Aurélien Deya 
email: aurelien.deya@univ-lorraine.fr
  
ON ILL-POSEDNESS OF NONLINEAR STOCHASTIC WAVE EQUATIONS DRIVEN BY ROUGH NOISE

Keywords: nonlinear stochastic wave equation, fractional noise, ill-posedness issue. 2000 Mathematics Subject Classification: 60H15, 60G22, 35L05, 35R25

.

Introduction

The present study is devoted to the investigations of ill-posedness issues related to the stochastic nonlinear wave model: 5 f 2 t u ∆u f puq σpuq 9 B, t r0, T s, x R d , d ¥ 1 u 0 pf t uq 0 0 , [START_REF] Coutin | Stochastic rough path analysis and fractional Brownian motion[END_REF] where f, σ : R Ñ R are regular maps satisfying f P p0q $ 0, σp0q $ 0, and 9 B stands for a space-time fractional noise (which includes the case of space-time white noise). Roughly speaking, we intend to exhibit some breakup phenomenon with respect to the regularity of 9 B, by showing that below a specific threshold, no interpretation of the model -whether classical, Itô or Wick-type -can be expected, owing to a fundamental singularity issue. Such a sudden failure in the analysis -with a noise becoming "too rough" -is a well-identified phenomenon for standard stochastic differential systems, i.e. when dealing with the one-parameter model 5 dY t σpY t q 9 B t , t r0, T s, Y 0 0 , [START_REF] Deya | A nonlinear wave equation with fractional perturbation[END_REF] where σ : R Ñ LpR m , Rq is a regular map and 9 B dB stands for a m-dimensional fractional noise of Hurst index H p0, 1q (see Definition 2.1 for a general presentation of fractional noises). Indeed, it has long been established that for m ¥ 2, a robust interpretation and analysis of (2) is possible as long as H ¡ 1 4 , while no fully satisfying general interpretation is available when H ¤ 1 4 . The theory of rough paths ( [START_REF] Friz | A course on rough paths, With an introduction to regularity structures[END_REF][START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF][START_REF] Lyons | System control and rough paths[END_REF]) offers a very clear insight on such a behaviour. In brief, the theory somehow allows us to reduce the analysis of (2) to the study of a finite-order development of the equation, that is one can morally focalize on the approximation B p2q,n s fail to converge in the space of continuous functions, but it also explodes as a general distribution of time, ruling out any potential interpretation of (2) (at least for non-trivial σ).

With Proposition 1.1 in mind, our objective in the sequel is now easy to state. Namely, we would like to exhibit a similar drastic change of regime for the more sophisticated SPDE dynamics [START_REF] Coutin | Stochastic rough path analysis and fractional Brownian motion[END_REF], as the regularity of the noise 9 B decreases. In order to -heuristically -find out the exact counterpart of Proposition 1.1 in the wave setting, let us follow a similar approach as with the standard model [START_REF] Deya | A nonlinear wave equation with fractional perturbation[END_REF] and expand equation [START_REF] Coutin | Stochastic rough path analysis and fractional Brownian motion[END_REF], starting from its mild formulation upt, xq

» t 0 » R d G t¡s px ¡ yqf pups, yqq dyds » t 0 » R d
G t¡s px ¡ yqσpups, yqq 9 Bpds, dyq . [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF] Throughout the paper, the notation G will refer to the fundamental solution of the wave equation on R d , characterized by its spatial Fourier transform

F x pG t qpηq : » R d dx e ¡ıxξ,xy G t pxq sinpt|η|q |η| , t ¥ 0, η R d . ( 7 
)
Setting additionally G t : 0 and 9 B t : 0 for t ¤ 0, equation ( 6) can be more concisely rephrased as

u G ¦ σpuq 9 B ¨ G ¦ 1 R f puq ¨,
where the notation ¦ stands for the convolution in R d 1 . Now let us stick here to a local expansion of u around the initial condition, i.e. zero, by taking the nonlinear assumptions f P p0q $ 0, σp0q $ 0 into account. In other words, let us approximate f puq and σpuq by f puq f p0q f I p0qu f P p0q 2 u 2 , σpuq σp0q, which yields first

u σp0q G ¦ 9 B ¨ f p0q t 2 2 f I p0q G ¦ 1 R u $¨ f P p0q 2 G ¦ 1 R u 2 $¨& ,
and by iterating the procedure, we formally get

u σp0q G ¦ 9 B ¨ f I p0qσp0q G ¦ 1 R G ¦ 9 B ¨$¨ f P p0q 2 σp0q 2 G ¦ 1 R G ¦ 9 B ¨2$¨ f p0q t 2 2 . ( 8 
)
To some extent, this local approximation of u can be compared with the expansion in [START_REF] Deya | On a non-linear 2D fractional wave equation[END_REF], and accordingly we are led to the following parallel between the fundamental elements in each formula, classified along their orders:

» . 0 9 B s ÐÑ G ¦ 9 B, G ¦ 1 R G ¦ 9 B ¨$¨ : p , q , » . 0 » s 0 9 B r 9 B s ÐÑ G ¦ 1 R G ¦ 9 B ¨2$ : . ( 9 
)
The above symbols , , will be used for a better identification of these central processes, and in the same vein, we denote : G ¦ 9 B ¨2 (this graphical convention is derived from the one used in the theory of regularity structures [START_REF] Hairer | A theory of regularity structures[END_REF]). A particular common feature of the five random objects in [START_REF] Hairer | A theory of regularity structures[END_REF] is that their definitions do not depend on the (potential) solution u, and therefore these objects can be studied independently. Now, in the same spirit as in the above-described rough paths procedure (see again Proposition 1.1), the fundamental question is to determine whether the above elements p , , q do exist, in a space to be specified. Recall indeed that 9 B is only defined as a general random distribution (see Definition 2.1), and therefore its involvement within any "non-smooth" construction must be carefully justified.

The existence issue for the first-order elements p , q has already been treated in [2, Proposition 1.2],

and the result can be summed up as follows (see Section 2.1 for the definition of the weighted Sobolev spaces H α w ).

Proposition 1.2 ([2]

). Fix d ¥ 1 and let 9 B be a space-time fractional noise on R ¢ R d , with index H pH 0 , . . . , H d q p0, 1q d 1 . Set H : H 1 . . . H d . Consider a mollifier ρ on R d 1 , i.e. ρ : R d 1 Ñ R is a smooth compactly-supported function of integral 1, and for every n ¥ 0, set ρ n pt, xq : 2 pd 1qn ρp2 n t, 2 n xq. Finally, for every n ¥ 0, define 9 B n : ρ n ¦ 9 B , n : G ¦ r1 R 9 B n s and

n : G ¦ 1 R n $ .
Then, for every α ¡ d ¡ 1 2 ¡ pH 0 H q and every positive function w L 1 pR d q, the sequence p n q, resp. p n q, converges almost surely in the space CpR ; H ¡α w q, resp. CpR ; H ¡α 1 w q.

The above result shows in particular that, as far as the construction of p , q is concerned, no restriction on the regularity of 9 B (or more precisely its index H) is required. Going back to the developments (8)- [START_REF] Hairer | A theory of regularity structures[END_REF], we can henceforth concentrate on the existence issue for the second-order element -just as we concentrated on the existence issue for the Lévy-area term in Proposition 1.1. And indeed, based on all the previous considerations, our investigations in the sequel will be motivated by the two following natural guidelines:

piq The possibility to "construct" the random object G ¦r1 R pG ¦ 9 Bq 2 s opens the way toward the interpretation and the well-posedness of equation [START_REF] Coutin | Stochastic rough path analysis and fractional Brownian motion[END_REF].

piiq Conversely, if there is no (natural) interpretation for -even as a general distribution -, then there is essentially no hope to find any (natural) interpretation for the model [START_REF] Coutin | Stochastic rough path analysis and fractional Brownian motion[END_REF].

Of course, we do not pretend here that the sole existence of (in situation piq) immediately entails interpretation and well-posedness of equation (1) (see Remark 2.5 for further details). However, we claim that this existence is a necessary first step toward the treatment of the equation, and the impossibility to construct fundamentally means ill-posedness for [START_REF] Coutin | Stochastic rough path analysis and fractional Brownian motion[END_REF].

Still keeping the pattern of Proposition 1.1 in mind, we intend to exhibit a specific threshold for the sum H 0 H , where the situation switches from regime piq (existence of ) to regime piiq (non-existence).

In this setting, observe first that, by the result of Proposition 1.2, the construction of is straightforward whenever H 0 H ¡ d ¡ 1 2 . Indeed, in this case, one has Cpr0, T s; H κ w q for every 0 κ H 0 H ¡ pd ¡ 1 2 q. In particular, is guaranteed to be a function of both the time and space variables, which immediately legitimates the interpretation of the square 2 as a basic pointwise product. From there, the interpretation of the convolution G ¦ r1 R 2 s, which gives birth to , becomes an easy task (see item pi-aq of Theorem 2.4 for a precise statement in this configuration).

The situation becomes significantly more intricate when

H 0 H ¤ d ¡ 1
2 , since the linear solution can only be understood as a general distribution with respect to the space variable. The interpretation of the square p q 2 must then go through a renormalization trick, implemented at the level of some approximation of . In the sequel, we will focus on Wick-type renormalization procedures: namely, given a smooth approximation p 9 B n q n¥0 of 9 B and a deterministic sequence of functions pc n : R ¢R d Ñ Rq n¥0 , we set successively

n : G n ¦ r1 R 9 B n s , n pt, xq : p n q 2 pt, xq ¡ c n pt, xq , pnq : G ¦ n , ( 10 
)
and then study the conditions on pc n q that could guarantee convergence of n . The Wick-type renormalization method can be regarded as the most simple way to rescale an a priori diverging model u. In terms of local approximation (see [START_REF] Gubinelli | Paracontrolled approach to the three-dimensional stochastic nonlinear wave equation with quadratic nonlinearity[END_REF]), this deformation u n Ñ ûn formally echoes as ûn σp0q n f I p0qσp0q

n f P p0q 2 σp0q 2 n ¡ G ¦ c n % f p0q t 2 2 .
In the two-dimensional setting, that is when d 2 in (1), first results on the success and the limits of the Wick renormalization method for p q 2 have already been obtained in [START_REF] Deya | A nonlinear wave equation with fractional perturbation[END_REF][START_REF] Deya | On a non-linear 2D fractional wave equation[END_REF][START_REF] Gubinelli | Renormalization of the two-dimensional stochastic non linear wave equations[END_REF]. So far, the most complete statement in this direction can be found in [3, Propositions 1.3 and 1.4] and summed up as follows (for the sake of conciseness, we refer the reader to [2, Equation ( 4)] for the definition of the so-called harmonizable approximation of 9 B, close in spirit to the mollifying approximation).

