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Abstract: The buffer and surface trapping effects on low-frequency (LF) Y-parameters of Fe-doped
AlGaN/GaN high-electron mobility transistors (HEMTs) are analyzed through experimental and
simulation studies. The drain current transient (DCT) characterization is also carried out to comple-
ment the trapping investigation. The Y22 and DCT measurements reveal the presence of an electron
trap at 0.45–0.5 eV in the HEMT structure. On the other hand, two electron trap states at 0.2 eV and
0.45 eV are identified from the LF Y21 dispersion properties of the same device. The Y-parameter
simulations are performed in Sentaurus TCAD in order to detect the spatial location of the traps.
As an effective approach, physics-based TCAD models are calibrated by matching the simulated
I-V with the measured DC data. The effect of surface donor energy level and trap density on the
two-dimensional electron gas (2DEG) density is examined. The validated Y21 simulation results
indicate the existence of both acceptor-like traps at EC –0.45 eV in the GaN buffer and surface donor
states at EC –0.2 eV in the GaN/nitride interface. Thus, it is shown that LF Y21 characteristics could
help in differentiating the defects present in the buffer and surface region, while the DCT and Y22 are
mostly sensitive to the buffer traps.

Keywords: AlGaN/GaN HEMT; buffer traps; surface traps; Y21 and Y22 parameters; drain current
transient; TCAD simulation; frequency dispersion

1. Introduction

AlGaN/GaN HEMT technology has already demonstrated their supreme potential
for the RF and microwave power applications [1]. However, during the abrupt drain/gate
voltage swings, electrically active traps present in the device take a finite time (i.e., char-
acteristic time constant of carrier capture/emission process) to respond to the applied
VDS/VGS signal variations, resulting in a delayed drain current (IDS) switching in the RF
and microwave electronics [2–7]. This transient and recoverable reduction in IDS is known
as RF current collapse. The charge trapping and de-trapping phenomena induce microwave
output power loss, restrict the maximum achievable power-added efficiency (PAE), and
also undermine the transistor reliability [2–7]. Hence, the characterization of traps in
the HEMT is essential for improving the epilayer crystalline quality. The drain current
transient (DCT) spectroscopy [8–18] and low-frequency (LF) output-admittance (Y22) pa-
rameters [15,16,19–27] are the well-estimated techniques to characterize the deep-level
defects present in the AlGaN/GaN HEMT structures.

The Fe-doping in the GaN buffer plays a decisive role in reducing vertical leakage
currents, increasing breakdown voltage, and also improving the carrier confinement in
the 2DEG through the electrical compensation mechanism. Nevertheless, the Fe-related
acceptors promote electron trapping in the HEMTs. Meneghini et al. [12] experimentally
verified that the acceptor-type traps in the GaN buffer layer are mainly responsible for the
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current collapse in the AlGaN/GaN HEMTs with Fe-doped buffer. Hence, a controlled
Fe-doping (a trade-off) is necessary to achieve a high RF performance. The surface traps
may arise from the dangling bonds, as-grown surface defects, process-induced surface
damage, and foreign contaminations. The surface traps also restrict the RF and microwave
performance of the unpassivated HEMT devices [1–4]. The nitride passivation and field
plate structures were employed to mitigate the surface trapping effects [1,28]. Nevertheless,
surface trapping influences in the HEMT device characteristics are not well understood
yet. Nesle et al. [20] analyzed the low-frequency dispersion behavior of output conduc-
tance and transconductance of the AlInN/GaN HEMTs by using the Y22 parameters.
Potier et al. [22] applied LF Y22 characterization to explore the trapping mechanism in the
AlGaN/GaN and AlInN/GaN HEMTs. The 2D physics-based TCAD simulation studies
are helpful to understand the physical phenomena involved in the LF dispersion due to
the traps [7,16,25,29,30]. In our earlier works [7,16,25], it has been shown that the LF Y22
experiments coupled with the simulation analysis are effective in identifying deep-level
defects in the buffer region.

