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Abstract. Foreland fold-and-thrust belts (FTBs) record long-
lived tectono-sedimentary activity, from passive margin sed-
imentation, flexuring, and further evolution into wedge ac-
cretion ahead of an advancing orogen. Therefore, dating
fault activity is fundamental for plate movement reconstruc-
tion, resource exploration, and earthquake hazard assess-
ment. Here, we report U–Pb ages of syn-tectonic calcite
mineralizations from four thrusts and three tear faults sam-
pled at the regional scale across the Jura fold-and-thrust
belt in the northwestern Alpine foreland (eastern France).
Three regional tectonic phases are recognized in the mid-
dle Eocene–Pliocene interval: (1) pre-orogenic faulting at
48.4±1.5 and 44.7±2.6 Ma associated with the far-field ef-
fect of the Alpine or Pyrenean compression, (2) syn-orogenic
thrusting at 11.4 ± 1.1, 10.6 ± 0.5, 9.7 ± 1.4, 9.6 ± 0.3, and
7.5 ± 1.1 Ma associated with the formation of the Jura fold-
and-thrust belt with possible in-sequence thrust propagation,
and (3) syn-orogenic tear faulting at 10.5 ± 0.4, 9.1 ± 6.5,
5.7 ± 4.7, and at 4.8 ± 1.7 Ma including the reactivation of
a pre-orogenic fault at 3.9 ± 2.9 Ma. Previously unknown
faulting events at 48.4 ± 1.5 and 44.7 ± 2.6 Ma predate the
reported late Eocene age for tectonic activity onset in the
Alpine foreland by ∼ 10 Myr. In addition, we date the previ-
ously inferred reactivation of pre-orogenic strike-slip faults
as tear faults during Jura imbrication. The U–Pb ages docu-
ment a minimal time frame for the evolution of the Jura FTB
wedge by possible in-sequence thrust imbrication above the
low-friction basal decollement consisting of evaporites.

1 Introduction

Foreland fold-and-thrust belts develop at the external edges
of orogens and are characterized by a multiphase tectono-
sedimentary history including pre-orogenic sedimentation,
uplift at the peripheral bulge of the advancing orogen, pro-
gressively accelerating subsidence followed by syn-orogenic
sedimentation, and accretion of the sedimentary cover into
the fold-and-thrust belt (Lacombe et al., 2007). Unravelling
the timing of these tectonic events is fundamental for plate
kinematic modelling, natural resource exploration, paleoseis-
micity, and topography evolution studies (Vergés et al., 1992;
Craig and Warvakai, 2009). However, deciphering the differ-
ent tectonic phases is complicated due to the overprinting of
inherited structures by progressively younger tectonic events.

This issue is addressed by dating syn-tectonic sediments
and, more recently, better constrained through the dating of
fault activity with K–Ar, 40Ar/39Ar, and U–Pb and U–Th
methods (Van der Pluijm et al., 2001; Vrolijk et al., 2018). In
particular, calcite U–Pb and U–Th geochronology (Roberts
et al., 2020) is the unique method for dating syn-tectonic
calcite mineralizations. This technique has been applied for
dating single faults in extensional, strike-slip, and compres-
sional settings (Goodfellow et al., 2017; Nuriel et al., 2017;
Hansman et al., 2018; Smeraglia et al., 2019; Carminati et
al., 2020). So far, the dating of multiple faults at the re-
gional scale across a foreland fold-and-thrust belt remains
rare (Beaudoin et al., 2018; Looser et al., 2021).

Published by Copernicus Publications on behalf of the European Geosciences Union.



2540 L. Smeraglia et al.: Middle Eocene–Pliocene multiple tectonic pulses in the Alpine foreland

Figure 1. Geological map of the northwestern Alpine foreland and surrounding areas and stratigraphic column of the main lithological units
of the Jura area. Map modified from Rime et al. (2019); cross section modified from Von Hagke et al. (2014).

