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Abstract. In order to provide stable and responsive SPARQL endpoints
to the community, public SPARQL endpoints enforce fair use policies.
Unfortunately, long-running SPARQL queries cannot be executed under
fair use policy restrictions, returning only partial results. To address this
issue, we proposed SaGe, a SPARQL server based on the Web preemp-
tion principle. Instead of stopping queries after a quota of time, SaGe
suspends the current query and returns it to the user. The user is then
free to continue executing the query from where it was stopped, by sim-
ply sending the suspended query back to the server. In this paper, we
describe the current state of SaGe, including the latest advances on the
expressiveness of the server and its ability to support updates.

Resource type: Software
License: MIT
Repository: https://github.com/sage-org.

1 Introduction

Public SPARQL endpoints such as Wikidata or DBPedia are flagships of the
Semantic Web. Many complex queries such as retrieving the movies of a given
actor, cities connected by a specific road, or the solubilities of chemicals, can
be executed online with incredible performance. However, in order to provide
stable and responsive endpoints for the community, public SPARQL endpoints
enforce fair use policies, defined by quotas on execution time, result size, etc.
Unfortunately, many queries cannot terminate under the restrictions of fair use
policies, forcing users to rely on data dumps to process these queries.

The Web preemption principle [10] allows to build fair preemptive SPARQL
servers, while ensuring queries termination. Instead of stopping a running query
after a quota of time, the Web preemption simply suspends it after a quantum
of time, returns its state to the client, and resumes the next waiting query on
the server. The preemptive server is stateless, i.e. suspended queries do not exist
on the server, they are returned to the client with the partial results. The client
is free to continue the execution of a query from where it was stopped by sim-
ply sending the suspended query back to the server. As the server ensures the
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SELECT DISTINCT ? vo ? v1 WHERE {
? v0 gr : i n c l u d e s ? v1 . # tp1
? v1 schema : c o n t e n t S i z e ? v3 . # tp2

}

(a) SPARQL query Q, from the Wa-
terloo SPARQL Diversity Test suite
benchmark [2]

π?v0, ?v1

µc = { ?v0 7→ wm:Offer81505, ?v1 7→ wm:Product11,
?v3 7→ "4355" }

Index Loop join
µc = { ?v1 7→ wm:Product12, ?v3 7→ "4356" }

Index Scan Jtp2KD
ti = 224

sou
rce

Index Scan Jµc(tp1)KD
ti = 2

inner

(b) Qs=suspend(Q)

Fig. 1: SPARQL query Qand its suspended query Qs=suspend(Q)

progression of the query execution at each quantum, the server eventually termi-
nates the execution of the query. Because the server allocates the same amount of
CPU time to each query, it processes queries fairly. In [10], we showed how Web
preemption handles heavy loads better than SPARQL endpoints and restricted
server approaches such as TPF [11, 8] and BrTPF [7]. In [6], we demonstrated
how Web preemption can handle aggregate queries online and return complete
results. Finally, in [1], we described how it is also possible to handle property
path queries and return complete results. These results were achieved with read-
only datasets, represented as HDT files [5]. Although HDT files are very con-
venient for exchanging RDF data between different data providers, HDT is not
designed to support updates. Support for updates is mandatory for knowledge
maintenance and quality [9]. Basically, Web preemption is independent of HDT
files. Web preemption only requires indexed RDF data such that resuming a
suspended query can be bounded in logarithmic time to the size of the dataset.
Having a BTree index on SPO, POS and OSP triples are sufficient to ensure a
limited overhead when resuming suspended queries.

In this paper, we show how SaGe, a preemptive SPARQL server, can be deployed
over a wide range of popular backends, from SQLite to HBase, and support up-
dates. This allows SaGe to support various use-cases, from embedded semantic
web applications to very large storage. In all cases, the server guarantees a fair
access, complete results and supports updates.

This paper is organized as follows. Section 2 presents the principles of Web pre-
emption. Section 3 details SaGe, a preemptive SPARQL server and its various
backends. Section 4 presents the backends experimental evaluations. Section 5
summarizes related work. Finally, the conclusion and future works are presented
in Section 6.