The trap signatures in the HEMT can also be determined by means of frequency disper-
sion behavior of the forward transfer-admittance (Y21) properties [21,24]. Yamaguchi et al. [21]
presented an equivalent small-signal circuit model to correlate the buffer and surface traps
with the Y22 and Y21 frequency dispersions. Benvegnu et al. [24] detected two electrically
active traps at 0.25 eV and 0.61 eV in the AlGaN/GaN GH50 HEMT using the LF Y21
parameters. To extend their research studies, experimental and simulation investigations
for the Y21 and Y22 parameters are carried out in this work. Particularly, the buffer and sur-
face trapping influences in the Y21 frequency dispersion spectra are clearly distinguished
by using the validated simulations. Thus, it has been demonstrated that Y21 parameters
can differentiate the buffer and surface traps in the AlGaN/GaN HEMT devices. The Y21
results may be useful for controlling the buffer and surface trapping phenomena in the
commercial microwave AlGaN/GaN HEMTs. Furthermore, Y22 and DCT spectroscopy
of the HEMT are examined to complement the trapping investigation. The electrically
active traps (which are more detrimental in undermining the HEMT performance) can
be identified from the DCT and Y-parameter trap characterization studies. Therefore, the
outcomes of this work are envisioned to provide an effective input to the GaN crystal
growth community to improve the quality of the GaN/AlGaN/GaN structure layers.

2. Experiment

The AlGaN/GaN HEMT devices were grown on 70 um thick Silicon Carbide (SiC)
substrate by using the metal–organic chemical vapor deposition (MOCVD) technique. The
epilayer includes a 1.7 µm GaN buffer layer, 22 nm AlGaN barrier layer, and 3 nm GaN cap
layer. The compensational Fe-doping was incorporated in the GaN buffer region. A 150 nm
thick SiN passivation layer was employed in the ungated surface. The AlGaN/GaN HEMT
device features a 150 nm gate length, 50 µm gate width with six fingers (6 × 50 um size), and
a source-terminated field plate. For intellectual property protection, further device details
cannot be described.

2.1. DCT Characterization

An Agilent B1500A Semiconductor device parameter analyzer was utilized to acquire
the DC characteristics of the HEMT. Figure 1 depicts the experimental setup used for drain
current transient (DCT) spectroscopy, which can also be referred as current-mode Deep
Level Transient Spectroscopy (I-DLTS). The DCT experiments were carried out by using
two pulse generators (Agilent HP 81110A) and two digital phosphor oscilloscopes (Tek-
tronix DP07054 DPOs) to monitor IDS. This setup was synchronized through a waveform
generator (Agilent 33250A) and was controlled by a computer. Each DPO acquires the
transients with different time windows over six decades, the first between 10−8 s and
10−2 s and the second between 10−4 s and 102 s. These two acquisitions allow obtaining
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a full transient spectrum over 10 decades. The HEMT was placed on the thermal chuck of
the probe station, whose temperature can be varied from −65 to 200 ◦C.
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Figure 1. Drain current transient (DCT) spectroscopy measurement setup for AlGaN/GaN HEMT.

In the DCT experiment, the HEMT was initially biased at a trap-filling condition for
a fixed time period of 100 ms to induce the carrier capture process in the device; then, the
respective terminal voltage was changed to a de-trapping bias condition to observe the carrier
emission phenomena. Note that the trap-filling pulse was applied either on the drain or gate
of the transistor terminals (i.e., drain-lag or gate-lag filling pulse [2,7]), and the subsequent IDS
transient recovery was measured over the time frame of 10−6 s to 1 s. The DCT experiments
were conducted for various operating temperatures ranging from 25 to 125 ◦C, which allowed
us to calculate the trap activation energy (Ea) and capture the cross-section (σn) by using
Arrhenius’ law [16,22,25].

2.2. Y-parameter Characterization

The schematic of the LF Y-parameter measurement setup is shown in Figure 2. The
Agilent E5061B vector network analyzer (VNA) can measure the S-parameter of the HEMT
devices over the frequencies ranging from 5 Hz to 3 GHz, and it is integrated with the
internal bias system. As shown in Figure 2, the power supply voltage was fed through the
DC port of the LF bias tee to gate terminal voltage for VGS, and another RF port of bias
tee was connected to VNA. The drain of the HEMT device was connected to the internal
bias system of the VNA for VDS and also acquiring S-parameters. Prior to the Y-parameter
characterization, a traditional short open load through (SOLT) procedure was carried out
for the VNA calibration. The Y21 and Y22 parameters were extracted from the S-parameter
measurements at a particular bias condition (VDS = 10 V, IDS = 50 or 150 mA/mm; VDS = 20 V,
IDS = 50 mA/mm) over the frequencies ranging from 10 Hz to 1 MHz.

