best fit to the input density map.
The MCTS search is guided by a ’metric network’ trained
to predict the Intersection-over-Union between the selected
room proposals and the floor map ground truth. Because the
shapes of the correct room proposals from Mask R-CNN
correspond only coarsely to the real rooms, we optimise
their shapes while performing the search in MCTS. This is
done by introducing a differentiable method for rendering
polygonal shapes.

In the following, we detail:
• How exactly we obtain the room proposals;
• How we use MCTS to select the room proposals;
• Our objective function, involving our metric network

and regularization terms;
• How we refine the room proposals’ locations and

shapes within MCTS;
• How exactly we compute the density map given a 3D

point cloud.

3.1. Generating the Room Proposals

We trained Mask R-CNN [17] on the density maps cre-
ated from the training set of the Structured3D dataset [37]
to extract individual room segments from a given density
map. While resulting segments are of high quality, they can
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Figure 3: Building the floor plan tree with MCTS. (a) In our case, one node corresponds to the selection of a room proposal,
or to skipping all the room proposals generated from a room segment. When a node is visited for the first time, MCTS runs
a ’simulation’ step. This step explores randomly the rest of the tree until reaching a leaf, in our case when there is no room
proposal to consider any more. When reaching a leaf, we perform our ’refinement step’, which optimizes the objective
function over the room proposals in the path from the root node to the leaf. The value of the objective function is used to
update the expected score for all the nodes in the path. (b) MCTS builds and explores only a portion of the tree. In contrast
with other tree search algorithms, the pruning of MCTS is based only on the evaluations of leaves, which means that we can
select a set of proposals based on how well they explain the density map together. (c) After few iterations, our MonteFloor
method focuses at, and at the same time optimizes, solutions with promising expected scores. This enables us to quickly
reconstruct an accurate floor plan of the scene, in about 60 seconds for the scene used in this illustration.

still contain false positives, however, they will be filtered by
MCTS. Figure 2 shows an example of room segments and
the room proposals we generate from them. We detail this
process below.

Sometimes, a room is detected as two segments that par-
tially overlap. We thus merge two segments that overlap
significantly (more than 5% in practice) into an additional
room segment, while keeping the two original segments.

In practice, the shapes of the true positive segments
provided by Mask-RCNN do not correspond to the exact
shapes of the rooms, as they are typically too smooth. We
thus polygonize the room segments to generate the room
proposals. For this, we apply the Douglas-Peucker polyg-
onalization algorithm [9] to the contours of the room seg-
ments. This algorithm depends on a parameter ε that con-
trols the simplification of the contour. More exactly, this
parameter is the maximum distance between the original
curve and its approximation. As the exact complexity of
the room shape is unknown at this stage, we generate mul-
tiple proposals from each segment by using different values
for ε. In practice, we take ε = d · L, where d takes different
values in a predefined set D and L is the perimeter of the
segment, with D = {0.04, 0.02, 0.01}. Sometimes, 2 dif-
ferent ε result in the same number of vertices, and we keep
only one of the two polygons.

Even after polygonalization, the shapes of the true pos-
itive room proposals may not correspond yet to the actual
room shapes. To adjust their shapes, we will optimize them
through our objective function. We describe the proposal
selection by MCTS in the next subsection, and the objec-
tive function afterwards.

3.2. Room Proposal Selection with MCTS

MCTS is an algorithm to efficiently explore large trees
where the score to maximize can be evaluated only for the
leaves of the tree. We thus adapted it to select the room
proposals based on an objective function used as the score.
We describe this objective function in the next subsection.

As shown in Figure 3, in our case, a move consists of
selecting one of the room proposals generated by polygo-
nizing one of the room segments. For each room segment,
there is an additional move that consists of not selecting any
of the room proposals from this segment. The root node has
up to |D|+1 children, corresponding to the selection of one
of the |D| room proposals issued from the first room seg-
ment and the absence of selection from this room segment.

The number of nodes of the full tree is at most (|D|+1)k

where k is the number of room segments, and, as k in-
creases, it quickly becomes infeasible to traverse all paths
in the tree. Fortunately, MCTS will grow the tree only as
needed while exploring it and avoids an exhaustive eval-
uation. We rely on the standard Select-Expand-Simulate-
Update strategy, which we describe below briefly for com-
pleteness. For a more detailed description of the MCTS al-
gorithm, we refer the interested reader to the survey in [3].

