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a b s t r a c t 

Multi-echo gradient echo (ME-GRE) magnetic resonance signal evolution in white matter has a strong dependence 

on the orientation of myelinated axons with respect to the main static field. Although analytical solutions have 

been able to predict some of the white matter (WM) signal behaviour of the hollow cylinder model, it has been 

shown that realistic models of WM offer a better description of the signal behaviour observed. 

In this work, we present a pipeline to (i) generate realistic 2D WM models with their microstructure based on 

real axon morphology with adjustable fiber volume fraction (FVF) and g-ratio. We (ii) simulate their interaction 

with the static magnetic field to be able to simulate their MR signal. For the first time, we (iii) demonstrate that 

realistic 2D WM models can be used to simulate a MR signal that provides a good approximation of the signal 

obtained from a real 3D WM model derived from electron microscopy. We then (iv) demonstrate in silico that 2D 

WM models can be used to predict microstructural parameters in a robust way if ME-GRE multi-orientation data 

is available and the main fiber orientation in each pixel is known using DTI. A deep learning network was trained 

and characterized in its ability to recover the desired microstructural parameters such as FVF, g-ratio, free and 

bound water transverse relaxation and magnetic susceptibility. Finally, the network was trained to recover these 

micro-structural parameters from an ex vivo dataset acquired in 9 orientations with respect to the magnetic field 

and 12 echo times. We demonstrate that this is an overdetermined problem and that as few as 3 orientations can 

already provide comparable results for some of the decoded metrics. 
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. Introduction 

White matter (WM) consists mainly of myelinated axons and plays
n important role in the transmission of information across the brain.
he myelin sheath surrounding axons acts as an electrical insulator,
hus increasing the transmission speed of the nerve impulses. The de-
elopment of myelin played a key role in evolution and the emergence
f large vertebrates Zalc (2006) and it is still central to brain matu-
ation Williamson and Lyons (2018) . The degradation of myelin, com-
only referred to as demyelination, is present in various neurodegen-

rative diseases and can lead to severe motor and mental disabilities
ove (2006) . Such neurodegenerative disorders (e.g multiple sclerosis)
how high variability among individuals, and it is difficult to predict
nd understand the course of the disease by solely counting the num-
er of lesions or comparing the values obtained in magnetic resonance
MR) relaxometry Bonnier et al. (2017) . Therefore, non-invasive imag-
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ng methods that can investigate the WM microstructure such as myeli-
ation may offer important means to study neurodegenerative diseases,
roviding crucial information for diagnosis, and monitoring progress
nd assessment of potential treatment effectiveness. 

Direct MR imaging of the myelin is challenging due to the ultra-
hort transverse relaxation time of the phospholipid proton ( 𝑇 ∗ 2 =
 . 3 ms ) Du et al. (2014) . Nevertheless, several attempts have been per-
ormed using zero or ultra-short echo time techniques Du et al. (2014) ;
e et al. (2017) . Myelin can be probed indirectly using magnetiza-

ion transfer techniques Sled (2018) ; Wolff and Balaban (1989) . Al-
ernatively, myelin water imaging is a method that attempts to mea-
ure the signal of water that is trapped in between myelin layers and
hat was originally based on multi-echo spin-echo data MacKay and
aule (2016) and has more recently been explored using multi-echo
radient-echo data Alonso-Ortiz et al. (2018) . However, the detection
f myelin water remains challenging due to its short 𝑇 value ( ∼20 ms)
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1 https://osf.io/sgbm8/ 
nd 𝑇 ∗ 2 value ( ∼10 ms) Lee et al. (2020a) . In this paper, we will focus
n myelin water imaging using a multi-echo gradient echo (ME-GRE)
equence. 

WM is a complex environment composed of not only axons but also
ifferent types of glial cells, vessels and more. However, the biophysi-
al models typically used in magnetic resonance imaging (MRI) are re-
uced to 3 compartments: intra-axonal, myelin and extra-axonal wa-
er protons. Axons in WM have various shapes and sizes, with a di-
meter ranging from 0 . 1 μm to 2 μm for unmyelinated axons and from
 μm up to 10 μm for myelinated axons Susuki (2010) , and are typi-
ally modelled as cylinders. The myelin sheath, formed in the central
ervous system (CNS) by oligodendrocytes, represents approximately
0% of the brain’s dry weight and consists of tightly packed phospho-
ipid bi-layers united by the hydrophobic tails, separated by water lay-
rs Duyn and Schenck (2017) . These phospholipids, because of their
longated form and their radial organisation around the axon, have an
nisotropic magnetic susceptibility Xu et al. (2018) ; Yablonskiy and Suk-
tanskii (2014) with diamagnetic property when compared to the sur-
ounding water. These microstructural features are believed to be well
pproximated by a tensor with cylindrical symmetry which can be ex-
ressed as a sum of an isotropic ( 𝜒𝑖 ) and anisotropic ( 𝜒𝑎 ) components.
arious values have been reported in the literature of myelin for 𝜒𝑖 rang-

ng from −0 . 13 to −0 . 06 ppm and 𝜒𝑎 ranging from −0 . 15 to −0 . 09 ppm
ati et al. (2013) ; Wharton and Bowtell (2012) ; Xu (2017) (with ppm
onsidered with respect to the magnetic susceptibility of pure water). 

In the presence of a strong magnetic field, a secondary micro-
copic magnetic field perturbation is created by these phospholipids
ung et al. (2019) . This secondary field can be observed in both magni-
ude and phase of a ME-GRE signal Lee et al. (2012) . One manifestation
f the anisotropic magnetic susceptibility of myelin is that the MR signal
f a GRE sequence shows a dependence on the orientation of the fibers
elative to the main magnetic field. It has been shown that simple 𝑇 ∗ 2 
aps are orientation dependent Gil et al. (2016) , and hence unsuitable

or the estimation of myelin properties. Part of this orientation depen-
ence can be accounted for using a priori knowledge of fiber orientations
ee et al. (2017) . 

In this study, we set out to investigate the feasibility of WM mi-
rostructure property quantification using realistic WM fiber geome-
ries, which has the potential to measure microstructure properties with-
ut the bias associated with simplification of the biological environment
n analytical models. Firstly, we developed a method to generate hypo-
hetical 2D WM models based on realistic axon shapes. ME-GRE sig-
als with different axon and myelin properties were subsequently sim-
lated using these 2D WM models. The validity of these 2D models was
ested by comparing the signal similarity between the signal simulated
rom a 3D WM model (obtained by 3D electron microscopy of a genu
f a sagittal mouse corpus callosum section) to that of 2D models with
atched microstructural parameters. Secondly, a dictionary of ME-GRE
as simulated using realistic WM models with a wide range of WM mi-

rostructure properties. This dictionary was then used to train a deep
eural network to recover WM microstructure properties from ME-GRE
ignal. ME-GRE signal with multiple object orientations with respect to
he main magnetic field data was used in this process to ensure there is
ufficient signal variation due to the susceptibility properties of myelin.
inally, we validated and optimised this deep neural network using in
ilico data and applied the same method on ex vivo data. This process is
riefly summarized in Fig. 1 . 

. Methods 

.1. 2D WM Model 

In the presence of magnetic field, the magnetic susceptibility of
yelin relative to its surrounding creates a secondary magnetic field,
hich although small, affects the MRI signal both in phase and magni-

ude. These phenomena have been used in the past to study WM orienta-
2 
ion Lee et al. (2017) ; Wharton and Bowtell (2013) and can be studied
oth analytically and numerically considering various simplified WM
odels. 

.1.1. Hollow cylinder model (HCM) 

The HCM, proposed by Wharton and Bowtell, is commonly used
o approximate WM microstructure Wharton and Bowtell (2012) . The
yelin sheath is represented by an infinite hollow cylinder with an in-
er radius 𝑟 𝑖 and an outer radius 𝑟 𝑜 . The inner part of the hollow cylinder
s the intra-axonal compartment and the external part is referred as the
xtra-axonal compartment. 

This 3-compartment cylindrical representation of WM allows an an-
lytical derivation of the field perturbation in each of those regions and
haracterization WM using: 

• Fiber volume fraction (FVF) - the proportion of myelinated axon
within the model 

• g-ratio - the ratio between the intra-axonal radius ( 𝑟 𝑖 ) and the myeli-
nated axon radius ( 𝑟 0 ): 

g-ratio = 

𝑟 𝑖 
𝑟 𝑜 

(1) 

This solution, which is very convenient to model, offers, for ex-
mple, an analytical estimation of the fiber-orientation dependence of
 

∗ 
2 = 1∕ 𝑇 ∗ 2 map Wharton and Bowtell (2013) . 

However, it has been recently demonstrated that the HCM has intrin-
ic biases compared to a more realistic WM model created from electron
icroscopy data Xu et al. (2018) . The circular axon shapes create artifi-

ially large frequency peaks, in particular within the intra-axonal com-
artment, which are not present in a realistic model. In the following
ection we will present the creation of a realistic 2D WM model based
n real axon shapes and realistic size distributions. 

.1.2. Electron microscopy based models 

In this study, we used a 2D electron microscopy image of an entire
lice of a canine spinal cord from an histology open database 1 Manh-
ung et al. (2017) as our database of axon shapes. The sample is 5 mm
idth and 7 . 5 mm long with a 0 . 25 𝜇m resolution which corresponds to a

20 . 000 × 30 . 000 image. An open-source segmentation software was used
o segment the image leading to a collection of ∼ 600 . 000 myelinated
xon shapes Zaimi et al. (2016) . The resulting axons had an average
iameters of 2 . 9 ± 0 . 1 pixels and g-ratio of 0 . 62 ± 0 . 01 . The resolution is
ufficient because we do not want to segment unmyelinated axons that
ave been shown to have no significant impact on the ME-GRE signal ob-
ained Xu et al. (2018) . The unmyelinated axons are therefore included
ithin the extra-axonal space. In case of a realistic axon shape, the g-

atio is redefined as the square root of the ratio between the intra-axonal
urface and the outer surface (measured as the number of myelinated
ixels with at least one side in direct contact with intra or extra-axonal
pace). 

