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2Nordita, Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm, Sweden

3Department of Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
(Dated: August 18, 2022)

Recent experiments [V. Grinenko et al. Nat. Phys. 17, 1254 (2021)] reported the observation
of a condensate of four-fermion composites. This is a resistive state that spontaneously breaks
the time-reversal symmetry, leading to unconventional magnetic properties, detected in muon spin
rotation experiments and by the appearance of a spontaneous Nernst effect. In this work, we derive
an effective model for the four-fermion order parameter that describes the observed spontaneous
magnetic fields in this state. We show that this model, which is alike to the Faddeev-Skyrme model
can host skyrmions: magnetic-flux-carrying topological excitations.

Recent experiments [1] reported the observation of a
fermion quadrupling state in the multiband material:
hole-doped Ba1−xKxFe2As2. This resistive state, coined
quartic bosonic metal, is a condensate with an anticorre-
lated flow of pairs of Cooper pairs belonging to different
bands. In contrast to superconductors, which break the
U(1) gauge symmetry, this state spontaneously breaks
the two-fold (Z2) time-reversal symmetry. This raises
the question of the properties of such states.

An effective model can describe the properties of con-
densates at large length scales. For a pair condensate,
the effective model is the celebrated Ginzburg-Landau
theory which has been extensively studied since the sec-
ond half of the last century. The question of effective
models describing the fermion quadruplet quartic metal
is more subtle. In this paper, we derive an effective long-
wavelength model for the resistive quartic state reported
in Ba1−xKxFe2As2. Based on this, we report the key
properties of that state: Namely its magnetic properties
and the nature of the topological excitations it supports.

At low temperatures, the compound is a superconduc-
tor characterized by Cooper pair condensates ∆a, form-
ing in the different bands labeled by a. Importantly
this superconductor breaks the time-reversal symmetry
[2, 3], so that the total symmetry broken by the low-
temperature state is U(1)×Z2. The analysis of the mag-
nitude and polarization of spontaneous magnetic fields
[3–5] indicates a spin-singlet superconducting state that
breaks the time-reversal symmetry. It is the so-called
s+is state which has two energetically equivalent locking
of the relative phase θb−θa between the superconducting
gaps in different components ∆a,b.

The mechanism responsible for the appearance of the
quartic metal is the following: The standard assumption
of the Bardeen-Cooper-Schrieffer theory is a mean-field
approximation for the fields quadratic in fermions: This
assumption eliminates, by construction, the possibility
for fermion quadrupling. The resulting theory yields
the phase diagram of such a superconductor, which is
typically a dome of the s+is state between two differ-
ent superconducting states [6–10]. It was pointed out
in [11, 12], that relaxing the mean-field approximation

in a multicomponent fermion pairing theory results in a
phase diagram with the appearance of fermion quadru-
pling condensates. The large-scale Monte Carlo calcula-
tions of U(1)×Z2 states demonstrated that the discrete
Z2 transition can exceed the superconducting U(1) tran-
sition: Tc < TZ2

c [13–15].
The spontaneous breakdown of the time-reversal sym-

metry in the resistive state of Ba1−xKxFe2As2, at the
doping level x ≈ 0.8 [1] dictates that the averages of the
pairing order parameters ∆a are zero, but that there ex-
ists a nonzero order parameter which is fourth order in
the fermionic fields. The quadrupling order parameter is
proportional to the product of pairing order parameters
in different bands ∆∗a∆b . Such an order parameter im-
plies an anticorrelation in the flows of the components a
and b. Crucially, although these types of counterflows do
not represent superconductivity, they are generally cou-
pled to the magnetic field when the densities of the coun-
terflowing charged components are unequal. An effective
model should account for this coupling, and should be
different from the Ginzburg-Landau model of a Meissner
state.

Below we derive such an effective theory, based on the
mean-field approximation for the four-fermion order pa-
rameter. We demonstrate that, in an inhomogeneous
sample, the model supports spontaneous magnetic fields,
consistently with the experimental results [1]. It also pre-
dicts the existence of topological excitations carrying a
quantized magnetic flux, in the form of skyrmions.

We derive our effective model for a state with com-
posite order, from a generic model of a superconductor
with a two-component order parameter Ψ, with Ψ† :=
(ψ∗1 , ψ

∗
2). The detailed derivation from the microscopic

theory can be found in Supplemental Material [16]. The
generic Ginzburg-Landau free-energy density for a two-
component superconductor reads as

F(Ψ,A) =
B2

2
+
kab,ij

2
(Diψa)∗Djψb + V (Ψ†,Ψ) , (1)

where V (Ψ†,Ψ) is the potential energy term. The re-
peated indices are implicitly summed over, and the in-
dices i, j denote the spatial coordinates while a, b label
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the different components. The individual condensates are
coupled to the vector potential A, of the magnetic field
B = ∇×A, via the gauge derivativeD = ∇+ieA in the
kinetic term. In this work, we focus on two-component
models that break multiple symmetries. The symmetry
breaking is encoded in the potential term V (Ψ†,Ψ) which
explicitly reduces the global SU(2) symmetry of a doublet
of complex order parameters down to a smaller symme-
try group. For example, the SU(2) symmetry is broken
down to U(1)×Z2, for a superconductor that breaks time-
reversal symmetry such as s+is, s+id, d+ig, p+ip, or
down to U(1)×Z3 symmetry as was suggested for some
nematic superconductors [17]. The composite order of in-
terest arises if the fluctuations-driven restoration of the
local gauge symmetry occurs without restoring the other
broken symmetries. The existence of a composite or-
der was demonstrated in systems featuring U(1)×U(1)
[11, 12] and SU(2) [18, 19] symmetries and from these
calculations it follows that composite order also exists
for U(1)×Zn symmetries. While most of our results
qualitatively apply to all of the above mentioned pair-
ing mechanisms, we focus below on the case of the bro-
ken time-reversal symmetry U(1)×Z2, and in particu-
lar on the s+is state, motivated by the experiment on
Ba1−xKxFe2As2 [1]. Other related states with composite
order were discussed in [20–29].

At the microscopic level, the minimal model features
three distinct superconducting gaps ∆1,2,3 in three dif-
ferent bands, and the pairing that leads to the time-
reversal symmetry breaking states is dominated by the
competition between different interband repulsion chan-
nels [6, 8, 10]. In the case of an interband-dominated
repulsive pairing, only two fields ψ1,2 appear in the ef-
fective Ginzburg-Landau model for the superconducting
state, see e.g. [8, 30, 31]. When starting from the mi-
croscopic three-band model, the relevant two-component
Ginzburg-Landau theory features mixed-gradient terms,
which can be eliminated by a linear transformation to
new fields see e.g. [31, 32], and the Supplemental Mate-
rial [16]. The resulting Ginzburg-Landau theory is char-
acterized by the free-energy F/F0 =

∫
F whose density

reads as

F(Ψ,A) =
B2

2
+

1

2
|DΨ|2 + V (Ψ†,Ψ) . (2)

To account for the four-fermion state, the Ginzburg-
Landau theory (2) is first mapped onto a model that cou-
ples the supercurrent J = eIm

(
Ψ†DΨ

)
to a real 3-vector

m. It is defined as the projection of the superconduct-
ing degrees of freedom Ψ onto spin-1/2 Pauli matrices σ:
m = Ψ†σΨ; hence this is an order parameter which is
fourth order in the fermionic fields. This order parameter
depends on the relative phase between the original com-
plex fields, and does not depend on the superconducting
degree of freedom: the phase sum. The norm of m is
related to the total density squared ‖m‖ ≡ %2 = Ψ†Ψ.