Proposition 1.3 ([3]

). Fix d 2 and let p 9 B n q n¥0 be the harmonizable approximation of a fractional noise 9 B on R ¢ R 2 , with index H pH 0 , H 1 , H 2 q p0, 1q ¢ p0, 

piq If 1 H 0 H ¤ 3 2
, then for any (spatial) cut-off function w : R 2 Ñ R, the sequence pw ¤ n q converges almost surely in Cpr0, T s; H ¡2α pR 2 qq, for every α ¡ 3 2 ¡ pH 0 H 1 H 2 q. piiq If H 0 H ¤ 1, then for every t ¡ 0, every non-zero cut-off function w : R 2 Ñ R and every α R,

one has E w ¤ n pt, .q 2 H ¡2α pR 2 q % nÑV ÝÑ V .
At first sight, the above assertions piq-piiq indeed emphasizes a clear change of regime on the frontier H 0 H 1 (to be compared with the result of Proposition 1.1 for the standard equation). Namely, when H 0 H ¡ 1, we are able to interpret the (Wick) square as an element in the scale of spaces Cpr0, T s, H ¡2α q (α R), whereas it is no longer possible to do so when H 0 H ¤ 1. Nevertheless, in the general framework of the present study, the statement of Proposition 1.3 still leaves several important questions in abeyance:

paq As we have just mentionned it, items piq and piiq of Proposition 1.3 both rely on the scale of the functions of time with values in a Sobolev space H ¡2α , for some α R. In fact, this choice is mostly motivated by the convenient properties of the wave kernel G in this scale of spaces, which, in [START_REF] Deya | On a non-linear 2D fractional wave equation[END_REF], pave the way toward a fixed-point argument for equation (1) (see Remark 2.5). Putting this existence issue in a broader context, we may naturally wonder whether the explosion phenomenon in item piiq would still occur for a more general space-time distributions topology.

Consider the basic example provided by the noise 9 B itself: we know that for every fixed t ¥ 0, the approximation x Þ Ñ 9 B n t pxq cannot converge as a space distribution (the noise is not a function of time), whereas pt, xq Þ Ñ 9 B n t pxq clearly converges to 9 B as a space-time distribution. Based on the sole statement of Proposition 1.3, one cannot rule out the possibility of a similar behaviour for n .

pbq Perhaps more importantly: Proposition 1.3 investigates the existence/non-existence issue for the (Wick) square . And yet, as we have seen it in the above developments ( 8)-( 9), the central element at the core of the dynamics in (1) is not exactly , but the convolution of with G, that is . It turns out that in several situations studied in the literature, the influence of convolution with a given (deterministic) kernel is not negligible when it comes to such existence issues. This can be basically observed on the transition from the noise 9 B to the convolution : G ¦ 9 B. Indeed, while 9 B can only be regarded as a general space-time distribution, it is possible to construct as a function of time (we have seen it in Proposition 1.2). Many similar behaviours have been exhibited for the nonlinear heat equation on the torus: see for instance the contrast between Lemma 16 and Proposition 24 in [START_REF] Jentzen | Renormalized powers of Ornstein-Uhlenbeck processes and well-posedness of stochastic Ginzburg-Landau equations[END_REF], or between items (i) and (ii) in [START_REF] Oh | Comparing the stochastic nonlinear wave and heat equations: a case study[END_REF]Proposition 1.9].

In light of these examples, it seems reasonable to think that convolution with G might have an impact on the assertions of Proposition 1.3, and in particular we can legitimately question the exact value of the change-of-regime threshold when replacing n with n : G ¦ n . pcq The results in Proposition 1.3 lean on the standard Wick renormalization procedure, as it can be seen from the specific definition of c n in [START_REF] Hu | Stochastic heat equation driven by fractional noise and local time[END_REF]. Thus, based on this sole statement, it is not obvious to determine whether the explosion phenomenon in item piiq could be avoided with a more suitable (but still deterministic) renormalization sequence c n , that is with a more general Wick-type renormalization method.

pdq Last but not least, the statement of Proposition 1.3 is limited to the two-dimensional case, and to the harmonizable approximation of 9 B. It is then natural to ask if (and how) these considerations -including the above observations paq-pbq-pcq -could be extended to any dimension d ¥ 3, and to the more standard mollifying approximation of 9 B.

For all these reasons, and also given the fundamental role of the process in the dynamics of eq. ( 1), we have found it important to search for a result that would both refine and generalize Proposition 1.3.

Main result

For a clear statement of our main contribution (Theorem 2.4 below), let us introduce a few definitions and notation first.

2.1. Setting and notations. For any arbitrary domain Ω of a Euclidean space, we denote by DpΩq the space of test-functions φ on Ω, that is φ : Ω Ñ R is smooth and compactly supported.

For every function Ψ L 2 pR ¢ R d q, resp. ψ L Then, for every α R, we define H α w H α w pR d q as the completion of DpR d q with respect to the norm

u H α w : F ¡1 t1 |.| 2 u α 2 Fu ¨ L 2 w pR d q . ( 12 
)
Let us now specify the definition of the fractional noise at the core of our investigations (this actually corresponds to the most widely used definition in the fractional literature). Definition 2.1. Fix H pH 0 , . . . , H d q p0, 1q d 1 . On a complete filtered probability space, we call a fractional noise on R d 1 with (Hurst) index H, and denote by 9 B, any centered Gaussian family

2 9
BpΦq, Φ DpR d 1 q @ with covariance given by the formula: for all Φ, Ψ DpR d 1 q, E x 9 B, Φy x 9

B, Ψy

$ » R¢R d µ H pdξ, dηq FΦpξ, ηqFΨpξ, ηq, ( 13 
)
where

µ H pdξ, dηq : dξ |ξ| 2H0¡1 ¹ i1,...,d dη i |η i | 2Hi¡1 . ( 14 
)
As we mentionned it earlier, our approximation of the noise 9 B, leading ultimately to the construction of , will be derived from a standard mollifying procedure. Definition 2.2. We call a mollifier on R d 1 any smooth integrable function ρ : R d 1 Ñ R such that Fρ is Lipschitz and

³ R d 1 ρps, xq dsdx 1.
Given a mollifier ρ on R d 1 , we define the mollifying sequence pρ n q n¥0 by the formula: for all ξ R and η R d , ρ n pξ, ηq : 2 npd 1q ρp2 n ξ, 2 n ηq. Remark 2.3. Following the above definition, any positive test-function ρ DpR d 1 q with integral 1 is a mollifier. The definition also covers the Gaussian-type mollifier used for instance in [START_REF] Hu | Stochastic Heat Equations with General Multiplicative Gaussian Noises: Hölder Continuity and Intermittency[END_REF]Section 3.2] or [START_REF] Hu | Stochastic heat equation driven by fractional noise and local time[END_REF]Section 5], that is ρps, xq : 1 r0,1s psqp 1 pxq, where p 1 refers to the Gaussian density at time 1.

The notation G for the wave kernel has already been introduced through [START_REF] Gubinelli | Renormalization of the two-dimensional stochastic non linear wave equations[END_REF]. Recall that in dimension d 1, 2, and for any fixed t ¥ 0, this kernel G t is a well-defined function on R d , while for d ¥ 3, G t can only be interpreted as a general space distribution. Therefore, for more rigour in our subsequent computations (where the kernel will be treated as a function), let us consider the following smooth approximation of G t : for every n ¥ On a complete filtered probability space, let 9 B be a fractional noise of index H p0, 1q ¢ p0, 3 4 q d , and for any given sequence of real functions pc n : R ¢ R d Ñ Rq n¥0 , define successively

9 B n : ρ n ¦ 9 B , n : G n ¦ r1 R 9 B n s , ( 16 
) n pt, xq : p n q 2 pt, xq ¡ c n pt, xq and pnq : G n ¦ r1 R n s . ( 17 
)
In this setting, the following picture holds true (as before, we denote H :

H 1 . . . H d ):
pi-aq If H 0 H ¡ d¡ 1 2 , then by choosing c n pt, xq : 0 (i.e. no renormalization), the sequence p pnq q n¥1 converges almost surely in the space CpR ; H 1 γ w q, for every

0 γ H 0 H ¡ pd ¡ 1 2 q. pi-bq If 3d 4 ¡ 1 2 H 0 H ¤ d ¡ 1
2 , then by considering the standard Wick renormalization procedure, that is by choosing

c n pt, xq : E n pt, xq 2 $
, the sequence p pnq q n¥1 converges almost surely in the space CpR ; H 1¡2α w q, for every

α ¡ max ¢ d ¡ 1 2 ¡ pH 0 H q, d ¡ 1 4 . ( 18 
)
piiq If H 0 H ¤ 3d 4 ¡ 1 2 , then there exists a non-empty subset E DpR ¢ R d q such that for any Φ E and any sequence of real functions pc n : R ¢ R d Ñ Rq n¥0 , one has

E § § x pnq , Φy § § 2 % nÑV ÝÑ V . ( 19 
)
The above properties piq-piiq offer a striking illustration of the announced breakup phenomenon for -and thus indirectly for the equation ( 1) itself -, on the frontier

H 0 H 3d 4 ¡ 1 2 : If H 0 H ¡ 3d 4 ¡ 1
2 , then the process , defined as the limit of n , can be interpreted as a function of time with values in a Sobolev space of (moderate) order 1

¡ 2α 1 ¡ d 2 .
If

H 0 H ¤ 3d 4 ¡ 1 2
, then a fundamental singularity issue prevents us from constructing , and accordingly any hope to analyze equation ( 1) essentially disappears in this rough situation.

In this way, Theorem 2.4 clearly corresponds to the exact counterpart of Proposition 1.1 in the wave setting. When compared with the (pre-existing) result of Proposition 1.3, the statement also provides full answers to the four issues paq-pbq-pcq-pdq that we have addressed at the end of Section 1. Indeed: paq It points out that, in the situation where H 0 H ¤ 3d 4 ¡ 1 2 , it is not possible to avoid the explosion phenonemon by extending the topological setting to more general space-time distributions, which shows how deep the singularity problem in this case.

pbq When d 2, it proves that the change-of-regime frontier H 0 H 1 for stays the same for , which sharply contrasts with similar situations in the heat setting. The observation would actually remain true for any d ¥ 1. pcq It confirms that the divergence in (19) applies to any Wick-type renormalization procedure, that is to any sequence pc n q, and not only to the standard one. pdq It generalizes the results to any space dimension d ¥ 2, and to the standard mollifying approximation.

Let us complete the statement of Theorem 2.4 with two additional comments.

Remark 2.5. Even if the existence of clearly appears to us as a necessary condition for a fruitful analysis of (1), we are aware that the result of Theorem 2.4 (in the "open" situation

H 0 H ¡ 3d 4 ¡ 1 
2 ) is not sufficient to derive interpretation and well-posedness of the equation.

In dimension d 2, a full treatment of the model (1) -with f puq : u 2 and σpuq : 1 -can be found in [START_REF] Deya | On a non-linear 2D fractional wave equation[END_REF], under the same assumption H 0 H ¡ 1 (see also [START_REF] Gubinelli | Renormalization of the two-dimensional stochastic non linear wave equations[END_REF] for a study in the specific white-noise situation).