.1.3. Axon packing algorithm 

A set of 400 axon shapes was randomly picked from the collection
bove to create a realistic 2D WM model with predefined FVF and g-
atio. To do so, we developed an axon packing algorithm based on an
xisting software Mingasson et al. (2017) that had been initially devel-
ped for cylindrical axon models. The packing process is performed as
ollow (see Algorithm 1 and Fig. 2 ): 

In the current implementation, as the axon shapes are picked ran-
omly, they do not necessarily fit optimally together (during the attrac-
ion and repulsion process, the axon is not allowed to rotate), thereby
enerating small gaps within the model. The maximum FVF parame-
er, corresponding to a model where the axons are highly packed while

https://osf.io/sgbm8/
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Fig. 1. Diagram of the entire pipeline from the data acquisition and the creation of 2D realistic WM models to the recovery of microstructure parameter maps. 

Algorithm 1: Axon packing. 

Data : Set of N myelinated axon shapes 
Initialization : N axons equally spaced on a grid 
current FVF = initial FVF 
while current FVF < maximum FVF do 

Axons are attracted to the grid center 
Axons which overlap repulse each other 
current FVF = FVF within a mask 

end 
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voiding overlap was empirically found to be 0.85. According to liter-
ture, such an FVF value already represents a WM model with a very
igh axon density Sepehrband et al. (2015) . 

.1.4. Obtaining an expected FVF 

Once the maximum FVF for a given collection of axons is achieved,
his packed WM model was used to obtain a new model with an a differ-
nt FVF. Two different methods, illustrated in Fig. 2 , were proposed: (i)
andomly remove axons or (ii) spread the axons from the figure cen-
er. The first method creates important gaps within the extra-axonal
pace that could correspond to glial cells or bundles of unmyelinated
xons, while the second method creates a more uniformly distributed
ig. 2. Top row: 400 axons are placed on a grid (a) and packed following an 

ttraction/repulsion method (b) until high FVF is reached (c). Bottom row: Zoom 

n the mask delineated by the red square. A desired FVF is reached by spreading 

he axons from the center (d) or randomly removing some axons (e). Keeping 

he same axons and thus the same FVF, the myelin thickness can be modified to 

btain an expected g-ratio (f). 
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3 
M model. Based on the EM data visually explored up to now, both
ould be valid representations. Their corresponding field perturbation
istograms were close enough and both models were used to enforce the
iversity of our WM model dictionaries. 

.1.5. Change the g-ratio 

Finally, the mean g-ratio of the model was modified, while keeping
he FVF constant. This operation was performed on an axon-by-axon ba-
is by dilating or eroding the inner myelin sheath by one pixel, to ensure
 smooth modification of the g-ratio, depending on whether the g-ratio
as to be decreased or increased. Each axon has a given probability to
e randomly picked, this probability is linked to its diameter. As the
ilatation/erosion is fixed to one pixel, larger axons need to be picked
ore frequently to respect the original proportion of FVF. It should be
oted that one axon can be selected multiple times for erosion. The mod-
fication of the g-ratio is illustrated in Fig. 2 and a video of the entire
D WM model creation is available as supplementary material, where it
an be seen that a given axon can be selected multiple times. Eventually,
ifferent models with similar FVF and g-ratio can be created using our
arge axon shapes database and the code made available in the toolbox.

.2. Signal creation 

With a view to using these 2D models to simulate the ME-GRE sig-
al, we need to define the susceptibility of pixel element, compute the
nduced magnetic field perturbation and eventually simulate the signal
volution in this inhomogeneous environment. 

.2.1. Magnetic susceptibilities 

For the sake of simplicity, we consider the intra-axonal and extra-
xonal compartments to have equal magnetic susceptibility, for it to be
sotropic and to have value zero. As a result, the susceptibility attributed
o myelin is the difference between the myelin susceptibility and the
usceptibility of the surrounding compartments. In the myelin compart-
ent the magnetic susceptibility is described by a tensor that results

rom the sum of an isotropic ( 𝑋 𝑖 ) and an anisotropic ( 𝑋 𝑎 ) component: 

 = 𝑋 𝑖 + 𝑋 𝑎 = 𝜒𝑖 

⎛ ⎜ ⎜ ⎝ 
1 0 0 
0 1 0 
0 0 1 

⎞ ⎟ ⎟ ⎠ + 𝜒𝑎 

⎛ ⎜ ⎜ ⎝ 
1 0 0 
0 −1∕2 0 
0 0 −1∕2 

⎞ ⎟ ⎟ ⎠ (2)

here 𝜒𝑖 and 𝜒𝑎 are scalar isotropic and anisotropic susceptibility multi-
licative constants, respectively. The susceptibility tensor 𝑋 𝑅 within the
yelin sheath in a 2D model is determined by the phospholipid orien-

ations 𝜙 with respect to the magnetic field on that plane Wharton and
owtell (2012) : 

 = 𝑅 ( 𝜙) ⋅𝑋 ⋅ 𝑅 ( 𝜙) = 𝑋 + 𝑅 ( 𝜙) ⋅𝑋 ⋅ 𝑅 ( 𝜙) (3)
𝑅 𝑧 𝑧 𝑖 𝑧 𝑎 𝑧 
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Fig. 3. First row represents the phospholipid orientation estimation performed 

for each axon. (a): the extra-axonal, myelin and intra-axonal compartments be- 

ing assigned values 0, 1 and 2 respectively. (b): the model is smoothed with 

a Gaussian filter (c) Gradient orientation is computed on the smoothed map. 

Second row: Field perturbation for one axon with 3 different magnetic field ori- 

entations. Third row: Corresponding histograms computed within the red square 

to keep a reasonable FVF. The myelin histogram is presented with Lorentzian 

correction (solid blue line) and without Lorentzian correction (dashed blue line). 

A magnetic field parallel to the axon orientation can be characterized by Dirac 

delta functions with a value of 0 for the intra and extra axonal compartments 

and a negative or null value for the myelin compartment. A perpendicular mag- 

netic field creates much stronger perturbations and present broad distributions 

within the 3 compartments. 
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ith 𝑅 𝑧 ( 𝜙) the 3D rotation matrix around the z axis. 

 𝑧 ( 𝜙) = 

⎛ ⎜ ⎜ ⎝ 
𝑐𝑜𝑠 ( 𝜙) − 𝑠𝑖𝑛 ( 𝜙) 0 
𝑠𝑖𝑛 ( 𝜙) cos ( 𝜙) 0 

0 0 1 

⎞ ⎟ ⎟ ⎠ (4)

t should be noted that the tensor map only depends on the phospholipid
rientation (see Fig. 3 ) and is not related to the main magnetic field. In
imple cases, as for the HCM, the computation of 𝜙 is trivial. For more
omplex axon shapes, there is no straightforward definition of the ori-
ntation of the phospholipids throughout the whole myelin sheath. Its
rientation should be perpendicular to the tangent of the myelin surface,
ut the inner and the external boundaries are neither smooth nor nec-
ssarily parallel to each other in our segmented models. The orientation
f the phospholipids is estimated on an axon-by-axon basis. First, the se-
ected axon is placed in a small matrix (including 10 pixels of each side
f the axon edges for computational time considerations), then the extra-
xonal, myelin and intra-axonal compartments are given the values of 0,
 and 2 respectively. The resulting map is smoothed with a 2D Gaussian
lter with a width of 5 × 5 to create a smoothed pyramidal structure. If
he myelin sheath is too large and still contains piecewise constant part
fter smoothing, the process is repeated. Finally a 2D gradient is com-
uted from the smoothed map. As the map is smoothly varying from
 to 2 within the myelin compartment, the gradient at each point will
efine the steepest direction from the extra- to the intra-axonal space,
he phospholipid orientation is assumed to correspond to the gradient
irection (see Fig. 3 b). 

.2.2. Field perturbation 

From the phospholipid orientation map, the susceptibility tensor
ap can be calculated using Eq. 3 . The susceptibility tensor map is used

o compute the field perturbation in the frequency domain as described
n Li et al. (2017) . An illustration of the field perturbation generated by a
4 
ingle axon for several 𝐵 0 orientations, with and without the Lorentzian
orrection (see Section 2.2.3 ), is shown in Fig. 3 . The induced field per-
urbation strongly depends on the 𝐵 0 orientation. A magnetic field par-
llel to the axon orientation has a small negative field shift or no field
hift at all within the myelin sheath while a perpendicular magnetic
eld creates much stronger perturbations within the 3 compartments.
he overlapping frequency spectra of the 3 compartments make them
ard to disentangle. 

.2.3. ME-GRE Signal 

In previous studies the ME-GRE signals was computed as
ati et al. (2013) : 

( 𝑡 ) = 

3 ∑
𝑛 =1 

⎛ ⎜ ⎜ ⎝ 𝑤 𝑛 exp 
⎛ ⎜ ⎜ ⎝ − 𝑡 

𝑇 ∗ 2 ,𝑛 

⎞ ⎟ ⎟ ⎠ 
∑
𝑟 

exp (− 𝑖𝑡𝛾Δ𝐵 𝑛 ( 𝑟 )) 
⎞ ⎟ ⎟ ⎠ (5)

here 𝑇 ∗ 2 ,𝑛 is the compartment specific apparent transverse relaxation
ate that is not originated by myelin induced field inhomogeneities and
 𝑛 is the water weight (reflecting the water signal per pixel in our
D model, which includes proton density and T1 saturation effects).
he field perturbation Δ𝐵 𝑛 ( 𝑟 ) at each pixel (computed considering the
phere of Lorentz assumption) is therefore responsible for the signal de-
ay associated with myelin induced field inhomogeneities, 1∕ 𝑇 ′2 , con-
ributing to the each compartments’ apparent transverse relaxation rate
 

∗ 
2 ,𝑛 = 1∕ 𝑇 ∗ 2 ,𝑛 = 1∕ ̂𝑇 ∗ 2 ,𝑛 + 1∕ 𝑇 ′2 ,𝑛 . 