In terms of J and m, the free energy reads as [16]

F =
1

2

[
εkij

{
∇i
(
J j
e2%2

)
− 1

4e%6
m · ∂im× ∂jm

}]2

+
J2

2e2%2
+

1

8%2

(
∇m

)2
+ V (m) , (3)

where ε is the rank-3 Levi-Civita symbol. The term in
the square brackets in (3) is the magnetic field expressed
through gradients of the matter fields. The first term
there, is the contribution of the Meissner current J to
the magnetic field, while the second term accounts for
the interband counterflow [33, 34]:

B = ∇×
(
J

e2%2

)
− εabc

4e%6
ma∇mb ×∇mc . (4)

The second term is particularly important: It is related
to the counterflow of two components, since it has a form
of gradients of the composite field ψ∗aψb, i.e. it depends
on gradients of the relative phase between components.
A counterflow of two identical charged components re-
sults in no charge transfer and hence does not couple
to the magnetic field. However, if the densities of the
components are locally imbalanced, the charge transport
occurs. Thus the coupling to the magnetic field involves
a dependence of the relative density gradients.

Next, the low-temperature model (3), which micro-
scopic derivation is given in the Supplemental Mate-
rial [16], is used to obtain an effective model of the
fermion quadrupling phase. The fermion quadrupling
phase identified in [1, 13, 14] is resistive. This is caused
by the disorder of the superconducting phase due to
the proliferation of topological defects. The effective
model of the resulting fermion quadrupling state is ob-
tained by removing the superconducting degrees of free-
dom from (3). Indeed, as demonstrated in Monte Carlo
calculations, their prefactors are renormalized to zero
[1, 13, 14, 18, 19, 22, 35–37]. It follows that the Meissner
current vanishes (J = 0), while the currents associated
with gradients of the fermion quadrupling order parame-
ter m do not. Assuming that the critical temperatures of
the Z2 and U(1) transitions are well separated, the free
energy of the fermion quadrupling state can be written
as

F(m) =

(
m · ∂im× ∂jm

)2
16e2‖m‖6

+

(
∇m

)2
8‖m‖

+ V (m) , (5a)

where V (m) =
∑

a=0,x,y,z

αm
a ma +

1

2

∑
a,b=0,x,y,z

βm
abmamb . (5b)

Here the component m0 stands for the magnitude of
m, m0 := ‖m‖ (see details of the microscopic expres-
sions for the coefficients in [16]). The first term in (5)
has to be retained because it depends only on the rela-
tive phases and densities of the original superconducting
fields. Hence it cannot vanish at superconducting phase
transition, when Tc < TZ2

c [38]. The fermion quadrupling
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phase reported in [1] breaks the time-reversal symmetry.
Hence the potential term (5b) breaks the symmetry as-
sociated with the vector m down to Z2. In the original
Ginzburg-Landau model (2), the time-reversal operation
is the complex conjugation of the superconducting con-
densates Ψ. Correspondingly, for the soft modulus vector
it is a reflection ofm on the xz plane of the target space:

T (Ψ) = Ψ∗ ⇔ T (m) = (mx,−my,mz) . (6)

This means that the states that break the time-reversal
symmetry must have my 6= 0. This is, for example, en-
forced by βm

xx > 0, since it penalizes m2
x. The other

details of the analysis of the potential can be found in
the Supplemental Material [16]. The essential features
can be qualitatively summarized as follows: First, all of
the coefficients involving a y index vanish: αm

y = βm
ay =

βm
ya = 0. Moreover, the criterion for the condensation is

αm 2
0 < αm 2

x + αm 2
z , and also βm

00 , β
m
zz > 0.

The quadrupling phase appears when the mean-field
approximation for the pairing fields is relaxed. The
model (5) can be viewed as a mean-field approximation
for the fermion quadrupling fields in a resistive state; such
as the Z2-metal reported in [1]. Since superconducting
currents are absent in the resistive state, the magnetic
field caused by the gradients in the fermion quadrupling
fields becomes

B = −εabcma∇mb ×∇mc

4e‖m‖3
. (7)

In two spatial dimensions, the topological invariant,
which is associated with the degree of the maps m/‖m‖ :
S2 7→ S2

m, reads as

Q(m) =
1

4π

∫
R2

m · ∂xm× ∂ym
‖m‖3

dxdy . (8)

The integrand is obviously ill defined when ‖m‖ = 0.
However, whenever ‖m‖ 6= 0, the corresponding configu-
ration has an integer topological charge Q(m) ∈ Z; this
suggests that the model can host skyrmion topological
excitations. Note that in three dimensions the model is
characterized by another invariant, the Hopf invariant,
which is associated with the maps S3 7→ S2

m. This sug-
gests the existence of hopfions, but it is beyond the scope
of the current discussion.

The model describing the resistive fermion quadrupling
state is alike to the Faddeev-Skyrme model [39]. This
suggests that it could host nontrivial topological exci-
tation such as skyrmions and hopfions. To investigate
the properties of the topological defects of the effective
model, the physical degrees of freedom m are discretized
within a finite-element formulation [40], and the free en-
ergy (5) is minimized using a nonlinear conjugate gra-
dient algorithm. For details of the numerical procedure,
see [16].

The experiments [1] reported spontaneous magnetic
fields in the quartic metal state. In the s+is supercon-
ducting state, spontaneous magnetic fields can arise due

Figure 1. Spontaneous magnetic field B (7) in the quartic
phase, generated by inhomogeneities. The inhomogeneities
are modeled by random spatial modulation of the parameters
αm
0 and αm

z , reflecting the naturally present weak gradients in
doping level. The surface elevation, together with the color-
ing, represents the magnitude of the Bz. The coupling here is
e = 0.6, and the other parameters are given in Supplemental
Material [16].

to inhomogeneities such as thermal gradients [1, 41], a
hotspot created by a laser pulse [30], the effect of impu-
rities [42, 43], and other inhomogeneous arrays [4, 32].
The material has slight inhomogeneity in doping level,
which results in relatively small local modulation of the
superconducting critical temperature [44]. Since for this
topic the relative values of the gaps and phases strongly
depend on doping, this can be modeled by spatial mod-
ulation of the prefactors of the quadratic terms of the
Ginzburg-Landau theory. Implementing smoothly spa-
tially varying amplitudes of the individual components,
at the level of the effective model, can thus be modeled
by small spatial variations of the coupling constants αm

0

and αm
z (see Supplemental Material for details [16]). As

shown in Fig. 1, such inhomogeneities in the effective
model for the fermion quadrupling state, which breaks
the time-reversal symmetry, result in spontaneous mag-
netic fields. It is qualitatively in accordance with the
experiment [1].