The trapping influences on the transconductance (gm) and output conductance (gd)
frequency dispersion properties are accounted by including an additional parasitic RC net-
work at the output of the HEMT equivalent small signal circuit model [19,22,24]. Figure 3
represents the small signal equivalent circuit model of the HEMT incorporating single trap
signatures (gn, Cn). At low signal frequencies, the Y21 and Y22 parameters can be expressed
as follows [22,24]:

Y21(ω) =

(
gm −

gmn (ω τn)
2

1 + (ω τn)
2

)
− j

gmn (ω τn)

1 + (ω τn)
2 (1)

Y22(ω) =

(
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(gmn + gn) (ω τn)
2

1 + (ωτn)
2

)
+ j
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2 (2)
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(3)
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Figure 3. HEMT equivalent small signal circuit model accounting single trap signatures (gn, Cn).

The carrier emission time constant (τn) associated with the trap is extracted from the
frequency ( f I,peak) that corresponds to the peak maximum of the imaginary part of the LF
Y21 and Y22 spectral characteristics [22]

f I,peak = fIm {Y21} = fIm {Y22} =
1

2π τn
(4)

The number of peaks in the Im {Y21} or Im {Y22} spectra indicate the number of
electrically active traps existing in the HEMT device, unless the time constants of the
trap overlap with each other. The Y21 or Y22 parameters were measured at different
temperatures (25 ◦C to 100 ◦C) to determine the trap parameters from the Arrhenius plot.

3. Simulation Details

The Sentaurus TCAD tool from Synopsys Inc. (Mountain View, CA, USA) [31] is
utilized for the numerical device simulations. Figure 4 shows the typical 2D device structure
of the AlGaN/GaN HEMT (150 nm gate length) considered for the physical simulation.
The simulated device emulates the structure of the HEMT used in our experimental studies.
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simulations. (b) Distribution of polarization charges at each material interface.

The metal work function (ΦG) of the gate Schottky contact is 4.7 eV, whereas the
Ohmic contact is employed for the drain and source. As illustrated in Figure 4b, the
polarization charge is defined at each material interface according to the well-known
research work of Ambacher et al. [32]. The polarization charge σ1 essentially depends
on the Al mole fraction in the barrier layer. The values of σ1 (at either side of the barrier
layer) and σ2 (at GaN/nitride interface) [25,33] are 1.4 × 1013 cm−2 and −2 × 1012 cm−2,
respectively. The drift–diffusion charge transport model, Fermi–Dirac statistics, lack of
bandgap narrowing in the intrinsic carrier concentration, and thermionic emission at
heterointerface are considered in the physics-based TCAD model [31]. The carrier mobility
due to the phonon scattering (lattice temperature dependent) is activated, along with the
Canali field-dependent mobility model to incorporate the carrier saturation velocity [31].
The carrier generation–recombination models such as SRH recombination statistics, Auger
recombination, and radiative recombination model in the direct bandgap materials (GaN
and AlGaN) are selected [31]. Note that the studied HEMT device was fabricated on
the SiC substrate, and because of its high-thermal conductivity [2,6,7,16,30], the device’s
self-heating effects are less pronounced at lower bias voltages. From the experiments, the
self-heating effects in the IDS-VDS and IDS-VGS properties were found to be minimal up to
the drain voltage of VDS ≤ 10 V. In this work, the static I-V and Y-parameter simulations are
carried out for VDS ≤ 10 V so that the thermal effects are not considered in the simulations.

The buffer trap and surface donor parameters identified from the DCT and Y-parameter
measurements are taken in the TCAD physical model to incorporate the trapping phenom-
ena. Accordingly, the surface states (σD

+) are introduced at the SiN/GaN cap interface
as donor-like states at EC –0.2 eV [25,30] with a density of 2 × 1013 cm−2. The electron
and hole capture cross-sections of the surface donors are 3 × 10−18 cm2 and 10−20 cm2,
respectively. The acceptor traps are placed in the buffer region at EC –0.45 eV below the
conduction band. A uniform trap concentration of NTA = 1017 cm−3 is considered for the
Fe-related trap at EC –0.45 eV existing in the buffer region. The electron and hole capture
cross-section values of the acceptor traps are 5 × 10−16 cm2 and 10−20 cm2, respectively.
The net recombination rate due to the trap-assisted carrier transition is computed by using
the SRH recombination (RSRH

net ) in the TCAD simulator [31].