It turns out that, as H 0 H gets close to 1, not only does the analysis rely on , but it also requires the construction of an additional third-order processes . Once endowed with those elements, the solution to ( 1) is obtained via a deterministic fixed-point argument, using the so-called Strichartz inequalities.

In dimension d 3, and as far as we know, the interesting rough regime 7 4 H 0 H ¤ 5 2 has only been considered through the specific white-noise situation H 0 . . . H 3 1 2 , with also f puq : u 2 and σpuq : 1. This analysis is the main topic of [START_REF] Gubinelli | Paracontrolled approach to the three-dimensional stochastic nonlinear wave equation with quadratic nonlinearity[END_REF], where the authors appeal to the sophisticated machinery of paracontrolled calculus in order to set up a fixed-point procedure (note in particular the central role of in [8, Theorem 1.12]).

Finally, we are not aware of any full treatment of the model (1) for d ¥ 4 and 3d 4 ¡ 1 2

H 0 H ¤ d¡ 1 2 .
Remark 2.6. In Theorem 2.4, the condition H i 3 4 (for i ¥ 1) guarantees in particular that the spatial density of the noise (given in ( 14)) belongs to L 2 loc pR d q, which we will use in the construction of (see e.g. the change of coordinates in (39)). However, it should certainly be possible to handle the situation where H i ¡ 3 4 (for some i ¥ 1) with similar arguments, at the price of an adaptation -and a less elegant formulation -of the threshold condition H 0 H 3d 4 ¡ 1 2 . On the other hand, the condition H i 3 4 still covers the most standard model considered in the literature, namely the white noise case H i 1 2 for i 0, . . . , d. Note that in the latter configuration, the threshold condition of Theorem 2.4 reads as d 1 2 ¡ 3d 4 ¡ 1 2 , and accordingly, when 9 B is a white noise, we cannot expect any Wick-type interpretation of equation ( 1) for d ¥ 4.

The rest of the paper is organized as follows. In Section 2.3 below, we briefly emphasize the covariance formulae of the processes p n , n q, which will be the starting point of our analysis toward both items piq and piiq of Theorem 2.4. Then Section 3 will be devoted to the proof of the existence part of the statement (item piq), while Section 4 will focus on the diverging property in the irregular regime (item piiq). Finally, the appendix section contains further details about the divergence of the fractional Lévy area associated with [START_REF] Deya | A nonlinear wave equation with fractional perturbation[END_REF], which allows for a direct comparison with the phenomenon in the wave setting. 

) 20 
where we have set

µ pnq H pdξ, dηq : µ H pdξ, dηq § § Fρ n p¡ξ, ¡ηq § § 2 . ( 21 
)
p2q For all t, t ¥ 0 and y, ỹ R d , it holds that

E n pt, yq n p t, ỹq % 2 ¡ E n pt, yq n p t, ỹq %© 2 3 E n pt, yq 2 % ¡ c n pt, yq A3 E n p t, ỹq 2 % ¡ c n p t, ỹq A . ( 22 
)
Proof. By applying the covariance formula (13), we get first that for all s, s ¥ 0, z, z R 

H 0 H ¤ d ¡ 1 2
(standard Wick renormalization).

To be more specific, in both cases, we will concentrate on the exhibition of a uniform bound (over n) for the second moment of the approximation n t , for fixed t ¡ 0 and relatively to a suitable topology in space -see the below statements of Propositions 3.2 and 3.3.

The transition from these uniform bounds to the assertions piq-paq and piq-pbq of Theorem 2.4 is then a matter of standard arguments, that have been detailled many times in the literature. Such a procedure can be found for instance in [2, Section 2.1] or [3, Section 3] (see also [START_REF] Mourrat | Construction of Φ 4 3 diagrams for pedestrians, From particle systems to partial differential equations[END_REF]Proposition 3.6] or [START_REF] Oh | Comparing the stochastic nonlinear wave and heat equations: a case study[END_REF]Lemma 2.6] for results in the same spirit). We leave it to the reader to check that our setting in this regard is not different from the one in the latter references.

Let us finally report on a useful estimate related to the Fourier transform of G n . This assertion is borrowed from [2, Corollary 2.2], and it will serve us several times in the sequel.

Lemma 3.1. Fix H 0 p0, 1q and T ¡ 0. Then for all 0 ¤ s ¤ T , η R d , κ 0, min H 0 , 1 2 ¨¨and ε p0, 1 2 ¡ κq, it holds that sup n¥1 » R dξ |ξ| 2H0¡1 § § § § » s 0 dr e ¡ıξr F x pG n r qpηq § § § § 2 À s 2κ 1 |η| 1 2H0¡2κ¡2ε ,
where the proportional constant only depends on T .

3.1. Situation piq-paq. Then for every 0 γ H 0 H ¡ pd ¡ 1 2 q, there exists κ ¡ 0 such that for all T ¡ 0 and t r0, T s,

sup n¥1 E n t 2 H 1 γ w pR d q % À }w} L 1 pR d q t 2 4κ , ( 23 
)
where the proportional constant only depends on T .

Proof. Fix 0 γ H 0 H ¡ pd ¡ 1 2 q. The moment under consideration can be readily expanded as

E n t 2 H 1 γ w pR d q % » R d dx wpxq E § § § § F ¡1 ¡ t1 |.| 2 u 1 γ 2 » t 0 ds F x G n t¡s ¨Fx n s ¨©pxq § § § § 2 & » R d dx wpxq E § § § § » R d dλ e ıxx,λy t1 |λ| 2 u 1 2 γ » t 0 ds F x G n t¡s ¨pλq » R d dy e ¡ıxλ,yy n s pyq § § § § 2 & » R d dx wpxq » pR d q 2
dλd λ e ıxx,λ¡ λy t1 |λ| .

2 u 1 γ 2 t1 | λ| 2 u 1 γ 2 » t 0 ds » t 0 ds F x G n t¡s ¨pλqF x G n t¡s ¨pλ q » pR d q 2 dydỹ
Injecting this decomposition into (24), we deduce that

E n t 2 H 1 γ w pR d q % I n t 2 II n t , ( 25 
)
with

I n t : » R d dx wpxq » pR d q 2
dλd λ e ıxx,λ¡ λy t1 |λ|

2 u 1 γ 2 t1 | λ| 2 u 1 γ 2 » t 0 ds » t 0 ds F x G n t¡s ¨pλqF x G n t¡s ¨pλ q » pR d q 2 dydỹ e ¡ıxλ,yy e ıx λ,ỹy E n ps, yq 2 % E n ps, ỹq 2 %
and

II n t : » R d dx wpxq » pR d q 2
dλd λ e ıxx,λ¡ λy t1 |λ|

2 u 1 γ 2 t1 | λ| 2 u 1 γ 2 » t 0 ds » t 0 ds F x G n t¡s ¨pλqF x G n t¡s ¨pλ q » pR d q 2
dydỹ e ¡ıxλ,yy e ıx λ,ỹy

¡ E n s pyq n s pỹq %© 2 . ( 26 
)
Step 1: Estimation of I n t . Observe that I n t can actually be recast as

I n t » R d dx wpxq § § § § » R d dλ e ıxx,λy t1 |λ| 2 u 1 γ 2 » t 0 ds F x G n t¡s ¨pλq » R d dy e ¡ıxλ,yy E n ps, yq 2 % § § § § 2
By applying the covariance formula (20), we immediately obtain the expression

E n ps, yq 2 % » R¢R d µ pnq H pdξ, dηq § § § § » s 0 dr e ¡ıξr F x pG n r qpηq § § § § 2 .
Note that the latter quantity does not depend on the space variable y, and so, using the (formal) identity

» R d
dy e ¡ıxλ,yy δ tλ0u , where δ stands for the Dirac distribution, we get that

» R d dλ e ıxx,λy t1 |λ| 2 u 1 γ 2 » t 0 ds F x G n t¡s ¨pλq » R d dy e ¡ıxλ,yy E n ps, yq 2 % » R¢R d µ pnq H pdξ, dηq » t 0 ds pt ¡ sq § § § § » s 0 dr e ¡ıξr F x pG n r qpηq § § § § 2 ,
which enables us to write I n t as

I n t }w} L 1 pR d q § § § § » R¢R d µ pnq H pdξ, dηq » t 0 ds pt ¡ sq § § § § » s 0 dr e ¡ıξr F x pG n r qpηq § § § § 2 § § § § 2 .
At this point, observe that Fρ n p¡ξ, ¡ηq Fρp¡2 ¡n ξ, ¡2 ¡n ηq, and thus, since ρ is a mollifier, one has

}Fρ n } L V ¤ }Fρ} L V ¤ }ρ} L 1 1, which immediately entails µ pnq H pdξ, dηq ¤ µ H pdξ, dηq. (27) Consequently, § § § § » R¢R d µ pnq H pdξ, dηq » t 0 ds pt ¡ sq § § § § » s 0 dr e ¡ıξr F x pG n r qpηq § § § § 2 § § § § ¤ » R d ¢ ¹ i1,...,d dη i |η i | 2Hi¡1 » t 0 ds pt ¡ sq » R dξ |ξ| 2H0¡1 § § § § » s 0 dr e ¡ıξr F x pG n r qpηq § § § § 2 ,
and we can now use the estimate of Lemma 3.1 to derive that for all κ, ε ¡ 0 small enough,

I n t À }w} L 1 pR d q § § § § » R d ¢ ¹ i1,...,d dη i |η i | 2Hi¡1 1 1 |η| 1 2H0¡2κ¡2ε » t 0 ds pt ¡ sqs 2κ § § § § 2 À }w} L 1 pR d q t 4 4κ § § § § » R d ¢ ¹ i1,...,d dη i |η i | 2Hi¡1 1 1 |η| 1 2H0¡2κ¡2ε § § § § 2 .
Since 2H i ¡ 1 1, we are here allowed to implement a spherical change of coordinates and assert that for some finite proportional constant,

I n t À }w} L 1 pR d q t 4 4κ § § § § » V 0 dr r 1¡2pd¡H q t1 r 1 2H0¡2κ¡2ε u § § § § 2 .
Thanks to the assumption

H 0 H ¡ d ¡ 1
2 , it is easy to check that the integral in the latter bound is finite for all κ, ε ¡ 0 small enough, and thus we have shown that

sup n¥1 I n t À }w} L 1 pR d q t 4 4κ , ( 28 
)
where the proportional constant only depends on T .

Step dṽ e ı ξṽ F x pG n ṽ qpηq.