First note that because the time-reversal symmetry
(Z2) is broken, the model has domain-wall excitations.
These are similar, in a way, to the domain walls found in
a three-component model [1, 45]. They are thus discussed
in the Supplemental Material [16]. However the quanti-
zation of Q(m) suggests that the model has more non-
trivial topological excitations with quantized magnetic
flux according to

∫
Bz = Φ0Q, where Φ0 = −2π/e is the

flux quantum. If a model breaks the Z2 symmetry and
has only gradient terms which are second order in deriva-
tives, according to the Hobart-Derrick theorem [46, 47],
skyrmions cannot exist. In our case, the presence of the
Skyrme term, in the effective model (5), allows for non-
trivial configurations that evade the Hobart-Derrick the-
orem. Indeed, in two dimensions, the Skyrme term in
the effective model scales as 1/R2 (where R is a texture
size), and therefore stable skyrmions may exist due to the
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Figure 2. Skyrmion solutions in a time-reversal symmetry broken state, for increasing values of the topological charge Q(m).
The panels on the top row display the texture of the four-fermion order parameter m. The panels in the middle row show
the associated magnetic field B (7), and the bottom row shows the corresponding charge transferring counter-currents jcounter

according to Ampère’s law. The parameters are the same as in Fig. 1, while the coupling e = 0.25.

competition between the Skyrme and potential terms.

We performed numerical simulation by minimizing the
energy (5) from various initial states. When the initial
guess has a nontrivial topological charge, the minimiza-
tion procedure leads, after convergence of the algorithm,
to stable skyrmion configurations. Figure 2 shows these
skyrmions solutions for increasing values of the topo-
logical charge Q(m), which is integer with an accuracy
around 10−4. As shown on the middle row of Fig. 2,
the skyrmions carry a nonzero magnetic field. More-
over, since the topological charge (8) is quantized, the
skyrmions carry integer quanta of magnetic flux. The cir-
culating current pattern that induces this magnetic field
is illustrated in the bottom row. This current, defined
according to Ampère’s law for the magnetic field (7) cor-
responds to the charge-carrying counterflow between the
different components.

Furthermore we find that the interskyrmion forces are
attractive. Hence, single quanta skyrmions attract each
other to form skyrmions with higher topological charge.
Thus in general one would not expect the formation
of regular skyrmion lattices but rather skyrmion lumps
formed by the competition between the attractive forces
and pinning landscape. Interestingly, in a single quantum
skyrmion, the time-reversed state is realized at a zero
measure area inside the skyrmion. On the other hand,
skyrmions carrying more than one quantum feature in-

ner regions of the time-reversed state. The enclosed area
of the time-reversed state increases with the topological
charge. This suggests that if the Z2 symmetry associ-
ated with the relative phase locking is strongly broken,
the formation of skyrmions is strongly inhibited. Note
that unlike in Fig. 1, the parameters for the skyrmions
displayed in Fig. 2 are homogeneous, as we focus here on
the detailed structure of the skyrmions. Inhomogeneities
can however deform the skyrmions, although we find that
they do not destroy skyrmions (see Supplemental Mate-
rial [16]).

The recent experiment reported a fermion quadrupling
phase in Ba1−xKxFe2As2 [1]. In this resistive phase,
there is no condensate of Cooper pairs, but a four-fermion
condensate which breaks the Z2 time-reversal symmetry.

We derived an effective model of that resistive state,
starting from a microscopic three-band model with dom-
inant interband interaction for Ba1−xKxFe2As2 and by
implementing a mean-field approximation for the fields
that are fourth order in fermions. The effective field the-
ory has a structure similar to the Faddeev-Skyrme model,
but for a soft modulus vector field that represents the
fermion quadrupling order parameter. If spatial inhomo-
geneities are present the model accounts for spontaneous
magnetic fields, consistently with the experimental obser-
vations [1]. We report that despite the lack of Meissner
effect and the lack of conserved U(1) topological charge,
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the model has stable topological excitations in the form
of skyrmions with conserved topological charge given by
(8).

We would like to remind the reader that, similarly
to skyrmions that appear in other contexts, such as
magnetism, their existence also depends on factors that
are beyond the effective long-wavelength field-theoretic
model. Namely, in contrast to vortices, the skyrmionic
topological charge is obtained through a surface integral.
Consequently, if the terms that break the O(3) symme-
try are very strong, the localization of the skyrmionic
topological charge can shrink down to scales where the
effective theory is ill defined, thereby destroying the topo-
logical protection. When the effective field theory is ap-
plicable, the potential barrier preventing the collapse of
a skyrmion in a film can be roughly estimated as fol-
lows: the condensation energy density (Fc) multiplied by
the coherence volume Fcξ

2
Z2
L, where ξZ2

is the coherence
length associated with the broken time-reversal symme-

try and L is the film thickness.
Finally, within the range of applicability of the effective

theory, the skyrmions can be induced by taking advan-
tage of the Kibble-Zurek mechanism [48, 49], by quench-
ing the material through the Z2 phase transition where
the time-reversal symmetry is broken. We expect that
skyrmions may also form by cooling through the phase
transition with an applied local magnetic field induced
through a system of coils.
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Supplemental Material: Skyrmions and magnetic properties of the resistive electron
quadrupling state

In the Supplemental Material, we discuss the details of the derivation of the effective theory for the
fermion quadrupling state. In particular, we start from the microscopic model of a three band supercon-
ductor with interband dominated pairing. This yields a two-component Ginzburg-Landau theory with
inter-component mixed gradient terms which are then eliminated by a reparametrization of the supercon-
ducting degrees of freedom. Next, the theory is mapped to a model that couples the fermion quadrupling
order parameter to the Meissner current. In the resistive state, the Meissner screening is absent, and the
theory reduces to a model that depends only on the four-fermion order parameter. We also discuss details
of the numerical methods, and present additional results. These include additional skyrmion solutions,
the effect of material inhomogeneities on skyrmions, and domain-wall solutions.

I. MICROSCOPIC DERIVATION OF THE
EFFECTIVE MODEL

The first part starts with the microscopic derivation
of the two-component Ginzburg-Landau theory that is
relevant to describe a three-band superconductor with
interband dominated repulsive pairing. See [S1] for a
more detailed derivation. We are interested in values
of coupling constants that can result in superconducting
states that spontaneously break the time-reversal sym-
metry, aiming in particular to describe iron pnictides.
The band structure of iron pnictides typically consists
of two electron pockets at (0, π) and (π, 0) and of two
hole pockets at the Γ point. This structure is sketched
on Fig. S1, where the dominating pairing channels are
the interband repulsion between the two hole pockets at
Γ, as well as between the electron and the hole bands.
Note that, the order parameter is the same in both elec-
tron pockets, so that the crystalline C4 symmetry is not
broken and thus corresponds to an s-wave state.

A. Generic three-component expansion

We consider the microscopic model of a clean supercon-
ductor with three overlapping bands at the Fermi level.
Within the quasiclassical approximation, the band pa-
rameters that characterize the different cylindrical sheets
of the Fermi surface are the partial densities of states

(DOS) νa, and the Fermi velocities v
(a)
F ; here the index

a = 1, 2, 3 labels the different bands. The Eilenberger
equations for the quasiclassical propagators read as

~v(a)
F D fa + 2ωnfa − 2∆aga = 0, (S1a)

~v(a)
F D∗f+

a − 2ωnf
+
a + 2∆∗aga = 0 , (S1b)

where ωn = (2n + 1)πT , with n ∈ Z, are the fermionic
Matsubara frequencies and T is the temperature. The
gauge derivative is D ≡∇ + ieA, where A is the vector
potential, and the gauge coupling is related to the flux
quantum Φ0 by e = −2π/Φ0.

