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Abstract

Consider an n-ary tree of height m: each leaf has one of k opinions or not. In other
words, for i ∈ {1, . . . , k}, x at generation m thinks i with probability pi and nothing with
probability p0. Moreover the opinions are independently distributed for each leaf.
Opinions spread along the tree based on a specific rule: the majority wins! In this paper, we
study the asymptotic behavior of the distribution of the opinion of the root when m → ∞.

1 Introduction

First let us recall the definition of a Galton Watson tree (GW) and give a few notations. Assume
that N is a N-valued random variable following a distribution q: P(N = i) = qi for i ∈ N. In order
to have a meaningful probabilistic setting, we assume that q0 + q1 = 0 (Bötcher case).
Let ϕ be the root of the tree and Nϕ an independent copy of N . Then, we draw Nϕ children of
ϕ: these individuals are the first generation. In the following we write N for Nϕ for typographical
simplicity. At the m-th generation, for each individual x we pick Nx an independent copy of N
where Nx is the number of children of x and so on. The set T, consisting of the root and its
descendants, forms a GW of offspring distribution q.
We denote by |x| the generation of x and for m ∈ N, Tm = {x ∈ T, |x| ≤ m} the GW cut at height
m and the leaves of Tm are the elements of Tm\Tm−1.
This article is a natural extension of [2] and [5]. Here we want to represent the propagation of an
opinion in a population represented by a GW of height m.
More precisely consider the set of probability vectors Pk defined by

Pk :=

{
p = (p0, . . . ,pk) ∈ (R+)

k :

k∑
i=0

pi = 1 and p0 < 1

}
⊂ Rk+1, (1.1)

and fix p ∈ Pk. Each node of Tm has the opinion {1, . . . , k} according to the following rules:

� Independently of the others, each leaf has an opinion according to p:

P(leaf thinks i) = pi, P(the leaf is undecided) = p0.

� The opinions spread to nodes at generation m− 1 this way:

(R1) the undecided children have no influence, except when the children are all undecided,
in that case their ancestor has no opinion;
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Figure 1: The rules

Figure 2: An example

(R2) if a relative majority of the children shares the same opinion, the ancestor thinks the
same;

(R3) if several opinions are equally represented and the others are less, then the ancestor is
undecided.

� We repeat this step for level m− 2 and so on.

As claimed, we want to determine the asymptotic behavior of the distribution p(m) of the state
at the root of Tm when m goes to infinity:

∀ 1 ≤ i ≤ k, P(root thinks i) = pi(m), P(root is undecided) = p0(m).

The children ϕi of the root ϕ of Tm, with i ∈ {1, . . . , N}, are root nodes of N independent
GW of height m − 1. Then the distribution p(m) = (p0(m),p1(m), . . . ,pk(m)) of the state of
ϕ is completely determined by the distribution p(m − 1) of the independent states of the ϕi,
i ∈ {1, . . . , N}. Let H : Pk → Pk be the function satisfying p(m) = H(p(m− 1)) , cf. (2.2). An
obvious reasoning by induction implies Hm(p) = p(m) ∈ Pk. As a result, our problem consists in
studying the orbits of H in Pk.
In what follows, we assume without loss of generality that p1 > 0 and p1 ≥ · · · ≥ pk. It then holds
H1(p) ≥ · · · ≥ Hk(p) and, if there exists i ∈ {1, . . . , k − 1} such that pi+1 = · · · = pk = 0, then
Hi+1(p) = · · · = Hk(p) = 0 (see remark 2.1.)

It is hence sufficient to study the behavior of H when acting on Pi. If there exists i ∈
{1, . . . , k − 1} such that p1 = · · · = pi > pi+1 ≥ · · · ≥ pk > 0, then i+ 1, . . . , k are called minor
opinions and otherwise, i.e. if p1 = p2 = · · · = pk > 0, we say that we are in the uniform case.
In Section 2, we prove that the major opinions do not vanish when m → ∞, contrary to the minor
opinions, hence our main result follows from the study of the uniform case. The biggest advantage
of the uniform case is to study the fixed points of a function defined on (a subset of) R instead of
those of a function on Pk. It naturally follows that if there is only one major opinion, regardless
of the law of reproduction of N , this opinion spreads a.s. to the root asymptotically.
Although we have stated a very general problem, our results are available in a more restrictive
case: we only consider n-ary trees and two major opinions. This includes in particular a binary
(“for-against”) referendum, an election with two candidates.
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Theorem 1.1 For every k ≥ 2 and p ∈ Pk such that p1 = p2 > p3 ≥ · · · ≥ pk and p1 < 1
2 , p(m)

converges to
(
x̄, (1−x̄)

2 , (1−x̄)
2 , 0k−2

)
when m → ∞, where x̄ is the unique fixed point in (0, 1) of the

function

fn : t ∈ [0, 1] 7−→
∑

k,0≤2k≤n

(
n

2k

)(
2k

k

)(
1− t

2

)2k

tn−2k ∈ [0, 1].

Moreover, the above convergence remains true when p1 = p2 = 1
2 and n is even, whereas p(m) =

(0, 1
2 ,

1
2 , 0k−2) for every m ≥ 0 when p1 = p2 = 1

2 and n is odd.

In Section 3, we give the proof of Theorem 1.1. In fact this theorem is still true in the case of a
GW tree whose support is a finite subset of 2N+1, in this case x̄ is the unique fixed point in (0, 1)
of

f(t) =
∑
n≥1

q2n+1f2n+1(t).

If the support is a subset of 2N, we just have succeed to prove that if there is convergence, it

does to
(
x̄, (1−x̄)

2 , (1−x̄)
2 , 0k−2

)
. We have the attractivity but do not succeed to prove that we have

convergence for all p ∈ Pk.
The general case seems to be unreachable for the moment, we just have proved the existence of
an non-repulsive fixed point, not even its uniqueness. Nevertheless we give an example where
everything works, the geometric law, in Section 4.
In section 3 we also provide bounds for the values of the fixed points αn of the functions fn.
Finally, in Section 5 we make some remarks and give open questions and Section 6 is an Appendix.

2 Reduction to the Uniform case

As stated in the introduction, the aim of the present paper is the study of dynamical systems.
More precisely, given the function H : Pk → Pk defined below, we are interested by the behavior
of the orbits Hℓ(x) of the elements x ∈ Pk (see (1.1)) when ℓ goes to infinity.

First, we need to specify the function H. Summing on the number of children of a “typical”
node and on the number of children with a neutral opinion, the probability that, for i = 1, . . . , k,
the i-th opinion spreads to the leaf of their common ancestor is equal to

∑
n≥2

qn

n−1∑
m0=0

(
n

m0

)
pm0
0

∑
Si
n−m0

(
n−m0

m1,m2, . . . ,mk

) k∏
j=1

p
mj

j , (2.1)

where Si
n = {(m1, . . . ,mk) ∈ Nk,∀j ̸= i,mj < mi ∈ N,

∑k
j=1 mj = n} and

(
n

m1,m2,...,mk

)
is the

multinomial coefficient. Our problem then requires to study the fixed points in Pk of the function
H : Pk → Rk+1 defined by:

Hi(p0, . . . ,pk) =


∑
n≥2

qn
n−1∑
m0=0

(
n
m0

)
pm0
0

∑
Si
n−m0

(
n−m0

m1,m2,...,mk

) k∏
j=1

p
mj

j when i ̸= 0,

1−
k∑

j=1

Hj(p0, . . . ,pn). when i = 0.

(2.2)

Remark 2.1 Note that Pk is stable by H and that, for p ∈ Pk, we can assume without loss of
generality that p1 ≥ · · · ≥ pk (which implies p1 > 0 by definition of Pk, see (1.1)).
In this case, it holds H1(p) ≥ · · · ≥ Hk(p) as well as, for every i ∈ {1, . . . , k}: Hi(p) > 0 if, and
only if, pi > 0.
In particular, if there exists i ∈ {1, . . . , k − 1} such that pi+1 = · · · = pk = 0, then Hi+1(p) =
· · · = Hk(p) = 0 and it is thus sufficient to study H : Pi ⊂ Ri+1 → Pi.
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In what follows we denote, for k ∈ N,

Qk := {p ∈ Pk , p1 ≥ · · · ≥ pk} (2.3)

and according to the previous remark we only need to consider the action of the function H on
Qk.

In the uniform case, i.e. when p1 = · · · = pk ∈ (0, 1
k ], one has simply H(1− kp1,p1, . . . ,p1) =

(1− khk(p1), hk(p1), . . . , hk(p1)), where hk is the real function defined on [0, 1
k ] by

hk(x) =
∑
n≥2

qn

n−1∑
m0=0

(
n

m0

)
(1− kx)m0

∑
S1
n−m0

(
n−m0

m1,m2, . . . ,mk

)
xn−m0 ∈

[
0,

1

k

]
. (2.4)

The study of the fixed points in Qk of H in the uniform case is thus reduced to the study of the
fixed points in (0, 1

k ] of hk. Note also here that 0 is a fixed point of hk which is repulsive, since

h′
k(0) =

∑
n≥2

qn

(
n

n− 1

)∑
S1
1

(
1

m1,m2, . . . ,mk

)
=
∑
n≥2

n qn = E[N ] ≥ 2 .