Injecting this expression into the definition of II n t and then using the (formal) identity

» pR d q 2
dydỹ e ¡ıxλ,yy e ıx λ,ỹy e ıxη η,yy e ¡ıxη η,ỹy δ tλη ηu δ t λη ηu , we get this time

II n t }w} L 1 pR d q » R¢R d µ pnq H pdξ, dηq » R¢R d µ pnq H pd ξ, dηq t1 |η η| 2 u 1 γ § § § § » t 0 ds F x G n t¡s ¨pη ηqe ıspξ ξq » s 0 dr e ¡ıξr F x pG n r qpηq » s 0 dv e ¡ı ξv F x pG n v qpηq § § § § 2 . ( 29 
)
Let us recall the uniform bound (27). Besides, given the definition (15

) of G n , it is clear that § § F x G n t¡s ¨pη ηq § § À 1 T 1 |η η| , ( 30 
)
where the proportional constant does not depend on n. By injecting these estimates into (29), we deduce

II n t À }w} L 1 pR d q » R¢R d µ H pdξ, dηq » R¢R d µ H pd ξ, dηq t1 |η η| 2 u γ t » t 0 ds § § § § » s 0 dr e ¡ıξr F x pG n r qpηq § § § § 2 § § § § » s 0 dv e ¡ı ξv F x pG n v qpηq § § § § 2 À }w} L 1 pR d q t » t 0 ds » R¢R d µ H pdξ, dηq t1 |η| 2 u γ § § § § » s 0 dr e ¡ıξr F x pG n r qpηq § § § § 2 & 2 , ( 31 
)
where the proportional constant only depends on T , and where we have used the trivial inequality t1 |η η| 2 u γ À t1 |η| 2 u γ t1 |η| 2 u γ . Just as for I n t , we can now rely on the estimate of Lemma 3.1 to assert that for κ, ε ¡ 0 small enough,

» R¢R d µ H pdξ, dηq t1 |η| 2 u γ § § § § » s 0 dr e ¡ıξr F x pG n r qpηq § § § § 2 » R d ¢ ¹ i1,...,d dη i |η i | 2Hi¡1 t1 |η| 2 u γ » R dξ |ξ| 2H0¡1 § § § § » s 0 dr e ¡ıξr F x pG n r qpηq § § § § 2 À s 2κ » R d ¢ ¹ i1,...,d dη i |η i | 2Hi¡1 1 1 |η| 1 2H0¡2γ¡2κ¡2ε À s 2κ » V 0 dr r 1¡2pd¡2H q t1 r 1 2H0¡2γ¡2κ¡2ε u .
Due to the assumption 0 γ H 0 H ¡ pd ¡ 1 2 q, we can guarantee that the latter integral is finite for all κ, ε ¡ 0 small enough. Going back to (31), we have proved that

sup n¥1 II n t À }w} L 1 pR d q t 2 4κ , ( 32 
)
where the proportional constant only depend on T . Injecting (28) and (32) into (25) finally yields the desired uniform estimate (23). □ 3.2. Situation piq-pbq. Then for every α ¡ 0 satisfying condition (18), there exists κ ¡ 0 such that for all T ¡ 0 and t r0, T s,

sup n¥1 E n t 2 H 1¡2α w pR d q % À }w} L 1 pR d q t 2κ 2 , ( 33 
)
where the proportional constant only depends on T .

Proof. Note first that due to the assumption H 0 H ¡ 3d 4 ¡ 1 2 , we can in fact reinforce condition (18) and assume without loss of generality that max

¢ d ¡ 1 2 ¡ pH 0 H q, d ¡ 1 4 α d 4 . ( 34 
)
With this condition in hand, we can start with expanding the considered moment as in the proof of Proposition 3.2, that is .

E n t 2 H 1¡2α w pR d q % » R d dx wpxq » pR d q 2 dλd λ e ıxx,λ¡ λy t1 |λ| 2 u 1 2 ¡α t1 | λ| 2 u 1 2 ¡α » t 0 ds » t 0 ds F x G n t¡s ¨pλqF x G n t¡s ¨pλ q » pR d q 2 dydỹ
We can thus mimic the arguments ensuring the transition from (26) to (29), and conclude that

E n t 2 H 1¡2α w pR d q % 2}w} L 1 pR d q » R¢R d µ pnq H pdξ, dηq » R¢R d µ pnq H pd ξ, dηq t1 |η η| 2 u 1¡2α § § § § » t 0 ds F x G n t¡s ¨pη ηqe ıspξ ξq » s 0 dr e ¡ıξr F x pG n r qpηq » s 0 dv e ¡ı ξv F x pG n v qpηq § § § § 2 .
Then, using both ( 27) and (30), we deduce

E n t 2 H 1¡2α w pR d q % À }w} L 1 pR d q t » pR d q 2 dηdη t1 |η ¡ η| 2 u 2α ¢ ¹ i1,...,d 1 |η i | 2Hi¡1 |η i | 2Hi¡1 » t 0 ds » R dξ |ξ| 2H0¡1 § § § § » s 0 dr e ¡ıξr F x pG n r qpηq § § § § 2 & » R d ξ | ξ| 2H0¡1 § § § § » s 0 dv e ¡ı ξv F x pG n v qpηq § § § § 2 &
, and we can apply the result of Lemma 3.1 to obtain, for all κ, ε ¡ 0 small enough,

E n t 2 H 1¡2α w pR d q % À t 2κ 2 » pR d q 2 dηdη t1 |η ¡ η| 2 u 2α K H pηqK H pηq,
where the proportional constant only depends on T , and where we have set, for every η R d ,

K H pηq K H,κ,ε pηq : 1 1 |η| 1 2H0¡2κ¡2ε ¹ i1,...,d 1 |η i | 2Hi¡1 . ( 35 
)
The 

» R d ¢R d dηdη t1 |η ¡ η| 2 u 2α K H pηqK H pηq ¤ 4 d » R ¢R dη 1 dη 1 ¤ ¤ ¤ » R ¢R dη d dη d 1 t1 |η ¡ η| 2 u 2α K H pηqK H pηq ¤ 4 d j1,...,jdt0,1u » Q pj 1 q dη 1 dη 1 ¤ ¤ ¤ » Q pj d q dη d dη d 1 t1 |η ¡ η| 2 u 2α K H pηqK H pηq (36) 
where we have set

Q p0q : 2 η i , ηi ¡ 0 : 1 2 η i ¤ ηi ¤ 3 2 η i @ and Q p1q : pR ¢ R qzQ p0q .
In fact, for readily-checked symmetry reasons, we only need to focus on the generic situation where j 1 ... j k 0 and j k 1 ... j d 1 in (36), for some k t0, . . . , du. In other words, from now on, we fix k t0, . . . , du and try to show that the following integral is finite:

J k : » Q p0q dη 1 dη 1 ¤ ¤ ¤ » Q p0q dη k dη k » Q p1q dη k 1 dη k 1 ¤ ¤ ¤ » Q p1q dη d dη d 1 t1 |η ¡ η| 2 u 2α K H pηqK H pηq . First case: k 0. For pη i , ηi q Q p1q , one has |η i ¡ ηi | ¥ 1 3 maxp|η i |, |η i |q, which leads us to J 0 » Q p1q dη 1 dη 1 ¤ ¤ ¤ » Q p1q dη d dη d 1 t1 |η ¡ η| 2 u 2α K H pηqK H pηq À » R d dη t1 |η| 2 u α K H pηq & 2 .
Then, going back to the expression (35) of K H , we get that

» R d dη t1 |η| 2 u α K H pηq À » R d dη 1 |η| 2α 1 2H0¡2κ¡2ε ¹ i1,...,d 1 |η i | 2Hi¡1 À » V 0 dr r 1¡2pd¡H q t1 r 2p u ,
where p : α 1 2 H 0 ¡ κ ¡ ε. Since we have assumed α ¡ d ¡ 1 2 ¡ pH 0 H q, we can pick κ, ε ¡ 0 small enough so that 1 ¡ 2pd ¡ H q 2p ¡ 1, which achieves to prove that J 0 is finite.

Second case: k t1, . . . , du. For the sake of clarity, let us rely on the following standard convention. Notation 3.5. Given η R d and 1 ¤ i ¤ j ¤ d, we set η i::j : pη i , . . . , η j q R j¡i 1 . Besides, for v, ṽ R k , we denote the componentwise product by v ¦ . ṽ : pv 1 ṽ1 , . . . , v k ṽk q R k .

With this convention in hand, observe first that for all η, η R d and β 1 2 , 3 2 $ k , one has K H pη 1::k ¦ . β, ηpk 1q::d q À K H pη 1::k , ηpk 1q::d q . Therefore, by performing the elementary change of variables β ℓ ηℓ η ℓ for ℓ 1, . . . , k, we deduce that

J k À » R k dη 1 ¤ ¤ ¤ dη k 2 η 1 ¤ ¤ ¤ η k @ » Q p1q dη k 1 dη k 1 ¤ ¤ ¤ » Q p1q dη d dη d K H pηqK H pη 1::k , ηpk 1q::d q » r 1 2 , 3 2 s k dβ t1 |η 1::k ¦ . p1 ¡ βq| 2 |η pk 1q::d ¡ ηpk 1q::d | 2 u 2α .
Now, just as in the first situation, recall that , where the second inequality only consists of an extension of the integration domain for η j , ηj , j ¥ k 1.

|η i ¡ ηi | ¥ 1 3 maxp|η i |, |η i |q when pη i , ηi q Q p1q , so that J k À » R k dη 1 ¤ ¤ ¤ dη k 2 η 1 ¤ ¤ ¤ η k @ » Q p1q dη k 1 dη k 1 ¤ ¤ ¤ » Q p1q dη d dη d K H pηqK H pη 1::k , ηpk 1q::d q » r 1 2 , 3 2 s k dβ 1 t1 |η 1::k ¦ . p1 ¡ βq| 2 |η pk 1q::d | 2 u α 1 t1 |η 1::k ¦ . p1 ¡ βq| 2 |η pk 1q::d | 2 u α À » R k dη 1 ¤ ¤ ¤ dη k 2 η 1 ¤ ¤ ¤ η k @ » R d¡k dη k 1 ¤ ¤ ¤ dη d » R d¡k dη k 1 ¤ ¤ ¤ dη d K
Applying the Cauchy-Schwarz inequality (with respect to β), we obtain

J k À » R k dη 1 ¤ ¤ ¤ dη k 2 η 1 ¤ ¤ ¤ η k @ » R d¡k dη k 1 ¤ ¤ ¤ dη d » R d¡k dη k 1 ¤ ¤ ¤ dη d K H pη 1::k , η pk 1q::d qK H pη 1::k , ηpk 1q::d q ¢ » r 1 2 , 3 2 s k dβ t1 |η 1::k ¦ . p1 ¡ βq| 2 |η pk 1q::d | 2 u 2α 1 2 ¢ » r 1 2 , 3 2 s k dβ t1 |η 1::k ¦ . p1 ¡ βq| 2 |η pk 1q::d | 2 u 2α 1 2 À » R k dη 1 ¤ ¤ ¤ dη k 2 η 1 ¤ ¤ ¤ η k @ » R d¡k dη k 1 ¤ ¤ ¤ dη d K H pη 1::k , η pk 1q::d q ¢ » r 1 2 , 3 2 s k dβ t1 |η 1::k ¦ . p1 ¡ βq| 2 |η pk 1q::d | 2 u 2α 1 2 & 2 À » R d dη 2 η 1 ¤ ¤ ¤ η k @ K H pηq 2 » R d¡k dλ » r 1 2 , 3 2 s k dβ t1 |η 1::k ¦ . p1 ¡ βq| 2 |λ| 2 u 2α , ( 37 
)
where we have used again Cauchy-Schwarz inequality (with respect to η pk 1q::d ) to get the third estimate.