MCTS algorithm. MCTS stores in the nodes the ex-
pected score of the patch they belong to, and uses them for
guidance towards an optimal selection. As explained below,
the expected score for new nodes is initialized using a simu-
lation step, and can be updated after further exploration. At
every iteration, starting from the root node, the tree is tra-



versed using the standard Upper Confidence Bound (UCB)
criterion to select each node. This criterion depends on the
expected score stored in the nodes and balances exploitation
and exploration.

When reaching a new node, MCTS performs a simula-
tion step to initialize the expected score for this node. This
simulation step explores randomly the rest of the tree until
reaching a leaf, in our case when there is no room proposal
to consider anymore. We can then evaluate the score of the
solution that contains the proposals selected in the path from
the root node to the leaf. We explain in the next paragraph
how we compute this score. The score is used to update the
expected scores stored in the nodes of the path. We pro-
vide more details on our implementation of MCTS in the
supplementary material.

Score and refinement step. To compute the score of a
solution corresponding to the path when reaching a leaf, we
rely on our objective function that will be detailed in the
next subsections. To obtain more accurate results, in addi-
tion to the standard MCTS steps, we introduce a refinement
step that optimizes the objective function, before taking its
value for the score of the solution: The locations and shapes
of the room proposals may not correspond exactly to the
actual rooms, and without this refinement it is possible that
the value of the objective function is relatively low and not
reflecting the actual quality of the selected proposals well.
This refinement step adjusts the locations and shapes of the
room proposals to obtain a more accurate solution.

Objective function. Our objective function can be writ-
ten as:

L(P ) = −λff(D,F (P )) + Lreg(P ) , (1)

where P is a set of room proposals for a solution to evalu-
ate. f(D,F (P )) is our metric network, applied to the input
density map and the floor plan of the room proposals P ,
weighted by λf . Lreg(P ) is a regularization loss. We detail
both terms in the two next subsections. We use −L(P ) as
the score maximized by MCTS.

Final solution inference. After 500 MCTS iterations, we
perform a final traversal through the tree following the
nodes with the highest expected scores, and optimize the se-
lected proposals by minimizing the objective function. For
some rare polygons, the vertices are less than 5 pixels apart
from each other. We merge the corresponding vertices to
obtain the final solution.

3.3. Metric Network

Our metric network f(D,F (P )) evaluates how well a
set P of selected room proposals fits the input density map.

Figure 4: Our metric network. This network takes a den-
sity map and a representation of the floor, colorized for vi-
sualized purposes, as input and outputs a score that mea-
sures how well the floor map fits the input density map. We
train it to predict the Intersection-over-Union between the
estimated floor plan and the ground truth.

As shown in Figure 4, this network has a simple architecture
and takes two inputs: The first input D is the density map.
The second input F (P ) is an image of the room proposals,
which we render using their indices as pixel values:

F (P ) =
∑

i

iR(Pi) , (2)

with R(Pi) is a binary image of Pi, where the pixels inside
Pi are set to 1 and the others to 0.
f outputs only a single value, which should reflect the

fitness between the room proposals and the density map.
We train it to predict the Intersection-over-Union (IOU) be-
tween the selected room proposals and the ground truth
rooms for the density map in a supervised manner using
training data from the Structured3D dataset [37]. More de-
tails on the training procedure can be found in the supple-
mentary material.

3.4. Regularization Loss

The regularization loss Lreg is decomposed into:

Lreg(P ) = λangLang(P ) + λglobLglob(P ) + λ0L0(P ) , (3)

where λang, λglob, and λ0 weight the three terms. We use
the same weights for all the scenes and provide the actual
values in the supplementary material.
Lang(P ) regularizes the angles of the room proposals in

P :

Lang(P ) = −
1

|P |
∑

Pi∈P

1

|Pi|
∑

(u,v,w)∈Pi

log p( ̂(u, v, w)) ,

(4)
where |Pi| denotes the number of vertices in polygon Pi,
(u, v, w) denote any three consecutive vertices of polygon
Pi, and ̂(u, v, w) their angle at vertex v. p(α) is a prior
distribution we assume over the room angles. As shown
in Figure 5, we use a mixture of Gaussian distributions
over their cosine and uniform distributions. It discourages