2 The Web Preemption Principle

We define the Web preemption as the capacity of a web server to suspend a
running query Q after a fixed quantum of time and resume the next waiting
query. Once suspended, partial results and the state of the suspended query Qs
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(a) Qs=Suspend(Q)

Waiting queue
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Preemptive Web Server: Quantum 10ms

Query

Smart Web Client

Partial results=
?v0 ?v1
wm:Offer81507 wm:Product10067
+
Qs = ∅

Qs

(b) Q=Resume(Qs)
Fig. 2: A preemptive SPARQL Server in Action

are returned to the web client 1. The client can continue the execution of the
query by returning Qs back to the web server.

This simple principle allows to avoid the convoy effect [4] where long running
queries block short queries. Quotas used by SPARQL endpoints also allow to
avoid the convoy effect, but at the cost of killing long running queries. That
is why a preemptive server is fair by design, and ensures the termination of
SPARQL queries. By avoiding the convoy effect, Web preemption is able to
provide a better time for first results and a better average query completion
time per query i.e. short queries do not have to wait for long queries to finish
and therefore finish earlier.

A preemptive server has two important operations: suspend(Q) and resume(Q_s)
such that Q=resume(suspend(Q))

– The suspend operation is called on a running query when the quantum of the
query is exhausted. It saves the state of the execution plan of the running
query Q into a saved plan Qs, which is returned to the client with the partial
results of Q. The server then resumes the next waiting query. Figure 1 shows
an example of a SPARQL query Q with its saved plan Qs.

– The resume operation takes a saved plan as input and restarts it from where
it was stopped, i.e. all scans restart from where they were suspended.

We illustrate the behavior of a preemptive server in Figure 2. First, a client
sends a query Q to the preemptive server, as depicted in Figure 2a. The server
is configured with a quantum of 10ms and one worker. After 10ms the query
is suspended, the partial results of Q and the saved plan Qs = suspend(Q)
are sent to the client, as described in Figure 1b. Of course, Qs is compressed
and encoded. Since the client observes that Qs is defined, it knows that the
query is not complete. It can continue the execution by sending Qs back to the
preemptive server, as described in Figure 2b. This time, the server resumes the
saved plan Qs and the query terminates during the quantum, producing its last
1 Qs can be returned to the client or saved server-side and returned by reference.
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SELECT ?name ? p l a c e WHERE {
? a c t o r a dbo : Actor .#tp1
? a c t o r r d f s : l a b e l ?name .#tp2
OPTIONAL {

? a c t o r dbo : b i r t h P l a c e ? p l a c e .#tp3
}}

(a) SPARQL query Q1: finds all
actors with their names and their
birth places, if they exist.

π?name, ?place

BindLeftJoin

tp1 ./ tp2 tp3

SaGe client

SaGe server

(b) Client-side physical query execu-
tion plan.

Fig. 3: Physical query execution plan used by the SaGe smart Web client for
the query Q1.

results. Since the saved plan is now empty, the client knows that the execution
of Q is complete.

2.1 Preemptive SPARQL servers and Smart Clients

The time and space complexities of the suspend and resume operations represent
the Web preemption overheads. Compared to a non-preemptive server, Web
preemption degrades the overall throughput of the server with its overheads, but
improve the average completion time per query and time for first results.

To be affordable, these overheads should only represent a small fraction of the
server’s time. For example 1% of the server’s time is spent on suspending and
resuming queries and 99% is spent on executing queries. To guarantee this per-
centage, we need: (i) to bound the complexity in time/space of the suspend and
resume operations such that the average time required to suspend and resume
a query is known. In the experiments of [10], the observed time is around 1ms
for Suspend and 1.5ms for Resume. In average, the size of the plan is about
1,7kb per saved plan. (ii) to adjust the quantum to the workload such that 1%
of the execution time is spent to suspend/resume queries. If the quantum is too
high, then short queries will suffer from the convoy effect. If the quantum is
too low, then the Web preemption overheads will represent an excessively high
pourcentage of the server’s time.