In our implementation a correction has been introduced in the fre-
uency shift of the myelin water compartment to account for the com-
artmentalization of water. Instead of using the standard Lorentzian
phere approximation used for the field computation, we have used the
ylindrical Lorentzian approximation He and Yablonskiy (2009) simi-
ar to the initially proposed by He and Yablonskiy. This correction was
one separately for each pixel within the myelin compartments and tak-
ng into account the susceptibility tensor, such that: 

�̂� 𝑀 

( 𝑟 ) = Δ𝐵 𝑀 

( 𝑟 ) − 𝑃 𝑍 ( 𝑋( 𝑟 )) 
⎛ ⎜ ⎜ ⎝ 
𝑐𝑜𝑠 ( 𝜃) 2 − 

1 
3 

2 

⎞ ⎟ ⎟ ⎠ (6) 

 𝑍 = �̂� 

𝑇 
0 𝑋( 𝑟 ) ̂𝐵 0 (7) 

here Δ̂𝐵 𝑀 

is the Lorentzian corrected myelin field perturbation and 𝑃 𝑍 
s the projection of the susceptibility tensor along the 𝐵 0 orientation. An
llustration of the ME-GRE signals simulated with the Lorentzian correc-
ion is shown with two examples of WM geometry in Fig. 4 . Intuitively,
n this formalism, the myelin sheath is broken into various infinite cylin-
ers running parallel to the axon. For a closer inspection to the impact
f this correction on the frequency of the myelin water compartment as
 function of axon orientation for the more tractable case of a cylinder,
efer to Appendix A . There, we also compare the current correction to
he more advanced layered models Sukstanskii and Yablonskiy (2014) ;
ablonskiy and Sukstanskii (2014) and discuss the pros and cons of the
ifferent approaches. 

MRI data amplitude depends not only on the magnetization ampli-
ude, but also on the RF coil sensitivity and receiver gain. The phase
epends on the RF transceiver and on the quality of the B0 shimming
nd presence of fields due to the susceptibility of neighbouring pixels.
o be able to compare our simulations to real data, both the simulated
nd measured signals were normalized as follows : 

�̂� ( 𝑡 ) | = |𝑆 ( 𝑡 ) |∕ |𝑆 (1) | (8) 

arg ( ̂𝑆 ( 𝑡 )) = arg ( 𝑆( 𝑡 )) − 𝜙0 − Δ𝜔 × 𝑡 (9) 

here arg ( ̂𝑆 ( 𝑡 )) is the phase of the signal, 𝜙0 and Δ𝜔 are the phase and
requency offsets estimated by performing a simple linear regression on
rg ( ̂𝑆 ( 𝑡 )) . Note that it is relevant to also perform such a normalisation
n the simulated data as its amplitude and frequency would depend on
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Fig. 4. Variations of signal decay as function of FVF, g-ratio and susceptibility: (a,e) Two examples of realistic WM models with different FVF and g-ratio (b, f) 

corresponding field perturbation when axons perpendicular to the magnetic field; Simulated ME-GRE signal with the Lorentzian correction (c, g) magnitude and 

phase (d, e) for the two models with different isotropic susceptibility. Remaining model and relaxation parameters are fixed according to literature values (see 

Table 1 ). 

Table 1 

Table describing our 8 dimension dictionary of signal models. First 

and third column describe the parameters varied and their expected 

mean values as found in literature. Middle column: Parameter range 

used in our dictionary, minimum : step : maximum. ∗ The relative wa- 

ter weight in the axon and in the intra and extra-axonal space depends 

in our case on the acquisition parameters, flip angle and TR. The value 

presented was the one used for the typical WM deep learning experi- 

ment. 

Model parameters Dictionary Typical WM values 

FVF 0.1:0.1:0.8 0.7 a 

g-ratio 0.5:0.05:0.85 0.65 b 

𝜒𝑖 (ppm) -0.2:0.1:0.2 -0.1 c 

𝜒𝑎 (ppm) -0.1 (fixed) -0.1 a 

𝑇 ∗ 2 ,𝐼𝑛𝑡𝑟𝑎 − 𝐸𝑥𝑡𝑟𝑎 
(ms) 20:20:100 60 d 

𝑇 ∗ 2 ,𝑀𝑦𝑒𝑙𝑖𝑛 
(ms) 4:4:20 16 d 

𝑤 𝑀𝑦𝑒𝑙𝑖𝑛 ∕ 𝑤 𝐼𝑛𝑡𝑟𝑎 − 𝐸𝑥𝑡𝑟𝑎 0.5:0.5:3 2 ∗ 

Number of fiber orientations 20 / 

a (Choy et al., 2020) Choy et al. (2020) 
b (Mohammadi et al., 2015) Mohammadi et al. (2015) 
c (Wharton et al., 2012) Wharton and Bowtell (2012) 
d (Xu et al., 2018) Xu et al. (2018) 
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he myelin volume fraction. At a later stage, when training a network
o decode microstructural parameters, it is important to ensure the net-
ork is trained on signal features that are experimentally relevant, such
s non-exponential behaviour of the signal decay and non-linear phase
volution. 

.2.4. Model validation 

While the realistic 2D WM models have been shown to better rep-
esent the ME-GRE signal of WM than the simple HCM, they assume
he replication of the same structure along the third dimension result-
ng in bundles that are unrealistically aligned and cannot represent the
atural dispersion present in a real axon bundle. Dispersion can occur
ot only in regions of fiber crossing, fiber kissing, but also in regions
raditionally expected to be unidirectional such as the corpus callo-
um Mollink et al. (2017) . However, 3D models are hard to construct,
ot only because of the lack of 3D EM data (that could represent a
round truth), but also because of the complexity of 3D axon packing
insburger et al. (2018) . Also, the 2D axon shapes used in our realis-
5 
ic WM modeling can possibly be elongated as they are obtained from
utting through axons that were not perpendicular to the surface. Fur-
hermore, the estimation of the susceptibility tensor map and the field
erturbation in 3D models would make the process even more time con-
uming. We have designed a small study, presented in the Appendix B to
ssess the ability of our 2D models to represent a real 3D model with
omparable microstructural properties. 

.3. Dictionary creation 

A dictionary of signal evolution can be created using the simulated
E-GRE signals in the presence of different WM models. Such dictio-

ary can be used to derive the microstructural tissue properties from
he ME-GRE signal by using root-mean-square minimization between
he dictionary elements and measured signal, as previously done in, for
xample, fingerprinting Ma et al. (2013) . Alternatively, a deep learning
etwork can be trained to learn the tissue properties from the dictionary
s will be demonstrated later. 

The WM model and the magnetic field distributions present on each
f its compartments depend on 5 microstructure related parameters:
VF, g-ratio, 𝜒𝑖 , 𝜒𝑎 , as well as the fiber orientation. For the purpose of
raining a deep learning network, we considered repeating simulations
ith various axon packing using the aforementioned properties. The
E-GRE signal from each WM model depends on the specific NMR prop-

rties of each compartment ( 𝑤 𝑛 , ̂𝑇 
∗ 
2 ,𝑛 ). This would result in 6 supplemen-

ary parameters. To reduce the dictionary size, the ̂𝑇 ∗ 2 and the water den-
ity from the intra- and extra-axonal pixels were defined to be the same.
his reduced the number of parameters from 6 to 3: 𝑇 ∗ 2 ,𝑀𝑦𝑒𝑙𝑖𝑛 

the 𝑇 ∗ 2 of

yelin water; ̂𝑇 ∗ 2 ,𝐼𝑛𝑡𝑟𝑎 − 𝐸𝑥𝑡𝑟𝑎 
the ̂𝑇 ∗ 2 of the intra and extra-axonal compart-

ent and a relative water weight given by 𝑤 = 𝑆 0 ,𝐼𝑛𝑡𝑟𝑎 − 𝐸𝑥𝑡𝑟𝑎 ∕ 𝑆 0 ,𝑀𝑦𝑒𝑙𝑖𝑛 .
he parameter ranges used to construct the dictionary are presented in
able 1 along with typical WM values. The dictionary has 8 dimensions,
ith 5 to 20 entries per dimension leading to 7.680.000 vectors. In the

ollowing in silico and ex vivo experiments, all the dictionaries have the
ame parameter ranges. 

Each entry of the dictionary is composed of the normalized signal
agnitude and phase (or real and imaginary components, 2 x nTE with
TE the number of echo times in the simulation) and an additional entry
ncoding the fiber orientation information characterized by the angle
etween the fiber and the static magnetic field. When deriving the mi-
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Fig. 5. The ME-GRE signal with the Lorentzian correction is simulated with 6 

magnetic field orientations, separated by dashed line on the figure, 𝜃 = 0 − 𝜋∕2 
equally space (see arrows), for WM models with different FVF from 0.1 to 0.8 

(4 models for each FVF). The top and bottom rows represent respectively the 

signals real and imaginary part for each of the 6 orientations separated by a 

vertical black line. 

Fig. 6. Illustration of the architecture of the deep learning network used in this 

manuscript. The input is the measured signal (real and imaginary values) to- 

gether with the main fiber orientation obtained from DTI. The network has 3 

hidden layers. FC stands for fully connected layer, Li and Lo are respectively 

225 and 6. The output of the network is a vector containing the 6 microstruc- 

ture parameters. The inputs signals have a vector size of 225 which correspond 

to the concatenation of 9 orientations. Each orientation includes the 𝜃 angle be- 

tween the fiber and the magnetic field orientation, the normalized signal real 

and imaginary part along 12 TE. 
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3  
rostructural properties from measurements with multiple orientations
ith respect to the magnetic field, the signal is concatenated along the
 orientations which leads to a vector size of 𝑛 ⋅ (2 TE + 1) . An illustra-
ion of such simulated normalized signals magnitude and phase with
ifferent orientations is presented in Fig. 5 . Unlike a single orientation
ictionary, this multi-orientation dictionary is only valid for a specific
et of rotations used in a specific acquisition. 