Thanks to condition (34), and since k t1, . . . , du, we can assert that for any ε ¡ 0 small enough, 0 2α

¡ d ¡ k 2 ¡ ε 2 k 2 .
Therefore, setting a k :

1 k 2α ¡ d¡k 2 ¡ ε 2 ¨, one has 0 a k 1 2
. With these observations and notation in mind, let us go back to (37) and write first

J k À » R d dη 2 η 1 ¤ ¤ ¤ η k @ K H pηq 2 » R d¡k dλ t1 |λ| 2 u d¡k 2 ε 2 » r 1 2 , 3 2 s k dβ t1 |η 1::k ¦ . p1 ¡ βq| 2 u 2α¡ d¡k 2 ¡ ε 2 À » t|η|¤1u dη K H pηq 2 » t|η|¥1u dη § § η 1 ¤ ¤ ¤ η k § § K H pηq 2 » r 1 2 , 3 2 s k dβ t1 |η 1::k ¦ . p1 ¡ βq| 2 u 2α¡ d¡k 2 ¡ ε 2 . (38)
Since we have assumed 0 H i 3 4 , it is readily checked that K H L 2 loc pR d q, and so the first integral in (38) is indeed finite. As for the second integral, one has, with the above-introduced parameter a k p0, 1 2 q, » t|η|¥1u

dη § § η 1 ¤ ¤ ¤ η k § § K H pηq 2 » r 1 2 , 3 2 s k dβ t1 |η 1::k ¦ . p1 ¡ βq| 2 u 2α¡ d¡k 2 ¡ ε 2 À » t|η|¥1u dη 4 1 |η 1 | 2a k ¡1 ¤ ¤ ¤ 1 |η k | 2a k ¡1 B K H pηq 2 ¢ » r 1 2 , 3 2 s dβ |1 ¡ β| 2a k k À » t|η|¥1u dη 4 1 |η 1 | 2a k ¡1 ¤ ¤ ¤ 1 |η k | 2a k ¡1 B K H pηq 2 À » t|η|¥1u dη |η| 2 4H0¡4κ¡4ε 4 1 |η 1 | 4H1¡3 2a k ¤ ¤ ¤ 1 |η k | 4H k ¡3 2a k B4 1 |η k 1 | 4H k 1 ¡2 ¤ ¤ ¤ 1 |η d | 4H d ¡2 B .
Recall again that 0 H j 3 4 and 0 2a k 1, which ensures that 4H j ¡3 2a k 1 for j 1, . . . , k and 4H j ¡ 2 1 for j k 1, . . . , d. We are therefore in a position to apply a spherical change of variables and assert that, for some finite proportional constant,

» t|η|¥1u dη |η| 2 4H0¡4κ¡4ε 4 1 |η 1 | 4H1¡3 2a k ¤ ¤ ¤ 1 |η k | 4H k ¡3 2a k B4 1 |η k 1 | 4H k 1 ¡2 ¤ ¤ ¤ 1 |η d | 4H d ¡2 B À » V 1 dr r p , ( 39 
)
where

p : p1 ¡ dq p2 4H 0 ¡ 4κ ¡ 4εq k j1 p4H j ¡ 3 2a k q d jk 1 p4H j ¡ 2q 3 ¡ d 4pH 0 H q ¡ 3k ¡ 2pd ¡ kq 2ka k ¡ 4κ ¡ 4ε 3 ¡ 3d 4pH 0 H q ¡ k 4α ¡ pd ¡ kq ¡ ε $ ¡ 4κ ¡ 4ε 3 4 α ¡ d pH 0 H q $ ¡ 4κ ¡ 5ε .
Since α ¡ d ¡ 1 2 ¡ pH 0 H q, we can pick κ, ε ¡ 0 small enough so that p ¡ 1. Going back to (38), this achieves to show that J k is finite for k t1, . . . , du, and thus the proof of Lemma 3.4 is now complete. 

4, part piiq

We now turn to the proof of part piiq of Theorem 2.4, and to this end, fix H p0, 1q d 1 such that H 0 H ¤ 3d 4 ¡ 1 2 for the whole section.

The set E DpR ¢ R d q of test-functions Φ that will serve us to establish the divergence property (19) can be immediately introduced as follows.

Definition 4.1. We define E DpR ¢ R d q as the set of test-functions Φpt, xq : φptqψpxq, where φ DpR q and ψ DpR d q satisfy: p1q φ ¥ 0, supp φ p0, 1q and

³ 1 3 4
dt φptq ¡ 0. 

E § § x n , Φy § § 2 % » p0,Vq 2 dtd t » pR d q 2
dydỹ Φpt, yqΦp t, ỹq

» t 0 du » t 0 dũ » pR d q 2 dzdz G n t¡u py ¡ zqG n t¡ũ pỹ ¡ zq 2 ¡ E n pu, zq n pũ, zq %© 2 3 E n pu, zq 2 % ¡ c n pu, zq A3 E n pũ, zq 2 % ¡ c n pũ, zq A% 2 » p0,Vq 2 dtd t » pR d q 2
dydỹ Φpt, yqΦp t, ỹq

» t 0 du » t 0 dũ » pR d q 2 dzdz G n t¡u py ¡ zqG n t¡ũ pỹ ¡ zq ¡ E n pt, yq n pũ, zq %© 2 § § § § » p0,Vq dt » R d dy Φpt, yq » t 0 du » R d dz G n t¡u py ¡ zq 3 E n pu, zq 2 % ¡ c n pu, zq A § § § § 2 .
As a result, it holds that

E § § x n , Φy § § 2 % ¥ 2 I n , ( 40 
)
where

I n : » p0,Vq 2 dtd t » pR d q 2
dydỹ Φpt, yqΦp t, ỹq

» t 0 du » t 0 dũ » pR d q 2 dzdz G n t¡u py ¡ zqG n t¡ũ pỹ ¡ zq ¡ E n pt, yq n pũ, zq %© 2 .
Our objective now is to show that I n Ñ V as n Ñ V, which, in particular, emphasizes the fact that the sequence pc n q has no influence on the divergence phenomenon.

Let us apply the covariance formula (20) to expand I n as

I n » p0,Vq 2 dtd t » pR d q 2
dydỹ Φpt, yqΦp t, ỹq 

» t 0 du » t 0 dũ » pR d q 2 dzdz G n
I n » R¢R d µ pnq H pdξ, dηq » R¢R d µ pnq H p¡d ξ, ¡dηq § § F x pψqpη ¡ ηq § § 2 § § § § » V 0 dt φptq » t 0 du e ıupξ¡ ξq F x pG n t¡u qpη ¡ ηq » u 0 ds e ¡ıξs F x pG n s qpηq » u 0 dr e ı ξr F x pG n r qpηq § § § § 2 ¥ » p1,Vq d C d ¢ ¹ i1,...,d dη i |η i | 2Hi¡1 » 2η1 η1 dη 1 |η 1 | 2H1¡1 ¤ ¤ ¤ » 2η d η d dη d |η d | 2H d ¡1 § § F x pψqpη ¡ ηq § § 2 » 2|η| |η| dξ |ξ| 2H0¡1 » 2|η| |η| d ξ | ξ| 2H0¡1 § § Fρ n p¡ξ, ¡ηq § § 2 § § Fρ n p ξ, ηq § § 2 § § § § » V 0 dt φptq » t 0 du e ıupξ¡ ξq F x pG n t¡u qpη ¡ ηq » u 0 ds e ¡ıξs F x pG n s qpηq » u 0 dr e ı ξr F x pG n r qpηq § § § § 2 , ( 41 
)
where the set C d is defined through the spherical-coordinates expression 

C d : 4 ¡ r cospθ 1 q, r sinpθ 1 q cospθ 2 q, r sinpθ 1 q sinpθ 2 q cospθ 3 q, . . . , r d¡1 ¹ i1 sinpθ i q © ; r ¡ 0, θ π 8 , 3π 8 
% d¡1 B . ( 42 
)
H I 3d 4 ¡ 1 2
, where H I :

d i1 H I i . ( 43 
)
Once endowed with these parameters, and going back to the above estimate (41), we easily see that

I n ¥ J n , ( 44 
)
with

J n : » p1,Vq d C d ¢ ¹ i1,...,d dη i |η i | 2H I i ¡1 » 2η1 η1 dη 1 |η 1 | 2H I 1 ¡1 ¤ ¤ ¤ » 2η d η d dη d |η d | 2H I d ¡1 § § F x pψqpη ¡ ηq § § 2 » 2|η| |η| dξ |ξ| 2H I 0 ¡1 » 2|η| |η| d ξ | ξ| 2H I 0 ¡1 § § Fρ n p¡ξ, ¡ηq § § 2 § § Fρ n p ξ, ηq § § 2 § § § § » V 0 dt φptq » t 0 du e ıupξ¡ ξq F x pG n t¡u qpη ¡ ηq » u 0 ds e ¡ıξs F x pG n s qpηq » u 0 dr e ı ξr F x pG n r qpηq § § § § 2 .
The rest of the proof is devoted to showing that J n Ñ V as n Ñ V, and to this end, we shall lean on the following decomposition of the integral over t. and where, for every κ r0, 1s,

sup n¥1 § § R n φ ppξ, ηq, p ξ, ηqq § § À 1 |η||η| 1 |ξ ¡ |η|| κ | ξ |η|| 1 |ξ |η||| ξ |η|| 1 |ξ |η||| ξ ¡ |η|| κ & . ( 47 
)
Proof of Lemma 4.2. By writing

F x pG n s qpηq 1 2ı|η| 2 e ıs|η| ¡ e ¡ıs|η| @
1 t|η|¤nu , the integral under consideration can indeed be decomposed as a sum M n φ R n φ , with M n φ given by ( 46) and

R n φ ppξ, ηq, p ξ, ηqq : ¡1 t|η|¤nu 1 t|η|¤nu 1 4|η||η| » V 0 dt φptq » t 0 du e ıupξ¡ ξq F x pG n t¡u qpη ¡ ηq » u 0 ds » u 0 dr e ¡ısξ e ır ξ 2
e ıs|η| e ır|η| ¡ e ¡ıs|η| e ır|η| e ¡ıs|η| e ¡ır|η| @ ¡1 t|η|¤nu 1 t|η|¤nu The bound (47) immediately follows. □

1 4|η||η| » 1 0 dt φptq » t 0 du e ıupξ¡ ξq
Let us go back to (44), and with expansion (45) in hand, decompose J n into