In [10], we demonstrated that a triple-pattern scan operator can be suspended in
constant time and resumed in O(logb(|D|)) where |D| is the size of the dataset.
Such complexities assume that triples are correctly indexed with the traditional
SPO, POS and OSP indexes. If such a complexity can be achieved with a physical
operator, we say that this operator is preemptable.

In [10], we demonstrated that JOIN, UNION and most FILTER operators are
preemptable. In [6], we established that partial aggregations are preemptable,
and recently in [1], we demonstrated that partial transitive closures are also
preemptable. Thus, the server can efficiently support aggregates and property
path queries.

For the other operators, including OPTIONAL, ORDER BY, MINUS, and NOT
EXISTS, we currently rely on a smart client. This means that the SaGe smart
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Fig. 4: SaGe-web User Interface: http://sage.univ-nantes.fr

client decomposes SPARQL queries into sub-parts: those that can be processed
on the server and the others that must be processed locally on the client. Figure 3
describes how to compute a SPARQL query with an optional statement. As we
can see, the optional operator is processed on the smart client, with the inconve-
nient that many intermediate results can be transferred between the server and
the client.

By combining a preemptable restricted SPARQL server and a smart client, we
are able to process all SPARQL queries.

3 SaGe: The Preemptive SPARQL Server

SaGe is an implementation of a preemptive SPARQL server. The SaGe server
and all its extensions are available at https://github.com/sage-org. Two smart
clients are also available: i) A pure javascript client that can be deployed in any
web application, allowing users to execute SPARQL queries transparently. ii) A
java client implemented as a Jena extension. As Jena fully implements SPARQL,
the java smart client is able to process all SPARQL queries.

SaGe-web is a web application that takes a set of SaGe servers as input and
builds a portal allowing to query all the datasets of all SaGe servers. An on-
line demonstration is available at http://sage.univ-nantes.fr. http://sage.univ-
nantes.fr hosts the SaGe-web application, while the SaGe server is hosted on
http://soyez-sage.univ-nantes.fr. When the application is started, the applica-
tion asks all SaGe servers for void descriptions and automatically builds the
user interface with all the available datasets hosted by the SaGe servers (see
figure 4).

Figure 5 shows the configuration file of the SaGe server. There are two important
parameters:

– quota is the quantum for the Web preemption. The setting of the the quan-
tum depends on the workload, the server’s resources (number of process-
es/threads), and the size of the datasets. The quantum can be changed at
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name: SaGe Example Server
maintainer : Chuck Norr i s
publ ic_ur l : http:// server−ur l . com
long_descr ipt ion :

config_examples / d e s c r i p t i on .md

# T i m e q u a n t u m u s e d b y t h e s e r v e r
quota: 300

# ( O p t i o n a l ) M a x i m u m n u m b e r o f r e s u l t s
f e t c h e d b y H T T P r e q u e s t

max_results: 2000

# R D F G r a p h s h o s t e d b y t h e s e r v e r
graphs:

−
name: watdiv
u r i : http:// example . org /watdiv
d e s c r i p t i on : Just t e s t data
backend: hdt− f i l e
f i l e : . / watdiv .10M. hdt

−
name: sage
u r i : http:// example . org / sage
d e s c r i p t i on : sage in pos tg r e s
backend: pos tg r e s
dbname: sage
user : mol l i−p
password: ’ ’

Fig. 5: The Configuration of the Server SaGe

any time, even on a running server. In [10], the quantum has been set to
75ms for one worker, a watdiv dataset of 10M and a workload mixing 1/3
of long queries and 2/3 of short queries. Setting the right quantum has been
widely studied in the context of operating systems. The rule of thumb is to
make the preemption overheads a small pourcentage of the total execution,
e.g. keep preemption overhead 1% of the server’s time dedicated to query
processing.

– max_results is an optional parameter and corresponds to the maximum
number of results that can be produced during a quantum. This param-
eter prevents the server to store very large number of results in memory
before sending them to the client. For large quanta, a simple query as
select * where {?s ?p ?o} may surface thousands of results and exhaust
the server’s memory. It is possible to configure the server with an infinite
quantum and max_results = 2000. In this case, when the query produces
2000 results, the query is suspended. It is also possible to set a quantum to
1s and max_results to 2000. In this case, the query is suspended as soon as
one of the suspending condition is reached.