.4. Deep learning 

The ME-GRE signal dictionary was used to train a deep learning net-
ork using Keras with TensorFlow GPU backend Chollet et al. (2015) .
or all the following experiments, the dictionaries were trained on 7
ntire sets of WM models and assessed by the loss function on another
et of WM models, which correspond to a validation split of 0.125. This
etwork is composed with 3 hidden layers of size 2 ∗ 𝑙 𝑖 ∗ 𝑙 𝑜 , 1 . 5 ∗ 𝑙 𝑖 ∗ 𝑙 𝑜 ,
 . 25 ∗ 𝑙 𝑖 ∗ 𝑙 𝑜 , 𝑙 𝑖 and 𝑙 𝑜 being the concatenate signal length and the num-
er of parameters, with a respective dropout of 0.4, 0.2, 0.1 using a
anh activation function and an additional linear layer, see Fig. 6 . Both
nputs and outputs were normalized, a stochastic gradient descent opti-
izer was used and the loss function is a mean absolute error. 

To gain experience on our network ability and limitations to derive
icrostructure properties, its performance was first tested on numerical

imulations. Particularly we wanted to assess what the optimum echo
ime range and the number of echoes were, as well as study the gains
ssociated with different numbers of sample rotations needed to suc-
essfully recover WM properties (which will affect our data acquisition
6 
rotocol). The design and training of the network were also subjects of
areful attention. The deep learning hyperparameters were tuned fol-
owing an empirical approach, with the selected ones giving results that
re both accurate and robust to the change of signal parameters. 

The validation loss function (mean absolute error of the parameters
stimated on a validation data set - one set of WM models which is not
sed for training) was used as a metric to assess the convergence of the
etwork. All the parameters, within their range, were re-scaled between
 and 1, to make validation loss a less arbitrary number. This metric is an
verage of the mean absolute error for each parameter, thus, it does not
llow performing fine comparisons. Despite this remark, the validation
oss is a classic and robust way to assess the training process with an
nique number. 

.4.1. Deep learning performance evaluation on simulated data 

The robustness of the parameter recovery was tested by adding a
omplex white noise (0 % , 0.5 % , 1 % , 2 % and 4 % ) to a ME-GRE signal on a
ictionary used in the training and validation processes. The noise levels
entioned above are relative to the signal amplitude at the first echo,
E = 2.15 ms. The first 3 columns of Table 2 summarize the parameters
sed in the creation of the dictionary and training of the network. The
otations used were chosen to mimic the experimental protocol used on
n ex vivo acquisition described later in this section. 

The ME-GRE signal of a given WM model depends on the magnetic
eld orientation with respect to its structure (see Fig. 5 ), this leads us
o adopt a multi-orientations approach when trying to decode WM mi-
rostructure properties. However, as an increased number of orienta-
ions means a longer acquisition time, we performed a theoretical com-
arison study to estimate the benefit of using a large number of orien-
ations vs a reduced number of orientations with data that has higher
NR. A dictionary with 16 optimal orientations was created for 3 differ-
nt noise levels (0, 1 and 2%). In order to maximize information, each
ber should have the largest possible range of 𝜃 from 0 to 𝜋∕2 . To do so,
he 16 3D rotations had evenly spread axis on the sphere with a common
∕2 angle. Then, for a range of number of orientations from 1 to 16, a
ubset of this dictionary was used to train a deep learning network. 

The influence of the number of echoes on the deep learning param-
ter recovery performance was tested. To do so, several networks were
rained with a fixed echo spacing (3.05 ms - mimicking our experimental
rotocol), a various number of TEs (5, 10, 15, 20, 25 and 30) and noise
evels. At this stage no considerations of the impact on 𝑇 1 weighting
ere factored into the analysis. 

Finally, we tested the deep learning for one set of realistic param-
ter values of WM (see Table 2 ), that allows to detail the behavior of
ach parameter individually. The signal was simulated 125 times for 8
ndependent WM models leading to 1000 signal simulations with each
ifferent noise level. We tested two methods to recover the parameters:
i) using a deep learning network trained with a noise matching the sim-
lated noise; (ii) using a deep learning trained with a maximum noise
evel regardless of the simulated signal noise. 

.5. Ex vivo data acquisition 

A formalin fixed post-mortem brain (female, 88 years old, 26 hours
f post-mortem interval and 7-month fixation period) was scanned in
 3T scanner (Prismafit, Siemens, Germany). The brain was scanned
n 9 orientations relative to the static magnetic field. To avoid brain
eformation between different rotations, a customised 3D brain holder
as built and used throughout the scanning session Chan et al. (2019) .
rior to scanning, formalin was washed out using distilled water and
repared in low pressure environment, using a vacuum pump at 20 mbar
uring 12h to remove all air bubbles trapped in the various cortical sulci.
uring this period the brain was occasionally rotated to ensure removal
f air trapped inside the ventricles. 

For each head position the following protocol was repeated: - (a)
D monopolar ME-GRE with 12 echos (TE = 1.7 : 3.05 : 35.25ms,
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Table 2 

Table describing the parameters used in the training of each of the experiments described in the Methods section. This 

include parameters associated with the dictionary (echo times, number of rotations, noise level, number of independent WM 

models) and a deep learning parameters (number of epochs). The four first columns refer to the in silico experiments and the 

last column corresponds to the real ex vivo experiment. It should be noted that in the case of the entries with 9 orientations, 

these were same 9 orientations and were derived from the rotations obtained from the co-registration of the ex-vivo sample. 

Parameter/Experiment Epochs dependence TEs dependence Rotation dependence Typical WM Ex vivo data 

TEs 2.15-3.05-35.7 1.8-3.2-14.6/94.6 2.4-4.4-50.7 2.15-3.05-35.7 2.15-3.05-35.7 

Rotations 9 6 1 to 16 9 9 

Noise level 0 , 0 . 5 , 1 , 2 , 4% 0 , 1 , 2% 0 , 1 , 2% 0 , 0 . 5 , 1 , 2 , 4% 4% 
Number of models 8 8 8 8 8 

Epochs 40 20 40 40 40 
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R = 38 ms), with a 1.8mm isotropic resolution and matrix size
128x128x128), acquisition time 8.21 mins. This protocol was repeated
 times with 6 different flip angles ( 𝛼 = 5 ◦ ∕ 10 ◦ ∕ 15 ◦ ∕ 20 ◦ ∕ 35 ◦ ∕ 65 ◦);

- (b) an MP2RAGE Marques et al. (2010) with 1mm isotropic resolu-
ion was acquired for co-registration purposes. The MP2RAGE parame-
ers were adapted to be able to map the short 𝑇 1 values present in fixed
issue (TR / TI1 / TI2 = 3s / 0.311s / 1.6s; 𝛼1 ∕ 𝛼2 = 4 ◦∕6 ◦); 

Finally, for the last sample position, DWI protocol was acquired to
rovide fiber orientation information (TR / TE = 3.78s / 71.2ms, 256
iffusion-encoding gradient directions, b = 2500 s/mm 

2 ). Because the
ormalin fixation process and the reduced temperature of the sample
ompared to in vivo (Room Temperature ≃ 23 ◦) significantly reduces
ater diffusivity, the protocol was repeated 20 times to achieve robust
ber orientation information. 

.6. Ex vivo data processing 

The MP2RAGE contrast is insensitive to transmit and receive B1
elds that vary significantly when rotations as large as 90 degrees were
pplied to the sample. Therefore, each of the 9 MP2RAGE images from
he 9 brain rotations were co-registered to a reference position using
LIRT from FSL Jenkinson et al. (2002) . Corresponding transforma-
ions were then applied to the ME-GRE data (phase unwrapped using
 three-dimensional best path algorithm Abdul-Rahman et al. (2007) ).
inally, the registered data were normalized following Eq. 9 . A DTI
as estimated for each DWI and the 20 DTIs were averaged us-

ng a log-Euclidean framework Arsigny et al. (2006) . Eventually, the
ber orientation was defined as the main orientation of the average
ensor. 

A ME-GRE dictionary was simulated for this particular acquisition,
nd the corresponding deep learning network was trained using the pa-
ameter ranges described in Tables 1 and 2 . Finally, the microstruc-
ure parameter maps (FVF, g-ratio, 𝜒𝑖 , 𝑇 

∗ 
2 ,𝑀𝑦𝑒𝑙𝑖𝑛 

. 𝑇 ∗ 2 ,𝐼𝑛𝑡𝑟𝑎 − 𝐸𝑥𝑡𝑟𝑎 
, and the

elative water weight) were estimated individually for each set of flip
ngles. This resulted in 6 independent sets of parameter maps, where
nly the relative water weight term is expected to vary across acqui-
itions. It was thus possible to compute the mean and standard de-
iation of the microstructure parameter maps that were expected to
emain constant across flip angles to estimate the precision of those
easurements. 

Finally, the last experiment was performed by using a restricted num-
er of rotations that can be achieved during an in vivo experiment.
mong the 84 possible combinations of 3 rotations chosen within the
riginal 9 rotations, the 10 that insured the largest fiber orientations
anges were picked. The subsets of ex vivo data for the 10 combinations
f 3 rotations with a flip angle of 20 ◦, the corresponding dictionaries,
nd deep learning networks were created, leading to 10 entire sets of
rain parameter maps. This was used to compute the mean and stan-
ard deviation across different combinations of 3 rotations. Finally, the
bsolute difference maps between the mean parameter maps with 3 ro-
ations and the original ones with 9 rotations, both with a flip angle of
0 ◦, were estimated. 
7 
. Results 

.1. Deep learning performance on simulated data 

.1.1. Noise level 

Fig. 7 (a) shows the dependence of the loss function of the deep
earning network for 5 different noise levels as a function of the num-
er of epochs used. After a fast drop during the first 3–5 epochs, the
oss function shows a slow decay, reaching a plateau for the noisier sig-
als. Interestingly, the loss functions on the test data (solid lines) have
lightly lower values than those on the validation data (dashed line).
his difference is attributable to the fact that the validation loss func-
ion is averaged along the entire epoch, whereas the test loss function
s computed at the end of each epoch. From this analysis we concluded
hat 20 epochs should be a good compromise between training efficiency
nd parameter recovery. 