In this study, we dated syn-tectonic calcite mineraliza-
tions from four thrusts and three tear faults sampled across
the Jura fold-and-thrust belt at the regional scale (Jura FTB,
eastern France, Fig. 1) by laser ablation inductively coupled
plasma mass spectrometry (LA-ICP-MS) U–Pb dating. We

reconstructed three tectonic phases having occurred in the
middle Eocene–Pliocene period, documenting the long-lived
polyphase tectonic history of the northwestern Alpine fore-
land system along the convergent boundary between the Eu-
ropean and African plates.
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2 Tectonic setting

Located in the foreland of the Western Alps, the Jura FTB
was formed by the ongoing continental collision of the Euro-
pean plate with the African plate (Sommaruga, 1997; Mosar,
1999; Lacombe and Mouthereau, 2002; Affolter and Gratier
2004; Bellahsen et al., 2014) (Fig. 1). Shortening affected the
Triassic–late Miocene sedimentary succession deposited on
the European passive margin above the Hercynian crystalline
basement and caused brittle–ductile deformation at different
crustal levels (Fig. 1) (Philippe et al., 1996; Homberg et al.,
2002; Ustaszewski and Schmid, 2006). The sedimentary suc-
cession starts with Triassic shales and evaporites overlain by
Jurassic–Cretaceous shales, marls, and limestones (Fig. 1)
(Sommaruga et al., 2017). Following a Late Cretaceous–
Eocene regional unconformity, Oligocene–Miocene shallow
marine to continental clastic deposits of the Molasse Basin
were deposited above Cretaceous limestones (Fig. 1).

The post-Mesozoic tectonic history of the Jura area is as-
sumed to have started in the middle Eocene with N–S short-
ening related to the far-field effect of the “Pyrenean orogeny”
generating strike-slip faults (Bergerat, 1987). However, no
absolute ages of this tectonic phase are available. Based
on structural analyses and calcite U–Pb ages, three phases
of normal faulting during the late Eocene, Oligocene, and
Miocene in the distal parts of the Molasse Basin in north-
ern Switzerland and in the Jura area have been documented
(Lacombe et al., 1993; Homberg et al., 2002; Mazurek et al.,
2018; Radaideh and Mosar, 2021). Normal faulting during
the late Eocene–Oligocene is associated with crustal exten-
sion due to the opening of the Rhine Graben (Lacombe et al.,
1993; Homberg et al., 2002; Mazurek et al., 2018; Radaideh
and Mosar, 2021) or to the coeval onset of Alpine collision
(Merle and Michon, 2001), while normal faulting during the
middle Miocene has been related to crustal tilting associated
with uplift of the Black Forest Highlands and subsidence of
the northern part of the Molasse Basin (Mazurek et al., 2018).

Biostratigraphic ages of syn-orogenic deposits, geomor-
phological observations, interpretation of seismic reflection
profiles, and syn-tectonic calcite U–Pb ages of fault activity
in the eastern tip of Jura FTB indicate that orogenic short-
ening started ∼ 14.5 Myr ago (Langhian times) at the latest
(Looser et al., 2021, and references therein) and is still ac-
tive (Mosar, 1999; Becker, 2000; Lacombe and Mouthereau,
2002; Madritsch et al., 2008). Shortening was accommo-
dated by N- to NE-verging and NE–SW-striking thrusts
and by NW–SE- to N–S-trending sinistral tear faults (Som-
maruga, 1997) (Fig. 1). The main decollement level of the
thrust system developed along Triassic evaporites (Jordan,
1992; Pfiffner, 2014; Gruber, 2017; Sommaruga et al., 2017).
Therefore, there is a common agreement in considering the
Jura FTB mainly as the product of thin-skinned tectonics
(Sommaruga, 1997). However, thick-skinned tectonics oc-
curred in the late stage of deformation, mostly in the exter-
nal part of the chain (Lacombe and Mouthereau, 2002; Us-

taszewski and Schmid, 2006, 2007; Madritsch et al., 2008;
Lacombe and Bellahsen, 2016).