The last part of the configuration file declares the graphs hosted by the SaGe
server. As we can see, the server supports different “backends” that can be
used conjointly on the server. Currently, the server supports HDT, PostgreSQL,
SQLite and HBase as backends. HDT is a read-only backend, while the others
support updates. We detail in the next section how we built these backends and
how a backend can be easily added.

The server documentation is part of the SaGe engine distribution and is avail-
able online at https://sage-org.github.io/sage-engine/.

The server is built in python based on FASTAPI 2 as the ASGI implementation
and Uvicorn as web server. The server can be started with one or more workers
just by calling: sage config .yaml −w 4. The −w parameter specify the number of
workers 3. Increasing the number of workers increases the parallelism of the
2 https://fastapi.tiangolo.com/
3 The worker model of Uvicorn creates processes and not threads. Starting the server
with 4 workers and a big HDT file can quickly saturate the memory. Using other
backends avoids this problem.
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Fig. 6: SaGe server REST Interface available on http://localhost:8000/docs
when the server is launched on port 8000
server and decreases the probability of convoy effect, i.e. if a server has more
processes than queries to execute, there is no convoy effect at all. According to
the number of workers, the quantum value can be adjusted to deliver a better
throughput.

When the server is started, the REST interface of the server is available at
http://localhost:8000/docs and presented in Figure 6. Thanks to the inter-
face, users can easily build and test curl queries such as:
cu r l −X ’POST’ ’ http : / / 0 . 0 . 0 . 0 : 8 0 0 0 / sparq l ’ \

−H ’ accept : app l i c a t i on / json ’ −H ’Content−Type : app l i c a t i on / json ’ \
−d ’{ "query " : " s e l e c t ∗ where {? s ?p ?o }" ,

" defaultGraph " : " http :// example . org /watdiv "} ’

If the query was suspended, the “next” element on the response contains the sus-
pended query encoded with protobuf 4. Some statistics returned by the server
allow to monitor the query’s progression and the server’s performance. The “Im-
port” and “export” times are the time to resume and suspend a query 5, respec-
tively.

<... results ...>
"pageSize": 200,
"hasNext": true,
"next": "EkEKAj9wCgI/cwoCP28SMwon...",
"stats": {
" cardinalities ": [
{
" triple ": {
"subject": "?s",
"predicate": "?p",

"object": "?o",
"graph": "http://example.org/watdiv"

},
"cardinality ": 10916457

}
],
"import": 6.407260894775391,
"export": 0.21386146545410156 }

4 Protocol buffers, also known as protobufs, are serialization protocoles for structured
data developed by Google: https://developers.google.com/protocol-buffers.

5 The resume time of 6.4ms is normal: the first time the query is sent to server, the
query must be parsed and optimized, and requires more time than just resuming a
suspended query
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To continue the execution, it is enough to resend the query with the content of
the “next” field, which contains the suspended query:
cu r l −X ’POST’ ’ http : / / 0 . 0 . 0 . 0 : 8 0 0 0 / sparq l ’ \

−H ’ accept : app l i c a t i on / json ’ −H ’Content−Type : app l i c a t i on / json ’ \
−d ’{ "query " : " s e l e c t ∗ where {? s ?p ?o }" ,

" defaultGraph " : " http :// example . org /watdiv " ,
"next " : "EkEKAj9wCgI/cwoCP28SMwon . . . " } ’

Thus, processing a SPARQL query under Web preemption simply requires to
follow the next links as long as hasNext is true. If the backend supports updates,
the SaGe server can process SPARQL update queries as:
cu r l −X ’POST’ ’ http : / / 0 . 0 . 0 . 0 : 8 0 0 0 / sparq l ’ \

−H ’ accept : app l i c a t i on / json ’ −H ’Content−Type : app l i c a t i on / json ’ \
−d ’{
"query " : " i n s e r t data {<http :// example . org /Dalida>

<http :// example . org / i sa> <http :// example . org /Person >}",
" defaultGraph " : " http :// example . org / t e s t "} ’

3.1 SaGe Server Backends and Updates

In [10], the SaGe server was relying solely on HDT (Header, Dictionary, Triples)
files [5] (v1.3.2) to store data. However, HDT has two main issues 6: (i) First,
the HDT index must fit in memory. (ii) Second, HDT is read-only and does
not support SPARQL update. Supporting updates is mandatory for building
semantic web applications and to maintain knowledge graphs.