Let us also recall that the generating function G of N is defined by

∀s ∈ [−1, 1], G(s) = E
[
sN
]
=
∑
n≥0

snP(N = n) =
∑
n≥0

snqn. (2.5)

On (−1, 1), G is C∞ and:

∀k ∈ N, G(k)(s) = E[N(N − 1) . . . (N − k + 1)sN−k] , (2.6)

implying that

∀k ∈ N, G(k)(1−) = E[N(N − 1) . . . (N − k + 1)] and G(k)(0) = k! qk. (2.7)

In particular, we have here G(0) = P(N = 0) = 0, G′(0) = P(N = 1) = 0, and G′(1−) = E[N ] ≥ 2.

Lemma 2.2 Assume that p ∈ Qk and that G(2)(1) is finite. Then, there exists η > 0 such that

∀m ∈ N, p1(m) ≥ β := min{ηaqa,p1} ,

where a := inf{n ≥ 2, qn ̸= 0}.

Proof. For p ∈ Qk, we have p1 > 0, p1 ≥ · · · ≥ pk, and p0 = 1−
∑k

i=1 pi. We get

H1(p) >
∑
n≥2

qn

(
n

n− 1

)∑
S1
1

(
1

m1,m2, . . . ,mk

) k∏
j=1

p
mj

j =
∑
n≥2

qnnp1p
n−1
0

= p1G
′

(
1−

k∑
i=1

pi

)
. (2.8)

Since G(2)(1) = E[N(N − 1)] ∈ R∗
+, one can write

G′(1− t) = G′(1)− tG(2)(1) + ε(t),

where ε(t)
t −→

t→0
0.
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As a result, there exists 0 < η′ < G′(1)/3G(2)(1) such that |ε(t)| ≤ tG(2)(1)
2 when 0 ≤ t ≤ η′.

Then, for 0 ≤ x ≤ η := η′

k and 0 ≤ y ≤ (k − 1)x,

xG′(1− x− y) ≥ x

(
G′(1)− (x+ y)G(2)(1)− (x+ y)

G(2)(1)

2

)
= x

(
G′(1)− 3(x+ y)

G(2)(1)

2

)
≥ x

(
G′(1)− G′(1)

2

)
= x

G′(1)

2
≥ x,

where the last inequality follows from G′(1) = E[N ] ≥ 2.
Thus, according to (2.8), H1(p) ≥ p1 when p1 ≤ η. In addition, when p1 > η :

H1(p) ≥
∑
n≥a

qn

(
n

n− a

)
pn−a
0 pa

1 =
pa
1

a!
G(a)(p0) ≥

pa
1

a!
G(a)(0) ≥ ηaqa > 0.

An obvious recurrence gives the claimed result. □

Remark 2.3 Applying the relation (2.8) to a fixed point (p0,p1, . . . ,pk) ∈ Qk of H we get

p1 = H1(p) >
∑
n≥2

qn

(
n

n− 1

)
pn−1
0 p1 = p1G

′(p0) ,

then, since p1 > 0,
G′(p0) < 1.

The following lemma ensures that the minor opinions can not spread to the root asymptotically:

Lemma 2.4 Assume that G(2)(1) is finite. In the (non uniform) case with i < k ∈ N∗ and p ∈ Qk

such that p1 = · · · = pi > pi+1 ≥ · · · ≥ pk ≥ 0, it holds pj(m) →
m→∞

0 for every j ∈ {i+1, . . . , k}.

Proof. Note that we just have to prove that lim
n→∞

pi+1(n) = 0 when pi+1 > 0. In this case,

writing wn = pi+1(n)
p1(n)

> 0, we can easily see that for every n ≥ 0, wn+1 = wnun, where:

un :=

∑
z≥2

qz

z−1∑
m0=0

(
z

m0

)
pm0
0 (n)

∑
S1
z−m0

(
z −m0

m1,m2, . . . ,mk

)
pm1−1
i+1 (n)p

mi+1

1 (n)

k∏
j=2,j ̸=i+1

p
mj

j (n)

∑
z≥2

qz

z−1∑
m0=0

(
z

m0

)
pm0
0 (n)

∑
S1
z−m0

(
z −m0

m1,m2, . . . ,mk

)
pm1−1
1 (n)p

mi+1

i+1 (n)

k∏
j=2,j ̸=i+1

p
mj

j (n)

.

For every (m1, . . . ,mk) ∈ S1
z−m0

, since p1 > pi+1 > 0, we have that pm1−1
i+1 (n)p

mi+1

1 (n) <

pm1−1
1 (n)p

mi+1

i+1 (n) when mi+1 < m1 − 1, implying that 0 < wn+1 < wn. Thus, (wn) is a positive
decreasing sequence, and consequently converges to some ℓ ≥ 0. Since w0 < 1, note that ℓ < 1.
By compacity, there exists moreover a subsequence nm such that lim

m→∞
pj(nm) = aj for every

j = 0, . . . , k. From Lemma 2.2, we have a1 > 0. Now, assume that ai+1 > 0. Since ℓ < 1, we have
a1 > ai+1 > 0 and, using the definition of un:

lim
m→∞

unm =

∑
z≥2

qz

z−1∑
m0=0

(
z

m0

)
am0
0

∑
S1
z−m0

(
z −m0

m1,m2, . . . ,mk

)
am1−1
i+1 a

mi+1

1

k∏
j=2,j ̸=i+1

a
mj

j

∑
z≥2

qz

z−1∑
m0=0

(
z

m0

)
am0
0

∑
S1
z−m0

(
z −m0

m1,m2, . . . ,mk

)
am1−1
1 a

mi+1

i+1

k∏
j=2,j ̸=i+1

a
mj

j

= ℓ′ < 1.
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This permits us to easily conclude:

ℓ = lim
m→∞

wnm+1 = lim
m→∞

wnm
unm

= ℓℓ′ < ℓ ,

which is a contradiction. Then ai+1 = 0 and consequently pi+1(n) →
n→∞

0. □

Remark 2.5 Actually, for every j ∈ {i + 1, . . . , k}, the convergence pj(m) →
m→∞

0 is exponential,

i.e.
∃ a ∈ (0, 1) , ∃C > 0 , ∀m ∈ N : 0 ≤ pk(m) ≤ · · · ≤ pi+1(m) ≤ Cam . (2.9)

Note that to prove (2.9), it suffices to show that lim sup
n→∞

un < 1, where (un)n≥0 is the positive

sequence introduced in the preceding proof. But since pi+1(m) →
m→∞

0, there exists a sequence

(εn)n≥0 converging to 0 such that:

un =

∑
z≥2

qz

(
z

z − 1

)
pz−1
0 (n) + εn

∑
z≥2

qz

z−1∑
m0=0

(
z

m0

)
pm0
0 (n)

∑
S1
z−m0

(
z −m0

m1,m2, . . . ,mk

)
pm1−1
1 (n)p

mi+1

i+1 (n)

k∏
j=2,j ̸=i+1

p
mj

j (n)

≤

∑
z≥2

qz

(
z

z − 1

)
pz−1
0 (n) + εn

∑
z≥2

qz

(
z

z − 1

)
pz−1
0 (n) +

∑
z≥2

qz

(
z

0

)
pz−1
1 (n)

=
G′(p0(n)) + εn

G′(p0(n)) + p−1
1 (n)G(p1(n))

≤ G′(1− β)

G′(1− β) +G(β)
+

εn
G(β)

−→
n→∞

G′(1− β)

G′(1− β) +G(β)
< 1 ,

which implies lim sup
n→∞

un < 1 and then (2.9).

Proposition 2.6 Let i ≤ k ∈ N∗ and assume that x̄i ∈ (0, 1
i ] is a linear attractor for the function

hi defined in (2.4). Then, x̄ = (1− ix̄i, x̄i, . . . , x̄i, 0k−i) is an attractor for

H : Qk,i := {p ∈ Qk , p1 = · · · = pi > pi+1 ≥ · · · ≥ pk} → Qk,i .

Proof. To prove that x̄ is an attractor, note that it is sufficient to show that all the eigenvalues

of the matrix A := ∂H̃
∂x (y) are in (−1, 1), where y = (x̄i, 0k−i) and H̃ = (H̃1, . . . , H̃k−i+1) =

(H1, Hi+1, . . . ,Hk) is a truncated version of H. For ℓ ∈ {1, . . . , k − i+ 1}, H̃ℓ is then defined by

∑
n≥2

qn

n−1∑
m0=0

(
n

m0

)1− ix1 −
k∑

j=i+1

xj

m0 ∑
Sℓ̃
n−m0

(
n−m0

m1,m2, . . . ,mk

)
x
∑i

j=1 mj

1

k∏
j=i+1

x
mj

j ,

where ℓ̃ = 1 when ℓ = 1 and ℓ̃ = ℓ+ i− 1 when ℓ ∈ {2, . . . , k − i+ 1}.
Let us prove that the matrix A is upper triangular, which will immediately lead to the knowledge

of its spectrum. For this purpose, let us compute ∂H̃ℓ

∂xr
(y) when ℓ̃ ≥ r ∈ {1, i+ 1, . . . , k}.
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First, ∂H̃ℓ

∂xr
(x1, xi+1, . . . , xk) equals, when r = 1,

−
∑
n≥2

qn

n−1∑
m0=0

(
n

m0

)
im0

1− ix1 −
k∑

j=i+1

xj

m0−1 ∑
Sℓ̃
n−m0

(
n−m0

m1,m2, . . . ,mk

)
x
∑i

j=1 mj

1

k∏
j=i+1

x
mj

j

+
∑
n≥2

qn

n−1∑
m0=0

(
n

m0

)1− ix1 −
k∑

j=i+1

xj

m0 ∑
Sℓ̃
n−m0

(
n−m0

m1,m2, . . . ,mk

) i∑
j=1

mj

x
∑i

j=1 mj−1

1

k∏
j=i+1

x
mj

j ,

and, when r ∈ {i+ 1, . . . , k},

−
∑
n≥2

qn

n−1∑
m0=0

(
n

m0

)
m0

1− ix1 −
k∑

j=i+1

xj

m0−1 ∑
Sℓ̃
n−m0

(
n−m0

m1,m2, . . . ,mk

)
x
∑i

j=1 mj

1

k∏
j=i+1

x
mj

j

+
∑
n≥2

qn

n−1∑
m0=0

(
n

m0

)1− ix1 −
k∑

j=i+1

xj

m0 ∑
Sℓ̃
n−m0

(
n−m0

m1,m2, . . . ,mk

)
x
∑i

j=1 mj

1 mrx
mr−1
r

k∏
j=i+1,̸=r

x
mj

j .