Field cross-cutting relationships and U–Pb ages of syn-
tectonic calcite mineralizations show that tear faults were
synchronously active during thrusting and folding (Som-
maruga, 1997; Looser et al., 2021) and their movement con-
tinued after thrusting. In fact, in some cases, tear faults are
still seismogenic (Thouvenot et al., 1998). Several authors
suggest that pre-orogenic strike-slip and normal faults were
reactivated in the early Pliocene as tear and transpressional
faults, respectively (Madritsch et al., 2008; Homberg et al.,
1997; Ustaszewski and Schmid, 2006). Overall, direct dating
of this fault reactivation is so far not available.

3 Methods

The following methods were used: (1) field structural anal-
yses and vein and slickenfibre sampling from four major
thrusts (from SE to NW: Montlebon, Buron, Fuans, and Ar-
guel thrusts) and three tear faults (Vue des Alpes, Pratz, and
Buron) moving from the internal (most deformed) to the ex-
ternal (less deformed) parts of the Jura FTB (Fig. 1). In par-
ticular, we measured the orientation of sampled veins and
the rake of sampled slickenfibres in order to combine U–
Pb ages with structural measurements; (2) microstructural
analyses with optical and cathodoluminescence (CL) mi-
croscopy to unravel different phases of calcite precipitation;
(3) calcite U–Pb LA-ICP-MS dating on veins and slickenfi-
bres to date fault activity. In most cases, the U–Pb analyses
were performed on calcite crystals showing a homogenous
colour or undisturbed growth zoning under cathodolumines-
cence light, indicating no open-system alteration after calcite
precipitation by late fluid infiltration and/or recrystallization
(Figs. S1–S3). Analytical details are described in the Supple-
ment.

4 Results

4.1 Structural and microstructural observations

The Montlebon, Buron, Fuans, and Arguel thrusts are NNE–
SSW- to SW–NE-striking and N- to NW-verging thrusts
(Madritsch et al., 2008; Rime et al., 2019; Smeraglia et al.,
2020) (Fig. 2a–d). More precisely, the Montlebon thrust is
characterized by E- to ESE-dipping (30–90◦) thrust planes
with slickenfibres showing left-lateral transpressional move-
ments with N to NNW tectonic transport directions (Fig. 2a).
The Buron thrust is characterized by E- to SE-dipping (20–
30◦) thrust planes with slickenfibres showing left-lateral
transpressional movements with NW tectonic transport di-
rections (Fig. 2b). The Fuans thrust is characterized by E- to
SE-dipping (20–40◦) thrust planes with slickenfibres show-
ing left-lateral transpressional movements with NNW to NW
tectonic transport directions (Fig. 2c). The Arguel thrust is
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characterized by S-dipping (10–30◦) thrust planes with slick-
enfibres showing right-lateral transpressional movements
with NNW tectonic transport directions (Fig. 2d).

The subvertical Vue des Alpes, Pratz, and Buron tear
faults show sinistral strike-slip displacements (Sommaruga,
1997) (Fig. 2de–g). More precisely, the Vue des Alpes strike-
slip fault is characterized by NE–SW-striking subvertical
fault planes with slickenfibres showing sinistral movements
and associated NW–SE-striking subvertical fault planes with
slickenfibres showing dextral movements (Fig. 2e). Both the
Pratz and Buron strike-slip faults are characterized by NE–
SW-striking subvertical fault planes with slickenfibres show-
ing sinistral movements (Fig. 2f–g).

Thrusts and strike-slip faults cut through Middle–Upper
Jurassic and Lower Cretaceous limestones. The fault core
zones are characterized by foliated fault rocks cut by sharp
fault planes (Fig. 3a–d). Breccia lenses are developed in the
Buron thrust core (Fig. 4d). Calcite mineralizations in exten-
sional veins (Buron, Arguel, Montlebon, Vue des Alpes, and
Pratz) and in slickenfibres (Fuans, Vue des Alpes, and Pratz)
were sampled.