P F1(P ) per pixel
TV(F1(P ))

(a) (b)

Figure 5: Visualization of the regularization losses. (a)
Prior distribution p(α) on angles discourages flat angles and
encourages right angles, but other angles can still be ac-
cepted. (b) Lglob is based on total variation. Top: When
the room proposals in P are not in contact or overlap, the
Total Variation TV(F1(P )) of their image F1(P ) is large.
Bottom: When the room proposals fit together, the Total
Variation TV(F1(P )) is much lower.

flat angles (0◦ and 180◦), encourages right angles (90◦ and
270◦), and angles between π/6 and 5π/6 and between 7π/6
and−π/6 follow a uniform distribution. More formally, we
take p(α) =

1

Z





G(cosα | cos π6 , σ1) if α ∈]− π
6 ;

π
6 ] ,

η +G(cosα | cos π2 , σ2) if α ∈]π6 ; 5π
6 ] ,

G(cosα | cos 5π
6 , σ1) if α ∈] 5π6 ; 7π

6 ] , and
η +G(cosα | cos π2 , σ2) if α ∈] 7π6 ;−π6 ] ,

(5)
whereG denotes the Gaussian distribution, η is the constant
G(cos π6 | cos π6 , σ1), and Z is a normalization factor. In
practice, we use σ1 = 0.1 and σ2 = 0.08.
Lglob(P ) encourages the room proposals to be in contact

without overlapping. It can be seen in Figure 5 that the Total
Variation (the sum of the absolute values of the gradients)
of an image of the proposals is a good criterion:

Lglob = TV(F1(P )) , (6)

where TV denotes the total variation and F1(P ) is an image
of the proposals computed as

F1(P ) =
∑

i

R(Pi) . (7)

Figure 5 shows that this loss penalizes overlaps and pushes
proposals toward each other, and by doing so, enforces sim-
ilar orientations between the walls of neighbouring rooms.
L0 is used to prevent the proposals to drift from their

initial locations during optimization. We take:

L0(P ) =
1

|P |
∑

Pi∈P
MSE(R(Pi),Mi) , (8)

where Mi is the binary image of the segment that gener-
ated proposal Pi, and MSE(·) compares this image with the
binary image R(Pi) of the proposal.

3.5. Refinement Step and Differentiable Polygon
Rendering

As explained earlier, when MCTS reaches a leaf, we per-
form several optimization steps of the objective function in
Eq. (1) before computing its value and using it as a score
for MCTS. In practice, we use the Adam optimizer [21] for
this task.

To optimize L(P ), we need to make it differentiable.
The only part of it that is not trivially differentiable is the
binary image creation R(Pi) of a room proposal Pi, where
Pi is represented as a polygon. Differentiable rendering
has already been developed [24], however, available imple-
mentations are designed for rendering meshes of 3D trian-
gles. Instead of tweaking these implementations to make
them work on 2D polygons, we developed a much simpler
approach by making the winding number algorithm differ-
entiable. The original winding number algorithm checks
whether a pixel location m is inside a polygon Pi by com-
puting:

W (m,Pi) =
1

2π

∑

(u,v)∈Pi

sign(det(um, vm))(̂umv) , (9)

where (u, v) are any 2 consecutive vertices of Pi and det(·)
is the determinant of vectors um and vm. The sign(·) term
is equal to 1 if angle (̂umv) is between ]0;π] and to -1 if it
is between ]π; 2π[, and 0 otherwise. Hence, for a valid non-
intersecting, closed, and counter-clockwise oriented poly-
gon, W (m,Pi) ∈ {0, 1}, is a step function with value 1 if
m is inside of Pi and 0 otherwise.

To make it differentiable, we use the following expres-
sion instead:

W (m,Pi) =
1

2π

∑

(u,v)∈Pi

c · det(um, vm)

1 + |c · det(um, vm)| (̂umv) .

(10)

The fraction term implements a soft form of the sign
function that measures orientation of the triangle (umv)
with c = 1000 to approximate the step form of the sign
function in a differentiable way. To make rendering more
efficient, we calculate the winding values only for pixel
locations m that are inside the bounding box detected by
Mask R-CNN for the corresponding room segment.