To solve the first issue, we need to store triples using storage systems that support
memory paging and distributed storage. Standard relational databases, existing
triple stores, or distributed datastores, provide such properties. However, is it
necessary to implement the Web preemption on these backends, i.e. how to
resume a query on such data storages?

Supporting updates raises several issues with Web preemption: (i) the state of
the dataset may have changed between the time a query was suspended and the
time a query is resumed. Deleted triples may prevent queries to be resumed.
(ii) What is the level of isolation of read queries under Web preemption in
presence of concurrent write queries?

Basically, Web preemption simply requires two things to resume queries: (i) There
is a sorted access on the triples, regardless of the triple pattern. This is basically
the case when triples are indexed with a BTree index on SPO, POS and OSP 7.
(ii) When a triple scan has been stopped at a certain point, the scan can restart
from this point in a logarithmic time to the the size of the dataset. This is also
the case with traditional BTrees.

Suppose we stored triples in a simple relational table with basic indexes:
6 A last issue concerns access time for the POS index with offset, i.e. the access to he
nth element is not in logarithmic time, so the resume time increases when n increases

7 BTrees is one way, but not the only way as demonstrated with HDT
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CREATE TABLE SPO(
sub j e c t text ,
p r ed i c a t e text ,
ob j e c t t ext

) ;

CREATE INDEX spo_i ON SPO( subject , pred i cate , ob j e c t ) ;
CREATE INDEX osp_i ON SPO( object , subject , p r ed i c a t e ) ;
CREATE INDEX pos_i ON SPO( pred icate , object , sub j e c t ) ;

This type of storage allows to process any triple pattern with a sorted access.
For example, processing the triple pattern ?x <isa> <Person> is translated
into:
Select sub j e c t from SPO WHERE

pr ed i c a t e=’ i s a ’ and ob j e c t=’ Person ’
ORDER BY pred i cate , object , sub j e c t

Thanks to the POS BTree index, no sorting operation is needed to deliver the
mappings in the right order. Now suppose that this query is interrupted after
50ms, and the last delivered mapping for ?x is <http://example.org/Dalida>.
Then the following query is able to resume the scan in logarithmic time to the
size of the dataset:
Select ∗ from SPO WHERE ( pred i cate , object , sub j e c t ) >
(<isa >, <Person>,<http :// example . org /Dalida >)
ORDER BY pred i cate , object , sub j e c t

The ORDER BY clause forces the query optimizer to use the POS index. Even
if the triple <http://example.org/Dalida> <isa> <Person> has been deleted
between the time when the query was suspended and the time when the query
was resumed, the above query will restart the scan. However, the query will be
only in the read-committed isolation level, and not in the traditional snapshot
isolation level. Reaching the snapshot isolation level is out of the scope of this
paper.

We used this approach to build two relational backends, one for PostgreSQL and
one for SQLite. Since the storage is externalized in well-known database systems,
it is easy to change the database layout and redefine the indexing scheme. We
provide for both backends a simple table-based layout that can be convenient
for testing, and another one based on a dictionary to get a better compression
and manage the variable size of RDF literals. Both backends provide different
advantages:

1. PostgreSQL 8 is a very stable database system with an extensive documenta-
tion, a rich ecosystem of extensions, statistics, partitioning capabilities . . . It
is now part of many Cloud Computing offerings with very large storage or
clustering capabilities. Moreover, many projects may have already their data
stored in PostgreSQL databases. In this case, by just creating materialized
views, it is possible to access their data in SPARQL. However, as SaGe and
the PostgreSQL server are two separate process, interprocess communication
or network communication may degrade performance.