RSRH
net =

n p− n2
ie

τp (n + n1) + τn (p + p1)
(5)

n1 = nie exp (Etrap/kT) (6)

p1 = nie exp (−Etrap/kT) (7)

where Etrap is between the trap energy position and intrinsic energy level, n is the electron
concentration in the conduction band, nie denotes the intrinsic carrier density, p represents
the hole concentration in the valence band, k represents the Boltzmann’s constant, T is
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the temperature, and τn and τp are the electron and hole lifetimes, which are modeled as
doping, electric field, and temperature-dependent factors in the SRH recombination.

As an effective approach, the DC properties of the HEMT are simulated and validated
with the measured data to calibrate the material and physical model parameters [6,7,25,30].
In a mixed mode circuit configuration, the HEMT is represented as a two-port network for
admittance (Y)–parameter simulation. At the specified bias point, the Sentaurus device
calculates the complex Y-matrix by performing small signal AC analysis. In fact, the
Y-matrix computation is a measure of small current change (δi) in the circuit in response to
a small voltage perturbation (δv), as given by [31]

δi = Y · δv = (A + j ω C) · δv (8)

In the complex Y-matrix, the real part A denotes the conductance matrix, the imaginary
part C signifies the capacitance matrix, and ω represents the frequency of small signal
variation. Then, the Y21 and Y22 parameters are acquired from the RF extraction library of
Sentaurus Visual at each frequency point.

4. Results and Discussion
4.1. Measured DCT Spectroscopy

The drain current transient (DCT) spectroscopy is a powerful tool to examine the tempo-
ral evolution of the carrier trapping and de-trapping phenomena in the GaN HEMT [8–18].
Figure 5 depicts the DCT recovery spectra of the AlGaN/GaN HEMT acquired with the
drain-lag filling pulse at increasing temperature levels. Here, the drain-lag filling pulse
indicates that VDS is switched from 10 to 20 V for 100 ms during the initial trap-filling
phase, and then, it is changed again to 10 V, while VGS is maintained at a fixed bias to obtain
the IDS = ≈50 mA/mm; hence, it can be called drain-lag DCT spectroscopy [2,7,34]. The
increasing IDS step (A1) in the DCT spectra may indicate the electron de-trapping process
from an electrically active trap located below the conduction band edge (EC–ETA) [10,16].
The mid-time of the IDS step relates the emission time constant associated with the trap
level. The further details of the DCT technique can be given in Refs. [8–16]. From Figure 5,
it is noticed that the carrier emission time constant decreases with increasing temperature,
specifying that the emission rate of A1 follows the Arrhenius relation [9,14]. The emission
time constant (τn) and activation energy (Ea) of the trap are related with the following
Arrhenius expression [16,22,25]

ln(τn T2) =
Ea

kT
− ln

(
σn vth NC

g T2

)
(9)

where σn denotes the trap capture cross-section, T indicates the temperature, vth is the
carrier thermal velocity, NC is the density of states in the conduction band, and g is the
degeneracy factor. The time constant of A1 is extracted at each temperature, and the
Arrhenius plot is displayed in the inset of Figure 5. The trap energy (0.49 eV) and the
capture cross-section (6 × 10−16 cm2) of A1 are identified from the Arrhenius plot based
on Equation (9).

Figure 6 displays the DCT spectra of the HEMT obtained with the gate-lag filling
pulse; here, the VGS pulse is changed from −2.3 to −6 V (ON-state to OFF-state) during the
initial trap-filling phase (100 ms), and then, it is restored again to −2.3 V, whereas VDS is
fixed, i.e., gate-lag DCT spectroscopy [2,7]. The Arrhenius investigation of the gate-lag DCT
(Figure 6) reveals the identical trap A1 parameters such as ≈0.5 eV and ≈2 × 10−16 cm2, as
detected by the drain-lag DCT spectroscopy. Similar activation energy and capture cross-
section (≈0.45 eV,≈5× 10−16 cm2) are identified for the trap A1 from the Y22 measurements
(discussed in Section 4.3). This specifies that the DCT and Y22 results are complement to
each other for trap characterization.
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4.2. Calibration of TCAD Physical Model