Extensional veins occur in limestone fragments of foli-
ated fault rocks (Fig. 3e, g) and in clasts from breccias
(Figs. 3f and 4g). In limestone fragments of foliated fault
rocks, extensional veins are oriented perpendicularly to sty-
lolites (Fig. 3e, g), which occur along S and C planes. Exten-
sional veins in clasts from breccias show a crackle-like tex-
ture and mutually cross-cutting relationships (Fig. 3f). Exten-
sional veins are filled by blocky to elongated–blocky calcite
crystals, which show syntaxial growth (Figs. 3i–k, 4g, S1a–d,
S2a, b, g, h, S3a–h).

The fault planes are coated by slickenfibres (Figs. 3d, h
and 4e, f). At the microscale, slickenfibres occur in dilational
jogs along shear planes (Fig. 3h) and are filled by fibrous
calcite crystals bounded by sharp shear planes (Figs. 3j, 4i,
S1e–h, and S2c–f) and/or by blocky calcite crystals (Figs. 3l
and 4h). Fibrous crystals are oriented parallel to shear planes.

Most of the studied veins and slickenfibres show homoge-
nous cathodoluminescence colours, ranging from bright to
dull red, and/or cathodoluminescence zoning on the same
crystal (Figs. 3i–l, 4g–i, S1a, c, e, g, S2a, c, e, g, and S3a, c, e,
g). In places, slickenfibres and extensional veins are cross-cut
by extensional veins showing black to dull red luminescence
colours (Figs. S1e–h, S2c–f, and S3a, b, g, h).

4.2 U–Pb dating

A total of 12 reliable lower intercept ages (Figs. 5 and 6) out
of 19 analyses (rejected age data are presented in Fig. S4) are
reported with uncertainties at 2σ absolute including counting
statistics uncertainties, uncertainty of the primary reference
material, and inter-analysis variations (Guillong et al., 2020).
The U–Pb ages indicate different phases of tectonic activ-
ity and related calcite precipitation in the middle Eocene to

Pliocene period and also multiple precipitation ages along
the same fault (Supplement Table S1).

An extensional vein from the Montlebon thrust shows a
Serravallian age of 11.4 ± 1.1 Ma (Fig. 5a). An extensional
vein from the Buron thrust shows a Tortonian age of 10.6 ±

0.5 Ma (Fig. 5b). Two slickenfibres from the Fuans thrust
yield Tortonian ages, which are indistinguishable from each
other, of 9.7±1.4 Ma and 9.6±0.3 Ma, respectively (Fig. 5c,
d). An extensional vein from the Arguel thrust shows a
Tortonian–Messinian age of 7.5 ± 1.1 Ma (Fig. 5e). Along
the Vue des Alpes strike-slip fault, two slickenfibres yield
Ypresian–Lutetian ages of 44.7 ± 2.6 Ma and 48.4 ± 1.5 Ma
(Fig. 6a, b), while an extensional vein shows a Pliocene
age of 3.9 ± 2.9 Ma (Fig. 6c). An extensional vein from the
Buron strike-slip fault shows a Messinian age of 5.7±4.7 Ma
(Fig. 6d). One slickenfibre and one extensional vein from
the Pratz strike-slip fault show Tortonian–Messinian ages of
10.5±0.4 Ma and 9.1±6.5 Ma (Fig. 6f–g), while one slicken-
fibre shows a younger age of 4.8±1.7 Ma (Fig. 6e). Because
of the common-lead-rich 207Pb/206Pb compositions, the U–
Pb ages of the samples DA2, BUS1, PR1-A, and PR2-2 from
the strike-slip faults have larger uncertainties than those from
the thrusts.