J n : J n M J n R J n M,R , (48) 
with

J n M : » p1,Vq d C d ¢ ¹ i1,...,d dη i |η i | 2H I i ¡1 » 2η1 η1 dη 1 |η 1 | 2H I 1 ¡1 ¤ ¤ ¤ » 2η d η d dη d |η d | 2H I d ¡1 1 t|η|¤nu 1 t|η|¤nu § § F x pψqpη ¡ ηq § § 2 » 2|η| |η| dξ |ξ| 2H I 0 ¡1 » 2|η| |η| d ξ | ξ| 2H I 0 ¡1 § § Fρ n p¡ξ, ¡ηq § § 2 § § Fρ n p ξ, ηq § § 2 § § M n φ ppξ, ηq, p ξ, ηqq § § 2 , (49) 
J n R : » p1,Vq d C d ¢ ¹ i1,...,d dη i |η i | 2H I i ¡1 » 2η1 η1 dη 1 |η 1 | 2H I 1 ¡1 ¤ ¤ ¤ » 2η d η d dη d |η d | 2H I d ¡1 1 t|η|¤nu 1 t|η|¤nu § § F x pψqpη ¡ ηq § § 2 » 2|η| |η| dξ |ξ| 2H I 0 ¡1 » 2|η| |η| d ξ | ξ| 2H I 0 ¡1 § § Fρ n p¡ξ, ¡ηq § § 2 § § Fρ n p ξ, ηq § § 2 § § R n φ ppξ, ηq, p ξ, ηqq § § 2 , ( 50 
)
and

J n M,R : » p1,Vq d C d ¢ ¹ i1,...,d dη i |η i | 2H I i ¡1 » 2η1 η1 dη 1 |η 1 | 2H I 1 ¡1 ¤ ¤ ¤ » 2η d η d dη d |η d | 2H I d ¡1 1 t|η|¤nu 1 t|η|¤nu § § F x pψqpη ¡ ηq § § 2 » 2|η| |η| dξ |ξ| 2H I 0 ¡1 » 2|η| |η| d ξ | ξ| 2H I 0 ¡1 § § Fρ n p¡ξ, ¡ηq § § 2 § § Fρ n p ξ, ηq § § 2 2
M n φ ppξ, ηq, p ξ, ηqqR n φ ppξ, ηq, p ξ, ηqq M n φ ppξ, ηq, p ξ, ηqqR n φ ppξ, ηq, p ξ, ηqq @ .

We will now establish that J n M Ñ V as n Ñ V, while J n R and J n M,R are uniformly bounded over n.

Analysis of J n

M . One has Fρ n pξ, ηq Fρp2 ¡n ξ, 2 ¡n ηq and, following Definition 2.2, we know that Fρp0q 1. Therefore, for every n large enough and for all pξ, ηq, pξ, ηq such that 1

¤ |η| ¤ n, 1 ¤ |η| ¤ n, |η| ξ 2|η| and |η| ξ 2|η|, one has § § Fρ n p¡ξ, ¡ηq § § ¥ 1 2 and § § Fρ n p ξ, ηq § § ¥ 1 2 .
Based on this uniform lower bound, we get that for all η, η with 1 ¤ |η| ¤ n and 1 ¤ |η| ¤ n,

» 2|η| |η| dξ |ξ| 2H I 0 ¡1 » 2|η| |η| d ξ | ξ| 2H I 0 ¡1 § § Fρ n p¡ξ, ¡ηq § § 2 § § Fρ n p¡ ξ, ηq § § 2 § § M n φ ppξ, ηq, p ξ, ηqq § § 2 ¥ 1 16 » 2|η| |η| dξ |ξ| 2H I 0 ¡1 » 2|η| |η| d ξ | ξ| 2H I 0 ¡1 § § M n φ ppξ, ηq, p ξ, ηqq § § 2 , (51) 
and then, using only elementary changes of variables,

» 2|η| |η| dξ |ξ| 2H I 0 ¡1 » 2|η| |η| d ξ | ξ| 2H I 0 ¡1 § § M n φ ppξ, ηq, p ξ, ηqq § § 2 1 |η| 2H I 0 ¡2 |η| 2H I 0 ¡2 » 2 1 dξ |ξ| 2H I 0 ¡1 » 2 1 d ξ | ξ| 2H I 0 ¡1 § § M n φ ppξ|η|, ηq, p ξ|η|, ηqq § § 2 ¥ c |η| 2H I 0 |η| 2H I 0 » 2 1 dξ » 2 1 d ξ § § § § » V 0 dt φptq » t 0 du e ıupξ|η|¡ ξ|η|q F x pG n t¡u qpη ¡ ηq » u 0 ds e ıs|η|pξ¡1q » u 0 dr e ¡ır|η|p ξ¡1q § § § § 2 ¥ c |η| 2H I 0 |η| 2H I 0 » 1 0 dξ » 1 0 d ξ § § § § » V 0 dt φptq » t 0 du e ıupξ|η|¡ ξ|η|q e ıup|η|¡|η|q F x pG n t¡u qpη ¡ ηq » u 0 ds e ıs|η|ξ » u 0 dr e ¡ır|η| ξ § § § § 2 ¥ c |η| 2H I 0 1 |η| 2H I 0 1 » |η| 0 dξ » |η| 0 d ξ § § § § » V 0 dt φptq » t 0 du e ıupξ¡ ξq e ıup|η|¡|η|q F x pG n t¡u qpη ¡ ηq » u 0 ds e ısξ » u 0 dr e ¡ır ξ § § § § 2 ¥ c |η| 2H I 0 1 |η| 2H I 0 1 » 1 0 dξ » 1 0 d ξ § § § § » V 0 dt φptq » t 0 du e ıup|η|¡|η|q F x pG n t¡u qpη ¡ ηq » 2u u ds e ısξ » 2u u dr e ¡ır ξ § § § § 2 . ( 52 
)
By injecting (51) and ( 52) into (49), we obtain 

J n M ¥ c » p1,Vq d C d ¢ ¹ i1,...,d dη i |η i | 2H I i ¡1 » 2η1 η1 dη 1 |η 1 | 2H I 1 ¡1 ¤ ¤ ¤ » 2η d η d dη d |η d | 2H I d ¡1 § § F x pψqpη ¡ ηq § § 2 1 t|η|¤nu 1 t|η|¤nu 1 |η| 2H I 0 1 |η| 2H I 0 1 » 1 0 dξ » 1 0 d ξ § § § § » V 0 dt
J n M ¥ c » p1,Vq d C d ¢ ¹ i1,...,d dη i |η i | 4H I i ¡3 1 |η| 4H I 0 2 1 t|η|¤ n 2 u » r1,2s d dβ § § F x pψqpη ¦ . p1 ¡ βqq § § 2 » 1 0 dξ » 1 0 d ξ § § § § » V 0 dt φptq » t 0 du e ıup|η|¡|η¦.β|q F x pG n t¡u qpη ¦ . p1 ¡ βqq » 2u u ds e ısξ » 2u u dr e ¡ır ξ § § § § 2 ,
and then, since F x pψqpηq F x pψqp¡ηq, dt φptq ¡ 0 .

J n M ¥ c » p1,Vq d C d ¢ ¹ i1,...,d dη i |η i | 4H I i ¡3 1 |η| 4H I 0 2 1 t|η|¤ n 2 u » r0,1s d dβ § § F x pψqpη ¦ . βq § § 2 » 1 0 dξ » 1 0 d ξ § § § § » V 0 dt φptq » t 0 du e ıup|η|¡|η¦.pβ¡1q|q F x pG n t¡u qpη ¦ . βq » 2u u ds e ısξ » 2u u dr e ¡ır ξ § § § § 2 ¥ c » p1,Vq d C d ¢ ¹ i1,...,d dη i |η i | 4H I i ¡2 1 |η| 4H I 0 2 1 t|η|¤ n 2 u » η1 0 dθ 1 ¤ ¤ ¤ » η d 0 dθ d § § F x pψqpθ 1 , . . . , θ d q § § 2 » 1 0 dξ » 1 0 d ξ § § § § » V 0 dt φptq » t 0 du e ıup|η|¡|θ¡η|q F x pG n t¡u qpθ 1 , . . . , θ d q » 2u u ds e ısξ » 2u u dr e ¡ır ξ § § § § 2 ¥ c » p1,Vq d C d ¢ ¹ i1,...,d dη i |η i | 4H I i ¡2 1 |η| 4H I 0 2 1 t|η|¤ n 2 u » |θ|¤1 dθ § § F x pψqpθq § § 2 » 1 0 dξ » 1 0 d ξ § § § § » V 0 dt φptq » t 0 du e ıup|η|¡|η¡θ|q
For every η R d , we get, using the above constants c ψ , c φ ,

» |θ|¤1 dθ § § F x pψqpθq § § 2 » 1 0 dξ » 1 0 d ξ § § § § » V 0 dt φptq » t 0 du e ıup|η|¡|η¡θ|q F x pG n t¡u qpθq » 2u u ds e ısξ » 2u u dr e ¡ır ξ § § § § 2 ¥ c 2 ψ » |θ|¤1 dθ » 1 0 dξ » 1 0 d ξ § § § § » 1 0 dt φptq » t 0 du e ıup|η|¡|η¡θ|q sinppt ¡ uq|θ|q » 2u u ds e ısξ » 2u u dr e ¡ır ξ § § § § 2 ¥ c 2 ψ » 1 4 ¤|θ|¤ 1 2 dθ » 1 4 0 dξ » 1 4 0 d ξ § § § § » 1 0 dt φptq » t 0 du sin pt ¡ uq|θ| ¨» 2u u ds » 2u u dr cos up|η| ¡ |η ¡ θ|q sξ ¡ r ξ¨ § § § § 2 ¥ c 2 ψ cos 2 p1q 4 2 » 1 4 ¤|θ|¤ 1 2 dθ » 1 3 4 dt φptq » 1 2 1 4 du sin pt ¡ uq|θ| ¨u2 & 2 ¥ c 2 ψ c 2 φ cos 2 p1q 4 8 sin 2 1 16 ¨» 1 4 ¤|θ|¤ 1 2 dθ ¡ 0 .
Going back to (53), we have thus shown the existence of a constant c 0 ¡ 0 such that

J n M ¥ c 0 » p1,Vq d C d ¢ ¹ i1,...,d dη i |η i | 4H I i ¡2 1 |η| 4H I 0 2 1 t|η|¤ n 2 u .
By recalling the definition (42) of C d , we can use a spherical change of coordinates and obtain that for some constant c 1 ¡ 0,

J n M ¥ c 1 » n 2 2
dr r 4pH I 0 H I q¡3d 3 . Following (43), one has precisely 4pH I 0 H I q ¡ 3d 3 1, which entails the desired conclusion:

lim nÑV J n M V . (54) 4.2. Analysis of J n R .
Observe again that Fρ n pξ, ηq Fρp2 ¡n ξ, 2 ¡n ηq, and so, just as in Section 3, one can write }Fρ n } L V ¤ }Fρ} L V ¤ }ρ} L 1 1, which gives

