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Abstract. We discuss the decoding of Gabidulin and interleaved Gabi-
dulin codes. We give the full presentation of a decoding algorithm for
Gabidulin codes, which as Loidreau’s seminal algorithm consists in lo-
calizing errors in the spirit of Berlekamp–Welch algorithm for Reed–
Solomon codes. On the other hand this algorithm consists in acting on
codewords on the right while Loidreau’s algorithm considers an action
on the left. This right–hand side decoder was already introduced by the
authors in a previous work for cryptanalytic applications. We give a gen-
eralised version which applies to non–full length Gabidulin codes. Finally,
we show that this algorithm turns out to provide a very clear and natural
approach for the decoding of interleaved Gabidulin codes.
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Introduction

Rank metric codes have been introduced in [7] by Gabidulin and have found
applications in cryptography [8,6,1,11,16,3,2], in network communications [18] or
in data storage [15]. Compared to the Hamming world, only few families of codes
endowed with the rank metric are known to have efficient decoding algorithms.
Gabidulin codes are the rank-metric analogue of Reed-Solomon codes and are
somehow optimal because they reach the rank-metric Singleton bound and come
with efficient decoders up to the unique decoding radius n−k

2 . However, there
exist no known decoder beyond this bound, even probabilistic ones. More, there
exist families of Gabidulin codes that cannot be list decoded in polynomial time
[14]. Nonetheless, if we consider u codewords in parallel, it is possible to overcome
this restriction and decode up to u

u+1 (n − k) rank errors with overwhelming
probability.

In the present article, we recall a right-hand side decoder for Gabidulin codes
recently introduced in [5] for cryptanalytic applications. While the aforemen-
tioned reference restricted to the case of full length Gabidulin codes (i.e. n=m),
in the present article we extend it to handle Gabidulin codes of any length n 6 m.
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Next, we show how this decoder can be used to provide a simple decoder for
u-interleaved Gabidulin codes. We claim that the use of this algorithm provides
a much simpler point of view on the decoding of interleaved Gabidulin codes
because it only involves solving an overdetermined linear system. In particu-
lar, this algorithm is very similar to the decoder for Interleaved Reed-Solomon
codes presented in [4], and its decoding radius is given by comparing the num-
ber of equations to the number of unknowns. Moreover, it permits to clarify a
cryptographic attack based on the decoding of interleaved Gabidulin codes and
provides a very simple explanation of the decoding failures.

1 Notations and Prerequisites

In this article, q is a prime power and k,m, n, u are non negative integers. Fq

denotes the finite field with q elements, and for a non negative integer ℓ, Fqℓ

is the algebraic extension of Fq of degree ℓ. The space of m × n matrices with
entries in a field K is denoted by Mm×n(K). Lower case bold face letters such as
x represent vectors, and upper case bold face letters such as X denote matrices.

1.1 Rank metric codes

Given a vector x ∈ F
n
qm , the column support (or support) of x, denoted Supp(x)

is the Fq-vector subspace of Fqm spanned by the entries of x:

Supp(x) = Span
Fq
{x1, . . . , xn}.

We consider also another notion of support, namely the row support. Let B

be a basis of the extension field Fqm/Fq. Then we define the extension of x

with respect to B as the matrix ExtB(x) ∈ Mm×n(Fq) whose columns are the
decompositions of the entries of x in the basis B. The row space of ExtB(x) is
called the row support of x, i.e.

RowSupp(x)
def
= {yExtB(x) | y ∈ F

m
q } ⊂ F

n
q .

It is a vector subspace of Fn
q . Notice that the above definition does not depend

on the choice of the basis B. The rank weight rankq(x) (or rank) of x is the
rank of ExtB(x) with respect to any basis B. The rank distance or distance

between two vectors x,y ∈ F
n
qm is defined as d(x,y) = rankq(x − y). In this

article, we consider only Fqm-linear codes: a code C of length n and dimension
k is an Fqm -subspace of Fn

qm whose dimension, as an Fqm -vector space, is k. The
minimum distance of C is defined as

dmin(C ) = min{rankq(c) | c ∈ C , c 6= 0}.

