Supporting Information (SI) for

Interstitial Nature of Mn²⁺ Doping in 2D Perovskites

Andrew Torma^{1,2#}, Wenbin Li^{1,2#}, Hao Zhang^{1,2}, Qing Tu³, Vladislav Klepov⁴, Michael C. Brennan⁵, Christopher L. McCleese^{5,6}, Matthew D, Krzyaniak⁷, Michael R. Wasielewski⁷, Claudine Katan⁸, Jacky Even⁹, Martin V. Holt¹⁰, Tod A. Grusenmeyer⁵, Jie Jiang⁵, Ruth Pachter⁵, Mercouri G. Kanatzidis⁴, Jean-Christophe Blancon^{1*}, and Aditya D. Mohite^{1,2*}

¹Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA

²Applied Physics Program, Smalley-Curl Institute, Rice University, Houston, TX 77005, USA

³Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA

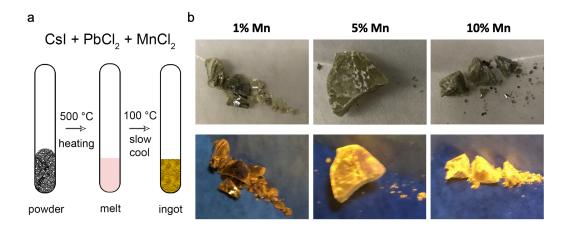
⁴Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA

⁵Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, USA

⁶General Dynamics Information Technology, 5000 Springfield Pike, Dayton, Ohio 45431, USA

⁷Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL 60208-3113, USA

⁸Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)–UMR 6226, F-35000 Rennes, France

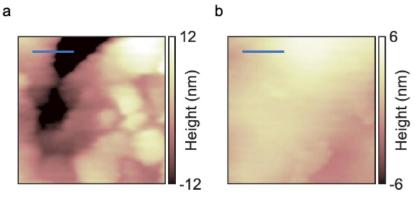

⁹Univ Rennes, INSA Rennes, CNRS, Institut FOTON–UMR 6082, F-35000 Rennes, France

¹⁰Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA

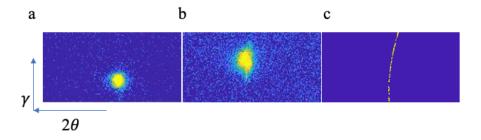
^{*}These authors contributed equally

^{*}Correspondence to: blanconjc@gmail.com, adm@rice.edu

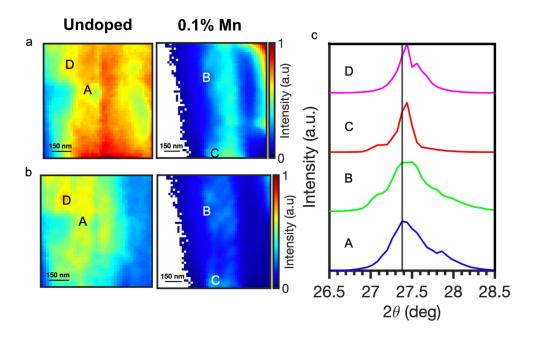
Figure S1. (a) Synthesis schematic (b) optical images (top) and fluorescence under UV (bottom) of 1% (left), 5% (middle), 10% (left) Mn:Cs₂PbI₂Cl₂


SI Table 1. The peak characteristics after Rietveld refinement analysis of PXRD for 0-10% Mn^{2+} doped $Cs_2PbI_2Cl_2$ of (006) shown in Figure 1c and (110).

	Undoped		0.1% Mn		1% Mn		5% Mn		10% Mn	
	006	110	006	110	006	110	006	110	006	110
2θ (± 0.01°)	28.36	22.30	28.36	22.29	28.26	22.20	28.24	22.18	28.22	22.20
FWHM (± 0.01°)	0.30	0.22	0.34	0.22	0.32	0.26	0.40	0.33	0.42	0.33


SI Table 2. The monoexponential fitting parameters for the PL lifetime kinetics of the 2.07 eV emission peak for 0.1% Mn:Cs₂PbI₂Cl₂ shown in Figure 2c. The equation form used is $y(x) = A*exp(-x/\tau)$, where τ is the decay time constant and A is the related amplitude.

	Values
τ (μs)	480.77
A	0.077


Figure S2. AFM height images for the single crystals of (a) undoped and (b) 0.1% Mn Cs₂PbI₂Cl₂. Scalebar is 60 nm.

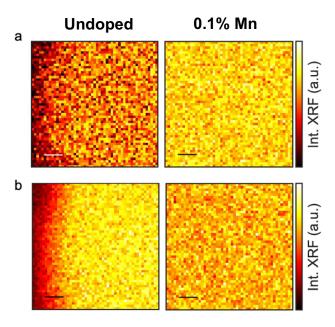
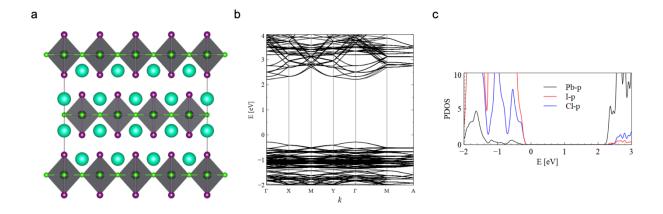
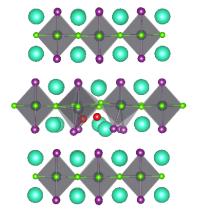

Figure S3. Example of CCD images for nanoXRD of a single Bragg peak for (a) single crystal (b) microstrain creating distortion (c) powder with many orientations. 2θ is related to the d-spacing and lattice constants of the crystal structure through Bragg's law and has a range of 20° - 50° due to instrumentation limitations. γ is related to the lattice orientation or tilt/curvature and has a range of -5° - 10° .

Figure S4. Further 2D mapping of nanoXRD of undoped (left) and 0.1% Mn^{2+} (right) $Cs_2PbI_2Cl_2$ across 1um x 1um region (a) total intensity (b) high 2θ ROI intensity (c) spectrums of four different 5x5 pixel regions where the sloid line denotes the ROI split


Figure S5. Further 2D mapping of nanoXRF of undoped (left) 0.1% Mn²⁺ (right) Cs₂PbI₂Cl₂ across a 1um x 1um region (a) lead (b) cesium. Scalebar is 150 nm.


Table S3. Lattice constants (in Å) and lattice constant changes (relative to the pristine perovskite) for Mn^{2+} substitutional and interstitial doped $Cs_2PbI_2Cl_2$. Note that the values for the supercells must be considered as multiples of the primitive unit cell.

	Doping density	a _x	a _y	az	Δa _x	Δa _y	Δa _z
Substitutional	0.79%	17.140	17.140	19.327	-0.42%	-0.42%	- 0.004%
	0.44%	22.907	22.907	19.303	-0.18%	-0.18%	-0.13%
Interstitial	0.79%	17.289	17.266	19.330	0.45%	0.31%	0.01%
	0.44%	23.029	23.001	19.329	0.34%	0.22%	0.004%

Figure S6. DFT analysis of an undoped Cs₂PbI₂Cl₂ 4×4×1 supercell for (a) pristine crystal structure. PBE exchange-correlation function analysis for (b) band structure (c) PDOS. For crystal structure, colors denote Pb-black, Cs-mint green, I-purple, Cl-green.

Figure S7. Crystal structure of a double Mn-doped 2D Cs₂PbI₂Cl₂, where colors denote Pb-black, Cs-mint green, I-purple, Cl-green, Mn-red.