» 2|η| |η| dξ |ξ| 2H I 0 ¡1 » 2|η| |η| d ξ | ξ| 2H I 0 ¡1 § § Fρ n p¡ξ, ¡ηq § § 2 § § Fρ n p ξ, ηq § § 2 § § R n φ ppξ, ηq, p ξ, ηqq § § 2 ¤ » 2|η| |η| dξ |ξ| 2H I 0 ¡1 » 2|η| |η| d ξ | ξ| 2H I 0 ¡1 § § R n φ ppξ, ηq, p ξ, ηqq § § 2 . ( 55 
)
Using now the uniform estimate (47), we can assert that for all η, η R d with |η| ¥ 1 and |η| ¥ 1, and for every κ r0,

1 2 q, » 2|η| |η| dξ |ξ| 2H I 0 ¡1 » 2|η| |η| d ξ | ξ| 2H I 0 ¡1 § § R n φ ppξ, ηq, p ξ, ηqq § § 2 c |η| 2H I 0 ¡2 |η| 2H I 0 ¡2 » 2 1 dξ |ξ| 2H I 0 ¡1 » 2 1 d ξ | ξ| 2H I 0 ¡1 § § R n φ ppξ|η|, ηq, p ξ|η|, ηqq § § 2 À 1 |η| 2H I 0 |η| 2H I 0 » 2 1 dξ » 2 1 d ξ § § § § 1 |η| κ |ξ ¡ 1| κ |η|| ξ 1| 1 |η||ξ 1||η|| ξ 1| 1 |η||ξ 1||η| κ | ξ ¡ 1| κ § § § § 2 À 1 |η| 2H I 0 |η| 2H I 0 » 2 1 dξ » 2 1 d ξ 1 |η| 2κ |ξ ¡ 1| 2κ |η| 2 1 |η| 2 |η| 2 1 |η| 2 |η| 2κ | ξ ¡ 1| 2κ & À 1 |η| 2H I 0 2κ |η| 2H I 0 2 1 |η| 2H I 0 2 |η| 2H I 0 2κ & . ( 56 
)
Injecting successively (55) and (56) into the expression (50) of J n R , we obtain that for every κ r0,

1 2 q, § § J n R § § À » p1,Vq d C d ¢ ¹ i1,...,d dη i |η i | 2H I i ¡1 » 2η1 η1 dη 1 |η 1 | 2H I 1 ¡1 ¤ ¤ ¤ » 2η d η d dη d |η d | 2H I d ¡1 § § F x pψqpη ¡ ηq § § 2 1 |η| 2H I 0 2κ |η| 2H I 0 2 1 |η| 2H I 0 2 |η| 2H I 0 2κ & , ( 57 
)
and with Notation (3.5), this yields

§ § J n R § § À » p1,Vq d C d ¢ ¹ i1,...,d dη i |η i | 4H I i ¡3 1 |η| 4H I 0 2 2κ » r1,2s d dβ § § F x pψqpη ¦ . p1 ¡ βqq § § 2 À » p1,Vq d C d ¢ ¹ i1,...,d dη i |η i | 4H I i ¡3 1 |η| 4H I 0 2 2κ » r0,1s d dβ § § F x pψqpη ¦ . βq § § 2 À » p1,Vq d C d ¢ ¹ i1,...,d dη i |η i | 4H I i ¡2 1 |η| 4H I 0 2 2κ » V 0 dθ 1 ¤ ¤ ¤ » V 0 dθ d § § F x pψqpθq § § 2 À » p1,Vq d C d ¢ ¹ i1,...,d dη i |η i | 4H I i ¡2 1 |η| 4H I 0 2 2κ . ( 58 
)
Keeping in mind the definition (42) of C d , we can then perform a spherical change of coordinates and get

§ § J n R § § À » V 1 dr r d¡1 r 4pH I 0 H I q¡2d 2 2κ À » V 1 dr r 1 2κ ,
where we have used the relation 4pH I 0 H I q ¡ 3d 3 1. Picking κ p0, 1 2 q, this finally proves that 

sup n¥1 § § J n R § § V . ( 59 
} L V ¤ 1 to obtain § § J n M,R § § À » p1,Vq d C d ¢ ¹ i1,...,d dη i |η i | 2H I i ¡1 » 2η1 η1 dη 1 |η 1 | 2H I 1 ¡1 ¤ ¤ ¤ » 2η d η d dη d |η d | 2H I d ¡1 § § F x pψqpη ¡ ηq § § 2 » 2|η| |η| dξ |ξ| 2H I 0 ¡1 » 2|η| |η| d ξ | ξ| 2H I 0 ¡1 § § M n φ ppξ, ηq, p ξ, ηqq § § § § R n φ ppξ, ηq, p ξ, ηqq § § À » p1,Vq d C d ¢ ¹ i1,...,d dη i |η i | 2H I i ¡1 » 2η1 η1 dη 1 |η 1 | 2H I 1 ¡1 ¤ ¤ ¤ » 2η d η d dη d |η d | 2H I d ¡1 § § F x pψqpη ¡ ηq § § 2 ¢ » 2|η| |η| dξ |ξ| 2H I 0 ¡1 » 2|η| |η| d ξ | ξ| 2H I 0 ¡1 § § M n φ ppξ, ηq, p ξ, ηqq § § 2 1 2 ¢ » 2|η| |η| dξ |ξ| 2H I 0 ¡1 » 2|η| |η| d ξ | ξ| 2H I 0 ¡1 § § R n φ ppξ, ηq, p ξ, ηqq § § 2 1 2 , ( 60 
)
where the second estimate is naturally derived from Cauchy-Schwarz inequality. As far as the integral of M n φ is concerned, let us write this time

» 2|η| |η| dξ |ξ| 2H I 0 ¡1 » 2|η| |η| d ξ | ξ| 2H I 0 ¡1 § § M n φ ppξ, ηq, p ξ, ηqq § § 2 1 |η| 2H I 0 ¡2 |η| 2H I 0 ¡2 » 2 1 dξ |ξ| 2H I 0 ¡1 » 2 1 d ξ | ξ| 2H I 0 ¡1 § § M n φ ppξ|η|, ηq, p ξ|η|, ηqq § § 2 À 1 |η| 2H I 0 |η| 2H I 0 » 2 1 dξ » 2 1 d ξ » V 0 dt φptq » t 0 du § § F x pG n t¡u qpη ¡ ηq § § § § § § » u 0 ds e ıs|η|pξ¡1q » u 0 dr e ¡ır|η|p ξ¡1q § § § § & 2 À 1 |η| 2H I 0 |η| 2H I 0 » 1 0 dξ » 1 0 d ξ » V 0 dt φptq » t 0 du § § § § » u 0 ds e ıs|η|ξ » u 0 dr e ¡ır|η| ξ § § § § & 2 À 1 |η| 2H I 0 1 |η| 2H I 0 1 » |η| 0 dξ » |η| 0 d ξ » V 0 dt φptq » t 0 du § § § § » u 0 ds e ısξ § § § § § § § § » u 0 dr e ¡ır ξ § § § § & 2 ,
and since supp φ p0, 1q, this entails

» 2|η| |η| dξ |ξ| 2H I 0 ¡1 » 2|η| |η| d ξ | ξ| 2H I 0 ¡1 § § M n φ ppξ, ηq, p ξ, ηqq § § 2 À }φ} V |η| 2H I 0 1 |η| 2H I 0 1 » V 0 dξ » V 0 d ξ » 1 0 dt » t 0 du § § § § » u 0 ds e ısξ § § § § § § § § » u 0 dr e ¡ır ξ § § § § & 2 À }φ} V |η| 2H I 0 1 |η| 2H I 0 1 ¢ » V 0 dξ 1 |ξ| 2 2 À 1 |η| 2H I 0 1 |η| 2H I 0 1 . ( 61 
)
On the other hand, we have shown in (56) that for every κ r0,

1 2 q, » 2|η| |η| dξ |ξ| 2H I 0 ¡1 » 2|η| |η| d ξ | ξ| 2H I 0 ¡1 § § R n φ ppξ, ηq, p ξ, ηqq § § 2 À 1 |η| 2H I 0 2κ |η| 2H I 0 2 1 |η| 2H I 0 2 |η| 2H I 0 2κ & . ( 62 
)
Injecting ( 61) and ( 62) into (60), we obtain that for every κ r0,

1 2 q, § § J n M,R § § À » p1,Vq d C d ¢ ¹ i1,...,d dη i |η i | 2H I i ¡1 » 2η1 η1 dη 1 |η 1 | 2H I 1 ¡1 ¤ ¤ ¤ » 2η d η d dη d |η d | 2H I d ¡1 § § F x pψqpη ¡ ηq § § 2 ¢ 1 |η| 2H I 0 1 |η| 2H I 0 1 1 2 ¢ 1 |η| 2H I 0 2κ |η| 2H I 0 2 1 |η| 2H I 0 2 |η| 2H I 0 2κ 1 2 À » p1,Vq d C d ¢ ¹ i1,...,d dη i |η i | 2H I i ¡1 » 2η1 η1 dη 1 |η 1 | 2H I 1 ¡1 ¤ ¤ ¤ » 2η d η d dη d |η d | 2H I d ¡1 § § F x pψqpη ¡ ηq § § 2 1 |η| 2H I 0 1 2 κ |η| 2H I 0 3 2 1 |η| 2H I 0 3 2 |η| 2H I 0 1 2 κ & À » p1,Vq d C d ¢ ¹ i1,...,d dη i |η i | 4H I i ¡2 1 |η| 4H I 0 2 κ ,
where, to derive the last estimate, we have used the same successive arguments as in the transition from (57) to (58). Performing the same change of variables as in the previous situations, and also using the assumption 4pH I 0 H I q ¡ 3d 3 1, we deduce that for every κ r0, 44) and (48), we get first that

1 2 q, § § J n M,R § § À » V 1 dr r d¡1 r 4pH I 0 H I q¡2d 2 κ À » V 1 dr r 1 κ . By picking κ ¡ 0, this shows that sup n¥1 § § J n M,R § § V .
E § § x n , Φy § § 2 % ¥ 2 2 J n M J n R J n M,R @ .
Then, by (54), ( 59) and (63), we know that lim nÑV J n M V and sup n¥1 § § J n R J n M,R § § V, which yields the desired conclusion, namely: for every Φ E (where E is the set introduced in Definition 4.1), it holds that

lim nÑV E § § x n , Φy § § 2 % V .

Appendix A. Explosion of the fractional Lévy area

We propose here to review the arguments behind Proposition 1.1, as a possible comparison with the estimates in the wave setting.