1.2 Gabidulin codes and q-polynomials

A q–polynomial is a polynomial of the form

P (X) = p0X + p1X
q + · · ·+ prX

qr , pr 6= 0.



The integer r is called the q-degree of P and is denoted by degq(P ). A q-
polynomial P induces an Fq-linear map Fqm → Fqm whose kernel has dimension
bounded by degq(P ). The rank of a q-polynomial will denote the rank of the
induced linear map. Let L be the space of q-polynomials and given a positive
integer k < m, we denote by L<k (resp. L6k) the space of q-polynomials of
q-degree less than (resp. less than or equal to) k. Equipped with the addition
and the composition law, L is a non commutative ring which is left and right
euclidean [10] and the two-sided ideal (Xqm −X) is the kernel of the canonical
map

L → HomFq
(Fqm ,Fqm),

inducing an isomorphism

L/(Xqm −X) ≃ HomFq
(Fqm ,Fqm).

Let n 6 m, k 6 n and g = (g1, . . . , gn) ∈ F
n
qm whose entries are linearly inde-

pendent. The Gabidulin code of dimension k and evaluation vector g is defined
as

Gk(g)
def
= {(P (g1), . . . , P (gn)) | P ∈ L<k} ⊂ F

n
qm .

Notice that the canonical map
{

L<k −→ Gk(g)
P 7−→ (P (g1), . . . , P (gn)).

is rank preserving, which allows to identify Gk(g) with L<k. It is well known
that Gabidulin codes are Maximum Rank Distance (MRD), which means that
they reach the rank metric analogue of the Singleton bound

dmin(L<k) = n− k + 1.

Moreover, Gabidulin codes come with efficient decoders able to correct errors up
to the unique decoding radius n−k

2 . However, contrary to Reed-Solomon codes,
there exists families of Gabidulin codes that cannot be list decoded in polynomial
time beyond this bound [14].

Following [5, § 1], to any class P ∈ L/(Xqm −X), corresponds an adjoint P∨

defined as follows:

for P (X) =

m−1
∑

i=0

piX
qi and P∨(X) =

m−1
∑

i=0

pq
m−i

i Xqm−i

.

This corresponds to the usual notion of the adjoint endomorphism with respect
to the non degenerate bilinear form on Fqm : (x, y) 7−→ TrFqm/Fq

(xy).

2 Right hand side decoding algorithm

Let k < n 6 m, g = (g1, . . . , gn) ∈ F
n
qm whose entries are linearly independent,

and let C
def
= Gk(g). In [12], Loidreau introduced a Berlekamp-Welch-like decod-

ing algorithm, which can decode up to ⌊n−k
2 ⌋ rank errors. This algorithm works



on the left and can be applied to Gabidulin codes of arbitrary length n 6 m.
Indeed, representing vectors in F

n
qm as matrices, the left–hand side decoding con-

sists in acting on matrices on the left, which is possible whatever the length n
(which corresponds to the number of columns of the corresponding matrices).

In [5], the authors proposed to work on the right-hand side instead, which
was useful to provide an attack on the code-based encryption scheme Ramesses

[11]. However, their decoding algorithm was only considered in the case where
n = m (which was enough for cryptanalysis). The right-hand side algorithm is
not completely straightforward when n < m. In particular, one can no longer
transpose the matrices representing codewords.

In the present section, we recall a self-contained presentation of the right-
hand side version, and prove that restricting n to be maximal is unnecessary. In
particular, we show how the right-hand side decoding algorithm applied to any
[n, k] Gabidulin code can correct up to

⌊

n−k
2

⌋

errors.