.1.2. Echo times 

Fig. 7 (b) presents the dependence of the loss function on the num-
er of echo times used. It shows that the wider the range of the echo
imes, the lower the loss function is. The loss function clearly improves
etween 5 to 15 echoes (corresponding to 49ms), but this improvement
ecomes smaller once this threshold is passed, even if a plateau has
ever been totally reached for a signal with noise even after 30 echos.
ur simulations did not include any echo time dependent noise, aris-

ng from physiological noise or scanner drifts, which are common in
radient echo acquisitions, and would make subsequent echo times less
seful for decoding. We postulated that 20 echos would be sufficient for
n experimental protocol. 

.1.3. Number of magnetic field orientations 

Fig. 7 (c) shows that, as expected, the loss functions decrease when
he number of rotations for all noise levels increases and it is true for all
oise levels. Note that, in the interest of computation time, the subset
f rotations might not be optimal for all number of rotations tested (as
 subset of the initial 16 orientations was used). Furthermore the spe-
ific number/set of rotations depends on the orientation of the fiber of
nterest. The deep learning benefits from the first 3–6 distinct rotations,
imilar to what has been demonstrated for susceptibility tensor imag-
ng Li et al. (2012b) and for fiber orientation mapping Wharton and
owtell (2012) , and plateaus after this. In a given acquisition time we
an either decide to have an improved SNR per orientation or increased
umber of rotations. When moving from 1 to 2% SNR levels, this corre-
ponds to a decrease in the acquisition time or number of rotations by a
actor 4. Thus, 16 orientations at 2% noise could be acquired in the same
ime as 4 orientations at 1% noise level. It can therefore be concluded
hat there is a limited benefit in maximizing the number of orientations
eyond 5 as the loss function for 16 rotations at 2% noise was the same
s that of 6 orientations at 1% noise. In our acquisitions, we used 10
rientations, to avoid excessive acceleration of each orientation, as this
ould bring parallel imaging artifacts into play when trying to further
educe the acquisition per orientation. 
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Fig. 7. Deep learning training evolution for different noise levels relative to several acquisition parameters. The solid line is the loss function whilst the dashed 

line is the validation loss function, that represents the same mean absolute error respectively computed on the train and on the test data set. (a) Training along the 

number of epochs. (b) Training along the number of echoes. (c): Training along the number of rotations. 

Fig. 8. Each box represents the estimation of one parameter recovery for 5 different signal noise levels (0% , 0 . 5% , 1% , 2% , 4%) , the dashed lines represent the correct 

values. Within a box, the left side use a single deep learning trained with 4% noise regardless of the noise level while the right side use 5 deep learning, each one 

trained with a noise equal to the signal level. 
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.1.4. Selective set of parameters 

Fig. 8 shows the performance of the deep learning networks in recov-
ring the various microstructural parameters of what could be consid-
red a typical WM model. Although the average recovered parameters
re close to the original ones regardless of the signal noise level, many
f the differences would be significant. Particularly, the relative water
eight suffers a constant positive bias for all networks and simulated

ignals. Surprisingly, the standard deviation for all parameters (exclud-
ng 𝜒𝑖 and 𝑇 ∗ 2 ,𝑀𝑦𝑒𝑙𝑖𝑛 

) is considerably lower when the deep learning was
rained with a 4% noise level rather than the matched noise level. Thus,
 dictionary with a high noise level was used in our ex vivo experiment
resented in the following. When comparing the width of the various
istributions, compared to the range used for the training the network
see Table 1 ), the values of 𝜒𝑖 , g-ratio and relative water weight are
ikely to have the largest biases and noise. 

.2. Ex vivo experiment 

Using the deep learning network described on Tables 1 and 2 it
as possible to derive 6 microstructural parameters (FVF, g-ratio, 𝜒𝑖 ,
 ̂

∗ 
2 ,𝑀𝑦𝑒𝑙𝑖𝑛 

, 𝑇 ∗ 2 ,𝐼𝑛𝑡𝑟𝑎 − 𝐸𝑥𝑡𝑟𝑎 
, and the relative water weight). For the sake of
8 
etter visualization, we choose to present the 𝑅 

∗ 
2 𝑠 = 1∕ ̂𝑇 ∗ 2 𝑠 maps instead

f the 𝑇 ∗ 2 𝑠 maps. The 6 microstructure parameter maps obtained from
he ex vivo brain data acquired with a flip angle of 35 ◦ estimated with
nd without the Lorenzian correction are presented in the left and right
anels of Fig. 9 . WM is clearly discernible from GM and deep gray mat-
er on the FVF, and relative water weight maps. The 𝑅 

∗ 
2 ,𝐼𝑛𝑡𝑟𝑎 − 𝐸𝑥𝑡𝑟𝑎 

and

𝑖 maps have weak contrast between GM and WM, while g-ratio is de-
reased in WM (more myelin surrounding axons and creating dephasing
n free water compartment). This observation is particularly interesting
ecause it suggests that, with our modelling, we were able to remove
yelin contributions from typically observed 𝑅 

∗ 
2 contrast. The sagittal

aps show that a higher FVF, lower 𝑅 

∗ 
2 ,𝑀𝑦𝑒𝑙𝑖𝑛 

and lower g-ratio in the
orpus callosum compared to the rest of the brain. 

In WM there are significant variation of contrast in the microstruc-
ural maps in the coronal slice. Some follow the same pattern seen on the
 1 maps, very elevated values on the right temporal lobe and above, see
lue arrows Fig. 9 , that could result from elevated g-ratio and reduced
VF. This suggest its origin to be a fixation artifact or tissue damage that
lso impacts the observed 𝑇 1 values. Note that the long fixation time of
he brain sample has resulted in an inversion of the 𝑇 1 contrast of white
nd gray matter (WM having a longer 𝑇 than GM) with respect to in
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Fig. 9. The left and right panels show the 6 parameter maps estimated from the ex vivo acquisition with flip angle 35 ◦ with the Lorentzian correction and without 

the Lorentzian correction. The middle column shows a 𝑇 1 map estimated from MP2RAGE and downsampled to the resolution of the ME-GRE, and the magnitude of 

the first echo of a ME-GRE for visual comparison of the contrasts. Each image contrast and parameter map is shown on a sagittal and a coronal slice crossing the 

globus pallidus. Arrows highlight WM regions where: blue - the microstructural maps correctly reflect tissue properties; green - where the contrast is unexpected 

given the 𝑇 1 maps; red - artifacts are highlighted by using the cylindrical Lorentzian correction in our dictionary. 
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ivo as well as significant decrease in 𝑇 1 values, particularly in deep gray
atter, which supports a dramatic tissue changes resulting from the fix-

tion. On the left temporal lobe (see green arrows Fig. 9 ), this pattern is
ot reflected in the 𝑇 1 maps, but is seen the magnitude image and could
ither be real or suggestive the breaking down of the decoding process.
ed arrow highlights a structure that appears as bright in 𝑅 

∗ 
2 ,𝐼𝑛𝑡𝑟𝑎 − 𝐸𝑥𝑡𝑟𝑎 

nd g-ratio, and dark on FVF maps. This contrast which is thin within
ost of the slices (as seen on the sagittal cut) is not directly visible on

he raw images and is particularly evident when the Lorentzian Correc-
ion is used in our signal dictionaries. This suggests that the Lorentzian
orrection is less appropriate than the standard HCM to characterize this
ata, it should be noted that this conclusion cannot be extrapolated to
resh tissue and in vivo imaging. 

Interestingly, CSF presents an almost null FVF along with a high
̂
 

∗ 
2 ,𝐼𝑛𝑡𝑟𝑎 − 𝐸𝑥𝑡𝑟𝑎 

, which is to be expected as there are no structures generat-
ng an anisotropic signal evolution in this region. The 𝜒𝑖 map estimated
ith the Lorentzian correction has a very weak contrast with a mean
alue close to 0 while the map estimated without the Lorentzian correc-
ion have mostly positive values within WM with a significant contrast
etween WM and CSF. Despite the common belief that myelin is dia-
agnetic, both positive He and Yablonskiy (2009) and negative values
uyn and Schenck (2017) ; Wharton and Bowtell (2012) have actually
een reported in the literature. Assuming that phospholipids are dia-
agnetic, the value of isotropic susceptibility should then be attributed

o one or a combination of the following aspects: (i) fixation process that
ould render the intra and extra axonal spaces more strongly diamag-
etic than the myelin sheath; (ii) The not fully understood orientation
ependence of the frequency shift of the myelin water compartment.
ppendix A presents three different white matter models: the classic
9 
CM, the HCM with a Lorentzian correction, and a layered model. These
odels have a very different myelin water frequency shift along the B0

rientation that impacts the 𝜒𝑖 estimation (see the maps with and with-
ut Lorentzian correction). Thus, the layered model which inverts the
ngular dependence of the myelin water frequency shift could estimate
 positive susceptibility. 

One region where the deep learning approach gave unsatisfactory
esults was in the globus pallidus and the dentate nucleus. These re-
ions are known to be amongst the most iron rich regions in the brain
eistung et al. (2013) ; Langkammer et al. (2012) , and have therefore
ery shortapparent transverse relaxation rates in the free water com-
artment. This was correctly mapped by the 𝑅 

∗ 
2 of the intra-axonal com-

artment, but appears mismapped on the FVF maps. In the latter, the
lobus pallidus appears as having a large FVF (which is known not to be
he case), although the neighbouring putamen appears to be correctly
apped. Surprisingly, the globus pallidus appears as having a similar

sotropic magnetic susceptibility to neighbouring WM. It is know that
eep gray matter structures are rich in iron, and assuming that this is
qually distributed in the intra and extra-axonal spaces, the equivalent
eld distribution to be generated by our realistic models would require
 heavily diamagnetic myelin compartment (beyond our current dictio-
ary limits). Alternatively this result could be explained by such nuclei
aving a more randomly distributed micro-structure organization that is
ot well described by our dispersion free tissue models. These observa-
ions suggest that further improvement of the realistic model are needed
o be able to describe iron rich gray matter. 