Let us recall first that a two-dimensional fractional noise 9 B p 9 B p1q , 9

B p2q q on R, with index H p0, 1q, is characterized by the covariance formula: for 1 ¤ i, j ¤ 2, and for all smooth compactly-supported functions ψ, φ : R Ñ R, E x 9 B piq , ϕy x 9 B pjq , φy

$ 1 tiju » R dξ |ξ| 2H¡1 FψpξqFφpξq.
Based on this expression, and following the proof of Lemma 2.7, it is then easy to check that the covariance formula for the mollified noise introduced in (4) reads as follows: for all n ¥ 1, 1 ¤ i, j ¤ 2 and s, t R, Proof of Proposition 1.1. As we mentionned it in the introduction, part piq of the proposition is actually a well-known result of rough paths theory (see for instance [START_REF] Friz | Multidimensional stochastic processes as rough paths[END_REF]Theorem 15.33]).

Let us therefore concentrate on the proof of the divergence property, that is Part piiq of the proposition. To this end, we fix H p0, 1 4 s, as well as a non-zero smooth function φ : R Ñ R with support in r0, 1s.

Based on the covariance formula (64), we can first expand the expectation under consideration as As a result, it holds that

E § § § d t Þ Ñ
E § § § d t Þ Ñ » t 0 ds » s 0 dr 9 B p1q,n r 9 B p2q,n s , φ h § § § 2 & ¥ J n , (65) 
where

J n : » V 1 dξ |ξ| 2H¡1 |Fρp¡2 ¡n ξq| 2 » 2|ξ| |ξ| d ξ | ξ| 2H 1 |Fρp2 ¡n ξq| 2 § § M φ pξ, ¡ ξq R φ pξq § § 2 .
The integral J n can be further decomposed as J n J n M J n M,R , with

J n M : » V 1 dξ |ξ| 2H¡1 |Fρp¡2 ¡n ξq| 2 » 2|ξ| |ξ| d ξ | ξ| 2H 1 |Fρp2 ¡n ξq| 2 § § M φ pξ, ¡ ξq § § 2
and

J n M,R : » V 1 dξ |ξ| 2H¡1 |Fρp¡2 ¡n ξq| 2 » 2|ξ| |ξ| d ξ | ξ| 2H 1 |Fρp2 ¡n ξq| 2 2 M φ pξ, ¡ ξqR φ pξq M φ pξ, ¡ ξqR φ pξq § § R φ pξq § § 2 @ . ( 66 
)
Treatment of J n M,R . Since }Fρ} V ¤ }ρ} L 1 pRq 1, one has, uniformly over n,

§ § J n M,R § § À » V 1 dξ |ξ| 2H¡1 § § R φ pξq § § » 2|ξ| |ξ| d ξ | ξ| 2H 1 § § M φ pξ, ¡ ξq § § » V 1 dξ |ξ| 2H¡1 § § R φ pξq § § 2 » 2|ξ| |ξ| d ξ | ξ| 2H 1 À » V 1 dξ |ξ| 4H¡1 § § R φ pξq § § » 2 1 dβ |β| 2H 1 § § M φ pξ, ¡β|ξ|q § § » V 1 dξ |ξ| 4H¡1 § § R φ pξq § § 2 » 2 1 dβ |β| 2H 1 .
Now, it is clear that § § R φ pξq § § À 1 Injecting the latter bound into the expression of J M n , we obtain

J M n ¥ cosp1q 2 » 1 0 dt φptqt & 2 » V 1 dξ |ξ| 4H |Fρp¡2 ¡n ξq| 2 » 1 0 dθ § § Fρp2 ¡n pθ ξqq § § 2 ¥ cosp1q 2 » 1 0 dt φptqt & 2 2 n » V 1 dξ |ξ| 4H |Fρp¡2 ¡n ξq| 2 » 2 ¡n ξ 2 ¡n 2 ¡n ξ dθ § § Fρpθq § § 2 ¥ cosp1q 2 » 1 0 dt φptqt & 2 2 np2¡4Hq » V 2 ¡n dξ |ξ| 4H |Fρp¡ξq| 2 » ξ 2 ¡n ξ dθ § § Fρpθq § § 2 .
Recall that Fρ is assumed to be continuous and that Fρp0q 1. Thus we can fix δ ¡ 0 such that for every |ξ| ¤ δ, one has § § Fρpξq § § 2 ¥ 1 2 . For every n large enough so that 2 ¡n ¤ δ 2 , we get that

J M n ¥ cosp1q 2 » 1 0 dt φptqt & 2 2 np2¡4Hq
» δ 

□ 4 .

 4 Below the threshold: proof of Theorem 2.

Lemma 4 . 2 .du e ıupξ¡ ξq F x pG n t¡u qpη ¡ ηq » u 0 ds e ¡ıξs F x pG n s qpηq » u 0 dr e ı ξr F x pG n r qpηq 1 t|η|¤nu 1

 42001 For all ξ, ξ ¥ 0 and η, η R d , one has t|η|¤nu M n φ ppξ, ηq, p ξ, ηqq R n φ ppξ, ηq, p ξ, ηqq % , ξq F x pG n t¡u qpη ¡ ηq

F x pG n t¡u qpη ¡ ηq 4

 4 used the assumption supp φ p0, 1q. Based on the latter expansion, and sincesup 0¤t¤1 |F x pG n t qpη ¡ ηq| ¤ 1 ,we get § § R n φ ppξ, ηq, p ξ, ηqq § § À 1

F x pG n

  the assumptions contained in Definition 4.1, namely φ ¥ 0, supp φ p0, 1q, as well as c ψ : inf |θ|¤1 |F x pψqpθq| ¡ 0 and c φ :

4 .

 4 Conclusion. By gathering (40), (

  ¡n ξq| 2 e ıξps¡tq . (64)where Fρpξq : ³ R dx e ¡ıξx ρpxq. We are now in a position to prove the statement.

9 B p1q,n r 9 B p2q,n s 9 B p1q,n r 9 Bds e ıξps¡sq 2 e ı ξs ¡ 1 @ 2 e ¡ı ξs ¡ 1 @|

 99992121 ξ| 2H 1 |Fρp¡2 ¡n ξq| 2 § § M φ pξ, ξq R φ pξq § § 2 ,where we have set M φ pξ, ξq : ξq , R φ pξq :

1 |ξ|M 1 dξ|ξ| 4H 1 . 2 1 2 , 1 » 1 0 2

 11122112 |ξ| and § § M φ pξ, ¡β|ξ|q § § À 1¡ε |β¡1| 1¡ε for every ε p0, 1q, which yields § § J n By picking ε p0, 4Hq, this shows thatsup n¥0 § § J M,R n § § V.Treatment of J n M . Let us write, for every ξ ¡ 1,» 2|ξ| |ξ| d ξ | ξ| 2H 1 § § Fρp2 ¡n ξq § § 2 § § M φ pξ, ¡ ξq § § 2 1 |ξ| 2H » dβ § § Fρp2 ¡n βξq § § 2 § § M φ pξ, ¡βξq §and since we have assumed that supp φ p0, 1q, we get» 2|ξ| |ξ| d ξ | ξ| 2H 1 § § Fρp2 ¡n ξq § § 2 § § M φ pξ, ¡ ξq § § 2 ¥ 1 |ξ| 2Hdθ § § Fρp2 ¡n pθ ξqq § § Fρp2 ¡n pθ ξqq § § 2 .

  It is now clear that for every H ¤ 1 4 , the latter quantity tends to infinity as n Ñ V, and so

□

  

  2 pR d q, we denote the space-time, resp. space, Fourier

	transform by				
	FΨpξ, ηq	»	dtdx e ¡ıξt e ¡ıxη,xy Ψpt, xq , resp. F x ψpηq	»	dx e ¡ıxη,xy ψpxq .
		R¢R d		R d	
	We call a weight in R d any strictly positive function w L 1 pR d q. Given such a weight w, we define L p w L p w pR d q as the set of functions f : R d Ñ R for which }f} p L p R w : » |fpxq| p wpxq dx V .

Theorem 2.4. Fix a space dimension d ¥ 1, as well as a weight w on R d and a mollifier ρ on R d 1 .

  

	1, t R and x R d , we set G n pt, xq : 1 tt¥0u	» |η|¤n	dη e ıxx,ηy sinpt|η|q |η| .	(15)
	2.2. Main result. We are now in a position to state our main contribution regarding existence/non-
	existence of the process	at the core of the dynamics of equation (1).

  e ¡ıxλ,yy e ıx λ,ỹy E

			n s pyq n s pỹq	%	.
	Now observe that formula (22) here reduces to	
	E	n ps, yq n ps, ỹq % 2 ¡ E	n ps, yq n ps, ỹq %© 2

  desired estimate (33) is now a straightforward consequence of the subsequent technical Lemma 3.4, which achieves the proof of Proposition 3.3.

	If 3d 4 ¡ 1

□ Lemma 3.4. For all H p0, 1q d 1 , κ, ε ¡ 0 and η R d , let K H pηq K H,κ,ε pηq be the quantity defined in (35). 2 H 0 H ¤ d ¡ 1

2 , then for every α ¡ 0 satisfying (34), there exists κ, ε ¡ 0 small enough such that

» R d ¢R d dηdη t1 |η ¡ η| 2 u 2α K H pηqK H pηq V.

Proof of Lemma 3.4. Combining the identity K H p¨η 1 , . . . , ¨ηd q K H pηq (for every η R d ) with the elementary inequality |η i ¡ ηi | ¥ ||η i | ¡ |η i || (for each i 1, . . . , d), we can first write

  p2q F x pψqpηq F x pψqp¡ηq for every η R d , and inf |θ|¤1 |F x pψqpθq| 2 ¡ 0.It is clear that E $ r. From now on, we fix such a test-function Φ φ ψ E, as well as an arbitrary sequence c n : R ¢ R d Ñ R in the definition (17) of

		n	.		
		For every fixed n ¥ 1, the moment under consideration in (19) can be expanded as	
	E	§ § x n » p0,Vq 2 , Φy § § 2 dtd % t » pR d q 2 » p0,Vq 2 dydỹ Φpt, yqΦp t, ỹq dtd t » dydỹ Φpt, yqΦp t, ỹqE pR d q 2 » t 0 du » t 0 dũ » pR d q 2	% t¡u py ¡ zqG n n pt, yq n p t, ỹq dzdz G n t¡ũ pỹ ¡ zqE	n u pzq n ũ pzq %	,
	which, owing to formula (22), yields			

  Let us now proceed with the change of variable β i ηi ηi , i 1, . . . , d. Using the convention introduced in Notation 3.5, one has clearly |β ¦ . η| ¤ 2|η| and 1 t|β¦.η|¤nu ¥ 1 t|η|¤ n 2 u for every β r1, 2s d , which gives

	φptq	» t 0	du e ıup|η|¡|η|q F x pG n t¡u qpη ¡ ηq	» 2u u	ds e ısξ	» 2u u	dr e ¡ır	ξ § § § § 2

  As above, we can use the fact that }Fρ n

	)
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