The quasi-classical propagators fa and ga are respec-
tively, the anomalous and the normal Green’s functions
in each band; they obey the normalization condition

Figure S1. Schematic view of the band structure ofr the
hole-doped iron pnictide compound Ba1−xKxFe2As2. It con-
sists of two hole pockets at the Γ point shown by circles and
two electron pockets at (0;π) and (π; 0) displayed by ellipses.
As discussed in the text, the s+is state is favoured by the
superconducting coupling that is dominated by the interband
repulsion between the electron and the hole Fermi surfaces
uhe, as well as between the two hole pockets uhh.

|fa|2 + g2
a = 1. The components ∆a of the order param-

eter are determined by the self-consistency equations

∆a(p, r) = 2πT
∑
n,p′,b

λab(p,p
′)fb(p, r, ωn) . (S2)

Here, the parameters p run over the Fermi surfaces,
and λab are the components of the coupling potential
matrix. For simplicity the pairing states are assumed
to be isotropic on each of the Fermi surfaces, so that
λab(p,p

′) = const, see details in [S1]. Finally, the self-
consistent electric current is

j(r) = 2πeT
∑
n,p,a

νjv
(a)
F Im ga(p, r, ωn) (S3)

where νa is the partial density of state, and ga =

sign(ωn)
√

1− faf+
a .

The Ginzburg-Landau functional, is obtained by ex-
pressing the solutions of the Eilenberger equations (S1)
as an expansion by powers of the gap functions ampli-
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tudes ∆a and of their gradients:

fa(p, r, ωn) =
∆a

ωn
− |∆a|2∆a

2ω3
n

(S4)

−
~(v

(a)
F D)∆a

2ω2
n

+
~2(v

(a)
F D)(v

(a)
F D)∆a

4ω3
n

.

The summation over the Matsubara frequencies gives

2πT

Nd∑
n=0

ω−1
n = G0 + τ , with τ = (1− T/Tc) . (S5)

Note that, f+
a (p, r, ωn) = f∗a (−p, r, ωn).

The Ginzburg-Landau equations a determined by the
substituting the expansion (S4) into the self-consistency
equation (S2). After normalizing the gaps functions by
Tc/
√
ρ (where ρ =

∑
n πT

3
c ω
−3
n ≈ 0.1), the Ginzburg-

Landau equations read as[
(G0 + τ − Λ̂−1)∆

]
a

= −K(a)
ij DiDj∆a+ |∆a|2∆a , (S6)

where ∆ = (∆1,∆2,∆3)T , and the anisotropy tensor is

K
(a)
ij = ~2ρ

〈
v

(a)
Fi v

(a)
Fj

〉
/2T 2

c . The indices i, j stand for

the x, y coordinates, and the average is taken over the
a-th Fermi surface. The current reads as

J(r) =
4e

~
T 2
c

ρ

3∑
a=1

νaIm ∆∗aK̂
(a)D∆a . (S7)

The critical temperature is given by the smallest pos-
itive eigenvalue of the inverse coupling matrix Λ̂−1.
Namely, if λ−1

n denote the positive eigenvalues of the in-

verse coupling matrix Λ̂−1, the critical temperature is
determined by the equation G0 = minn(λ−1

n ). Provided
that all the eigenvalues are positive, the number of com-
ponents of the effective field theory coincide with the
number of bands. In this case, the Ginzburg-Landau
equations for the three-component system read as

−K(a)
ij DiDj∆a+αaa∆a+αab∆b+βa|∆a|2∆a = 0, (S8)

where

αaa = (Λ̂−1
ab −G0 − τ)δab, (S9a)

αab = (1− δab)Λ̂−1
ab and βa = 1 . (S9b)

While the precise microscopic physics behind the su-
perconductivity in Ba1−xKxFe2As2 is still unknown, we
focus on the scenario of a three-band model with inter-
band dominated repulsive pairing. In this case, the eigen-
values of the inverse coupling matrix are not all positive.
This implies, as detailed below, that the three-band the-
ory is described by a two-component order parameter.

B. Two-component Ginzburg-Landau theory for
the s+is superconducting state

Our principal interest here, is the time-reversal sym-
metry breaking s+is state in a three-band superconduc-
tor. We consider an interband dominated repulsive pair-
ing, suggested to be relevant for iron-based supercon-
ductors [S2]. The corresponding coupling matrix Λ̂ is
parametrized as

Λ̂ = −

 0 uhh ueh
uhh 0 ueh
ueh ueh 0

 . (S10)

Thus the fields ∆1,2 correspond to the gap functions at
the hole Fermi surfaces while ∆3 is the gap at the electron
pockets sketched in Fig. S1. The coefficients uhh and ueh
are respectively the hole-hole and electron-hole interac-
tions. The linear equation that determines the critical
temperature G0 = min(G1, G2) is obtained by neglecting
the r.h.s. of (S6). Here G1 and G2 are the only two
positive eigenvalues of the inverse coupling matrix

Λ̂−1 =
1

2u2
ehuhh

 u2
eh −u2

eh −uehuhh
−u2

eh u2
eh −uehuhh

−uehuhh −uehuhh u2
hh

 .

(S11)
They explicitly reads as G1 = 1/uhh and G2 =(
uhh +

√
u2
hh + 8u2

eh

)
/4u2

eh. The associated eigenvec-

tors are ∆1 = (−1, 1, 0)T and ∆2 = (x, x, 1)T , where

x = (uhh−
√
u2
hh + 8u2

eh)/4ueh. Since the only fields that
can nucleate are those associated with positive eigenval-
ues, the Ginzburg-Landau theory (S6) has to be reduced
to a two-component one. This reduction is obtained by
expressing the general order parameter as the linear com-
bination

∆ = η1∆1 + η2∆2 ,

and (∆1,∆2,∆3) = (xη2 − η1, xη2 + η1, η2) . (S12)

Here η1 and η2 are the order parameter of the s± pair-
ing channels respectively between the two concentric hole
surfaces and between the hole and electron surfaces.

The substitution of the linear combination (S12) into
the Ginzburg-Landau equations (S6), after projection
onto the eigenvectors ∆1,2, yields the system of two
Ginzburg-Landau equations [S1]:

a11η1 + b1j |ηj |2η1 + c12η
∗
1η

2
2 =

k1j

2
DDηj , (S13a)

a22η2 + b2j |ηj |2η2 + c12η
∗
2η

2
1 =

k2j

2
DDηj . (S13b)

The parameters on the left hand side of the Ginzburg-
Landau equations (S13) are expressed, in terms of the
coefficients of the coupling matrix (S10) as

ajj = −|∆j |2(G0 −Gj + τ) , a12 = 0 (S14)

b11 = 2 , b22 = (2x4 + 1) , b12 = 4x2 , c12 = 2x2 ,
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where |∆1|2 = 2 and |∆2|2 = 2x2 + 1. The s + is state
is symmetric under the C4 transformations, thus the co-

efficients satisfy K
(j)
xx = K

(j)
yy = K(j). As a results, the

coefficients of the gradient terms in (S13) read as

k11 = 2ξ−2
0

[
K(1) +K(2)

]
(S15a)

k22 = 2ξ−2
0

[
(K(1) +K(2))x2 +K(3)