2.1 n = m

Suppose we receive a word y = c+ e ∈ F
n
qm where c ∈ C

def
= Gk(g) and e ∈ F

n
qm

has rank t 6 n−k
2 . By linear interpolation, there exist three q-polynomials C ∈

L<k and Y,E ∈ L<m such that

Y = C + E,

and Y is known to the receiver (See for instance [19, Chapter 3]). Since n = m,
(g1, . . . , gn) forms a basis of the extension field Fqm/Fq. Therefore, rankq(E) =
rankq(e) = t. The core of the algorithm relies in the following proposition:

Proposition 1. Let E be a q-polynomial of rank t. There exists a unique monic

q-polynomial Λ such that degq(Λ) 6 t and E ◦ Λ = 0 modulo (Xqm −X).

The goal is now to compute this right annihilator Λ. It satisfies the equation

Y ◦ Λ = C ◦ Λ+ E ◦ Λ ≡ C ◦ Λ mod (Xqm −X),

which yields a non linear system of n equations whose unknowns are the k+ t+1
coefficients of C and Λ.







(Y ◦ Λ)(gi) = C ◦ Λ(gi)
degq Λ 6 t
degq C 6 k − 1.

(1)

In order to linearize the system, set N = C ◦ Λ and consider instead







(Y ◦ Λ)(gi) = N(gi)
degq Λ 6 t
degq N 6 k + t− 1,

(2)

whose unknowns are the k + 2t + 1 coefficients of N and Λ. The relationships
between those two systems are specified in the following proposition.



Proposition 2.

• Any solution (Λ,C) of (1) gives a solution (Λ,N = C ◦ Λ) of (2).
• Assume that E is of rank t 6 ⌊n−k

2 ⌋. If (Λ,N) is a nonzero solution of (2)
then N = C ◦ Λ where C = Y − E is the interpolating q–polynomial of the

codeword.

Therefore, it is possible to recover the codeword C from any non zero solution
(Λ,N) of (2) by computing the right hand side euclidean division of N by Λ
which can be done efficiently.

Remark 1. Actually, the previous system is only linear over Fq, not over Fqm . To
address this issue, one can use the adjunction operation. Details can be found
in [5].

2.2 n < m

Assume now that n is not maximal, and consider a received word y = c + e,
where c = (C(g1), . . . , C(gn)) for some q–polynomial C of q–degree < k and
e ∈ F

n
qm has rank t whose value is discussed further.

As in the previous section, our first objective is to reformulate the decoding
problem in terms of q–polynomials instead of vectors. Here lies the first issue.
Indeed, since y has length n < m there is not a unique q–polynomial Y in
L/(Xqm −X) such that y = (Y (g1), . . . , Y (gn)). For this reason, when choosing

such an arbitrary interpolator Y for y, one can define E
def
= Y − C and get a

new q–polynomial formulation of the decoding problem as

Y = C + E,

but here there is no longer any reason that E would have rank t, we only know
that the vector (E(g1), . . . , E(gn)) has rank t. In terms of linear operators, this
means that the restriction of E to the span V of g1, . . . , gn over Fq has rank t.

To fix this issue we proceed as follows. First we choose Y as the interpolator
of lowest degree by choosing the unique monic interpolator of degree < n. Since
degq(C) < k < n, this entails that degq(E) < n. Next we will change the
interpolating polynomials Y and E in order E to have rank t. This should be
done without knowing the error. We need a slight generalization of Proposition 1
which we prove here for the sake of completeness.

Proposition 3. There exists a q–polynomial G of q–degree 6 m−n whose image

equals the Fq–span of g1, . . . , gn.