The 2D device simulations offer an efficient way of providing a deep understanding
of device physics and exploring varying constraints in a given scenario. Nevertheless, the
TCAD model calibration is absolutely necessary for performing physically meaningful
simulations, and this process is not rather straightforward. The surface donor theory [35,36]
indicates that the donor states are primarily responsible for the 2DEG formation in the
GaN-based HEMT devices. Thus, the selection of surface donor parameters is a crucial step
in the TCAD simulations. Ťapajna et al. [37] identified remarkably higher interface state
densities (Dit in range of 5–8× 1012 eV−1 cm−2) at the insulator (Al2O3)/GaN cap interface
with the trap energies ranging from EC –0.5 to –1 eV in the metal–oxide-semiconductor
HEMT (MOS-HEMT) structures by using C-V characteristics. The authors found from the
simulation studies that the high interface density is located near the barrier conduction
band (Dit > 1013 eV−1 cm−2), which hinders the accumulation of electrons in the AlGaN
barrier. Matys et al. [38] used two complementary photo-electric techniques (photo-assisted
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C-V and light intensity-dependent photo-capacitance) to identify the energetic distribution
of the interface state density (Dit(E)) at the oxide/III–V heterointerface. They detected
a continuous U-shaped Dit(E) distribution increasing toward the conduction and valence
bands from the middle of the bandgap, and the interface states placed near to the valence
band edge show a donor-like behavior. Moreover, it was observed that Dit(E) rises with the
increasing Al content in the SiO2/AlxGa1-xN/GaN structure. So, the above reports [37,38]
suggest that the interface states have a continuous energy distribution at the insulator/GaN
interface. However, a discrete surface donor state is considered in the widely accepted
surface donor model theory [35,36]. According to that, in this work, a distinct energetic
position accounts for the donor traps existing at the GaN cap/SiN interface. Furthermore,
it is observed from the TCAD simulation analysis that the ionized surface donor density
(NTD

+) is almost equal to the 2DEG density (ns) in the GaN channel layer (i.e., NTD
+ ≈ns

in cm−2) under thermal equilibrium conditions, confirming that a single donor state is
sufficient to emulate the 2DEG generation mechanism in the AlGaN/GaN HEMT. The
effect of surface donor energy and density on the 2DEG of the AlgaN/GaN HEMT under
thermal equilibrium (zero-bias) condition is presented below.

4.2.1. Influence of ETD and NTD on 2DEG

The 2DEG variations in the GaN channel layer are simulated by varying the surface
donor density (NTD) at different surface donor energies (ETD) and are plotted in Figure 7.
Three regions of interest are seen in Figure 7, when the surface donor density is increased
from 1012 to 1.5 × 1013 cm−2 for all donor energies. In Region 1, the surface donor density
(NTD) is found to be too low (≤4 × 1012 cm−2) so that NTD does not show any considerable
impact on the 2DEG. In Region 2, a linear increase in the 2DEG is noticed upon increasing
the donor density and is independent of the surface donor energy (ETD), as observed from
Figures 7 and 8. On the other hand, the 2DEG density becomes more independent of NTD
in Region 3, but at the same time, ETD modulates the 2DEG in the channel, as shown in
Figures 7 and 9.
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The threshold limit between Regions 1 and 2 principally depends on the interface
state density (σ2) present at the Nitride/GaN interface [33]. It is visualized that the initial
rise in the NTD compensates for the negative interface charge density up to the threshold
value (until the end point of Region 1); thereafter, any further increase in the donor density
promotes the electrons to the 2DEG at the heterointerface (in Region 2). Due to the electron
donation process, the donor traps are ionized and left behind positively charged donor
states (NTD

+); as a result, the electric field in the AlGaN barrier is found to decrease with
the increasing 2DEG density. Nonetheless, the electric field is adequately high enough to
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move the conduction band (EC) edge close to the surface in Region 2. Subsequently, the
ETD locates effectively above the Fermi level (EF) position to ionize the donor states at the
surface, as shown in Figure 10. In this case, the NTD is not adequate to pinning the EF at
the ETD position [33].
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Figure 10. The conduction band variations illustrate the effect of surface donor traps on the 2DEG
density in Regions 2 and 3. If ETD aligns with EF, the surface donor traps are partially ionized, whereas
when the ETD locates effectively above the Fermi level, all the donor states are completely ionized.

In Region 3, the considered surface donor density is significantly higher, thereby
resulting in a decreased electric field in the barrier layer, and ultimately, ETD aligns with
the EF, as realized in Figure 10; hence, the Fermi level (EF) is pinned at the donor energy
position in Region 3 (Fermi-level pinned region). As a consequence, the 2DEG channel
density saturates beyond the donor density value of NTD ≥ 1.4 × 1013 cm−2, because any
further increase in NTD strongly reduces the ionization probability of the surface donor
traps so that the 2DEG density remains unchanged [33]. On the other hand, if the surface
donor energy moves away from the conduction band edge, the donor ionization decreases
due to increased AlGaN band bending; thereby, a reduction in 2DEG is observed for deeper
donor energies in Region 3 (see Figure 7). Based on these simulation observations and our
experimental results, the surface donor traps are positioned at EC –0.2 eV (0.2 eV below
the conduction band) with the trap density of NTD = 2 × 1013 cm−2 in the TCAD physical
model (discussed in Section 4.4).