]
(S15b)

k12 = 2ξ−2
0 x

[
K(2) −K(1)

]
. (S15c)

The total superconducting current (S7), is the super-

position of the partial currents J (a) of the different com-

ponents of the order parameters, as J =
∑
a J

(a); and
the partial currents read as

J (a) = eIm
(
η∗a
∑
b

[kabDηb]
)
. (S16)

The two-component free energy functional that corre-
sponds to the Ginzburg-Landau equations (S13), and
whose variations with respect to A give the supercurrent
(S16), reads as (in dimensionless units):

F =
B2

2
+

1

2

2∑
a,b=1

kab(Dηa)∗Dηb + V (η) , (S17a)

where V (η) =

2∑
a,b=1

aabη
∗
aηb +

bab
2
|ηa|2|ηb|2 (S17b)

+
c12

2

(
η∗21 η2

2 + c.c.
)
. (S17c)

Here, the complex fields η1,2 are the components of the
superconducting order parameter. They are electromag-
netically coupled by the vector potential A of the mag-
netic field B = ∇ × A, through the gauge derivative
D ≡ ∇ + ieA. There, the coupling constant e is used
to parametrize the London penetration length. Note
that for the energy to be positive definite, the coeffi-
cients of the kinetic terms should satisfy the relation

det k̂ = k11k22 − k2
12 > 0. Also, for the free energy func-

tional to be bounded from below, the coefficients of the
terms that are fourth order in the condensates should
satisfy the condition b11b22 − (b12 + c12)2 > 0. Finally,
the condition for having a nonzero ground-state density
is det â = a11a22 − a2

12 < 0. These conditions are of
course satisfied by the microscopically calculated value
(S14) and (S15).

C. Elimination of the mixed-gradients by
diagonalization

Within the current basis for the superconducting de-
grees of freedom, it is quite complicated to deal with the
kinetic terms. It is thus worth rewriting the model us-
ing a linear combination of the components of the order
parameter, that diagonalize the kinetic term:

Fk =
1

2

2∑
a,b=1

kab(Dηa)∗Dηb :=
1

2
(Dη)†k̂Dη . (S18)

Here η† = (η∗1 , η
∗
2), and k̂ is the matrix whose elements

are kab. The positive definiteness of the free energy im-

plies that det k̂ > 0. So, k̂ is a positive definite square
matrix whose square root is

R =
k̂ + 1

√
det k̂√

tr k̂ + 2
√

det k̂

, where k̂ = R†R . (S19)

This determines a natural linear combination of the su-
perconducting degrees of freedom, where the kinetic term
(S18) is diagonal:

Fk =
1

2
(DΨ)†DΨ , where Ψ = Rη , (S20)

and Ψ† = (ψ∗1 , ψ
∗
2). The original superconducting degrees

of freedom η are restored via the reverse transformation
η = R−1Ψ, where

R−1 =

√
tr k̂ + 2

√
det k̂

det(k̂ + 1

√
det k̂)

[
(tr k̂+

√
det k̂)1− k̂

]
. (S21)

Using the relations (S19) and (S21) to parametrize the
superconducting degrees of freedom with Ψ instead of
η, greatly simplifies the kinetic term (S20). Thus, the
potential term in the free energy (S17) has to be rewritten
in terms Ψ. In all generality, the potential energy reads
as

Fp := V (η) = aijη
∗
i ηj +

bijkl
2
η∗i η
∗
j ηkηl , (S22)

with the summation over the repeated indices. Note that
for the energy to be a real quantity, the tensor coefficients
aij , and bijkl should obey some symmetry relations:

aij = aji (S23a)

bijkl = bjikl = bijlk = bklij . (S23b)

Similarly, in terms of Ψ the potential energy reads as

Fp := V (Ψ) = αijψ
∗
i ψj +

βijkl
2

ψ∗i ψ
∗
jψkψl , (S24)

where the tensor coefficients αij and βijkl obey the same
symmetry relations (S23) as aij , and bijkl. They are
obtained via the transformation η = R−1Ψ, and the re-
lations are

αij = aabR−1
ai R

−1
bj (S25a)

βijkl = babcdR−1
ai R

−1
bj R

−1
ck R

−1
dl . (S25b)
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A simple, yet lengthy algebraic manipulations thus yield the free energy in terms of the superconducting degrees
of freedom Ψ

F =
B2

2
+

1

2
(DΨ)†DΨ + V (Ψ) , where B = ∇×A , D ≡∇ + ieA , (S26a)

and V (Ψ) =

2∑
i,j=1

αijψ
∗
i ψj +

βij
2
|ψi|2|ψj |2 +

(
γ11|ψ1|2 + γ22|ψ2|2

)(
ψ∗1ψ2 + c.c.

)
+
γ12

2

(
ψ∗21 ψ2

2 + c.c.
)
, (S26b)

and βij := βijklδkiδjl, γik = βijklδj1δl2. Moreover, all the coefficients are symmetric, for example β21 = β12. Using
the relations (S25), and collecting the various terms yields the relation for the coefficients of the bilinear terms

α11 = a11(R−1
11 )2 + a22(R−1

21 )2 + 2a12R−1
11 R

−1
21 (S27a)

α22 = a11(R−1
12 )2 + a22(R−1

22 )2 + 2a12R−1
12 R

−1
22 (S27b)

α12 = a11R−1
11 R

−1
12 + a22R−1

21 R
−1
22 + a12(R−1

11 R
−1
22 +R−1

12 R
−1
21 ) . (S27c)

Similarly, the coefficients for the fourth order terms are

β11 =
b11

2
(R−1

11 )4 +
b22

2
(R−1

21 )4 + (b12 + c12)(R−1
11 )2(R−1

21 )2 + 2R−1
11 R

−1
21 (c11(R−1

11 )2 + c22(R−1
21 )2) (S28a)

β22 =
b11

2
(R−1

12 )4 +
b22

2
(R−1

22 )4 + (b12 + c12)(R−1
12 )2(R−1

22 )2 + 2R−1
12 R

−1
22 (c11(R−1

12 )2 + c22(R−1
22 )2) (S28b)

β12 = 2b11(R−1
11 )2(R−1

12 )2 + 2b22(R−1
21 )2(R−1

22 )2 + b12(R−1
11 R

−1
22 +R−1

12 R
−1
21 )2 + 4c12R−1

11 R
−1
12 R

−1
21 R

−1
22

+ 4(c11R−1
11 R

−1
12 + c22R−1

21 R
−1
22 )(R−1

11 R
−1
22 +R−1

12 R
−1
21 ) , (S28c)

and

γ11 = b11(R−1
11 )3R−1

21 + b22(R−1
12 )3R−1

22 + (b12 + c12)R−1
11 R

−1
21 (R−1

11 R
−1
22 +R−1

12 R
−1
21 )

+ c11(R−1
11 )2(R−1

11 R
−1
22 + 3R−1

12 R
−1
21 ) + c22(R−1

12 )2(3R−1
11 R

−1
22 +R−1

12 R
−1
21 ) (S29a)

γ22 = b11(R−1
21 )3R−1

11 + b22(R−1
22 )3R−1

12 + (b12 + c12)R−1
22 R

−1
12 (R−1

11 R
−1
22 +R−1

12 R
−1
21 )

+ c11(R−1
12 )2(3R−1

11 R
−1
22 +R−1

12 R
−1
21 ) + c22(R−1

22 )2(R−1
11 R

−1
22 + 3R−1

12 R
−1
21 ) (S29b)

γ12 =
b11

2
(R−1

11 )2(R−1
12 )2 +

b22

2
(R−1

21 )2(R−1
22 )2 + b12R−1

11 R
−1
12 R

−1
21 R

−1
22 +

c12

2
((R−1

11 R
−1
22 )2 + (R−1

12 R
−1
21 )2)

+ (c11R−1
11 R

−1
12 + c22R−1

21 R
−1
22 )(R−1

11 R
−1
22 +R−1

12 R
−1
21 ) . (S29c)

Note that the elimination of the mixed gradient terms

via the decomposition of the matrix k̂ in terms of the
square root matrix R is not unique. Indeed, there exist
different possibilities, see for example [S1, S32].