5 Discussion and conclusions

Slickenfibres on sharp fault planes are clear evidence of tec-
tonic slip along faults (Figs. 3j–l, 4i, S1e–h, and S2c, f).
In particular, blocky and fibrous crystals indicate fast and
slow vein opening rates, respectively, associated with fault
slip. Within slickenfibres, calcite crystals precipitated during
syn-slip to early post-slip fluid influx in newly formed dila-
tional sites formed along undulated and sharp shear planes
(Gratier and Gamond, 1990; Urai et al., 1991; Holland and
Urai, 2010; Fagereng et al., 2010; Bons et al., 2012; Wood-
cock et al., 2014). Extensional veins oriented perpendicular
to stylolites (Fig. 3e, g) are linked to syn-thrusting shorten-
ing (Gratier et al., 2013; Smeraglia et al., 2020). The studied
veins are therefore interpreted as the product of tectonic fault
slip, and their U–Pb ages are regarded as representative of
faulting activity.

We recognize three regional tectonic phases between the
middle Eocene and the Pliocene (Figs. 7 and 8), which are
linked to the long-lived tectonic activity of the Alpine fore-
land evolution. The presented ages should be regarded as
minimum ages for the onset of deformation at the stud-
ied faults or as maximum ages for its termination. Poten-
tially older or younger deformation phases recorded by other
veins and slickenfibres not sampled and analysed here may
have been missed. As commonly done in carbonate LA-
ICP-MS U–Pb dating, no disequilibrium correction for initial
234U/238U and 230Th was applied. This may cause underes-
timation of young (<10 Myr) samples (Roberts et al., 2020)
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Figure 2. Lower Schmidt hemisphere projection of fault-slip data and slip vectors for thrust and strike-slip faults. Dated faults in red. (a)
Montlebon thrust. (b) Buron thrust. (c) Fuans thrust. (d) Arguel thrust. (e) Vue des Alpes strike-slip fault. (f) Pratz strike-slip fault. (g) Buron
strike-slip fault.

Figure 3. Foliated fault rocks in the fault core of the Montlebon thrust (a), Arguel thrust (b), and (c) Fuans thrust. (d) Detail of minor
fault plane along the Vue des Alpes strike-slip fault showing calcite slickenfibres. (e) Hand sample from the Montlebon thrust showing
host rock sigmoids bounded by stylolites and extensional veins perpendicular to stylolites. (f) Hand sample from the Fuans thrust showing
host rock sigmoids bounded by stylolites and extensional veins perpendicular to stylolites. (g) Hand sample from the Arguel thrust showing
extensional veins with crackle-like texture. (h) Hand sample from a minor fault plane along the Vue des Alpes strike-slip fault showing
slickenfibres developed along dissolution planes. (i–l) Cathodoluminescence microphotographs of thin sections showing extensional veins
and slickenfibres from the studied faults with ablation craters of the U–Pb analyses.

https://doi.org/10.5194/se-12-2539-2021 Solid Earth, 12, 2539–2551, 2021
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Figure 4. (a) Buron thrust. (b) Buron tear fault. (c) Pratz tear fault. (d) Brecciated fault rocks in the fault core of the Buron thrust. (e)
Brecciated fault rocks cut by sharp fault planes in the fault core of the Buron tear fault. (f) Foliated fault rock cut by sharp fault planes in the
fault core of the Pratz tear fault. (g–i) Cathodoluminescence microphotographs of thin sections showing extensional veins and slickenfibres
from the studied faults with ablation craters of the U–Pb analyses.

and accordingly, they should be regarded as reflecting maxi-
mal ages.

The U–Pb ages are regionally consistent in terms of the
tectonic evolution of the Jura FTB, and the microstructures
of the analysed veins and slickenfibres indicate precipitation
during syn- to early post-slip fluid influx. However, although
U–Pb dating was performed on crystals with no indication of
later open-system alteration based on CL microscopy, possi-
ble late fluid infiltration and calcite recrystallization cannot
be excluded as previously suggested by other studies (Beau-
doin and Lacombe, 2018; Hoareau et al., 2021; Roberts et al.,
2020, 2021).

Sample BUS1 clearly shows multiple calcite phases
indicating vein re-opening and potentially different ages
(Fig. 4h). However, the Tera–Wasserburg diagram of BUS1
shows a single age trend with a low MSWD of 0.82 (Fig. 6d).
This would not be observed in a sample that experienced

crystallization at significantly different times. Therefore,
sample BUS1 reflects calcite precipitation within a time in-
terval smaller than what would result in multiple age trends.