4.2.2. Validation of DC Characteristics

In this section, the DC characteristics of the Fe-doped AlGaN/GaN HEMT are repro-
duced to calibrate the material and TCAD model parameters for the Y22 and Y21 simulations.
The detailed information of the static I-V simulation calibration is given elsewhere [7,25,30].
The initial calibration is performed by adjusting the acceptor-type buffer trap density (NTA)
and the gate Schottky contact work function (ΦG) to match with the threshold voltage of
the HEMT. Thereafter, the linear and saturation regions of the drain current characteristics
are fitted with the measured data through the fine tuning of the carrier mobility and sat-
uration velocity values in the GaN layer. Figure 11 compares the simulated IDS-VDS and
IDS-VGS with the measured DC properties at 25 ◦C. An excellent agreement between the
measurement and simulation of static I-V is observed; this demonstrates the validity of our
physics-based TCAD model calibration.
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4.3. Measured and Simulated Y22 Parameters

The LF Y21 and Y22 parameters can be used to inspect the trapping-induced disper-
sions in the transconductance (gm) and the output-conductance (gd) properties of the RF
and microwave HEMTs (refer Equations (1) and (2)) [22,24]. In general, the capture rate of
the trap level is substantially faster than the associated emission rate; therefore, the carrier
capture emission rate may be neglected at low frequencies [22]. Due to the longer time
constants, the carrier emission rate of a deep-level trap often lies in the low-frequency range
(<1 MHz), so the LF Y-parameters are expected to provide the quantitative information of
the deep-level electronic defects in the AlGaN/GaN HEMT.

Figure 12 shows the measured LF Y22 spectra of the AlGaN/GaN HEMT acquired
with two different bias points (a) VDS = 10 V, IDS = 50 mA/mm and (b) VDS = 20 V,
IDS = 50 mA/mm for different chuck temperatures (from 25 to 100 ◦C). The imaginary
part of the Y21 and Y22 parameters such as Im {Y21} and Im {Y22} were extracted from the
measured admittance matrix. A distinct positive peak noticed in the Y22 spectra may reveal
the existence of trap A1. The emission rate of an electrically active trap is related to the peak
frequency of the Im {Y22} spectrum, according to Equation (4). It is observed from Figure 12
that the emission rate of A1 increases with the rise in temperature (for example, peak
frequency fI,peak = ≈300 Hz at 25 ◦C, ≈1000 Hz at 50 ◦C), revealing that the carrier emission
rate of A1 is a thermally-activated transition mechanism [9,14,22]. The Arrhenius plot for
A1 is constructed from the Y22 spectra at different temperatures and is depicted in Figure 13.
The Arrhenius analysis of the Y22 at VDS = 10 V yields the trap activation energy of 0.44 eV
and captures the cross-section of 4 × 10−16 cm2 for A1, which is consistent with the DCT
results. As the LF Y22 parameters represent the gd (f) dispersion phenomena [22,24], the
buffer trap A1 at EC –0.45 eV is anticipated to induce the output-conductance frequency
dispersions during the RF and microwave operation.

The LF Y22 spectra measured at VDS = 10 V are compared with the Y22 at VDS = 20 V
for the same IDS = 50 mA/mm in Figure 12. When the VDS is augmented from 10 to 20 V, the
peak position of A1 shifts toward higher frequencies because of the field-enhanced carrier
emission caused by the Poole-Frenkel (PF) effect [22,39], which is explained as follows: The
augmented electric field in the device lowers the potential barrier for trap-assisted thermal
emission; now, the trapped carriers need relatively less thermal activation energy to release
from the defect state. This potential barrier lowering (∆φPF) is correlated with the applied
electric field (F) by using the following expression [39]:

∆φPF =

(
q3

π ε

)1/2√
F = β

√
F (10)
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where ε is the dielectric constant of material, and q denotes the elementary charge. In
presence of the electric field, ionization energy (Ei) associated with the trap is reduced by
a value of β