D. Separation of charged and neutral modes

The total Meissner current J is defined by the varia-
tion of the free energy (S26) with respect to the vector
potential:

J :=
δF
δA

= e2Ψ†ΨA+ eIm
(
Ψ†∇Ψ

)
. (S30)

It follows that the gauge field can be explicitly eliminated
by expressing A in terms of the condensate Ψ, and the
Meissner current:

eA =
1

e%2

(
J−eIm

(
Ψ†∇Ψ

))
, where %2 = Ψ†Ψ . (S31)

Indeed, the kinetic term can be written as

|DΨ|2 =
J2

e2%2
+∇Ψ† ·∇Ψ+

(
Ψ†∇Ψ−∇Ψ†Ψ

)2
4%2

, (S32)

and that the magnetic field

Bk = εkij

{
∇i
(

Jj
e2%2

)
+

i

e%4
Zij

}
(S33a)

where Zij = %2∇iΨ
†∇jΨ + (Ψ†∇iΨ)(∇jΨ

†Ψ) .
(S33b)

Hence, the magnetic field features a contribution from the
Meissner current J , together with a contribution from
the interband counterflow Zij . Note that since Z∗ij = Zji,
the magnetic field can be written as

Bk = εkij

{
∇i
(

Jj
e2%2

)
− ImZij

e%4

}
. (S34)
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It follows that the free energy (S26) can be rewritten as

F =
1

2

[
εkij

{
∇i
(

Jj
e2%2

)
+

i

e%4
Zij

}]2

+
J2

2e2%2

+ ∇Ψ† ·∇Ψ +
1

4%2

(
Ψ†∇Ψ−∇Ψ†Ψ

)2
+ V (Ψ) , (S35)

where Zij is defined in (S33b).

E. Mapping to the effective model

Two-component Ginzburg-Landau models can often be
mapped onto a version of the nonlinear O(3) σ-model
[S1, S4–S6]. In those mappings the O(3) symmetry is ex-
plicitly broken by the potential terms, consistently with
the symmetry of the superconducting state. The map-
ping couples the massive U(1) vector field (the current
J) to a compact O(3) unit vector (the pseudo-spin n)
and a real scalar (the density %). The pseudo-spin unit is
defined by projecting the superconducting degrees of free-
dom onto the spin-1/2 Pauli matrices σ. For derivation
of this mapping for different two-component Ginzburg-
Landau models, see e.g. [S1, S6].

Here, we use an alternative mapping to a model that
couples the massive U(1) vector field (the current J) to
the fermion quadrupling order parameter in the form of a
3-vector m. The fermion quadrupling field is defined as
the projection of the superconducting degrees of freedom
Ψ onto the spin-1/2 Pauli matrices σ:

m ≡ (mx,my,mz) = Ψ†σΨ . (S36)

Unlike the pseudo-spin n, which a unit vector, the norm
of m is not fixed. Thus n and m are related to each
other according to m = %2n, and we sometime refer to
m as a soft modulus vector field. The projection (S36)
determines the following relations

∂im·∂jm = 2ρ2
(
∂iΨ

†∂jΨ + ∂jΨ
†∂iΨ

)
+
(
Ψ†∂iΨ− ∂iΨ†Ψ

)(
Ψ†∂jΨ− ∂jΨ†Ψ

)
, (S37)

where, for the product of Pauli matrices, we used the
Fierz identity

σαabσ
α
cd = 2δadδbc − δabδcd , (S38)

where δab is the Kronecker symbol. It follows that(
∇m

)2
= 4ρ2∇Ψ† ·∇Ψ +

(
Ψ†∇Ψ−∇Ψ†Ψ

)2
. (S39)

The kinetic term (S32) can thus be written as

|DΨ|2 =
J2

e2%2
+

1

4%2

(
∇m

)2
. (S40)

Similarly, the projection (S36) determines the relation

m · ∂im× ∂jm = −2i%4
(
∂iΨ

†∂jΨ− ∂jΨ†∂iΨ
)

− 2i%2
[
(Ψ†∂iΨ)(∂jΨ

†Ψ)− (∂iΨ
†Ψ)(Ψ†∂jΨ)

]
, (S41)

where, for the triple product of Pauli matrices, we used
the identity

εαβγσ
α
abσ

β
cdσ

γ
ef = 2i

(
δafδbcδde − δadδcfδbe

)
. (S42)

There δab is the Kronecker symbol, and εαβγ is the rank-3
Levi-Civita symbol. It follows that

εijkm · ∂im× ∂jm =

− 4i%2εijk

{
%2∂iΨ

†∂jΨ + (Ψ†∂iΨ)(∂jΨ
†Ψ)
}
. (S43)

Hence, the magnetic field reads as

B = ∇×
(
J

e2%2

)
− εαβγ

4e%6
mα∇mβ ×∇mγ . (S44)

As a result,

F =
1

2

[
εkij

{
∇i
(

Jj
e2%2

)
− 1

4e%6
m · ∂im× ∂jm

}]2

+
J2

2e2%2
+

1

8%2

(
∇m

)2
+ V (m) , (S45)

where the density is %2 ≡ ‖m‖ =
√
m ·m.

The effective model of the fermion quadrupling resis-
tive state is deduced by removing the superconducting
degrees of freedom from (S45), since their prefactors are
renormalized to zero. Namely, in that resistive state the
Meissner current vanishes (J = 0), while the currents
associated with the gradients of the fermion quadrupling
order parameter m do not. Assuming that the critical
temperatures of Z2 and U(1) transitions are well sepa-
rated, and assuming a mean-field approximation for the
fields that are fourth-order in fermions the free energy of
the fermion quadrupling state reads as

F =

(
m · ∂im× ∂jm

)2
16e2‖m‖6

+

(
∇m

)2
8‖m‖

+ V (m) . (S46)

Similarly, the magnetic field in the fermion quadrupling
resistive state becomes

B = −εαβγmα∇mβ ×∇mγ

4e‖m‖3
. (S47)

Equivalently, component-wise, the magnetic field is

Bk = −εkijm · ∇im×∇jm
4e‖m‖3

. (S48)