2. The SQLite 9 backend is embedded with the SaGe server and offers bet-
ter performance than the PostgreSQL backend. Since data and indexes are

8 https://www.postgresql.org/
9 https://www.sqlite.org/index.html
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stored in a single file, SQLite is also convenient to exchange data as HDT can
do. If the HDT format offers more compression, the SQLite format provides
support to handle SPARQL updates.

It can also be interesting to store triples in well-known distributed datastore such
as BigTable, Cassandra or HBase. Such backends scale by sharding data over
distributed data nodes. HBase or BigTable relies on range partitioning of data,
based on lexicographically ordered keys i.e. a sorted access. To have a sorted
access on triples, we ingest triples three times in three different tables, using
SPO, POS and OSP as triples keys.
For example, the triple <http://www.example.org/Dalida> <isa> <Person> is
inserted in HBase as follow:

Table key S P O
SPO md5(S):md5(P):md5(O) <http://www.example.org/Dalida> <isa> <Person>
POS md5(P):md5(O):md5(S) <http://www.example.org/Dalida> <isa> <Person>
OSP md5(O):md5(S):md5(P) <http://www.example.org/Dalida> <isa> <Person>

We use md5 hashing to manage the variable size of RDF terms. We did not con-
sidered a dictionary for HBase, to preserve data locality when data are sharded
over a cluster. We preferred to rely on the native GZIP and FastDiff compressions
of HBase to save space per shard. Such compressions should be very efficient in
our context as triples are sorted. To search for a triple pattern ?s <isa> ?y, we
only need to perform a prefix scan in the PSO table, looking for a row prefixed
by md5(<isa>). Following this scheme, we can process any triple pattern. Re-
suming a scan is also simple. It is enough to restart scans from the last scanned
triples. If an iterator that scan the triple ?s <isa> ?y is interrupted after read-
ing <http://www.example.org/Dalida> <isa> <Person>, it can be resumed by
computing the following HBase scan:

t ab l e ( ’POS’ ) . scan ( row_start=
"md5(<isa >):md5(<Person >):md5(<http ://www. example . org /Dalida >)".

If this key has been deleted between the suspend and resume operations by an
update operation, then scan will restart from the next key in the lexicographic
order.

In nutshell, the SaGe server can now store triples in many backends, includ-
ing HDT, PostgreSQL, PostgreSQL with a dictionary, SQLite, SQLite with a
dictionary and HBase. Of course, it is very easy to add a new backend for an-
other storage system such as RocksDB, or to change the databases layout to
provide better compression, manage quads or Quins. Thanks to these new back-
ends, the SaGeserver can now support SPARQL update queries while ensuring
a read-committed isolation level for SPARQL read queries.
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Backend Storage Space
WatDiv10M dataset (N-Triples) 1.4GB (84MB)

PostgreSQL 6.75GB
PostgreSQL - Dictionary layout 2.12GB

SQLite 6.47GB (571MB)
SQLite - Dictionary layout 1.06GB (410MB)

HBase 1.59GB
HDT 116MB

Table 1: Storage space required to store the WatDiv10M dataset for each back-
end. Values between parenthesis correspond to the size of the file compressed
using gzip.

4 SaGe Backend Performances

We want to empirically answer the following questions: What is the storage space
of each backend ? How does each backend perform compared to other backends?
What is the overhead in time of Web preemption for each backend ? What is
the execution time for each backend on the benchmark queries?

4.1 Experimental setup

Dataset and Queries: We used the RDF dataset and the SPARQL queries
from the BrTPF [7] experimental study 10. The WatDiv10M dataset of [7]
contains 107 triples. We randomly choose one of the 50 workloads available in [7].
Each workload contains SPARQL conjunctive queries with different shapes and
complexities, up to 10 joins per query, with very high and low selectivies. Among
the queries of the selected workload, we randomly chose 60 queries.