The oldest tectonic phase is recorded by two horizon-
tal slickenfibres dated to 44.7 ± 2.6 and 48.4 ± 1.5 Ma in
Ypresian–Lutetian times (middle Eocene) along the Vue des
Alpes strike-slip fault (Fig. 7). These ages are ∼ 10 Myr
older than the onset of the extensional tectonic activity in
the Priabonian (late Eocene) related to Rhine Graben open-
ing (Sissingh, 1998; Mazurek et al., 2018). The strike-slip
faulting in Eocene times is consistent with fault-slip data
of Homberg et al. (1997). We propose that the Ypresian–
Lutetian tectonic activity can be related to the late Mesozoic–
Eocene far-field tectonic shortening in the European plate
foreland due to the advancing Alpine orogen (Mazurek et
al., 2006; Timar-Geng et al., 2006 Fig. 8a). However, pre-
vious studies suggested that middle Eocene strike-slip fault-
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Figure 5. Tera–Wasserburg concordia diagrams of thrust faults. (a) Montlebon thrust. (b) Buron thrust. (c, d) Fuans thrust. (e) Arguel thrust.

ing in the Jura area can be also related to the far-field effect
of the Pyrenean compression (Bergerat, 1987; Homberg et
al., 2002). The Pyrenean far-field effect is also recognized
in the Paris Basin (e.g. Lacombe et al., 1990; Lacombe and
Mouthereau, 1999; Lacombe and Obert, 2000), in eastern
France (Lacombe et al., 1993), and even in the United King-
dom (Hibsch et al., 1995), where Pyrenean-related calcite
veins were dated by U–Pb (ages between 55 and 25 Ma; Par-
rish et al., 2018). Therefore, we cannot fully distinguish if
the strike-slip fault activity during Ypresian–Lutetian times
is related to the Pyrenean or to the Alpine shortening. Fur-
ther studies are necessary to better constrain the origin of
pre-Miocene fault activity in the European foreland.

Structural analyses of the studied thrusts highlight N- to
NW-oriented tectonic transport directions (Fig. 4a–d) consis-
tent with the regional NW–SE to N–S compressional phase
that has affected the Jura fold and thrust belt since the
Miocene (Philippe et al., 1996; Becker, 2000; Homberg et
al., 2002; Ustaszewski and Schmid, 2006; Madritsch et al.,
2008; Looser et al., 2021). Although age uncertainties do not

allow a distinction beyond doubt and the limited numbers
of U–Pb ages and studied thrusts provide a limited picture,
the Jura imbrication seems to have occurred by in-sequence
thrusting. The oldest observed thrust ages are Serravallian–
Messinian and become progressively younger moving from
the inner (SE) toward the external (NW) part: from 11.4±1.1,
10.6 ± 0.5, 9.7 ± 1.4, and 9.6 ± 0.3 Ma on the same thrust
and 7.5 ± 1.1 Ma in the Montlebon, Buron, Fuans, and Ar-
guel thrusts (Figs. 7 and 8b). These ages are consistent with
the time interval of ∼ 14.5−3.3 Myr suggested for thrusting
activity from biostratigraphic dating of syn- to post-tectonic
sediments (Becker, 2000, and references therein) and from
calcite U–Pb ages of thrust activity in the eastern Jura FTB
(Looser et al., 2021; Fig. 7).

Previous studies interpreted the subvertical strike-slip
faults in the Jura FTB as tear faults, with activity dur-
ing thrusting and folding (Sommaruga, 1997; Looser et al.,
2021). Our structural analyses and U–Pb ages from the stud-
ied strike-slip faults support this interpretation. In particu-
lar, strike-slip faults are subvertical and are roughly parallel
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Figure 6. Tera–Wasserburg concordia diagrams of strike-slip faults. (a–c) Vue des Alpes strike-slip fault. (d) Buron strike-slip fault. (e–g)
Pratz strike-slip fault.

or oblique to the regional transport directions inferred from
thrust kinematics (compare tectonic transport directions of
Fig. 4a–d with those of Fig. 4f, g), a common feature of tear
faults developed during thrusting (Twiss and Moores, 1992).