3.6. Computing a Density Map

To obtain the density map D of the scene, we follow a
similar way to the one presented in [7]. Given a registered
set of RGB-D panorama images, we generate a point cloud



of the scene. From the top-view of the scene’s point cloud,
we project the points to fit into a 256 × 256 image space,
such that the top-view perspective remains unchanged and
complete scene remains visible after the projection. The
density value at a given pixel location is the number of
points that projects to the same pixel location. The values
of the density map are finally normalized to range [0, 1].

4. Experiments
In this section, we evaluate our method by comparing

it to Floor-SP [7], the current state-of-the-art in floor plan
reconstruction, on two datasets. We also provide an ablation
study to show the importance of the refinement step for our
method.

4.1. Metrics

To evaluate the quality of recovered floor plans, we first
match the recovered rooms to the ground truth rooms. More
exactly, starting with the largest ground truth room, we find
the matching recovered room with the largest Intersection-
Over-Union (IOU) value. As we believe that the metrics
used in [7] are too permissive for really evaluating the qual-
ity of the compared approach, we made them more strict for
quantitative evaluation:

1. Room metric. This metric is the same as in [7]. A
room polygon is considered to be successfully recov-
ered if it is not overlapping other rooms and if it is
matched with a ground truth room. We allow one pixel
overlap between rooms and hence we do not penalize
room polygons that are touching with this metric.

2. Corner metric. A corner is considered to be success-
fully recovered if its corresponding room polygon is
successfully recovered and it is the closest corner to
any of the corners in the matching ground truth room
polygon, within a distance of 10 pixels. This metric
is inspired by the original metric from [7] that did not
consider if the corner actually belongs to the correct
polygon.

3. Corner angle metric. An angle of a room polygon
is considered to be successfully recovered if its cor-
responding corner is successfully recovered and if the
absolute difference to the corresponding ground truth
angle is less than 5◦.

4.2. Evaluation and Comparison with Floor-SP

Structured3D. We perform a first evaluation on the Struc-
tured3D dataset [37] that contains floor plan annotations for
3500 scenes: 3000 training scenes, 250 validation scenes,
and 250 test scenes. To mimic the standard scene re-
construction pipeline, we project the registered RGB-D

Room Corner Angle MA
Prec Rec Prec Rec Prec Rec Prec Rec

Structured3D
DP (ε = 0.01) 0.93 0.94 0.74 0.79 0.49 0.52 0.72 0.75
Floor-SP [7] 0.89 0.88 0.81 0.73 0.80 0.72 0.83 0.78
MonteFloor (ours) 0.96 0.94 0.89 0.77 0.86 0.75 0.90 0.82

[7] test set
Floor-SP [7] 0.85 0.83 0.72 0.58 0.65 0.52 0.74 0.64
MonteFloor (ours) 0.88 0.85 0.78 0.63 0.68 0.54 0.78 0.67

Table 1: Quantitative results on Structured3D [37] and the
test set from [7]. MA is the average of the three met-
rics (Room, Corner, and Angle). We compare our approach
to a simple Douglas-Peucker polygonization of the room
segments obtained by Mask-RCNN (DP) and to Floor-
SP [7]. Our approach slightly outperforms the other meth-
ods, even though we could not train our metric network on
the training set of [7].

panorama images to obtain the point cloud of the scene. We
process the reconstructions to obtain the training data for
both Mask R-CNN and metric networks. For a fair compar-
ison, we retrained the network used by Floor-SP for predict-
ing the corner- and edge- likelihood maps on the training set
generated from the Structured3D dataset and we replaced
their Mask R-CNN network by ours also trained on Struc-
tured3D.
Floor-SP test set. Unfortunately, the authors of Floor-
SP [7] could not publish the training scenes for their Floor-
SP dataset, but we could evaluate our approach on the 100
publicly available test scenes, which include a large vari-
ety of floor plan configurations. We use the Mask R-CNN
network pretrained on their training set as it was made avail-
able by the authors. However, since we could not train our
metric network on the Floor-SP training set, we had to use
the one trained only on Structured3D. Hence, the Floor-SP
method has an advantage on this dataset.