Software details: The different database systems used in our backends are
detailed below:

– PostgreSQL: We use PostgreSQL version 12.6 with all planner methods dis-
abled (in the PostgreSQL configuration file) except indexscan, indexonlyscan
and nestloop. These settings force the query optimizer to use the SPO, POS
and OSP indexes.

– SQLite: We use SQLite3 version 3.32.3

– HBase: We use HBase version 2.3.5. HBase tables are compressed using gzip
and data block are encoded using fastdiff . To interact with HBase, we use
HappyBase version 1.2.0.

– HDT: We use the python library for HDT, version 2.3.

Hardware Setup: We run our experiments in a MacBook Pro with an Intel
Core i7 2.3 GHz processor, 16GB of main memory and a Macintosh HD of
1TB.
10 http://olafhartig.de/brTPF-ODBASE2016
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Fig. 7: Execution time of the query {?s ?p ?o} using the different backends

4.2 Experimental results

What is the storage space of each backend ? Table 1 details the storage space
for each backend. As we can see, HDT provides an excellent compression ratio
for the WatDiv dataset, but the format is read-only, while all other backends
support updates.

Concerning PostgreSQL and SQLite, just providing a dictionary drastically re-
duces the data size. SQLite achieves better compression than PostgreSQL with
dictionary thanks to an adaptive Integer representation. As SQLite data are
stored in a single file, it is easy to compress it for data exchange. Please notice
that for an initial file of 1.4GB, SQLite is able to store the same information
with 3 updatable indexes in 1GB.

Finally, without the dictionary support, HBase is able to store 3 times the initial
dataset in 1.59GB. This demonstrates how compression mechanisms integrated
with HBase can be efficient for storing RDF data.

How does a backend perform compared to other ones ? As SaGe’s backends pro-
vide different affordances, their comparison is unfair: HDT is embedded, read-
only and indexes must fit in main memory, while HBase is able to handle updates
on very large clusters of data nodes. The objective of this experiment is to com-
pare the cost of these advantages, i.e. there is no winner in this comparison, just
different trade-offs. Figure 7 measures the execution time of the query {?s ?p ?o}
on the WatDiv 10M dataset. As this query simply scans the whole dataset, it
allows to observe the speed of scan of the different backends. If we compare HDT
and SQLite, SQLite is faster although it manages memory and updates. However,
HDT focuses on high compression of data and indexes. This high compression
has an observable cost. If we compress SQLite dataset by adding a dictionary,
the speed of the scan decreases. The degradation is approximatively 23%. We
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Fig. 8: Supend/Resume time of the different backends and triple pattern shapes.

observe a similar degradation between PostgreSQL with and without a dictio-
nary. Thus, data compressing has a cost and the compromise found by HDT is
interesting, but at the cost of not supporting updates. If we compare SQLite
and PostgreSQL, the difference in speed corresponds to the cost of inter-process
communications (IPC) with the PostgreSQL server. Thus, embedding the stor-
age access in the SaGe server has a strong impact on performance. On the
other hand, the fact of having an independent database server makes it possible
to reuse existing databases. Finally, HBase clearly has the worst performance.
Most of the difference in speed can be explained by a greater number of IPC :
the SaGe server being written in python, it must communicate with the Thrift
server, which finally accesses to the HBase server written in Java. Intermedi-
ate IPC have a considerable impact on performance. However, even with a slow
scan speed, the HBase backend can provide distributed auto-shading, which is
not provided by other backends.

What is the overhead in time of Web preemption for each backend ? To an-
swer this question, we measured the suspend/resume time for all backends with
queries relying on SPO, POS and OSP indexes:

SPO select * where ?s ?p ?o
POS select * where ?s a ?o
OSP select * where ?s ?p :role0

As depicted in Figure 8, all backends deliver excellent performance for the sus-
pend operation. It is normal as suspending is just about saving the state of the
plan and does not require backends access. Concerning the resume operation, this
experiment mainly checks if indexes are really able to provide their promises.
If we compare the performance of the different backends, the differences come
from the same reasons as those explained previously.
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Fig. 9: The execution time of the different backends with the benchmark queries

If we look at HDT, we see that HDT is not able to resume queries in constant
time when the POS index is needed. It is a well-known weakness of HDT, and
this weakness is not specific to the Web preemption, it also concerns TPF servers.
It is possible to fix this issue, but the compression will be degraded. Concern-
ing SQLite/PostgreSQL, we observe that resuming is more expensive with the
dictionary, especially with the PostgreSQL backend. We currently not optimized
access to the dictionary.