Finally, the potential term reads as

V (m) =
∑

a=0,x,y,z

αm
a +

∑
b=0,x,y,z

βm
ab

2
mb

ma , (S49)

where the component m0 := ‖m‖, and the coefficients
depend on the coefficients (S27), (S28) and (S29) of the
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diagonalized free-energy (S26). All the coefficients in-
volving a y index vanish: αm

y = βm
ay = βm

ya = 0. The
non-zero coefficients αm

a of the linear term in ma are

αm
0 =

α11 + α22

2
, αm

x = α12 , α
m
z =

α11 − α22

2
. (S50)

Next, the non-zero coefficients βm
ab of the bilinear term in

ma are

βm
00 =

β11 + β22 + 2(β12 − γ12)

4
, (S51a)

βm
0x = βm

x0 =
γ11 + γ22

2
, (S51b)

βm
0z = βm

z0 =
β11 − β22

2
, (S51c)

and

βm
xx = γ12 , (S52a)

βm
xz = βm

zx =
γ11 − γ22

2
, (S52b)

βm
zz =

β11 + β22 − 2(β12 − γ12)

4
. (S52c)

Topological properties in two-dimensions

The soft modulus vector field m (S36) can be asso-
ciated with non-trivial topological properties, by con-
sidering the properties of the corresponding unit vec-
tor field n := m/‖m‖. Indeed, the unit vector n is a
map from the one-point compactification of the plane
(R2 ∪ {∞} ∼= S2) onto the two-sphere target space
spanned by n. That is n : S2 7→ S2

n, which is classi-
fied by the homotopy class π2(S2

n) ∈ Z, thus defining the
topological invariant, i.e. the degree of the map, as

Q(n) =
1

4π

∫
R2

n · ∂xn× ∂yn dxdy . (S53)

Note that n is ill-defined when ‖m‖ = 0. On the other
hand, whenever ‖m‖ 6= 0, the corresponding configura-
tion have an integer topological charge Q(n) ∈ Z. In a
way, Q(n) counts the number of times the pseudo-spin
texture of n wraps the target two-sphere. The topolog-
ical invariant (S53), the index of the map n, can be ex-
pressed directly in terms of the soft modulus vector field
m. This is easily done by replacing n with its actual
definition n := m/‖m‖. The topological invariant thus
reads as

Q(m) =
1

4π

∫
R2

m · ∂xm× ∂ym
‖m‖3

dxdy . (S54)

Here again, the integrand is obviously ill-defined when
‖m‖ = 0. Whenever ‖m‖ 6= 0, the corresponding con-
figuration have an integer topological charge Q(m) ∈ Z.
The quantization of Q(m) implies that the magnetic flux
is quantized as well according to

∫
Bz = Φ0Q, where

Φ0 = −2π/e is the flux quantum.

It should be emphasized that unlike the flux quanti-
zation condition for the superconducting states, which is
related to the U(1) topological invariant, the condition
(S54) is also valid in the non-superconducting phase. In-
deed, the quantization in the superconducting state is
given by the U(1) topological invariant, which is related
to the total phase winding at spatial infinity (the usual
winding number). In the fermion quadrupling resistive
state, the total phase of Ψ is disordered and the U(1)
invariant does not exist. On the other, since it is associ-
ated only with the relative phases, Q(m) is the quantity
that defines the flux quantization.

It is worth emphasizing that the topological charge
(S53) is an integer, when integrated over the infinite
plane R2, or at least an large enough domain Ω ⊂ R2.

F. Parameter sets

The essential features can be qualitatively summarized
as follows: First, all the coefficients involving a y index
vanish: αm

y = βm
ay = βm

ya = 0. Moreover, the criterion

for the condensation is αm 2
0 > αm 2

x + αm 2
z , and also

βm
00 , β

m
zz > 0. The effect of the time-reversal symmetry

operation for the soft modulus vector is a reflection of m
on the xz-plane of the target space:

T (Ψ) = Ψ∗ ⇔ T (m) = (mx,−my,mz) . (S55)

A typical value of the parameter set, when obtained
from the microscopic model, is given in the Table I.

G. Modulation of the parameters

Inhomogeneities in a sample typically result in spa-
tially varying parameters of the Ginzburg-Landau model.
In the system with broken time-reversal symmetry this
can result in gradients of both densities and relative
phases. This can in principle produce spontaneous mag-
netic fields. As emphasized in the main body, the mate-
rial has slight inhomogeneity in the doping level, and this
results in relatively small local modulation of the super-
conducting critical temperature. This can be accounted
for by implementing spatial modulation of the prefactors
of the quadratic terms of the Ginzburg-Landau theory.
For example, the parameters of the quadratic term of the
original Ginzburg-Landau theory (S17) formally depend
on the temperature, aii ≡ aii(τ) = a0

ii[τ − 1]. Hence, it
may be possible to model the effect of temperature in-
homogeneities by requiring a spatial dependence of the
parameters aii ≡ aii(τ,x) = a0

ii[τ(x) − 1]. Different ar-
eas of an inhomogeneous sample indeed can have different
local critical temperatures. Such a local modification of
the parameter was demonstrated to be responsible for
the existence of spontaneous magnetic fields, in differ-
ent models with time-reversal symmetry breaking states.
These include the responses to linear thermal gradients
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Parameters of the αm
0 αm

x αm
z βm

00 βm
0x βm

0z βm
xx βm

xz βm
zz

effective model (×10−1) (×10−2) (×10−2) (×10−1) (×10−2) (×10−2) (×10−1) (×10−2) (×10−1)

-8.2605 8.0923 -6.3919 4.5431 -6.5085 1.4987 2.1940 -0.0875 2.3491

Table I. Coefficients of the Ginzburg-Landau free energy functional that correspond to the various numerical simulations
reported in the main body of the text. Starting from the microscopic model (S10), the parameters of the coupling matrix

are ueh = 0.45 and uhh = 0.5, and the coefficients of the gradient term are K(1) = 0.5, K(2) = 0.35, K(3) = 0.45 and the
temperature parameter is T/Tc = 0.25. Next, the coefficients of the diagonalized Ginzburg-Landau model (S26) are evaluated
using the formulas (S27), (S28) and (S29). Finally the coefficients of the soft modulus effective model are obtained with the
formulas (S50), (S51), and (S52).

[S7, S8], hotspot created by a laser pulse [S9] but also the
effect of impurities [S10, S11], and other inhomogeneous
arrays [S3, S12].

At the level of the effective model, implementing
smoothly spatially varying amplitudes of the individ-
ual components, can be modelled by small spatial vari-
ations of the coupling constants αm

0 and αm
z accord-

ingly, given the relations (S27) and (S50). In the main
body, we considered random modulations in the form of
τ(x) = τ0[1 + δτ ran(x)] where ran(x) is a smooth ran-
dom surface. Here τ0 is the nominal reduced tempera-
ture, δτ is the amplitude of the thermal variation. The
idea to construct a random, smoothly varying quantity
is to represent it as a Fourier series with random coeffi-
cients:

f(x) = −c0 +

Nx∑
i=1

Ny∑
j=1

cij cos 2π

(
ix

Lx
+
jy

Ly

)

+sij sin 2π

(
ix

Lx
+
jy

Ly

)
, (S56)

were Lx and Ly are the dimensions of the box that
bounds the numerical domain. Nx and Ny are cut-off
in the Fourier expansion, and the coefficients cij and sij
are random numbers ∈ [−0.5 : 0.5].