√
F as per the equation [39]

Ei(F) = Ei(0)− β
√

F (11)

where Ei(F) is the field-dependent ionization energy, and Ei(0) = ET is the ionization
energy of the defect state without the presence of the electric field, i.e., the zero-field
binding energy of the carrier. Equations (10) and (11) suggest that trap activation energy
computation may be undervalued at higher electric fields. The Arrhenius plot constructed
from the Y22 at VDS = 20 V is shown in Figure 13. A quite lower trap activation energy of
≈0.4 eV is obtained for A1 at the VDS = 20 V condition because of the field-assisted electron
emission. Some correction factor may be introduced in the Arrhenius analysis to calculate
the exact activation energy at higher VDS operations. For further information, please refer
to the work of Oishi et al. [27]; the authors developed an analytical model to mitigate the PF
effects on the thermal activation energy computation from the Y22 parameters. Therefore,
it is recommended to conduct the DCT and Y-parameter characterizations at lower drain
bias voltages to eliminate both the self-heating and PF effects.

The LF Y22 simulations are carried out at the bias point VDS = 10 V, IDS = 50 mA/mm
to determine the spatial location of the trap A1 in the Fe-doped AlGaN/GaN HEMT. As
shown in Figure 14, the simulated LF Y22 parameters at VDS = 10 V are in good agreement
with the measured spectra for the temperatures ranging from 25 to 100 ◦C. Hence, the
Y22 simulations are validated by including the acceptor-type trap A1 at EC –0.45 eV in
the GaN buffer layer. The Arrhenius investigation of the simulated Y22 also provides
the same trap energy of 0.45 eV, as noted from Figure 13. The validated Y22 simulation
results reveal the existence of the electron trap at EC –0.45 eV in the buffer and confirm
that A1 is an acceptor-like state, supporting the reported works in the literature [7,25].
It is also found that the including barrier traps in the HEMT do not induce frequency
dispersions in the Y22 characteristics. Therefore, it is shown that the DCT spectroscopy
and Y22 parameters are the effective methodologies to characterize the traps in the buffer
region of the AlGaN/GaN HEMTs. The deep-level traps in the Fe-doped buffer have
been reported in the range of EC –0.4 to –0.7 eV [12–16,24–26,29,30]. Based on literature
data [12], trap A1 at EC –0.45 eV is attributed to the intrinsic point defects in the GaN buffer,
but their concentration depends on the Fe-doping density profile in the buffer. Note that
the surface-trapping effects (virtual gate formation during OFF-state stress) may be less
pronounced in the studied AlGaN/GaN HEMTs due to the nitride passivation [40]. If the
emission time constant of A1 lies within the range of the RF signal period, the buffer trap
A1 at EC –0.45 eV is foreseen to prompt the current collapse effects in the RF system.
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4.4. Measured and Simulated Y21 Parameters

Figure 15 shows the measured and simulated LF Y21 parameters acquired at the
bias point of VDS = 10 V and IDS = 150 mA/mm for different temperatures (25 to 75 ◦C).
Negative and positive peaks are noticed in the Y21 spectra of the AlGaN/GaN HEMT, as
similar to the work of Benvegnu et al. [24]. The determined trap energy and capture cross-
section for the negative peak from the Arrhenius plot (see the inset of Figure 15) correspond
to the buffer trap A1 signatures. It is worth remembering that the buffer trap A1 produces
positive peaks in the Y22 dispersion spectra. On the contrary, negative peaks in Y21 are
related to the buffer trap A1. The simulated Y21 spectra confirm that the acceptor-like
buffer traps (A1) generate the negative peaks in the LF Y21 parameter spectra with similar
temperature dependency, as observed from Figure 15.

The positive peak D1 position also moves toward higher frequencies with the increasing
temperature, specifying that thermal evolution of the emission rate for D1 obeys the Arrhe-
nius’s law [9,14,22]. The trap energy (≈0.2 eV) and captured cross-section (1.5 × 10−18 cm2)
of D1 are calculated from the Arrhenius plot shown in the inset of Figure 15. Note that
trap D1 is not detected from the DCT and Y22 parameters. Benvegnu et al. [24] obtained
a similar trap activation energy of 0.25 eV for the positive peaks in the Y21 spectra of the Al-