Thus, by evaluating at y = (x̄i, 0k−i):

� When ℓ = r = 1,

∂H̃1

∂x1
(y) = −

∑
n≥2

qn

n−1∑
m0=0

(
n

m0

)
im0 (1− ix̄i)

m0−1
∑

S1
n−m0

(
n−m0

m1,m2, . . . ,mk

)
x̄
∑i

j=1 mj

i

k∏
j=i+1

0mj

+
∑
n≥2

qn

n−1∑
m0=0

(
n

m0

)
(1− ix̄i)

m0
∑

S1
n−m0

(
n−m0

m1,m2, . . . ,mk

) i∑
j=1

mj

x̄
∑i

j=1 mj−1

i

k∏
j=i+1

0mj

= −
∑
n≥2

qn

n−1∑
m0=0

(
n

m0

)
im0 (1− ix̄i)

m0−1
∑

S1
n−m0

(
n−m0

m1, . . . ,mi, 0k−i

)
x̄n−m0
i

+
∑
n≥2

qn

n−1∑
m0=0

(
n

m0

)
(1− ix̄i)

m0
∑

S1
n−m0

(
n−m0

m1, . . . ,mi, 0k−i

)
(n−m0)x̄

n−m0−1
i

= h′
i(x̄i) ,

where the function hi has been defined in (2.4).

� When ℓ̃ > r = 1,

∂H̃ℓ

∂x1
(y) = −

∑
n≥2

qn

n−1∑
m0=0

(
n

m0

)
im0 (1− ix̄i)

m0−1
∑

Sℓ̃
n−m0

(
n−m0

m1,m2, . . . ,mk

)
x̄
∑i

j=1 mj

i

k∏
j=i+1

0mj

+
∑
n≥2

qn

n−1∑
m0=0

(
n

m0

)
(1− ix̄i)

m0
∑

Sℓ̃
n−m0

(
n−m0

m1,m2, . . . ,mk

) i∑
j=1

mj

x̄
∑i

j=1 mj−1

i

k∏
j=i+1

0mj

= 0 .
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� Lastly, when ℓ̃ ≥ r > 1,

∂H̃ℓ

∂xr
(y) = −

∑
n≥2

qn

n−1∑
m0=0

(
n

m0

)
m0 (1− ix̄i)

m0−1
∑

Sℓ̃
n−m0

(
n−m0

m1,m2, . . . ,mk

)
x̄
∑i

j=1 mj

i

k∏
j=i+1

0mj

+
∑
n≥2

qn

n−1∑
m0=0

(
n

m0

)
(1− ix̄i)

m0
∑

Sℓ̃
n−m0

(
n−m0

m1,m2, . . . ,mk

)
x̄
∑i

j=1 mj

i mr0
mr−1

k∏
j=i+1,̸=r

0mj

=
∑
n≥2

qn

n−1∑
m0=0

(
n

m0

)
(1− ix̄i)

m0
∑

Sℓ̃
n−m0

(
n−m0

m1,m2, . . . ,mk

)
x̄
∑i

j=1 mj

i mr0
mr−1

k∏
j=i+1,̸=r

0mj

which, when ℓ̃ > r, equals 0 and, when ℓ̃ = r, equals

∑
n≥2

qn

n−1∑
m0=0

(
n

m0

)
(1− ix̄i)

m0

(
n−m0

0ℓ̃−1, 1, 0k−ℓ̃

)
=
∑
n≥2

nqn(1− ix̄i)
n−1 = G′(1− ix̄i).

As claimed, A is thus upper triangular and its spectrum is {h′
i(x̄i), G

′(1− ix̄i)}. Moreover, h′
i(x̄i)

belongs to (−1, 1) by assumption and, according to Remark 2.3, G′(1− ix̄i) also belongs to (−1, 1)
(since H(x̄) = x̄ ∈ Qk). The statement of Proposition 2.6 follows. □

The following proposition is an adaptation of Proposition 3.11 in [5].

Proposition 2.7 Assume that G(2)(1) is finite. Fix i ≥ 1 and assume that p(m) converges to
(1 − ix̄i, x̄i, . . . , x̄i) in the uniform case with p1 = · · · = pi = a, for all a ∈ (0, 1

i ]. Then
x̄i ∈ (0, 1

i ] and, in the (non uniform) case with k > i and any p ∈ Qk,i, p(n) converges to
(1− ix̄i, x̄i, . . . , x̄i, 0k−i).

Proof. Assume that in the uniform case with p1 = · · · = pi > 0, p(m) converges to (1− ix̄i, x̄i, . . . ,
x̄i). Then x̄i ∈ [0, 1

i ] is a fixed point of hi (see (2.4)) and, according to Lemma 2.2, x̄i > 0.
Moreover, if k > i, p1 = · · · = pi > 0, and pj = 0 for j = i + 1, . . . , k, then p(m) obviously
converges to (1− ix̄i, x̄i, . . . , x̄i, 0k−i). We want to extend this result to the case when p1 = · · · =
pi > pi+1 ≥ · · · ≥ pk ≥ 0 and pi+1 > 0.
Let us again consider the truncated version of H, H̃ = (H̃1, . . . , H̃k−i+1) = (H1, Hi+1, . . . ,Hk),
where, for ℓ ∈ {1, . . . , k + i− 1}, H̃ℓ is defined by

∑
n≥2

qn

n−1∑
m0=0

(
n

m0

)1− ix1 −
k∑

j=i+1

xj

m0 ∑
Sℓ̃
n−m0

(
n−m0

m1,m2, . . . ,mk

)
x
∑i

j=1 mj

1

k∏
j=i+1

x
mj

j ,

where ℓ̃ = 1 when ℓ = 1 and ℓ̃ = ℓ+ i− 1 when ℓ ∈ {2, . . . , k − i+ 1}. Let us also define the set

Q̃k,i :=

(x1, . . . , xk−i+1) ∈ Rk−i+1,
1

i
≥ x1 > x2 ≥ x3 ≥ · · · ≥ xk−i+1 ≥ 0, ix1 +

k−i+1∑
j=2

xj ≤ 1

 .

Let us show that, for every p ∈ Q̃k,i, H̃
m(p) converges to x̄ = (x̄i, 0k−i), which is equivalent to

the convergence result stated in Proposition 2.7. We fix p = (p1,pi+1,pi+2, . . . ,pk) ∈ Q̃k,i and

recall from Lemma 2.2 that, for every m ∈ N,
(
H̃m(p)

)
1
= p1(m) ≥ β := min{ηaqa,p1}.

As x̄i is an attracting fixed point of hi, for every ε > 0 small enough, B(x̄i, ε/2) is hi-invariant.
Now, while noting that H̃m(x, 0k−i) = (hm

i (x), 0k−i) for every m ∈ N, we define Em := {x ∈ [0, 1] :

8



hm
i (x) ∈ B(x̄i, ε/2)} for some arbitrarily small ε > 0. The sequence (Em)m≥0 is an ascending chain

of sets and from the convergence in the uniform case,

[β, 1/i] ⊂
⋃
m≥0

Em.

As the inverse image of an open set of R by a continuous function, Em is an open set for all m ∈ N.
Since (Em)m≥0 is an increasing sequence of open sets covering the compact [β, 1/i], there exists N ∈
N such that

[β, 1/i] ⊂
N⋃

m=0

Em = EN ,

implying that: ∀x ∈ [β, 1/i], H̃N (x, 0k−i) ∈ B(x̄i, ε/2)× {0}k−i ⊂ B(x̄, ε/2).

On the closed bounded set G := [β, 1/i] × Rk−i
+ ∩ Q̃k,i, H̃

N is uniformly continuous and thus
there exists δ > 0 such that

∀(x, y), (x′, y′) ∈ G , ∥(x, y)− (x′, y′)∥ ≤ δ ⇒ ∥H̃N (x, y)− H̃N (x′, y′)∥ ≤ ε/2.

According to Lemma 2.4, pj(m) =
(
Hm(p)

)
j
→ 0 for every j ∈ {i+1, . . . , k}. Consequently, there

exists N1 ∈ N such that, for every m ∈ N: m ≥ N1 implies ∥(pi+1(m), . . . ,pk(m))∥ ≤ δ and then

∥H̃N (p1(m),pi+1(m), . . . ,pk(m))− H̃N (p1(m), 0k−i)∥ ≤ ε/2.