The Buron thrust, active at 10.6 ± 0.5 Ma, was cross-cut
by the Buron tear fault ∼ 5 Myr later, at 5.7±4.7 Ma (Figs. 7
and 8c). The Pratz tear fault was active at 10.5 ± 0.4 Ma and

9.1 ± 6.5 Ma, indicating tear faulting generation during co-
eval thrust propagation, and further late-orogenic reactiva-
tion at 4.8 ± 1.7 Ma (Figs. 7 and 8b). These data indicate
that tear faulting occurred during syn- to late-orogenic times
(Fig. 8b, c). In addition, a late-orogenic phase is recorded by
an extensional vein from the Vue des Alpes strike-slip fault
showing a Pliocene age of 3.9 ± 2.9 Ma (Fig. 7). This age

Solid Earth, 12, 2539–2551, 2021 https://doi.org/10.5194/se-12-2539-2021
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Figure 7. Main tectonic phases in the Alps and in the Alpine foreland. Age constraints shown as grey bars are from Burkhard and Sommaruga
(1998), Ustaszewski et al. (2006), Madritsch et al. (2008), Bellahsen et al. (2014), and Von Hagke et al. (2014). For calcite U–Pb data, all
uncertainties are represented as 2σ .

has been measured on an extensional vein that cannot be di-
rectly related to fault slip. Therefore, we cannot completely
exclude that this age represents a late alteration event not di-
rectly linked to fault slip during the Pliocene. However, the
3.9±2.9 Ma age is consistent with late-orogenic deformation
between 4.2 and 2.9 Ma documented in the frontal part of the
Jura FTB (Madritsch et al., 2008, and references therein).
The 3.9±2.9 Ma age from the Vue des Alpes strike-slip fault
is ∼ 40 Myr younger than the middle Eocene ages (44.7±2.6
and 48.4 ± 1.5 Ma) measured on the same fault, suggesting
the reactivation of the Vue des Alpes strike-slip fault dur-
ing late Jura shortening. This inference is also consistent

with field cross-cutting relationships indicating reactivation
of pre-existing strike-slip faults as tear faults (Homberg et
al., 1997).

We regard the retrieved age as fault reactivation of the Vue
des Alpes strike-slip fault and relate it to a stress change from
pure compression to a strike-slip state of stress coupled with
the occurrence of an inherited strike-slip fault favourably ori-
ented with respect to the regional stress field. This stress
change associated with tear fault development can be related
to progressive fold-and-thrust belt thickening during the lat-
est stage of Jura imbrication, which led to an increase in
the principal vertical stress (sigma 3) and a switch between
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Figure 8. (a–d) Schematic reconstruction of the main tectonic
phases dated in the Jura area in the regional context of the Alpine
foreland system evolution.

sigma 3 and sigma 2 (Ferril et al., 2021). Shortening is still
active in the Jura FTB and tear faults (also reactivated tear
faults) are seismogenic (Thouvenot et al., 1998).

The presented tectonic reconstruction depicts a stable evo-
lution of the Jura FTB wedge by possible in-sequence thrust-
ing consistent with thrust imbrication above the low-friction
decollement consisting of evaporites (Fig. 8a–c). By contrast,
out-of-sequence thrusting occurred as late as Messinian–
early Pliocene times in the proximal Molasse Basin (Von
Hagke et al., 2012, 2014) and in the Alps (Bellahsen et al.,
2014). This tectonic framework suggests a stable topographic
evolution of the critical taper and of the topographic pro-
file in the Jura FTB. Finally, this study constrains a long-
lived polyphase tectonic history of the northwestern Alpine

foreland system along the convergent boundary between the
European and African plates from the middle Eocene to the
Pliocene.
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