Electronics 2021, 10, 3096 14 of 17

GaN/GaN GH50 HEMTs; however, the energy and physical locations of the trap at 0.25 eV
were not reported by them. In our simulation, trap D1 is positioned at an energy level
of EC –0.2 eV at the SiN/GaN cap interface (i.e., surface donor states). It is noticed from
Figure 15 that the simulated Y21 parameters closely track the measured spectra for various
temperatures from 25 to 75 ◦C. Thus, the positive peaks in the Y21 correspond to the surface
trapping phenomena at EC –0.2 eV, supporting the hypothesis of Yamaguchi et al. [21].
The simulated and measured results of the Y21 parameters, with a good match, illustrate
the existence of both acceptor-like buffer traps at EC –0.45 eV and surface donor states
at EC –0.2 eV at the nitride/GaN interface of the studied AlGaN/GaN HEMT. As Y21
parameters emulate the dispersion nature of gm (f), both the buffer and the surface traps
(A1 and D1) are projected to induce the transconductance frequency dispersions during
the microwave operation. Therefore, it is demonstrated that the Y21 parameters are able to
discriminate traps in the surface and buffer regions, whereas Y22 and DCT properties are
mostly sensitive to the buffer traps.

A good calibration practice is needed at each temperature to perform reliable Y21
measurements due to the high input impedance. Note that the Y21 parameter spectra
strongly rely on the measurement bias points. Figure 16 displays the measured LF Y21
spectra acquired at VDS = 10 V, IDS = 50 mA/mm for various temperatures (25 to 75 ◦C). The
positive peak D1 reveals the surface donor trap energy at ETD = EC –0.2 eV with the electron
capture cross-section of σnD = 2.5 × 10−18 cm2. Arrhenius investigation of the negative
peak A1* yields a trap activation energy of ≈0.35 eV, which is quite near to the energetic
position of the trap A1 (0.4–0.5 eV). Accordingly, it may be considered that the electronic
defect state A1* is located in the buffer layer. On the other hand, the surface trap D1 at
EC –0.21 eV is only detected from the Y21 measurements at the bias point of VDS = 20 V,
IDS = 50 mA/mm, as observed from Figure 17. The buffer trap A1 is not evident in the
Y21 spectra obtained at VDS = 20 V, IDS = 50 mA/mm. These observations suggest that the
surface traps are always identified with the same activation energy from the Y21 properties,
while a specific bias condition may be required to detect the buffer traps from Y21. The
further research investigations are underway to understand the peculiar occurrence of the
buffer trap in the LF Y21 characteristics.
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simulation analysis reveals that trap D1 corresponds to the surface donor states.
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Figure 17. The measured LF Y21 parameters obtained at VDS = 20 V, IDS = 50 mA/mm for various
temperatures (25 to 75 ◦C) show only the surface donor at EC –0.21 eV. The buffer trap A1 is not
detected for this bias condition.

In the literature [8,11,40], it is reported that the surface traps may show a weak depen-
dency on temperature, as their capture/emission kinetics is essentially governed by the
hopping conduction mechanism and results in a lower thermal activation energy. In this
work, both the measured and simulated Y21 properties (Figures 15–17) show that the carrier
emission rate for the surface trap D1 is a thermally activated process, postulating that the
trapping/de-trapping dynamics is carried out through the conventional SRH recombina-
tion statistics; this observation is important to model the surface-trapping phenomena in
the AlGaN/GaN HEMTs.

5. Conclusions

The charge trapping influences in the Fe-doped AlGaN/GaN HEMT device are in-
vestigated using DCT and LF Y-parameter techniques. A single trap at EC –0.45 eV is
identified from the DCT and Y22 experiments. On the other hand, LF Y21 spectra reveal
two trap levels at EC –0.45 eV (A1) and EC –0.2 eV (D1) in the HEMT structure. The TCAD
simulation studies are performed to detect the spatial location of the trap levels in the
device. The influence of surface donor energy and density on the 2DEG is analyzed under



Electronics 2021, 10, 3096 16 of 17

equilibrium conditions. The simulated LF Y21 parameters, with a good match, illustrate
the presence of both acceptor-like buffer traps at EC –0.45 eV and surface donor states at EC
–0.2 eV at the nitride/GaN interface. Hence, it is demonstrated that the Y21 parameters are
able to discriminate traps in both the buffer and surface regions, while the Y22 and DCT
properties are mostly sensitive to the buffer traps. Furthermore, the temperature dependent
Y21 frequency dispersions indicate that the carrier trapping/de-trapping dynamics of the
surface donor D1 follows the typical Arrhenius relation.
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