To demonstrate the robustness of the microstructural parameter map
ndings with respect to the changes of the acquisition protocol, we an-
lyzed the acquisitions with different flip angles separately. The mi-
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Fig. 10. Coronal slices of the 6 decoded microstructure parameter maps (FVF, g-ratio, 𝜒𝑖 , 𝑅 

∗ 
2 ,𝐼𝑛𝑡𝑟𝑎 − 𝐴𝑥𝑜𝑛𝑎𝑙 , 𝑅 

∗ 
2 ,𝑀𝑦𝑒𝑙𝑖𝑛 

and relative weight shown from 1st to 6th column) 

obtained from the ME-GRE with flip angle 35 ◦. The top row shows the averaged parameter maps obtained using 10 distinct dictionaries trained with only 3 orientations. 

The middle row shows the standard deviation across the various decoded maps obtained from the different subset of 3 orientations. The bottom row shows the 

difference to the absolute difference of the obtained maps in respect to the our ”ground truth ” (maps decoded from data containing 9 different head orientations). 
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rostructural parameters should not depend on the flip angle, except
he relative water weight that is linked not only to the proton density
ut also the relative saturation of each compartment (which depends on
 1 , TR and the flip angle). The mean parameter maps, estimated with
he Lorentzian correction, showed overall the same characteristics than
he ones presented previously for flip angle 35. In supplemental ma-
erial it can be seen that the standard deviation of the microstructure
arameters FVF, g-ratio, 𝜒𝑖 , intra-axonal, 𝑅 

∗ 
2 ,𝐼𝑛𝑡𝑟𝑎 − 𝐸𝑥𝑡𝑟𝑎 

and 𝑅 

∗ 
2 ,𝑀𝑦𝑒𝑙𝑖𝑛 

are
mall when compared to the decoded maps, the only exception being
he relative weight map. 

Fig. 10 demonstrates the possibility of decoding the microstructure
arameter maps, estimated with the Lorentzian correction, from only
 brain orientations. The mean parameter maps highlight the expected
rain structures, and are in good agreement with our ground truth (ob-
ained from 9 brain orientations). The standard deviation maps esti-
ated across 10 combinations of 3 different rotations (middle row), re-

eal very low values when compared to the recovered values (note that
he colorbars of the standard deviation maps are significantly reduced
ith respect to those used to show the decoded parameters). Thus, the
rocess is robust to the specific set of orientations used. Interestingly,
he contrast seems lower compared to the parameter maps obtained with
 rotations, in particular within deep gray matter, as illustrated by the
bsolute difference maps (see bottom row). As mentioned earlier, this
s the region where our model is failing to describe the microstructure
roperly. 

. Discussion 

.1. White matter models: Promise and limitations 

We introduced a pipeline to create a simple yet realistic biophysical
odel to simulate the MRI ME-GRE signal. These WM models contain

eal axon shapes and a g-ratio variability similar to what is reported in
10 
issue samples, and have varying levels of FVF within themselves as a
esult of the axon packing approach. With the realistic WM models avail-
ble for microstructural quantification, it can be used as an alternative
eans in contrast to the analytical expression of WM microstructure

n parameter mapping which can lead to measurement bias as previ-
usly reported Xu et al. (2018) . Yet, some effects are deliberately over-
ooked: (1) diffusion within the compartments, (2) chemical exchange,
3) compartmentalization of water within the myelin sheath and (4)
ther sources of susceptibility perturbations beyond the myelin sheath. 

Diffusion has been demonstrated to have a minor effect in WM mod-
ls based on EM data Xu et al. (2018) when compared to the hol-
ow cylinder model or simple cylindrical perturbers Yablonskiy (1998) .
hemical exchange between myelin water and myelin protons results in

requency shift, and thus, can be accounted for by adding an exchange
erm in the HCM Wharton and Bowtell (2013) . The size of this frequency
ffset term has been reported to be of 0.02 ppm in the corpus callosum
harton and Bowtell (2012) , but models have been proposed that would
ake this offset depends on the number of myelin layers and there-

ore varies throughout the brain and fibre bundles van Gelderen and
uyn (2019) . Yet, chemical exchange has been demonstrated to have
 larger impact when measuring the longitudinal relaxation in WM (a
rocess that is much slower than time scales explored here). This is the
ain reason why longitudinal relaxation mechanisms were up to now
idden in the weight parameter. 

In Appendix A , we compared the classical HCM Wharton and
owtell (2012) implicitly used in previous WM models Xu et al. (2018) ,
ith a layered model where the source of susceptibility (phospholipids)

s spatially separated from the source of signal Sukstanskii and Yablon-
kiy (2014) ; Yablonskiy and Sukstanskii (2014) and the new implemen-
ation of the Lorentzian correction (see Eq. 6 ) used in our realistic WM
odels. The main aspects addressed in this comparison were the fre-

uency distribution of the different compartments. As has been analyti-
ally described the field perturbations are equivalent in the intra-axonal
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nd extra-axonal compartments. Conversely, strong differences exist in
he myelin water compartment for the three models, which predict op-
osed angular dependence of the mean frequency shift of this compart-
ent as a function of the axon orientation with respect to the mag-
etic field. The results described in Fig. A.2 of the Appendix A suggest
hat the cylindrical Lorentzian correction within the myelin compart-
ent would better fit experimental data without requiring an exchange
echanism Wharton and Bowtell (2012) or the hop in hop out of water

cross myelin layers described in Yablonskiy and Sukstanskii (2014) .
ntroducing the new correction in our network resulted in an isotropic
usceptibility that was more diamagnetic than otherwise (see Fig. 9 )
ut seemed to enhance some decoding artifacts in some of the resulting
icro-structural maps. 

The extra-axonal compartment currently includes everything that is
ound outside the axon. More classes with specific properties could be
sed, particularly: free water (CSF and interstitial spaces); blood vessels;
ound-water compartment (that represents the water bound to macro-
olecules present in cell walls and organelles Sukstanskii et al. (2017) ),

nd iron accumulated in ferritin, amongst other. Blood vessels represent
 very small fraction of the tissue volume (1-4 % in WM and GM, but
enous blood, which is deoxygenated, has a much larger susceptibility
ifferent to free water than myelin) and tends to follow the orientation
f WM axon bundles Gil et al. (2016) . This is expected to introduce some
egree of 𝑇 ∗ 2 anisotropy that would act as a confound in our ex vivo ex-
eriment. Ferritin, which is known to be strongly paramagnetic, can be
ound everywhere in the brain (with increasing quantities found from

M, GM to deep gray matter where it can be found in large quanti-
ies Piñero and Connor (2000) ). On our current implementation, iron is
xpected to be equally distributed in the intra- and extra-axonal space.
s a result, ferritin will be mapped as a reduction of the 𝑇 ∗ 2 ,𝐼𝑛𝑡𝑟𝑎 − 𝐸𝑥𝑡𝑟𝑎 
nd the isotropic magnetic susceptibility attributed to the myelin com-
artment is effectively the difference between the susceptibility of the
yelin and the free water compartments where there might be ferritin

nclusions. Note that in the case of high ferritin concentration our cur-
ent cylindrical Lorentzian correction will be overestimated. 

.2. Dictionary and deep learning 

Many of the simplifications used in our WM models arise from the
eed to restrict the number of parameters associated with our network.
he size of a dictionary, which in this study had 7 dimensions (see
able 1 ), is around 10 GB. Moreover, an increase in the number of vari-
bles mapped by the network will result in an increased noise level of
he parameters estimated. We believe we have restricted the models to
he most relevant parameters. In particular, we have considered FVF and
-ratio inherent to the model, as described previously the extra-axonal
pace can have various types of constituents, thus the extra-axonal 𝑇 ∗ 2 
annot be fixed. We choose to free 𝜒𝑖 (allowing this to incorporate mag-
etic susceptibility in the intra-/extra-axonal compartment) and to fix

𝑎 , as the major contribution to the magnetic field perturbation comes
rom the isotropic susceptibility Li et al. (2012a) . The compartment wa-
er weights were represented by a single variable, the relative water
eight that includes the water proton density as well as the degree of 𝑇 1 -
eighting (and chemical exchange) of each compartment. If the myelin

heath is considered having the same properties all over the brain, that
llows to fix the 𝑇 ∗ 2 of myelin and release the anisotropic susceptibility

𝑎 which was reported to be ranging from −0 . 15 to −0 . 09 ppm Xu (2017) .
 potential direction for future work is to investigate different sets of pa-
ameters. For example, the myelin water concentration may be linked
o the susceptibility of the myelin sheath, bearing in mind that the mag-
etic susceptibility of the phospholipids and water are both known. This
ould benefit from some of the insights gained from our Appendix A . 

Our deep learning network is robust and systematically converges for
ach dictionary associated to an experiment with multiple orientations,
s illustrated in Fig. 7 . However, extensive manual fine-tuning of the
etwork hyper-parameters was required to achieve this level of agree-
11 
ent. A more systematic approach, while potentially desirable, would
eed an excessively long computation time. The in silico analysis (see
ig. 8 ) shows that a dictionary trained with a higher noise level is more
obust to noise amplification than a dictionary with matched noise lev-
ls. This was attributed to the noise allowing to smear our differences
ssociated with the fact that our ”realistic model ” produce different sig-
als (see Fig. 5 ) and none of them really corresponds to the actual WM
apped. An interesting experiment would be to assess the performance

f a dictionary including all different noise levels, mimicking closer to
he signal found in the brain, where regions further away from the re-
eiver coils are bound to have a lower SNR. It was observed that the
evel of noise remains within the range that differentiates our 2D mod-
ls from a real 3D WM for a relatively wide range of dispersion values,
hich effectively makes our network more generalizable. Nevertheless,
nce the neural network is trained, it can provide much faster processing
peed when compared to transitional voxel-wise data fitting approach
few seconds vs several minutes with typical 2-mm isotropic whole-brain
overage data for gradient echo MWI Lee et al. (2020b) . 