II. NUMERICAL METHODS

In the numerical investigations in the main body of
the paper, we use Finite-Element Methods (FEM) (see
e.g. [S13, S14]) to handle the spatial discretization of
the problem. In practice we use the finite-element frame-
work provided by the FreeFEM library [S15]. Within this
finite-element framework, the minimization of the free en-
ergy is addressed using a non-linear conjugate gradient
algorithm [S16–S19].

A. Finite-element formulation

We consider the domain Ω which a bounded open sub-
set of R2 and denote ∂Ω its boundary. H(Ω) stands
for the Hilbert space, such that a function belonging to
H(Ω), and its weak derivatives have a finite L2-norm.

Furthermore. The Hilbert spaces of real-valued functions
is equipped with the inner product 〈·, ·〉, defined as:

〈u, v〉 =

∫
Ω

uv , for u, v ∈ H(Ω) . (S57)

The spatial domain Ω is discretized as a mesh of trian-
gles using for the Delaunay-Voronoi algorithm, and the
regular partition Th of Ω refers to the family of the trian-
gles that compose the mesh. Given a spatial discretiza-
tion, the functions are approximated to belong to a finite-
element space whose properties correspond to the details
of the Hilbert spaces to which the functions belong. We

define P
(2)
h as the 2-nd order Lagrange finite-element sub-

space of H(Ω). Now, the physical degrees of freedom can
be discretized in their finite element subspaces. And we
define the finite-element description of the degrees of free-

dom as mi 7→ m
(h)
i ∈ P(2)

h . This describes a linear vector
space of finite dimension, for which a basis can be found.
The canonical basis consists of the shape functions φk(x),
and thus

Vh(Th,P(2)) =
{
w(x) =

M∑
k=1

wkφk(x), φk(x) ∈ P
(2)
h

}
.

(S58)
Here M is the dimension of Vh (the number of vertices),
the wk are called the degrees of freedom of w and M the
number of the degrees of freedom. To summarize, a given
function is approximated as its decomposition: w(x) =∑M
k=1 wkφk(x), on a given basis of shape functions φk(x)

of the polynomial functions P(2) for the triangle Tik . The
finite element space Vh(Th,P(2)) hence denotes the space
of continuous, piecewise quadratic functions of x, y on
each triangle of Th.

B. Initial guess: Skyrmions and domain-walls

The skyrmions and the domain-walls are field configu-
rations for the two-dimensional system. More precisely,
either for the true two-dimensional system, or for a three-
dimensional system with a translational invariance along
the third direction z. The initial guess is defined, such
that the ground state would be mz = ±1. The configu-
ration is then rotated using the rotation matrices Ri and
scaled to match the actual ground state m̂:

m = r0Rz(−ϕ0)Ry(−θ0)S(sk)n(dw) . (S59)
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Figure S2. Skyrmion solutions in a time-reversal symmetry broken state, for increasing values of the topological charge Q(m).
On each block, the panels on the top row display the texture of the four-fermion order parameter m. The panels on the
middle row show the associated magnetic field B (S47), and the bottom row display the corresponding charge transferring
counter-currents jcounter according to the Ampère’s law. The parameters are the same as in the main body. Note that as can
be seen from the densities of arrows, the configurations for Q(m)=7–10 are zoomed out, as compared to those for Q(m)=1–4.
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Figure S3. Skyrmion solutions in the presence of inhomogeneities. On each block, the panels on the top row display the
texture of the four-fermion order parameter m. The panels on the middle row show the associated magnetic field B (S47), and
the bottom row display the corresponding charge transferring counter-currents jcounter according to the Ampère’s law. The
parameters are the same as in the main body. Note that as can be seen from the densities of arrows, the configurations for
Q(m)=7,8 are zoomed out, as compared to those for Q(m)=2,4.

Here r0 = ‖m̂‖, θ0 = arccos(m̂z/r0), and φ0 =
arctan(m̂y/m̂x) are the spherical coordinates of the
ground state m̂ := argmin V (m), for the potential (S49).
Here n(dw) is unit 3-vectors that encode the information
about domain-walls (S60), and S(sk) (S61) is the function
that imprints skyrmions on n(dw).

The configuration that interpolates between the north
and south pole of the unit sphere can be parametrized as
follow:

n(dw) =

(√
1−Υ(x)2

2
,

√
1−Υ(x)2

2
,Υ(x)

)
, (S60a)

Υ(x) = tanh

(
x⊥ − x0

ξdw

)
, (S60b)

where ξdw determines the width of the domain-wall. In
(S60), x0 is the curvilinear abscissa that determines the
position of the domain-wall, and x⊥ is the coordinate
perpendicular to the domain-wall. In the absence of
domain-walls, then n(dw) = (0, 0, 1), simply points to
the north pole.

The skyrmions are implemented by successively rotat-
ing the vector n(dw). Namely, a set of Nsk skyrmions is
realized by successfully composing the rotations accord-

ing to

S(sk) =

Nsk∏
k=1

Rz (Φk(x))Ry (Θk(x)) . (S61)

Here again, Ri are the rotation matrices, and the angles
defining a given skyrmion are

Φk(x) = Qk arctan

(
y − yk
x− xk

)
, (S62a)

Θk(x) = π exp

{
− (x− xk)2 + (y − yk)2

2ξ2
sk

}
. (S62b)

The parameters (xk, yk) determine the position of the
core of the k-th skyrmion, of charge Qk, and ξsk deter-
mines the size of the skyrmions.

III. ADDITIONAL RESULTS

A. Skyrmions

The model has a great variety of skyrmion solutions
with different different topological charges. This can be
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Figure S4. A domain-wall that interpolates between the
inequivalent time-reversal symmetry broken states. The top
panel show the different components of the fermion quadru-
pling order parameter m.The bottom panel shows the corre-
sponding texture. The corresponding parameters are given in
Sec. I F, and the gauge coupling e = 0.25. The domain-walls
are not associated with a magnetic field.

see from Fig. S2 that displays several examples of stable
skyrmions with topological charges Q(m)=1–10.

B. Skyrmions on an inhomogeneous background

The skyrmions displayed in the main body, as well as
in Fig. S2, are computed in the case of completely ho-
mogeneous parameters. However, as emphasized earlier,
the materials can have slight inhomogeneities in doping
level. This results in relatively small modulation of Tc,
and also in modulation of relative densities and phases
of the gaps. As emphasized in the main body, this yields
spontaneous magnetic fields. It is thus rather natural
to question the effect that inhomogeneities can have on
skyrmions. As already emphasized, in the considered
model, the skyrmions are fairly stable objects, we find
that they survive in the presence of various kinds of in-
homogeneities. This can be see from Fig. S3 that dis-
plays several examples of stable skyrmions (with topolog-
ical charges Q(m)=2,4,7,8), in the presence of inhomo-
geneities. Clearly, the skyrmions are deformed by the in-
homogeneities, yet, in this case they remain robust struc-
tures. See the conclusions of the main part of the paper
regarding the reservations on stability of skyrmions be-
yond the effective model.

C. Domain-walls

The fermion quadrupling resistive state, which pre-
cedes the s+is state, spontaneously breaks the time-
reversal symmetry. For the fermion quadrupling order
parameter m, the time-reversal operation (S55) implies
that a state that breaks the time-reversal symmetry has
my 6= 0. In such a situation, there exist domain-wall
excitations between both s ± is states, as illustrated in
Fig. S4.
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