Thus, for every m ≥ N1, the fact that p1(m) ∈ [β, 1/i] implies:

A : = ∥(p1(m+N),pi+1(m+N), . . . ,pk(m+N))− x̄∥
= ∥H̃N (p1(m),pi+1(m), . . . ,pk(m))− x̄∥
≤ ∥H̃N (p1(m),pi+1(m), . . . ,pk(m))− H̃N (p1(m), 0k−i)∥+ ∥H̃N (p1(m), 0k−i)− x̄∥
≤ ε/2 + ε/2 = ε,

which concludes the proof of Proposition 2.7 since ε > 0 is arbitrarily small. □

Remark 2.8 It is not difficult to prove that if we have just one major opinion, it spreads almost
surely to the root. Indeed, in the “uniform” case with only one opinion, according to the rules, the
probability that in a GW of height m the unique opinion does not spread to the root is equal to:

p0(m) =
∑
n≥2

qnp
n
0 (m− 1) = G(p0(m− 1)) = Gm(p0).

Since N ≥ 2 a.s., G is strictly convex on [0, 1] with 0 and 1 as sole fixed points. It follows that :

∀p0 ∈ [0, 1) , lim
m→∞

Gm(p0) = 0 and thus ∀p1 ∈ (0, 1] , lim
m→∞

p1(m) = 1 .

Proposition 2.7 then ensures the convergence in the non uniform case with one major opinion.

Conclusion : From the above results, one deduces that:

� For any p ∈ Qk, defining i := max
{
ℓ ∈ {1, . . . , k} ,pℓ = p1

}
∈ {1, . . . , k}, we have

pj(m) →
m→∞

0 for every j ∈ {i+ 1, . . . , k}.
The accumulation points of the sequence (Hℓ(p))ℓ≥0 have thus the form (1−ix̄i, x̄i, . . . , x̄i, 0k−i)
where, according to Lemma 2.2, x̄i ∈ (0, 1

i ].
In particular, the fixed points (resp. them-cycles) ofH in Qk are the (1−ix̄i, x̄i, . . . , x̄i, 0k−i),
where i ∈ {1, . . . , k} and x̄i is a fixed point (resp. a m-cycle) of hi in (0, 1

i ].
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� Recall that, for i ≤ k ∈ N∗, Qk,i := {p ∈ Qk , p1 = · · · = pi > pi+1} and H(Qk,i) ⊂ Qk,i.
Proposition 2.6 implies that (1− ix̄i, x̄i, . . . , x̄i, 0k−i) is an attractor for H : Qk,i → Qk,i, if
x̄i is a linear attractor for hi in (0, 1

i ]. Conversely, if (1− ix̄i, x̄i, . . . , x̄i, 0k−i) is an attractor
for H : Qk,i → Qk,i, then x̄i ∈ (0, 1

i ] is obviously an attractor for hi.
Finally, according to Proposition 2.7, if the basin of attraction of an attractor x̄i for hi in
(0, 1

i ] is (0, 1
i ], then the basin of attraction of (1 − ix̄i, x̄i, . . . , x̄i, 0k−i) for H : Qk → Qk is

Qk,i, and the converse is clearly true.

3 The 2 opinions case or the second run of an election

In this section, we only consider n-ary trees, n ≥ 2, and two major opinions. Moreover, contrary
to the previous section, we study the probability that the “neutral” opinion spreads, i.e. that in
a group of n individuals, no opinion has a majority. With in mind the results of the preceding
section, we focus on the uniform case: if t ∈ [0, 1] is the probability that a given individual gives
a white vote, the probability of each opinion is 1−t

2 and the probability of the groupe to come up
undecided is then given by

H0

(
t,
1− t

2
,
1− t

2

)
= 1− 2h2

(
1− t

2

)
:= fn(t) =

∑
k,0≤2k≤n

(
n

2k

)(
2k

k

)(
1− t

2

)2k

tn−2k.

We will thus study the fixed points of fn in [0, 1), or equivalently the fixed point of h2 in (0, 1
2 ].

We start by a crucial remark providing an integral formula for the functions fn.

Lemma 3.1 For all 0 ≤ t ≤ 1:

fn(t) =
1

π

∫ π

0

((1− t) cosx+ t)
n
dx. (3.1)

Proof. Recall the Wallis integral for all k ≥ 0:∫ π
2

0

cos2k xdx =
π

2

(2k)!

(k!2k)2
=

π

22k+1

(
2k

k

)
⇔ 1

2π

∫ π

−π

cos2k xdx =
1

22k

(
2k

k

)
(3.2)

and note that, using the substitution u = π
2 − x :∫ π

0

cos2k+1 xdx =

∫ π
2

−π
2

sin2k+1 udu = 0. (3.3)

Then, using (3.2) and (3.3), we can write:

fn(t) =
∑

k,0≤2k≤n

(
n

2k

)
(1− t)

2k
tn−2k 1

22k

(
2k

k

)

=
∑

k,0≤2k≤n

(
n

2k

)
(1− t)

2k
tn−2k 1

2π

∫ π

−π

cos2k xdx

=
∑

k,0≤k≤n

(
n

k

)
(1− t)

k
tn−k 1

2π

∫ π

−π

cosk xdx

=
1

2π

∫ π

−π

∑
k,0≤k≤n

(
n

k

)
(1− t)

k
tn−k cosk xdx =

1

2π

∫ π

−π

((1− t) cosx+ t)ndx,
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and we easily conclude using the parity. □
There is a more elegant way to prove Lemma 3.1 by using Fourier series: let us consider the

random walk on L2(S1), the space of square integrable functions on the circle, defined on its usual
(ek = eikx)k∈Z basis by

Z0 = 1 and P(Zn+1 = ek|Zn = eℓ) =
1− p

2
1k=ℓ−1 +

1− p

2
1k=ℓ+1 + p1k=ℓ,

where 0 ≤ p ≤ 1. We have that
fn(p) = P(Zn = 1).

The (infinite) matrix associated to the walk is

A =



...
. . .

. . .
. . .

. . .
. . . · · ·

...

0 · · · p 1−p
2 0 0 · · · 0

0 · · · 1−p
2 p 1−p

2 0 · · · 0

0 · · · 0 1−p
2 p 1−p

2 · · · 0

0 · · · 0 0 1−p
2 p · · · 0

... · · ·
. . .

. . .
. . .

. . .
. . .

...


,

so that A applied to eℓ equals 1−p
2 eℓ−1 +

1−p
2 eℓ+1 + peℓ. Let L be the associated linear operator

on L2(S1). A straightforward easy computation shows that L(eiℓx) = ((1− p) cosx+ p) eiℓx, which
implies that L is a scalar operator :

L : L2(S1) ∋ h 7→ ((1− p) cosx+ p)h ∈ L2(S1)

and therefore the iterated operator Ln is given by

Ln(h) = ((1− p) cosx+ p)
n
h.

On the other hand,

P(Zn = 1) =< Ane0, e0 >=< Ln1,1 >=
1

2π

∫ 2π

0

((1− p) cosx+ p)
n
dx.

Remark 3.2 As a polynomial of degree n, fn ∈ C∞([0, 1]) and, for every k ∈ {0, . . . , n}:

f (k)
n (t) =

1

π

n!

(n− k)!

∫ π

0

(1− cosx)k(t(1− cosx) + cosx)n−kdx. (3.4)

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 3: n = 4 (blue), n = 3 (orange)
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Lemma 3.3 For all n ≥ 2, the function fn admits in (0, 1) a unique fixed point αn, and αn < 1/2.

Proof. To prove the unicity, we have to distinguish two cases according to the parity of n.

� Odd case:
Using Lemma 3.1, Remark 3.2 and (3.2) (see also (6.6), which implies the inequality in (3.6)),
we have:

fn(0) =
1

π

∫ π

0

cosn dx = 0 and fn(1) =
1

n

∫ π

0

dx = 1, (3.5)

f ′
n(0) =

n

π

(∫ π

0

cosn−1 xdx−
∫ π

0

cosn xdx

)
=

n

2n−1

(
n− 1
n−1
2

)
> 1, (3.6)

f ′
n(1) =

n

π

∫ π

0

(1− cosx)dx = n > 1, (3.7)

implying that fn has at least one fixed point in (0, 1). Note that the formulas (3.5) are direct
with the spreading rules.
Moreover, Remark 3.2 with k = 3 gives (note that n ≥ 3 since n is odd):

∀t ∈ [0, 1], f (3)
n (t) =

1

π

n!

(n− 3)!

∫ π

0

(1− cosx)3(t(1− cosx) + cosx)n−3dx > 0,

implying that fn has at most three fixed points in [0, 1]. As a result, fn has a unique fixed
point αn in (0, 1).

� Even case:
Since fn(0) =

n
2n

(
n
n
2

)
> 0, fn(1) = 1 and f ′

n(1) = n > 1, we deduce that fn has at least one

fixed point in (0, 1). Using again Remark 3.2, fn is strictly convex in [0, 1] and has thus at
most two fixed points in this interval. As a result, fn has a unique fixed point αn in (0, 1).

Thanks to the unicity of αn, we just have to show f(1/2) < 1/2 to obtain αn < 1/2.
According to the formula (6.3) of Lemma 6.3:

fn

(
1

2

)
=

1

2n

∑
k,0≤2k≤n

2−2k

(
n

2k

)(
2k

k

)
=

1

22n

(
2n

n

)
=: ξ2n. (3.8)

As ξ2 = 1/2 and (ξ2n)n≥0 is a strictly decreasing sequence according to Lemma 6.5, ξ2n < 1/2 for
all n ≥ 2. □

Remark 3.4 If we look at the GW case, we have to study the fixed points in [0, 1) of:

f : t ∈ [0, 1] 7→
∑
n≥2

qnfn(t).