.3. Ex vivo experiment 

The human brain scanned on our ex vivo experiment was fixed in
ormalin for 7 months prior to the experiment. It is well known that
he microstructural tissue properties change throughout the fixation
rocess, and the final properties of the tissue depend on: the post-

ortem fixation delay, the fixation time, the concentration of forma-
in and the temperature history Birkl et al. (2018) ; Shatil et al. (2018) ;
hepherd et al. (2009) . The 𝑇 1 map presented in Fig. 9 shows partic-
larly small values revealing strongly fixed tissues where water has a
educed mobility. The mean ADC in WM found was 0.3 𝑚𝑚 

2 𝑠 −1 while a
ormal in vivo value would be above 0.8 𝑚𝑚 

2 𝑠 −1 Sener (2001) . While
t had already been demonstrated that adding diffusion to realistic
odels of WM was not relevant when trying to model the GRE signal
u et al. (2018) , for fixed tissues this should be even more so. One risk of
sing fixed tissues is that protein binding might change the sizes of the
ifferent compartments and tightness of the myelin packing, making our
ealistic models less valid. Fresh tissues do not present such problems
reduced diffusion and fixation artifacts) and could be an alternative op-
ion. However, our current protocol took 8h, without the DWI. In such
 time window, fresh tissues would not be sufficiently stable to assume
onstant microstructural properties over time Duck (2013) . Thus, it was
ecessary to use fixed human brain for this proof of concept microstruc-
ural parameter decoding experiment, although the fixation time could
e reduced to 6–10 weeks would make our findings more comparable
o what is found in vivo. 

. Future work 

.1. Ground truth validation 

We have demonstrated the feasibility of incorporating realistic mod-
ls to measure WM microstructural properties. While the recovery of the
icrostructural parameters generated follows the general expectations

or FVF, 𝑅 

∗ 
2 ,𝐼𝑛𝑡𝑟𝑎 − 𝐸𝑥𝑡𝑟𝑎 

, g-ratio, it would be important to validate them by
n independent method is future experiments. One possible avenue is to
erform histology on excised samples after the MRI experiment which
ould provide ground truth of microstructural properties. Amongst the
otential candidates: CLARITY is an optical 3D imaging method com-
ined with a tissue clearing technique which can provide neuro density,
bre orientation distribution and cell types Morawski et al. (2018) ; X-
ay microscopy can also be used to generate an entire 3D view in a non-
estructive way Stock (2019) ; 3D transmission electron microscopy, as
sed to generate the axon models, can provide excellent resolution to
uantify myelin volume and axonal orientations. However, using his-
ology as a means for method validation has to be interpreted care-
ully as the tissue preparation for processes can change the intra and
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2 https://github.com/rhedouin/Whist 
xtra-axonal water content and relative volume. A direct comparison of
he obtained microstructural parameters obtained ex vivo on fixed tissue
ith in vivo acquisitions should be avoided. In a preliminary work (data
ot shown), we replicated the fixation formalin process and the MRI ex-
eriment with a porcine brain sample, from which small WM samples
ere excised for 3D EM analysis. We observed significant degradation
f the myelin sheath for a number of axons where the myelin sheath
ppeared unpacked. Such tissue change could result in a decrease of g-
atio, 𝜒𝑖 , as well as a decrease of myelin 𝑅 

∗ 
2 ,𝑀𝑦𝑒𝑙𝑖𝑛 

and proton density
ith respect to in vivo imaging. Yet, given the lengthy MR acquisition
erformed, using a fresh tissue sample would not be feasible. 

In this study, we did not compare our proposed method to any con-
entional imaging methods for WM microstructural quantification. Our
ealistic WM model driven with deep neural network provides a set of
icrostructural properties that is unique making direct comparison to

ther microstructural quantification methods not straightforward. For
xample, myelin water imaging MacKay and Laule (2016) might be a
ombination of FVF, g-ratio and the myelin weight term derived by our
ethod, the NODDI obtained intra-axonal volume fraction would be a

ombination of FVF and g-ratio. Additionally, the structural alteration
f ex vivo samples hinder the robust applicability of the conventional
ethods in ex vivo imaging: previous studies have shown that the 𝑅 

∗ 
2 𝑠

f myelin and intra-/extra-axonal water become less distinguishable in
x vivo data Laule et al. (2008) and, as in our data, the reduced water dif-
usivity in ex vivo samples makes the extraction of information beyond
ain fiber orientation extremely challenging. Future work will address

uch comparisons in vivo, where our deep learning methods could ben-
fit from additional diffusion modelling information. 

.2. Application 

The current implementation of the network (based on ME-GRE data
cquired with one single flip angle and information regarding the main
ber orientation) requires at least 3 head orientations with respect to
he main magnetic field. Although this limits its applicability in vivo
t is comparable to the requirements of other magnetic susceptibil-
ty related methods such as COSMOS Liu et al. (2009) and Suscep-
ibility Tensor Imaging Liu (2010) and compares favorably to mag-
itude and frequency-based fiber orientation estimation Wharton and
owtell (2012) . Two possible solutions recently introduced to raise this
egeneracy in the context of myelin water imaging is to explore the dif-
erence between the 𝑇 1 of myelin and free water by using various GRE
cquisitions with different 𝑇 1 - weighting and use additional information
rom DWI regarding the relative size of intra and extra-axonal compo-
ents Chan and Marques (2020) . 

The approach presented in this work may find applications in the
maging of myelin water with gradient-echo-based acquisitions Alonso-
rtiz et al. (2018) ; Lee et al. (2018) . Traditionally, myelin water imag-

ng in gradient-echo-based experiments tries to fit 9 independent pa-
ameters: three independent signals (separate amplitude, decay rate and
requency shift) for each of the three compartments (intra- and extra-
xonal water and myelin) to a ME-GRE signal. The main shortcomings
f this approach are that: the model is known to be simplistic (even
he simple HCM predicts more complex signal evolution than 3 over-
apping exponential signal decays) Wharton and Bowtell (2013) and
he fitting procedure is ill-conditioned. In the work presented here, we
ave shown with simulations and data that we can obtain acceptable
esults with as few as 3 orientations with the advantage that we ob-
ained the most relevant microstructural information. One of the com-
on findings in myelin water imaging is, as in our ex vivo results (see

igs. 9, 10 ) an over-estimation of the myelin water compartment in deep
ray matter Birkl et al. (2019) ; Lee et al. (2018) , where the limitations
f the tissue model become evident. One approach is to use advanced
iffusion modelling priors that, for example, quantify intra- and extra-
xonal water fractions Bozkaya and Acar (2007) ; Zhang et al. (2012) or
escribe each voxel as being an overlap of various fiber orientations
12 
ournier et al. (2007) . Both these approaches have been successfully
een demonstrated recently in the context of in vivo myelin water imag-
ng Chan and Marques (2020) , but because of the poor quality of the ex
ivo diffusion data could not be pursued. Finally, addressing specifically
he erroneous fitting in deep gray matter, it is foreseeable to integrate
his methodology with QSM Liu et al. (2009) , in which case the ad-
itional information on regions that are high in iron load could avoid
pplying a model that does not describe this regions appropriately. 

. Conclusion 

In this paper, we developed an open source toolbox 2 to generate
D WM models with controlled microstructural properties such as fiber
ensity and variability in the g-ratio using publicly available electron
icroscopy data. Such models are used to estimate the corresponding
eld perturbation and derive the ME-GRE signals. Although our WM
odels are limited to 2D, we have demonstrated that they can be sat-

sfactorily used to simulate 3D structures with a relatively high range
f dispersion. Finally, dictionaries of ME-GRE signals for 6 different pa-
ameters (FVF, g-ratio, 𝜒𝑖 , 𝑇 

∗ 
2 ,𝑀𝑦𝑒𝑙𝑖𝑛 

, 𝑇 ∗ 2 ,𝐼𝑛𝑡𝑟𝑎 − 𝐸𝑥𝑡𝑟𝑎 
, and the relative water

eight) associated with WM properties at a sub-voxel level were cre-
ted. This single acquisition dictionaries can then be combined depend-
ng on the multiple rotation strategy used in the experimental protocol
o create a better conditioned decoding problem and train a deep learn-
ng network able to decode microstructural parameters. We performed
everal tests to assess the quality of the sub-voxel parameter recovery
sing our network, depending on the number of sample rotations, echo
imes used and noise added to the library. Unsurprisingly we found that
he network performs better as more data are given as input. Thus the
umber of rotations and echo times should be maximised in a given
cquisition window. However, because of the large variations between
ifferent WM models used in the training process, it is advantageous to
rain the network with a level of noise higher than that of the available
ata. The network was demonstrated through an ex vivo experiment per-
ormed using gradient echo data acquired at multiple brain orientations
ith respect to the main magnetic. We were able to obtain promising
VF, g-ratio, 𝑅 

∗ 
2 maps that showed the expected variations through out

ost brain structures such as the CSF, GM, WM and the corpus callo-
um. The parameter values (except for 𝜒𝑖 ) follow the expected patterns
nd were robust for different acquisition protocols and reduced number
f brain orientations. 
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Fig. A2. Plots of the mean frequency shift of the myelin water compartment as a 

function of the orientation with respect to 𝐵 0 for the HCM without the cylindrical 

Lorentzian correction, the HCM with the cylindrical Lorentzian correction and 

the layered model. 

w  

m  

t  

h  

t  

s  

fi
 

q  

o  

r  

t  

n  

v  

c  

T  

a  

i  

p  

i  

p
 

t  

b  

r  

l  

h  

S  

c  
he positions of Renaud Hédouin and Kwok-shing Chan. The authors
ould also like to acknowledge the fruitful discussions on the topic of

his research with Prof. David Norris and the insights brought by the
eviewers regarding the compartmentalization of water in the myelin
ater compartment. 

ppendix A. Impact of compartmentalization of water within the 

yelin sheath 

1. Presentation of the model 

In this appendix, we compare three distinct infinite cylinder white
atter models to address the question of how to better model the com-
artmentalization of water in the myelin compartment: - the classic
CM Wharton and Bowtell (2012) , which considers the myelin sheath
ith water as one single compartment; - the HCM in which a cylindri-

al Lorentzian correction He and Yablonskiy (2009) was applied to the
yelin water compartment as described in Eq. 6 ; - a layered model that
ivides the myelin sheath in several phospholipid layers (that are the
ource of susceptibility) interleaved with 10 myelin water layers (source
f the signal) Sukstanskii and Yablonskiy (2014) ; Yablonskiy and Suk-
tanskii (2014) ; 

To describe the layered axon model, the myelin compartment was
eplaced by phospholipid and water compartments. To ensure that the
odel does not alter the intra and extra-axonal fields generated by the

tandard model, the volumetric isotropic and anisotropic susceptibility
re set to −0 . 1∕ 𝑤 𝑃 , where 𝑤 𝑃 is the volume fraction of the phospho-
ipid layers in the myelin compartment ( 1 − 𝑤 𝑀𝑊 

, where 𝑤 𝑀𝑊 

is the
yelin water fraction). Finally the 𝑇 ∗ 2 𝑠 of the phospolipid and myelin
ater were set to 0.5 and 15 ms. The cylinder models were simulated

n a 2000 × 2000 grid, to avoid numerical errors in the presence of large
umber of layers. 