Table 1 shows the quantitative results on both datasets.
To better demonstrate the benefits of our approach, we also
show the results of simple room detection by polygoniza-
tion of room masks detected by Mask R-CNN with the
Douglas-Peucker (DP) approach that we used to initialize
room proposals. DP obtains very high performance for the
room metric, indicating that Mask R-CNN outputs masks of
good quality most of the time. However, the angle metric
clearly demonstrates that these polygons very often do not
look anything like the actual room shapes.

For Floor-SP, there is a drop in the room metric in com-
parison to the Douglas-Peucker method. This is related to
the containment constraint satisfaction in the Floor-SP ap-
proach that forces the retrieved polygons to contain the seg-
mentation mask completely. If this constraint cannot be en-
forced, the reconstruction will also fail. However, more im-
portantly, the angle metric clearly demonstrates that their
results are still superior to the ones obtained by DP.
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Figure 6: Qualitative results on the Structured3D
dataset [37], best seen in colour. Red arrow: In contrast to
Floor-SP, our approach deals well with false positive detec-
tions. Blue arrows: Compared to Floor-SP, we are able to
model a larger variety of room shapes.

Input Floor-SP Ours Ground Truth

Figure 7: Qualitative results on the test set from [7]. Even
though our metric network was not trained on the Floor-SP
training set, our method still performs slightly better than
Floor-SP on the Floor-SP test set. Red arrow: We remove
false positive room detections. Green arrow: The purple
room in the ground truth appears to be an annotation error.
Blue arrows: Our reconstructions are sometimes more con-
sistent with the input than the manually annotated rooms.

Our approach outperforms both baseline methods by a
large margin as we maintain very high performance on all
metrics. This is true even for the Floor-SP test set, even
though we could not retrain our metric network on the cor-
responding training set.

We improve performance on the room metric in com-
parison to Douglas-Peucker method as our refinement step
adjusts the shapes of the room proposals that may initially
overlap, and the selection by MCTS removes false positives.
In contrast to Floor-SP, our approach benefits from optimiz-
ing directly on polygon shapes that enables us to avoid both

Room Corner Angle MA
Prec Rec Prec Rec Prec Rec Prec Rec

no refin. step 0.95 0.93 0.86 0.76 0.65 0.57 0.82 0.75
w/o Lang 0.96 0.94 0.86 0.75 0.73 0.68 0.85 0.79
w/o Lglob 0.85 0.84 0.78 0.69 0.74 0.66 0.79 0.73
w/o L0 0.92 0.92 0.87 0.76 0.84 0.72 0.88 0.80
w/o f(.) 0.94 0.22 0.89 0.15 0.87 0.15 0.90 0.17
complete 0.96 0.94 0.89 0.77 0.86 0.75 0.90 0.82

Table 2: Ablation study. Removing Lang has a large influ-
ence on the angle metric; Removing Lglob has a large in-
fluence on the locations of the corners; Removing L0 may
result in drift. Our metric network f(·) is crucial for the se-
lection step of MCTS as the other terms are not a suitable
scoring function for the floor plan generation task.

the mask containment and angle discretization constraints.
In addition, we compared the execution time of the

two methods on the same machine. On the Structured3D
dataset, the average computation time for Floor-SP is 785±
549 seconds. In contrast, the average computation time for
our MonteFloor method is 71±40 seconds, and 12±8 sec-
onds when skipping the refinement step. We made similar
observations on the Floor-SP dataset.

Qualitative results. Figures 6 and 7 show some qual-
itative results and demonstrate that our approach is able to
remove false positive detections and retrieve highly accu-
rate polygonal reconstructions of floor plans.

Ablation Study. We performed an ablation study to
evaluate the effectiveness of each individual term of our re-
finement procedure. As shown in Table 2, all of our regular-
ization terms help to retrieve room polygons of better loca-
tions and shapes. The main ablation shows that the metric
network has also a crucial role in our approach. Without
the metric network, the objective function does not enforce
consistency with the input scene. Then choosing a single
correct room in a large scene maximizes precision as there
are indeed no false positives, but minimizes recall.