With similar arguments as those of the previous proof, it is not difficult to prove the existence of a
fixed point α ∈ (0, 1/2), since

f(1) = 1, f ′(1) = E[N ] > 1, and f(1/2) < 1/2.

Indeed, if f(0) =
∑

n≥1 q2nf2n(0) > 0, we have our result and, otherwise, q2n = 0 for every n ≥ 1,
so f ′(0) =

∑
n≥1 q2n+1f

′
2n+1(0) > 1 and we can easily conclude.

Moreover, if the support of N is a subset of 2N or of 2N + 1, we have the unicity of α by the
arguments used in the previous proof.
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Figure 4: n = 3 (blue), n = 5 (orange), n = 7 (green) and n = 9 (red)

3.1 The odd case

3.1.1 Basin of attraction of the fixed point αn

Proposition 3.5 For all odd n ≥ 2, (0, 1) is the basin of attraction of αn.

Proof. The unicity of the fixed point αn and formulas (3.5)-(3.7) imply

fn(x) > x,∀x ∈ (0, αn) and fn(x) < x,∀x ∈ (αn, 1). (3.9)

Now we define the recursive sequence (um) by u0 = x0 and um+1 = fn(um) for m ≥ 0. Since

∀t ∈ [0, 1] , f ′
n(t) =

n

π

∫ π

0

(1− cosx)(t(1− cosx) + cosx)n−1dx > 0,

the function fn is strictly increasing on [0, 1] and a simple reasoning shows that if x0 ∈ (0, α), (um)
is strictly increasing and bounded above by α, and if x0 ∈ (α, 1), (um) is strictly decreasing and
bounded below by α. As a consequence, for all x0 ∈ (0, 1):

lim
m→∞

um = α.

□

Remark 3.6 1. Note that αn is a linear attractor of fn, i.e. f ′
n(αn) ∈ (−1, 1). Indeed, it holds

obviously f ′
n(αn) ∈ (0, 1] by the preceding proof. Moreover, the equality f ′

n(αn) = 1 would

imply that αn is an inflection point of fn and then that f
(2)
n (αn) = 0, which would lead to

fn(t) > t on (αn, 1] since f
(2)
n is strictly increasing on [0, 1], a contradiction.

2. The reasoning here can be applied for a GW with a reproduction law whose support is a subset
of 2N+1. Indeed, the studied function f =

∑
n≥1 q2n+1fn is then strictly increasing on [0, 1]

and admits a unique fixed point on this interval.

3.1.2 Proof of Theorem 1.1 in the odd case

Note first that the statement of Theorem 1.1 is obvious when n is odd and p1 = p2 = 1
2 , since 0

is a fixed point of fn and thus (0, 1
2 ,

1
2 , 0k−2) is a fixed point of H.

It thus remains to prove Theorem 1.1 when n is odd and p1 = p2 ∈ (0, 1
2 ). To this end, let

us fix p ∈ Qk (with k ≥ 2) such that p1 = p2 ∈ (0, 1
2 ) and p2 > p3 ≥ · · · ≥ pk ≥ 0, and let us

assume for a moment that there exists β′ > 0 such that p0(m) ≥ β′ for every m > 0. It then holds

13



0 < β ≤ p1(m) ≤ 1−β′

2 < 1
2 for every m > 0. Thus, with the same arguments as those used in the

proof of Proposition 2.7, but working now with the compact set [β, 1−β′

2 ] ⊂ (0, 1
2 ) instead of [β, 1

2 ],
one shows that

p(m) −→
(
αn,

1− αn

2
,
1− αn

2
, 0k−2

)
when m → ∞.

To conclude, let us then prove that when p1 = p2 ∈ (0, 1
2 ), there exists β′ > 0 such that

p0(m) ≥ β′ for every m > 0.
First, let us observe from the spreading rules that if p0(ℓ) > 0 for some ℓ ∈ N, then p0(m) > 0

for every m ≥ ℓ. In particular, p0(m) > 0 for every m ∈ N when p0 > 0 and, when p0 = 0, then
k ≥ 3 and p3 > 0, which implies p0(1) > 0 (also from the spreading rules, since n ≥ 3 is odd).
Consequently: p0(m) > 0 for every m > 0.

Moreover, note from the spreading rules that for every m > 0,

p0(m+ 1) = H0(p0(m), . . . ,pk(m)) ≥
∑

k,0≤2k≤n

(
n

2k

)(
2k

k

)
p2k
1 (m)pn−2k

0 (m) . (3.10)

Using now Remark 2.5 and 1−p0(m) ≥ 2β, note also that there exist C = 2βD > 0 and a ∈ (0, 1)

such that for every m > 0,
∑k

ℓ=3 pℓ(m) ≤ Cam and thus

2p1(m) = 1− p0(m)−
k∑

ℓ=3

pℓ(m) ≥
(
1− p0(m)

)(
1− 1

2β

k∑
ℓ=3

pℓ(m)
)
≥
(
1− p0(m)

)(
1−Dam

)
.

Take m0 ∈ N∗ and b ∈ (a, 1) such that Dam ≤ bm for every m ≥ m0. It then follows from (3.9)
and (3.10) that:

∀m ≥ m0 , p0(m+ 1) ≥ (1− bm)n
∑

k,0≤2k≤n

(
n

2k

)(
2k

k

)(
1− p0(m)

2

)2k

pn−2k
0 (m)

= (1− bm)nfn(p0(m)) ≥ (1− bm)n min{p0(m), αn}.

Reasoning by induction thus leads to:

∀m ≥ m0 , p0(m) ≥ min{p0(m0), αn}
m−1∏
ℓ=m0

(1− bℓ)n ≥ min{p0(m0), αn}An ,

where A :=
∏+∞

ℓ=m0
(1−bℓ) is positive since the convergence of the Neumann series

∑
ℓ≥m0

bℓ implies

the one of
∑

ℓ≥m0
ln(1−bℓ) to the real negative number B = ln(A). It follows that for every m > 0,

p0(m) ≥ β′ := min{Anαn, A
np0(m0),p0(m0 − 1), . . . ,p0(1)} > 0 ,

which concludes the proof of Theorem 1.1 in the odd case.

Remark 3.7 The preceding proof can be adapted to the GW case with a finite support included in
2N+ 1, by replacing (1− bm)n with (1− bm)b where b := sup{n > 0 ; qn ̸= 0}.

3.2 The even case

3.2.1 The fixed point αn is a linear attractor

Proposition 3.8 For all even n ≥ 2, αn is a linear attractor.
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Figure 5: n = 2 (blue), n = 4 (orange), n = 6 (green) and n = 10 (red)

The only difficulty to obtain this statement is to prove that f ′
n(αn) > −1. Indeed, since

fn(0) > 0 and f ′
n(1) > 1 = fn(1), the unicity of αn leads to

fn(x) > x,∀x ∈ (0, αn) and fn(x) < x,∀x ∈ (αn, 1) ,

and hence f ′(αn) ≤ 1. Since moreover f is strictly convex on [0, 1], we have f ′(αn) < 1 since the
equality f ′(αn) = 1 would imply fn(x) > x on [0, 1], a contradiction.

A direct proof of Proposition 3.8 using integral estimates relying on the relation (3.1) is proposed
in the following subsection. Nevertheless, we would like to point out that we have come up with a
totally independent proof using Budan’s theorem. This proof has its own interest since it can be
applied to prove the attractivity of a fixed point in the more general setting of GW, see Remark
3.10.

Lemma 3.9 For all even n ≥ 2, the function

γ : t ∈ [0, 1] 7−→ tfn(t) =
∑

k,0≤2k≤n

(
n

2k

)(
2k

k

)(
1− t

2

)2k

tn+1−2k ∈ R,

is strictly increasing on (0, 1/2).

Proof. Writing:

(
(1− t)

2k
tn+1−2k

)′
= tn

(
1− t

t

)2k−1(
1

t
(n+ 1− 2k)− (n+ 1)

)
,

the inequality γ′(t) > 0 for t ∈ (0, 1
2 ) is equivalent to:

∀ t ∈ (0,
1

2
) ,

∑
k,0≤2k≤n

2−2k

(
n

2k

)(
2k

k

)(
1− t

t

)2k−1(
1

t
(n+ 1− 2k)− (n+ 1)

)
> 0.

Using the substitution s = 1−t
t ⇔ t = 1

1+s , it is equivalent to prove on (1,+∞):

g(s) : =
∑

k,0≤2k≤n

2−2k

(
n

2k

)(
2k

k

)
s2k−1 ((1 + s)(n+ 1− 2k)− (n+ 1))

=
∑

k,0≤2k≤n

2−2k

(
n

2k

)(
2k

k

)
s2k−1 (s(n+ 1− 2k)− 2k) > 0.
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In order to use Theorem 6.1, we need the ℓ-th derivatives of the function g for 0 ≤ ℓ ≤ n and
their values at the limits of the interval (1,+∞). As:

dℓ

dsℓ
(s2k) =

(2k)!

(2k − ℓ)!
s2k−ℓ,

dℓ

dsℓ
(2ks2k−1) =

(2k)!

(2k − ℓ)!
(2k − ℓ)s2k−ℓ−1,(

n

2k

)
=

n!

(n− ℓ)!

(
n− ℓ

2k − ℓ

)
(2k − ℓ)!