Proof. Let V denote the Fq–span of g1, . . . , gn. By interpolation, it is well-known
that there exists G0 of q–degree 6 m − n whose kernel equals the (m − n)–
dimensional space V ⊥ for the inner product (x, y) 7→ TrFqm/Fq

(xy). Then, the

q–polynomial G1
def
= Xqn ◦G0 has the same kernel V and is in the span of the

q–monomials Xqn , . . . , Xqm . Then, let G
def
= G∨

1 be the adjoint as introduced in



§ 1.2. It has q–degree 6 m− n and, by adjunction properties, satisfies Im(G) =
Im(G∨

1 ) = Ker(G1)
⊥ = V . ⊓⊔

Let G be the q–polynomial of degree 6 m − n given by Proposition 3 and
consider Y ◦G instead of Y , then we get a new problem which is

Y ◦G = C ◦G+ E ◦G. (3)

First, since y and g are known, the q–polynomials Y,G are computable using
interpolation. Then, the q–polynomial C ◦ G has q–degree < k + m − n and
hence corresponds to a codeword of a Gabidulin code of dimension k +m − n.
Finally, E ◦ G has rank t. Indeed, as mentioned earlier, t is the rank of the
restriction of E to the span of g1, . . . , gn, which is precisely the image of G.
Thus, the reformulated problem (3) can be regarded as correcting a rank t error
in a Gabidulin code of length m and dimension k+m−n. Using our right-hand
decoding algorithm it is hence possible to correct an amount of errors up to

t =
m− (k +m− n)

2
=

n− k

2
·

Remark 2. The previous results may be interpreted in terms of decoding a length
m Gabidulin code which was column–punctured on the right at δ = m − n
positions (see [17, § 2.3] for a definition of column–puncturing). Similarly, this
can be unterstood in terms of decoding a length m Gabidulin code under δ
rank erasures and t rank errors. In this situation we recover the usual fact that
2t+ δ 6 n− k.

3 Decoding interleaved Gabidulin codes

3.1 Interleaving

Interleaving a code C consists in considering several codewords of C at the

same time, corrupted by errors having the same support. In the Hamming met-
ric, interleaved Reed-Solomon codes have been extensively studied and come
with efficient probabilistic decoders allowing to correct uniquely almost all error
patterns slightly beyond the error capability of the code. See [4] for further ref-
erence. In the rank metric, interleaved Gabidulin codes have been introduced by
Loidreau and Overbeck in [13]. Let g be an evaluation vector, and let u ∈ N.
The u-interleaved Gabidulin code of evaluation vector g and dimension k is

IGu,k(g)
def
=

















c(1)

...

c(u)






| c(i) ∈ Gabk(g)











.

Remark 3. For u = 1, we recover usual Gabidulin codes.



Each codewordC ∈ IGu,k(g) is the evaluation of a column vector of q-polynomials
of bounded q-degrees on g:

C = (Γ (g1), . . . ,Γ (gn)), Γ =







C(1)

...
C(u)






where C(i) ∈ L<k.

Using the inverse extension map, each Γ (gi) can be interpreted as an element
of Fqmu , and IGu,k(g) is then a code of length n and dimension k over Fqmu .
Moreover, they are known to be MRD (see [19, Lemma 2.17]), so the error
correction capability of IGu,k(g) is n−k

2 . However, their specific structure al-
lows to design efficient algorithms being able to uniquely decode IGu,k(g) up to
u

u+1 (n− k) > n−k
2 for u > 1, with very high probability [13,20].

In this section we show how to use the right-hand side variant of the Berlekamp-
Welch algorithm introduced before to decode u-interleaved Gabidulin codes, up
to u

u+1 (n−k). Since this is beyond the error capability of the code, this algorithm
might fail but the probability of failure is very low.

3.2 Error model

Similarly to the Hamming metric, we consider a channel model where errors
happen in burst. In this model, the transmitted codeword is a matrix C ∈
Mu×n(Fqm) representing u codewords of Gk(g) in parallel, and the error is a
matrix E ∈ Mu×n(Fqm) of Fq-rank t, i.e. such that the matrix of Mum×n(Fq)
obtained from E by extending every row in a basis of Fqm/Fq is of rank t. The
receiver then gets a word Y = C +E, and the goal is to recover C.
In the Hamming metric, the receiver gets u noisy y(i) = c(i)+e(i) such that c(i)

are codewords of some code C (e.g. a Reed-Solomon code) and all the e(i) have
the same support of cardinality t.
In the current setting, each row of Y is of the form y(i) = c(i) + e(i) where
c(i) ∈ Gk(g). The following proposition whose proof is straightforward justifies
the term burst rank-errors.