5. Conclusion
We proposed a method for floor plan estimation from 3D

point clouds. We showed how we could apply the MCTS
algorithm to this problem and how to add a refinement step
to obtain accurate plans in a robust way.

Beyond floor plan estimation, we believe our approach is
general. All that is needed to adapt it to other scene under-
standing problems is (1) a way to generate proposals and (2)
a differentiable function to evaluate the quality of a solution.
We hope our work will inspire researchers to consider prob-
lems with complex interactions between objects and obtain
robust and accurate results.
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This document provides additional information about
our MonteFloor method. We also provide a video demon-
strating it in action.

1. MCTS Implementation
In this section, we provide more details about our im-

plementation of Monte Carlo Tree Search (MCTS) with our
refinement step.

Tree nodes. As explained in the main paper, the nodes
contain several attributes. Every node is associated with
some proposal Pi, but the same proposal Pi is associated
with one or more nodes along different sub-paths of the
tree. Every node N also keeps track of its “node score”
Q(N) and number of visits n(N) that will be used later to
guide the search towards the most promising directions. A
node can have multiple children nodes children(N) and has
a single parent node.

Initialization. Initially, the search tree contains only a
root node and is built online by expanding the tree in the
most promising direction at every iteration.

During the search, we follow the standard Select-
Expand-Simulate-Update strategy:

Selection step. At each iteration, and starting from the
root node, we traverse existing nodes at each level of the
tree by following the Upper Confidence Bound (UCB) cri-
terion: From current node Ncurr, we select its child node
N ∈ children(Ncurr) that maximizes the criterion

arg max
N∈children(Ncurr)

Q(N) + λUCB ·
√

log n(Ncurr)

n(N)
, (1)

where λUCB is a hyperparameter that balances exploitation
and the exploration during the search.

Expansion step. If during selection, there is a node with
a child node N ∈ children(Ncurr) that has not been created

yet, we do not follow the selection criterion, but instead, we
add N to the tree. We set Q(N) = −∞ and n(N) = 0 at
this stage.

Simulation step. Immediately after the expansion step,
we perform a simulation step and randomly create and tra-
verse the children nodes until we reach a leaf node of the
tree.

Refinement step. Whenever a leaf node is reached dur-
ing simulation, we run 1 iteration of the Adam optimizer [2]
on the selected proposals P to minimize L(P ) (Eq. (1)
of the main paper) and calculate the score S = −L(P ):
Running more iterations decreases the number of necessary
MCTS iterations, but still results in longer run-times. In-
stead, we allow the tree search to select already visited so-
lutions. This results in faster run-time and accurate solu-
tions, as we will run multiple refinement steps on the most
promising solutions, but few on the less likely ones.

Update step. Once we know the score S for a set of pro-
posals P after the refinement step, for every traversed node
N , we update the node score Q(N)← max(Q(N), S) and
increment n(N).

During experiments, for each scene we set λUCB = 1
initially, and linearly decay it such that the last MCTS iter-
ation uses λUCB = 0.01.

2. Generating Floor Plans for Training the
Metric Network

The metric network is trained on the Structured3D
dataset [3] with input density maps and floor plans of size
256×256. During training, we generate input floor plans di-
rectly from the ground truth annotations to simulate a large
variety of possible settings. More exactly, with probabil-
ity of 30%, we select the ground truth floor plan as input.
Otherwise, each individual room is added with probabil-
ity of 50%. A single room is randomly rotated with 50%



chance by either 90◦, 180◦, or 270◦, and randomly trans-
lated by [−50, 50] pixels with probability of 10%. With
1% probability, a vertex inside a room polygon is trans-
lated in range [−10, 10] pixels. Labels for individual rooms
are shuffled to make sure the network does not overfit to
some specific label ordering. Similarly to input floor plans,
we augment the dataset by rotating and translating the input
density map and the corresponding ground truth floor plan.
We match the generated room shapes with the ground truth
shapes, as in Section 4.1 of the main paper, and calculate
the Intersection-Over-Union (IOU) between the matches to
obtain the final ground truth score.

The network is then trained by minimizing the Root-
Mean-Square-Error (RMSE) between predicted and ground
truth scores. We use the Adam optimizer [2] with learning
rate set to 10−3.