(2k)!
,

we obtain:

g(ℓ)(s) =
n!

(n− ℓ)!

∑
k,ℓ≤2k≤n

2−2k

(
2k

k

)(
n− ℓ

2k − ℓ

)
s2k−ℓ−1 (s(n+ 1− 2k)− (2k − ℓ)) . (3.11)

Since n is even and 2k ≤ n for every k considered in the sum in (3.11),

g(ℓ)(s) ∼
s→∞

sn−ℓ2−n

(
n
n
2

)
n!

(n− ℓ)!
> 0,∀ℓ ∈ J0, nK.

Moreover, according again to (3.11), for every ℓ ∈ J0, nK:

g(ℓ)(1) =
n!

(n− ℓ)!

∑
k,ℓ≤2k≤n

2−2k

(
2k

k

)(
n− ℓ

2k − ℓ

)
(n+ 1 + ℓ− 4k) .

The sign of g(ℓ)(1), and thus of∑
k,ℓ≤2k≤n

2−2k

(
2k

k

)(
n− ℓ

2k − ℓ

)
(n+ 1 + ℓ− 4k) :=

∑
k,ℓ≤2k≤n

µkαk ,

where αk := n + 1 + ℓ − 4k, is difficult to obtain directly. As (αk)k≥0 is a decreasing sequence,
the main idea is to use Lemma 6.2 to bound below this sum with a quantity that we are able to
compute. Defining

νk :=

(
n− ℓ

2k − ℓ

)
, it holds

µk

νk
= 2−2k

(
2k

k

)
= ξ2k ,

and, as (ξ2k)k≥0 is a decreasing sequence (see Lemma 6.5), we can apply Lemma 6.2 which gives:∑
k,ℓ≤2k≤n µkαk∑
k,ℓ≤2k≤n µk

≥
∑

k,ℓ≤2k≤n νkαk∑
k,ℓ≤2k≤n νk

=

∑
k,ℓ≤2k≤n

(
n−ℓ
2k−ℓ

)
(n+ 1 + ℓ− 4k)∑

k,ℓ≤2k≤n

(
n−ℓ
2k−ℓ

) .

Moreover, according to (6.2) and to (6.4):∑
k,ℓ≤2k≤n

νkαk = (n− ℓ+ 1)
∑

k,ℓ≤2k≤n

(
n− ℓ

2k − ℓ

)
− 2

∑
k,ℓ≤2k≤n

(
n− ℓ

2k − ℓ

)
(2k − ℓ)

=


(n− ℓ+ 1)2n−ℓ−1 − 2(n− ℓ)2n−ℓ−2 if ℓ ∈ {0, . . . , n− 2},
(n− ℓ+ 1)2n−ℓ−1 − 2 if ℓ = n− 1,

1 if ℓ = n,

=


2n−ℓ−1 if ℓ ∈ {0, . . . , n− 2},
0 if ℓ = n− 1,

1 if ℓ = n.

16



It follows that g(ℓ)(1) ≥ 0 for every ℓ ∈ J0, nK, so we have proved that g(ℓ)(1) and g(ℓ)(+∞) have
always the same sign. According to Theorem 6.1, the number of roots of g in (1,+∞) is thus zero
and hence g > 0 on (1,+∞) since lim

t→+∞
g(t) = +∞. □

Proof of Proposition 3.8
Using fn(αn) < 1 and Lemma 3.9, the proof of Proposition 3.8 is straightforward:

∀ t ∈ (0, 1/2) , γ′(t) = fn(t) + tf ′
n(t) > 0 ⇔ f ′

n(t) > −fn(t)

t
,

and taking t = αn leads to f ′
n(αn) > −1.

Remark 3.10 The statement of Lemma 3.9 remains actually true when n ≥ 2 is odd. It follows
that in the GW case, the function

t 7→ tf(t) =
∑
n≥2

qntfn(t)

is strictly increasing on (0, 1/2). In particular, we have f ′(α) > −1 for every fixed point α ∈ (0, 1
2 ).

Recall moreover (Remark 3.4) that f admits at least one fixed point in (0, 1
2 ) and that, either

f(0) = 0 and f ′(0) > 1, or f(0) > 0. Hence, denoting by α the smallest fixed point in (0, 1
2 ), we

have necessarily −1 < f ′(α) ≤ 1, which almost implies the linear attractivity of α.
Furthermore, when the support of q is included in 2N, the convexity of f implies the attractivity of
its unique fixed point.

3.2.2 Basin of attraction of the fixed point αn

The attractivity of αn is not enough to obtain the even case in Theorem 1.1. In order to apply
Proposition 2.7, we have to prove that the basin of attraction of αn is [0, 1).

The proof is carried out in two steps. First, we prove the existence of n0 ∈ N such that
f ′
n(αn) > 0 for every even n > N0, which implies that the basin of attraction of αn is [0, 1)
when n > n0. Secondly, we prove numerically that the basin of attraction of αn is also [0, 1) for
every even 2 ≤ n ≤ n0. Moreover, we estimate the constants appearing in the computations with
precision in order to minimize n0 and then the number of values of n for which we have to check
the result numerically.

Lemma 3.11 For all even n ∈ N∗ and all t ∈ [0, 1],

fn(t) ≥
1√

2π(n+ 1)
. (3.12)

Proof. Let us simply note that for every even n ∈ N∗ and every t ∈ [0, 1],

fn(t) =
1

π

∫ π
2

0

((1− t) cosx+ t)
n
dx+

1

π

∫ π

π
2

((1− t) cosx+ t)
n
dx

≥ 1

π

∫ π
2

0

(cosx)
n
dx ≥ 1√

2π(n+ 1)
,

where the last inequality follows from standard estimates on Wallis integrals, see (6.5). □

Remark 3.12 Lemma 3.11 implies in particular αn ≥ 1√
2π(n+1)

for every even n ∈ N∗.
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Let us now recall two classical results, obtained by integration by parts, which will be useful in the
sequel: if X follows the standard normal distribution, then

∀x > 0 , P(X ≥ x) =
1√
2π

∫ ∞

x

e−
u2

2 du ≤ e−
x2

2

x
√
2π

, (3.13)

and ∀n ∈ N , E
[
X2n

]
=

(2n)!

2nn!
. (3.14)

On one hand, using (3.13):

1

π

∫ 1

0

e−n x2

2 dx =

√
2

nπ

(
1√
2π

∫ √
n

0

e−
u2

2 du

)
=

√
2

nπ

(
1

2
− P(X ≥

√
n)

)

≥
√

2

nπ

(
1

2
− e−

n
2

√
2πn

)
=

1√
2πn

− e−
n
2

πn
.

Lemma 3.13 There exists n0 ∈ N such that for all even n > n0, we have f ′
n

(
1√

2π(n+1)

)
> 0.

Proof. Recall that:

f ′
n(x) =

n

π

∫ π

0

(1− cos t) ((1− x) cos t+ x)
n−1

dt.

Let ζn = 1√
2π(n+1)

. We have

π

n
f ′
n(ζn) =

∫ 1

0

(1− cos t) ((1− ζn) cos t+ ζn)
n−1

dt +

∫ π

1

(1− cos t) ((1− ζn) cos t+ ζn)
n−1

dt

= A + B.

Using successively that cosu ≤ 1− u2
/2+ u4

/4!, cosu ≥ 1− u2
/2, and ln(1− u2

/2) + u2
/2 ≥ −u4

/4 on
[0, 1], and eu − 1 ≥ u on R, we obtain

A =

∫ 1

0

(1− cos t) ((1− ζn) cos t+ ζn)
n−1

dt ≥
∫ 1

0

(
t2

2
− t4

4!

)
e(n−1) ln(cos t)dt

≥
∫ 1

0

(
t2

2
− t4

4!

)
e−(n−1) t2

2 dt− (n− 1)

∫ 1

0

(
t2

2
− t4

4!

)
t4

4
e−(n−1) t2

2 dt

≥
∫ 1

0

(
t2

2
− t4

4!

)
e−(n−1) t2

2 dt− (n− 1)

∫ 1

0

t6

8
e−(n−1) t2

2 dt

≥
∫ 1

0

t2

2
e−(n−1) t2

2 dt−
∫ 1

0

t4

4!
e−(n−1) t2

2 dt− (n− 1)

∫ 1

0

t6

8
e−(n−1) t2

2 dt =: D − (E + F ).