What is the execution time for each backend with benchmark queries? In Fig-
ure 7, query optimization is not a problem because the query is a simple scan
using the SPO index. In Figure 9, we run a set of WatDiv queries that present
a challenge to the query optimizer. If the query optimizer code is the same
for all backends, the access to statistics is different. PostgreSQL and HDT are
able to correctly estimate the cardinality of a triple pattern, thus producing a
quite good join ordering. The statistics available in SQLite are less precise and
HBase has no statistics and relies on heuristics. As we can see, under these con-
ditions, the backend HDT provides the best performance. Although the backend
SQLite is the best for the speed of scan, the lack of good statistics degrades the
performance in presence of complex queries. The backend for PostgreSQL does
not suffer from these problems and has performance closed to SQLite. Finally,
HBase provides the worst performances due to slow scanning speed and lack of
statistics.

5 Related Works

Compared to a SPARQL endpoint, a preemptive SPARQL server is less expres-
sive and relies on a smart client to provide full SPARQL support. Therefore,
SPARQL queries using OPTIONAL, MINUS, FILTER NOT EXISTS or nested
queries, may generate important data shipping. The main advantage of SaGe
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is to be fair by design. It is no more useful to kill running queries to provide a
stable and responsive service to the community. Thus, any SPARQL query can
now be processed online.

TPF or BrTPF [11, 8, 7] provide a fair restricted SPARQL server by serving only
triple pattern queries. The TPF server ensures that a page of results of any triple
pattern queries can be delivered in a bounded time. It also ensures that the next
page of results for the same triple pattern can be delivered in bounded time.
Compared to BrTPF [11, 8, 7], the SaGe server is much more expressive and
support joins, filters, partial aggregations and partial transitive closures.

Like most of SPARQL algebraic operators are now processed on the server,
the data shipping from the server to the clients is drastically reduced, as the
execution time of most SPARQL queries.

SmartKG [3] builds a fair restricted SPARQL server by fragmenting data into
several small HDT files that can be shipped on demand by a smart client. Thanks
to massive data shipping, many joins can now be processed on the client-side.
Compared to SmartKG, the SaGe server drastically reduces data shipping and
is able to support updates.

6 Conclusion and Future Works

In this paper, we presented several ressources for the semantic web community.
SaGe is an implementation of a preemptive SPARQL server that supports a
large part of SPARQL, including partial aggregates and partial transitive clo-
sures. To handle all SPARQL queries,SaGe has currently two smart clients:
SaGe-js a javascript client that can be used in a browser, and SaGe-jena, a java-
client that extends Jena to interact with the SaGe server. The SaGe server has
now support for connecting many storage backends. We presented how a single
SaGe server can simultaneously manage HDT files, SQLite databases, Post-
greSQL databases and HBase. With the exception of HDT, all these backends
support updates with read-committed isolation level. We explained how we built
these backends, and many other SQL databases and NoSQL databases can be
supported. We also explained how the triple storage layout can be easily modified
to meet specific needs.

In the experiments, we show different trade-offs between backends. The SQLite
backend is quite interesting because it provides high performance, fairly good
compression with a dictionary support, updates and easy data exchange since
triples and indexes are stored in a single file.

Our roadmap for SaGe is to make SaGe as close as possible to a SPARQL
endpoint. We first want to explore how to make OPTIONAL, MINUS, FILTER
and NOT EXISTS operators preemptable, or partially preemptable. As already
observed with aggregates and property path, performing operations on server-
side drastically improves performance and simplify smart clients. We also plan
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to support Named Graph and RDF* thanks to the new possibilities offered by
backends. Concerning updates, we plan to support snapshot isolation.
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