3. Choice of Hyper-Parameters for the Objec-
tive Function

During refinement step, we set λang = 0.01, λ0 =
0.01, λglob = 0.2, λf = 0.1 and normalize p(α) to [0, 1].
We have found empirically that this set of hyper-parameters
balances the influence of the corresponding loss terms. We
have found that setting λglob = 0 and λf = 1 in the score
calculation step increases convergence speed.

For the test set from [1], our metric network is less stable
as it was not trained on this dataset. Hence, we have ob-
served that setting λang = 0.1, λ0 = 0.1, λglob = 0.2, λf =
0.05, during refinement step, improves performance. Dur-
ing the score calculation step, we still set λglob = 0 and
λf = 1.

4. Multiple Optimizers

As the number of room proposals increases, optimizer
has to deal with much larger number of learning parame-
ters. In turn, this leads to larger computation times during
optimization step. To overcome this issue, we employ mul-
tiple optimizers: For each leaf node in the tree, we create
an optimizer that optimizes the set of proposals along cor-
responding path in the tree. Such approach improves com-
putation times considerably.

5. Qualitative Results

Figures 1 and 2 show additional qualitative results on
the Structured3D dataset 1 and the test set from [1]. As
shown in Figure 3, from the floor plans reconstructed by our
MonteFloor method, we can directly reconstruct 3D floor
plans simply by assuming constant wall height. Our 3D
floor plans are consistent with underlying 3D scene.

6. Limitations and Future Work
We demonstrate some failure cases in Figure 4. Even

though our method achieves state-of-the-art results on ex-
isting datasets we do believe there is still a large potential
for improvements:

• The number of vertices of polygonal proposals is deter-
mined strictly by the polygonized outputs of the masks
from Mask R-CNN. It would be interesting to consider
possibility of dynamically adding, or removing, ver-
tices of polygonal proposals. Similarly, it would be in-
teresting to dynamically generate new rooms in places
where large discrepancies are detected.

• It is clear from initialization that some proposals are
unlikely to be part of the final layout. Using prior in-
formation about the quality of proposals to initialize
node scores in the tree could make our approach run
even faster.

• Density maps are a useful representation, but in prac-
tice, they can still be ambiguous in some cases. Hence,
considering additional information such as perspective
views, and camera trajectory, could be very helpful to
deal with such ambiguities.
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Figure 1: Qualitative results on Structured3D [3]. In the first example, both Floor-SP and our MonteFloor retrieve good floor
plans. In the second example, Floor-SP misses some rooms and retrieves self-intersecting floor plans. In the third example,
the light blue room reconstructed by Floor-SP that is slightly more complex than reality. In the fourth example, both methods
perform well. In the fifth example, Floor-SP oversimplifies the yellow and dark blue rooms.
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Figure 2: Qualitative results on the test set from [1]. In the first example, we believe that the floor plan retrieved by our
method is better than the manual annotation as the purple room appears to be an annotation error and the light blue room is
oversimplified. Similarly, in the second example, our reconstructions are much more consistent with the actual input. In the
third example, Floor-SP produces self-intersecting rooms but our reconstructed green room is slightly more complex than its
corresponding ground truth. In the fourth example, the little pink room on the bottom right of the ground truth is actually
an annotation error. In the fifth example, the light blue room in the ground truth are actually two rooms, as estimated by
both Floor-SP and our method. In addition, Floor-SP produces a small squared hole between the green, blue, red, and purple
rooms.



Figure 3: We can generate attractive 3D floor plans from our 2D reconstructions under a constant room height assump-
tion. The examples demonstrate that the floor plans reconstructed by our MonteFloor method are indeed consistent with
corresponding 3D scenes.
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Figure 4: Failure Cases. First row, red arrow: Our reconstruction of the green room is incorrect as there are some ambiguities
in the density map for this region. In contrast, Floor-SP is more likely to produce Manhattan layouts in such situations.
Second row, red arrow: None of the generated polygonal proposals for the pink room are adequate to represent the actual
shape. Floor-SP performs graph-based search on pixel-locations that lie on the polygonal curve. As the final polygon is
generated after the search, they obtain better reconstruction in this example. Third row, red arrow: Similarly to Floor-SP, we
were not able to remove false positive proposal. This implies that the metric network could be further improved.