It is an easy task to see that with the substitution u = t
√
n− 1 and (3.14):

E + F√
2π

≤ (n− 1)−
5/2

(
E[X4]

2× 4!
+

E[X6]

16

)
= (n− 1)−

5/2. (3.15)
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In order to bound below D, we use integration by parts, (3.14) and (3.13):

D√
2π

≥ (n− 1)−
3/2 1

2
√
2π

∫ √
n−1

0

u2e−
u2

2 du = (n− 1)−
3/2

(
E[X2]

4
− 1

2
√
2π

∫ ∞

√
n−1

u2e−
u2

2 du

)
= (n− 1)−

3/2

(
1

4
− 1

2
√
2π

(√
n− 1e−

n−1
2 +

∫ ∞

√
n−1

e−
u2

2 du

))
≥ (n− 1)−

3/2

(
1

4
− 1

2
√
2π

(
√
n− 1e−

n−1
2 +

e−
n−1
2

√
n− 1

))

= (n− 1)−
3/2

(
1

4
− n

2
√
2π(n− 1)

e−
n−1
2

)
. (3.16)

Let us now turn to B and denote by M := {t ∈ [1, π], (1− ζn) cos t+ ζn < 0}. Since n − 1 is
odd, we have:

B =

∫ π

1

(1− cos t) ((1− ζn) cos t+ ζn)
n−1

dt ≥
∫

M

(1− cos t) ((1− ζn) cos t+ ζn)
n−1

dt

≥
∫ π

π
2

(1− cos t)(1− ζn)
n−1 (cos t)

n−1
dt = −(1− ζn)

n−1 (Wn +Wn−1) ,

where Wn is the Wallis integral. As (1 − ζn)
n−1 ≤ e

− n−1√
2π(n+1) and (Wn) is a decreasing sequence

such that for all n ≥ 1, Wn ≤
√

π
2n :

B ≥ −2Wn−1e
− n−1√

2π(n+1) ≥ −
√

2π

n− 1
e
− n−1√

2π(n+1) . (3.17)

Combining (3.15), (3.16), and (3.17) yields

π

n
f ′
n(ζn) ≥

√
2π(n− 1)−

3/2

(
1

4
− n

2
√
2π(n− 1)

e−
n−1
2 − 1

(n− 1)
− (n− 1)e

− n−1√
2π(n+1)

)

=
√
2π(n− 1)−

3/2

(
1

4
− wn

)
.

The statement of Proposition 3.13 follows, since limn→∞ wn = 0. □

400
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Figure 6: 1
4 − wn.
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We introduce the following notation for every even n ≥ 2: we denote by

x̂n := argmin
x∈[0,1]

fn(x) (3.18)

the global minimum of the function fn on [0, 1]. Note that the strict convexity of fn (as n is even)
together with f ′

n(0) < 0 < f ′
n(1) ensures that x̂n is unique and belong to (0, 1), with f ′

n(x̂n) = 0.

Lemma 3.14 For every even n ∈ N∗ such that f ′
n(αn) > 0, the basin of attraction of αn is [0, 1).

This is in particular the case for every even n sufficiently large.

Proof. The second part of Lemma 3.14 is an immediate consequence of its first part and of the
convexity of fn together with Lemmas 3.11 and 3.13, which imply f ′

n(αn) > 0 for every even n
large enough.

Let us then prove the first part of this lemma. Thanks to the convexity of fn, we have 0 < x̂n <
αn and then fn(x̂n) > x̂n. We drop the subscript n in the rest of the proof below to lighten the
notation and we define the recursive sequence (um)m≥0 by u0 = x0 ∈ [0, 1) and um+1 = fn(um)
for m ≥ 0.
On [α, 1): f is increasing, f([α, 1)) = [α, 1), and f(x) ≤ x.
Thus, if x0 ∈ [α, 1), the sequence (um) is decreasing and bounded below by α, implying that (um)
tends to α, the fixed point of f in [α, 1).
On [f(x̂), α) ⊂ (x̂, α): f is increasing, f([f(x̂), α)) ⊂ [f(x̂), α), and f(x) > x.
Thus, if x0 ∈ [f(x̂), α), the sequence (um) is increasing and bounded above by α, implying that
(um) tends to α, the fixed point of f in [f(x̂), α].
On [x̂, f(x̂)): f is increasing and f([x̂, f(x̂)) ⊂ [f(x̂), 1).
We can thus conclude with the two previous cases when x0 ∈ [x̂, f(x̂)).
On [0, x̂): f is decreasing and f([0, x̂)) = (f(x̂), f(0)] ⊂ [f(x̂), 1).
We can thus again conclude with the two first cases when x0 ∈ [0, x̂). □

Remark 3.15 In the general GW setting, if the function f =
∑

n qnfn is striclty convex, using
previous arguments we get existence and unicity of the fixed point α in [0, 1). If in addition f ′(α) ≥
0, the basin of attraction of α is [0, 1) with a similar reasoning as in the proof of Lemma 3.14.

3.2.3 Proof of Theorem 1.1 in the even case

Proof in the even case when n > 26.

Let us observe that the sequence (wn) converging to 0 defined at the end of the proof of
Lemma 3.13 is decreasing for n large enough. More precisely, one can easily check numerically
that (wn)n≥40 is decreasing (see the left graph in Figure 6). In particular, taking any n0 ≥ 40 such
that 1

4 − wn0
> 0, one has f ′

n(ζn) > 0 and then f ′
n(αn) > 0 for every even n ≥ n0. It is also easy

to check numerically that 1
4 − w350 > 0 (see the right graph in Figure 6), and thus f ′

n(αn) > 0 for
every even n ≥ 350.

Moreover, computer assisted estimates show that f ′
n(αn) > 0 for every even 26 < n < 350, see

Figure 7 below.
Thus, f ′

n(αn) > 0 for every even n > 26 and it follows from Lemma 3.14 that the basin of
attraction of αn is [0, 1) for every even n > 26. The statement of Theorem 1.1 in this case is then
a consequence of Proposition 2.7.
Proof of Theorem 1.1 in the even case when 2 ≤ n ≤ 26.

Let us consider the case n even and f ′
n(αn) < 0. The function fn being strictly convex on [0, 1],

the inverse image f−1
n (x̂n) of its minimum x̂n is composed by at most two elements, an < bn ∈ [0, 1].

We have αn < x̂n (since f ′
n(αn) < 0 and f ′

n(x̂n) = 0) and fn(x̂n) < x̂n (since x̂n > αn,
the unique fixed point in (0, 1)). Note also that in the case of existence of an and bn, we have
0 ≤ an < αn < x̂n < bn < 1. We have moreover in this case the following
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Figure 7: f ′
2n(α2n) for n in [2, 250]

Figure 8: n = 2 (blue)

Lemma 3.16 Assume the existence of an and bn and that k := max
(
|f ′

n(an)|, |f ′
n(bn)|

)
< 1. Then,

the basin of attraction of αn is [0, 1).

Proof. For typographical simplicity we chose to not write the subscripts n.
Note that f([a, b]) = [f(x̂), x̂] ⊂ [f(x̂), b] since f is decreasing on [a, x̂] and increasing on [x̂, b].
Moreover, using the convexity of f , first:

x̂− f(x̂) = f(a)− f(x̂) ≤ |f ′(a)| (x̂− a) ≤ x̂− a ,

implying that f(x̂) ≥ a and thus f([a, b]) ⊂ [a, b], and secondly: for every x ∈ [a, b],

|f(x)− α| = |f(x)− f(α)| ≤ max
a≤y≤b

|f ′(y)| |x− α| ≤ k|x− α|,

implying that the basin of attraction of α contains [a, b].
Now, if x ∈ (b, 1), there exists N ∈ N∗ such that fN (x) ≤ b and for all 0 ≤ q < N, fq(x) ∈ (b, 1).
Indeed, since f(y) < y on (b, 1), if N does not exist, the sequence (fq(x))q≥0 is decreasing and
bounded below by b, so tends toward a fixed point of f in [b, 1), which raises a contradiction.
As a result, the definition of N and the monotonicity of f on (b, 1) imply

a ≤ x̂ = f(b) ≤ fN (x) ≤ b

and we conclude that (b, 1) is included in the basin of attraction of α since [a, b] is.
In particular, the basin of attraction of α contains [a, 1) and, as f is decreasing on [0, a), f([0, a)) =
(x̂, f(0)] ⊂ [a, 1), implying that [0, a) and thus [0, 1) is included in the basin of attraction of α.
□
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The rest of the proof of Theorem 1.1 is obtained using computer assistance to find good ap-
proximations for the quantities x̂n, fn(x̂n), αn, f

′
n(αn), an, bn, f

′
n(an) and f ′

n(bn): for every even
4 ≤ n ≤ 26, an and bn exist and satisfy the assumptions of Lemma 3.16, see the following Table.
Proposition 2.7 thus implies the statement of Theorem 1.1 in this case.

n x̂n fn(x̂n) αn f ′
n(αn) an bn f ′

n(an) f ′
n(bn)

4 0,2531 0,228 0,2288 -0,0659 0,1308 0,4264 -0,4724 0,2431
6 0,207 0,1818 0,1825 -0,0674 0,0936 0,414 -0,5641 0,1894
8 0,1766 0,1548 0,1554 -0,0595 0,0773 0,3889 -0,5877 0,1519
10 0,1547 0,1369 0,1373 -0,05 0,0685 0,359 -0,576 0,1254
12 0,1382 0,1238 0,1241 -0,0408 0,0631 0,3273 -0,5429 0,1059
14 0,1252 0,1138 0,114 -0,0324 0,0597 0,2948 -0,4959 0,091
16 0,1146 0,1059 0,106 -0,0251 0,0576 0,2621 -0,4392 0,0793
18 0,1059 0,0994 0,0994 -0,0187 0,0566 0,2296 -0,3753 0,0698
20 0,0985 0,0939 0,0939 -0,0131 0,0565 0,1973 -0,3055 0,0621
22 0,0922 0,0892 0,0892 -0,0083 0,0577 0,1652 -0,2301 0,0552
24 0,0867 0,0852 0,0852 -0,0042 0,0607 0,133 -0,1474 0,0476
26 0,0818 0,0816 0,0816 -0,0007 0,0702 0,0967 -0,0452 0,0278
28 0,0776 0,0785 0,0785 0,0024
30 0,0738 0,0757 0,0757 0,0051

Remark 3.17 1. Note that for n ∈ {28, 30}, the cells corresponding to an and bn are empty since
no pre-image of x̂n exists in these cases.