Following the process described in Section 2.2 , the field perturbation
nd the corresponding ME-GRE signal were simulated using the 3 mod-
ls (with the same FVF and g-ratio) while two different myelin water
raction (in the standard HCM model 𝑤𝑒𝑖𝑔ℎ𝑡 matched the layered water
olume fraction). 

2. Field perturbations in the layered WM model 

The field perturbation and their corresponding frequency distribu-
ions of the 3 models are shown in Fig. A.1 . As analytically predicted
ablonskiy and Sukstanskii (2014) , the intra-axonal and extra-axonal

requencies have similar distribution for the 3 models, but the myelin
ater has very different frequency distributions. Because in the mod-

ls shown the susceptibility of the axon has been matched, the field
ig. A1. Field perturbations and frequency distributions of the HCM (top row), 

nd the Layered model (bottom row), for a parallel (left) and a perpendicular 

right) orientation of the axon relative to the main magnetic field orientations. 

n the top row, the blue dashed line represents the myelin histogram without 

he Lorentzian correction while the blue solid line represents the myelin his- 

ogram with the Lorentzian correction. The frequency histograms only show the 

requency distribution in the compartments with water signal. The reduction in 

rea of the myelin water distribution reflects its decrease in volume fraction. 
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13 
ithin the phospholipid layers is increased, while the water compart-
ent shows the opposite behaviour. The cylindrical Lorentzian correc-

ion to the myelin compartment of the HCM, see dashed lines in the
istogram, has a much milder effect when the axon is perpendicular to
he magnetic field (small reduction of the frequency shift), and has the
ame effect as the layered model when axon is parallel to the magnetic
eld (in which case the water is on resonance). 

To better understand the relationship between the myelin water fre-
uency in the three models Fig. A.2 a and b show the mean frequency
f the myelin water compartments as a function of the orientation with
espect to the magnetic field, 𝜃. As predicted analytically, the HCM and
he layered model have opposed frequency shift dependence on 𝜃. As
oted earlier, the layered model and the Lorentzian cylinder corrected
ersion of the HCM do not show a frequency shit of the myelin water
ompartment when the axon runs parallel to the main magnetic field.
he impact of changing the myelin water volume fraction (see Fig. A.2 a
nd b) does not play a significant role. But it should be noted that, when
ncreasing the water volume fraction, the magnetic susceptibility of the
hospholipid compartment was increased in the layered model, which
s not the case in reality where the susceptibility is a property of the
hospholipid bilayer. 

It is interesting to note that the HCM with the Lorentzian correc-
ion in the myelin water compartment has the experimentally found
ehaviour where the myelin water has no frequency shift when WM is
unning parallel to 𝐵 0 and a positive frequency shift when perpendicu-
ar to 𝐵 0 . This is achieved without the need to consider hop in and and
op out mechanisms as is the case for the layered model Yablonskiy and
ukstanskii (2014) . Because of its simplicity and straightforward appli-
ation to our realistic WM models, this was the model used in our study.

ppendix B. 3D WM model 

1. Presentation of the 3D WM model 

With a view to validating the ability of the 2D realistic models de-
eloped to describe the 3D structures encountered in a WM voxel, we
ompared the signal associated to the 2D models to those of a real 3D
M sample. A segmented Kleinnijenhuis (2017) 3D EM of a genu of
ig. B1. Raw 3D EM data and myelin segmentation of size 400x400x400. Fre- 

uency histogram of the computed axon orientations present in the EM model 

nd the average orientation, 𝜇. 
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A  
 sagittal mouse corpus callosum section was used for this comparison.
he resolution of the initial 3D EM dataset was of 7.3x7.3x50 nm, which
as subsequently down sampled by a factor of 7 resulting in a quasi

sotropic resolution 51x51x50 nm. The FOV of the segmented piece was
0 × 20 × 20 μm represented on a matrix of 400 × 400 × 400 (see Fig. B.1 ).
sing the segmentation 3D EM data, the FVF and g-ratio were computed

o be 0.51 and 0.67 respectively. Additionally, because the 3D model
oes not consist of infinitely long structures that are parallel, the fiber
ispersion was computed with respect to the average fiber orientation
SL (2019) , and found to be low 𝜎 = 0 . 04 . In addition to this original
odel, to study the impact of higher dispersion, 60 axons within the 3D
odel were selected to create a fiber orientation dispersion of 𝜎 = 0 . 4 . A
ask surrounding the selected axons was used to ensure microstructural
arameters remained equivalent to those of the whole sample (FVF =
.51 and g-ratio = 0.67). The 3D signal was computed only within the
ask and selected axons. 

The magnetic susceptibility tensor, 𝑋 𝑅 , was calculated with respect
o the orientation of the phospholipids inside the myelin sheath, using
 3D variant of the process described in the methods section. The tensor
ap obtained was then used to calculate the magnetic field perturba-

ions in 3D, Δ𝐵 0 ( 𝑋( 𝑟 )) , as described in Li et al. (2017) . These processes
re straightforward extensions of the 2D case and their implementation
s available in our toolbox. 

2. Comparison between 2D and 3D field perturbations 

To simulate the fiber dispersion within the 3D samples, an artificial
ispersion was introduced into the 2D models by computing the field
erturbation for 100 different main magnetic field orientations accord-
ng to the von-Mises-Fisher distribution Banerjee et al. (2005) . The final
ignal is the sum of signal from 2D models with the 100 different orien-
ations with respect to the main magnetic field. 

The 3D models were compared to 10 realistic 2D models, created
s described in the methods section, using similar microstructural pa-
ameters to those of the 3D samples. Four different dispersion values
 𝜎 = 0 , 0 . 2 , 0 . 4 , 0 . 6 ) were simulated. The ME-GRE signals were computed
or both 2D and 3D models, with the parameter values used in Table 1 for
E = 1:1:80 ms. Finally, the 2D and 3D signals were normalized and
ompared using the root-mean-square-error (RMSE) computed accord-
ng to: 

𝑀𝑆𝐸( ̂𝑆 3 𝐷 , �̂� 2 𝐷 ) = 

√ | < ( ̂𝑆 3 𝐷 − �̂� 2 𝐷 ) , ( ̂𝑆 3 𝐷 − �̂� 2 𝐷 ) > |
# 𝑇 𝐸 

(B.1)

here < .,. > is the complex dot product, |.| the absolute value operator
nd # 𝑇 𝐸 is the number of echos. 

Fig. B.2 shows the signal RMSE between the 2D and 3D models as a
unction of the orientation of the main magnetic field. In each plot, var-
ous 2D simulated signals with different dispersion levels are compared
ig. B2. Plots of the RMSE between the Signal of the 2D models using 4 different 

ispersion levels and Signal of the 3D models as a function of the orientation of 

he main magnetic field. In a) the original 3D model with low dispersion (0.04) 

nd in b) the 3D model with high dispersion (0.4), which is used as ground truth. 

he error bars represent the standard deviation across 10 different realistic 2D 

M models created. 
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14 
o (a) the original 3D model (b) the 3D model with high dispersion. The
D models with lower dispersion (0, 0.2) consistently match that 3D sig-
al with RMSEs below the 2 . 5% , which is small when taking into account
he 4% noise added to the training of our deep learning network used in
ur in silico and ex vivo experiments (see Section 2.4.1 and Section 2.6 ).
or the high dispersion 3D model ( Fig. B.2 b), the 2D models with high
ispersion (0.4 and 0.6) have the lowest RMSE for all magnetic field
rientations. When no dispersion is used in the 2D models, the RMSE
tays below 5% . The two 3D models considered are best represented
ith 2D models with similar or slightly higher dispersion values. This
nding could be attributed to the additional dispersion associated with
ach axon that changes direction throughout the 3D model and that is
ot taken into account in the current dispersion computation. 

To conclude, the 2D models developed based on separate library of
xons accurately represent a real 3D WM model. In the future, it could
e considered to add dispersion to the 2D models to better represent
 WM region with higher dispersion values that could be measured in-
ependently with DWI. In ex vivo acquisitions, the quality of DTI data
s severely hampered (reduced diffusion constant and reduced 𝑇 ∗ 2 ), and
rom our data it was not possible to apply more advanced diffusion mod-
ls that can decode this quantity. However, even without dispersion, the
MSE consistently remained under 5% while 4% noise is added to our
ictionary when training the deep learning network, which suggests that
his might not have a large impact. 

A situation not considered here and that should have a larger im-
act are crossing fibers. Fiber dispersion, discussed above, accounts for
he spread of the fiber orientations within a bundle of axons while
he fiber crossing represents two or more bundles of axons. Signifi-
ant work on the diffusion community has been devoted to this topic
arooq et al. (2016) . This could be studied as future work assuming
hat such a 3D EM dataset exists. 

ata Availability 

Experimental MRI data, trained signal dictionaries and de-
oding networks are available from the Donders Repository:
ttps://data.donders.ru.nl/collections/di/dccn/DSC_3015069.04_445?0

upplementary material 

Supplementary material associated with this article can be found, in
he online version, at 10.1016/j.neuroimage.2021.118138 
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