Proposition 4. The row support of each e(i) is contained in the Fq-row space

of E which is of dimension t.

Remark 4. In this article the error model consists in considering error vectors
e(i) sharing the same row support. It seems to be the most natural error model
when considering the code regarded as a code over Fqmu , and it is the one used
in most references. On the other hand, one may consider another error model
where the errors share a common column support. In the latter case, the usual
left–hand side decoder can be used, see for instance [13].

3.3 Right-hand side decoding of interleaved Gabidulin codes

Let Y = C + E ∈ Mu×n(Fqm) be a received word. By linear interpolation of
each row of Y , there exist u triple of q-polynomials (Yi, Ci, Ei) such that

Yi = Ci + Ei,



and degq(Ci) < k. Since the errors have the same support of dimension t, there
exists a q-polynomial Λ with degq(Λ) 6 t that locates all the errors. More
specifically, Proposition 4 induces the following lemma:

Lemma 1. Denoting by Ei the interpolator q-polynomial of e(i), there exists

Λ ∈ L6t such that

Ei ◦ Λ = 0 mod (Xqm −X), ∀i ∈ {1, . . . , u}.

Lemma 1 yields the following non-linear system of u× n equations







(Yi ◦ Λ)(gj) = (Ci ◦ Λ)(gj)
degq Λ 6 t
degq Ci 6 k − 1, for i ∈ {1, . . . , u}.

(4)

which can be linearized into the following system, setting Ni
def
= Ci ◦ Λ:







(Yi ◦ Λ)(gj) = Ni(gj)
degq Λ 6 t
degq Ni 6 k + t− 1, for i ∈ {1, . . . , u}.

(5)

This system has u× n equations, and t+ 1 + u(k + t) unknowns, and therefore
one can expect to retrieve (Λ,N1, . . . , Nu) whenever t 6

u
u+1 (n− k). Since Ni =

Ci ◦Λ, the codewords C1, . . . , Cu can then be recovered by computing euclidean
division on the right.

Remark 5. The decoding algorithm mentioned in [13,20] can be re-interpreted in
terms of the aforementioned decoder. The present section permits in particular
to shed light on the fact that previous algorithms are actually very comparable
to Loidreau’s original algorithm when acting on the right instead of acting on
the left.

3.4 Application to cryptography: Liga encryption scheme

Let Fqm ,Fqmu be two algebraic extensions of the finite field Fq. In [6], Faure
and Loidreau introduced a rank metric encryption scheme with small key size.
The originality of the cryptosystem was to base the security on the hardness of
decoding a (public) Gabidulin code beyond the unique decoding radius. Indeed,
the public key was of the form kpub = xG+ z where G is a generator matrix of
a public [n, k] Gabidulin code over Fqm and x ∈ F

k
qmu , z ∈ F

n
qmu together with

t
def
= rankq(z) >

n−k
2 form the secret key.

However, it was shown in [9] that an attacker could easily compute u noisy
codewords of the Gabidulin code generated by G using the Fqm–linearity of the
trace map TrFqmu/Fqm

, and then recover the secret providing that t 6 u
u+1 (n−k)

(which was always the case to resist other attacks). This really amounts to
decoding the public key with a decoder of u–interleaved Gabidulin codes. In
order to repair the scheme, the authors of Liga proposed instead to base the



security on the hardness of decoding u–interleaved Gabidulin codes. Indeed, they
proved that by reducing the rank of z over Fqm (while keeping its rank weight
t over Fq higher than the unique decoding radius), it was no longer possible to

recover the secret key. More precisely, denoting by ζ
def
= rankqm(z) this rank,

they proved by a careful analysis of known interleaved decoders that a condition
for making the decoder to fail was ζ < t

n−k−t . In particular, in Liga they
proposed to set ζ = 2.

Using our decoder, we propose a new interpretation of this condition. Indeed,
let Y = C+E ∈ Mu×n(Fqm) be a noisy codeword of an u-interleaved Gabidulin
code. The results of Section 3.3 can be strengthen as follows: If some rows of
E share a linear dependency, then the equations in system (5) are no longer
independent. In particular, if ζ 6 u denotes the rank ofE over Fqm , one can refine
the reasoning and deduce an equivalent linear system with ζ × n independent
equations for t+1+ζ(k+ t) unkowns. Therefore, when t > ζ

ζ+1 (n−k), there are
more unknowns than equations and the decoder fails. This inequality is exactly
the condition ζ < t

n−k−t from Liga.

Conclusion

We presented a full version of a right-hand side decoding algorithm for Gabidulin
codes. This algorithm is close to a verbatim translation of its well–known left–
hand counterpart. However, compared to its left–hand counterpart, it was un-
clear how to apply it to non full length Gabidulin codes. This issue has been
addressed in the present article. Moreover, we claim that this algorithm is of in-
terest for various applications. First, it provides a very natural approach for the
decoding of interleaved Gabidulin codes. It is actually very comparable to the
algorithm proposed by Loidreau and Overbeck [13] but the strong connection
with a Berlekamp–Welch like decoder was not that clear in the aforementioned
reference. Second, this right-hand side decoder already appeared to provide an
interesting tool for cryptanalytic applications.

References

1. Aguilar Melchor, C., Aragon, N., Bettaieb, S., Bidoux, L., Blazy, O., Deneuville,
J.C., Gaborit, P., Zémor, G.: Rank quasi cyclic (RQC). First round submission to
the NIST post-quantum cryptography call (Nov 2017), https://pqc-rqc.org

2. Aragon, N., Blazy, O., Gaborit, P., Hauteville, A., Zémor, G.: Durandal: a rank
metric based signature scheme. IACR Cryptology ePrint Archive (2018), https://
eprint.iacr.org/2018/1192

3. Aragon, N., Gaborit, P., Hauteville, A., Ruatta, O., Zémor, G.: Ranksign – a
signature proposal for the NIST’s call. First round submission to the NIST post-
quantum cryptography call (Nov 2017), https://csrc.nist.gov/CSRC/media/

Projects/Post-Quantum-Cryptography/documents/round-1/submissions/

RankSign.zip

https://pqc-rqc.org
https://eprint.iacr.org/2018/1192
https://eprint.iacr.org/2018/1192
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/RankSign.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/RankSign.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/RankSign.zip


4. Bleichenbacher, D., Kiayias, A., Yung, M.: Decoding of interleaved Reed Solomon
codes over noisy data. In: International Colloquium on Automata, Languages, and
Programming. pp. 97–108. Springer (2003)

5. Bombar, M., Couvreur, A.: Decoding supercodes of Gabidulin codes and applica-
tions to cryptanalysis. In: Cheon, J.H., Tillich, J.P. (eds.) Post-Quantum Cryptog-
raphy. pp. 3–22. Springer International Publishing, Cham (2021)

6. Faure, C., Loidreau, P.: A new public-key cryptosystem based on the problem of
reconstructing p-polynomials. In: Coding and Cryptography, International Work-
shop, WCC 2005, Bergen, Norway, March 14-18, 2005. Revised Selected Papers.
pp. 304–315 (2005)

7. Gabidulin, E.M.: Theory of codes with maximum rank distance. Problemy
Peredachi Informatsii 21(1), 3–16 (1985)

8. Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-
commutative ring and their applications to cryptography. In: Advances in Cryp-
tology - EUROCRYPT’91. pp. 482–489. No. 547 in LNCS, Brighton (Apr 1991)
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