2. The strategy in this section can not be used for the case of a GW, whereas Lemma 3.9 implies
the non-repulsivity of the fixed point which is a big step to achieve our goal if we succeed to
prove the unicity of the fixed point.

3.3 Estimates on the fixed points αn

In this section we obtain bounds for the fixed points of fn depending on n. As previously, we
denote for n ∈ N, ξ2n := 2−2n

(
2n
n

)
.

Proposition 3.18 We have:

∀n ≥ 536 ,
1√

2π(n+ 1
4 )

< ξ4n ≤ αn and ∀n ≥ 3 , αn ≤ ξn# ≤
√
2√

π(n− 1)
, (3.19)

where n# := 2
[
n
2

]
.

Proof. According to (6.6), we have juste to prove lower bound ξ4n ≤ αn for n large enough and
the upper bound αn ≤ ξn# for n ≥ 3.

Using moreover the monotonicity of the sequence (ξ2n) and (6.4), we have for every n ≥ 2:

22



fn(ξ4n) =
∑

k,0≤2k≤n

(
n

2k

)
ξ2k (1− ξ4n)

2k
ξn−2k
4n

≥
∑

k,0≤2k≤n

(
n

2k

)
ξn#−2 (1− ξ4n)

2k
ξn−2k
4n + (ξn# − ξn#−2)

(
n

n#

)
(1− ξ4n)

n#

ξn−n#

4n

≥ ξn#−2

1 + (−1)n(1− 2ξ4n)
n − 2 n

n−1ξ4n (1− ξ4n)
n#

2

= ξn#

n#

n# − 1

1 + (−1)n(1− 2ξ4n)
n − 2 n

n−1ξ4n (1− ξ4n)
n#

2

≥ ξ4n
n#

n# − 1

1 + (−1)n(1− 2ξ4n)
n − 2 n

n−1ξ4n (1− ξ4n)
n#

e
3
4n

,

where the last inequality arises from using twice (6.7). Using now the relations ex < 1 + 4
3x for

x ≤ 1
2 , (1− x)n ≤ e−nx for x ∈ [0, 1], and (6.6), which implies 1√

2π(n+ 1
4 )

< ξ4n < 1√
2πn

, we have:

1 + (−1)n(1− 2ξ4n)
n − 2 n

n−1ξ4n (1− ξ4n)
n#

e
3
4n

≥
1− (1− 2ξ4n)

n − 2√
2πn

n
n−1 (1− ξ4n)

n#

n+1
n

≥
1− e

− 2n√
2π(n+1

4
) − 2√

2πn
n

n−1e
− n−1√

2π(n+1
4
)

n+1
n

Finally we can check that

n#

n# − 1

(
1− e

− 2n√
2π(n+1

4
) − 2√

2πn

n

n− 1
e
− n−1√

2π(n+1
4
)

)
>

n+ 1

n

for all n sufficiently large, and computer assisted calculations show that n ≥ 536 is sufficient.
Hence, we have f(ξ4n) ≥ ξ4n and thus αn ≥ ξ4n for every n ≥ 536.

To obtain the upper bound of (3.19), let us write for n ≥ 2:

f(ξn#) =
∑

k,0≤2k≤n

(
n

2k

)
ξ2k (1− ξn#)

2k
ξn−2k
n# =:

∑
k,0≤2k≤n

νkαk ,

where αk := ξ2k, and let µk :=
(
n
2k

)
. The positive sequence (αk)k≥0 is decreasing according to

Lemma 6.5, and writing

νk
µk

=

(
1

ξn#

− 1

)2k

ξnn# ,

the positive sequence (νk/µk)k≥0 is increasing. Then, Lemma 6.2 and the formulas (3.8), (6.4) give:

f(ξn#) ≤
∑

k,0≤2k≤n µkαk∑
k,0≤2k≤n µk

∑
k,0≤2k≤n

νk =
2−n

(
2n
n

)
2n−1

1 + (−1)n(1− 2ξn#)n

2
≤ ξ2n (1 + (1− 2ξn#)n) .

Consequently, using in addition and (1−x)n ≤ e−nx for all x ∈ [0, 1] and the lower bound in (6.6):

(1− 2ξn#)
n ≤ e−2nξ

n# ≤ e
− 4n√

2π(n#+1) .
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Then, with (6.7):

f(ξn#) ≤ ξ2n#

(
1 + e

− 4n√
2π(n#+1)

)
≤ ξn#

1√
2
e

1

2n#

(
1 + e

− 4n√
2π(n#+1)

)
=: ξn#wn.

Since n# = n when n is even and n# = n − 1 when n is odd, the sequences (w2k)k≥1 and
(w2k+1)k≥1 are clearly decreasing and, as w3, w4 ≤ 1, we have for every n ≥ 3 : f(ξn#) ≤ ξn# and
thus αn ≤ ξn# . □

4 An Example of GW

All the simulations with a GW seem to show that there is a unique fixed point in (0, 1) and its
basin of attraction is (0, 1). As we have already said, we have not been able to adapt the techniques
of Section 3 to prove the uniqueness of the fixed point in a general framework. Nevertheless, we
propose an example in which we are able to prove everything.
In this section, we assume that the reproduction law N follows a shifted geometric distribution
with parameter p ∈ (0, 1), in other words:

qn = P(N = n) = p(1− p)n−2,∀n ≥ 2.

This example is very satisfying as we can obtain explicit formulas. More precisely, we have the
following:

Lemma 4.1 If N = X + 1 where X follows a geometric distribution with parameter p ∈ (0, 1), we
have:

f(t) =
p

(1− p)2

(
−((1− p)t+ 1) +

1

(p(2− p+ 2t(p− 1)))
1
2

)
. (4.1)
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Figure 9: p = 1/2 (blue), p = 1/4 (orange), p = 9/10 (green)
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Proof. We have:

f(t) =
∑
n≥2

qnfn(t) =
∑
n≥2

p(1− p)n−2 1

π

∫ π

0

((1− t) cosx+ t)ndx

=
p

π

∫ π

0

((1− t) cosx+ t)2
∑
n≥2

(1− p)n−2((1− t) cosx+ t)n−2dx

=
p

π

∫ π

0

((1− t) cosx+ t)2

1− (1− p)((1− t) cosx+ t)
dx =

p

π(1− p)2

∫ π

0

(1− p)2((1− t) cosx+ t)2 − 1 + 1

1− (1− p)((1− t) cosx+ t)
dx

=
p

π(1− p)2

∫ π

0

−(1− p)((1− t) cosx+ t)− 1 +
1

1− (1− p)((1− t) cosx+ t)
dx

=
−p((1− p)t+ 1)

(1− p)2
+

p

π(1− p)2

∫ π

0

dx

1− (1− p)((1− t) cosx+ t)

With the substitution u = tan x
2 , we obtain:∫ π

0

dx

1− (1− p)((1− t) cosx+ t)
= 2

∫ +∞

0

du

p+ (2− p+ 2t(p− 1))u2
=

2

p

∫ +∞

0

du

1 + (2−p+2t(p−1))
p u2

=
π

(p(2− p+ 2t(p− 1)))
1
2

.

Then

f(t) =
p

(1− p)2

(
−((1− p)t+ 1) +

1

(p(2− p+ 2t(p− 1)))
1
2

)
.

□
In the figure 9, we can see that f seems to have one fixed point on (0, 1). It is not difficult to

find this point, resolving:

f(t) = t ⇔ −2(1− p)t3 + (2− 5p)t2 + 4pt− p = 0 ⇔ (t− 1)(−2(1− p)t2 − 3pt+ p) = 0

⇔ t = 1 or t =
−3p± (p(p+ 8))

1
2

4(1− p)
.

And we can easily see that the only root that interests us is α = −3p+(p(p+8))
1
2

4(1−p) .

Lemma 4.2 The basin of attraction of α is [0, 1).

Proof. The first and second derivative of f are given by:

f ′(t) =
p

1− p

(
−1 +

p

(p(2− p+ 2t(p− 1))
3
2

)
and f (2)(t) =

3p3

(p(2− p+ 2t(p− 1))
3
2

.

As stated in Remark 3.15 since f is strictly convex, it is sufficient to show that f ′(α) ≥ 0. One
can see that:

f ′(α) ≥ 0 ⇔ p

1− p

(
−1 +

p

(p(2− p− 1
2 (−3p+ (p(p+ 8))

1
2 )))

3
2

)
≥ 0

⇔ 2
3
2 p ≥ (p(4 + p− (p(p+ 8))

1
2 )))

3
2

⇔ 2 ≥ p
1
3 (4 + p− (p(p+ 8))

1
2 =: g(p). (4.2)

As g(1) = 2, if we prove that g is an increasing function on [0, 1], we obtain formula (4.2). As:

g′(p) =
(4 + p− (p(p+ 8))

1
2 )((p(p+ 8))

1
2 − 3p)

3p
2
3 (p(p+ 8))

1
2

is obviously positive, our proof is complete. □
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5 Open questions and variant case

As a conclusion we make some remarks on the properties of the main objects studied in this work
and discuss possible generalisations of our results.

1. One can notice in the figure 3, that the red curve of f3, seems to cut the blue one f4 at its
minimum. In fact, that is true for all n ≥ 2, that is:

f2n (x̂2n) = f2n−1 (x̂2n) . (5.1)

Indeed, according to (3.4):

f ′
n(t) =

n

π

∫ π

0

(t(1− cosx) + cosx)n−1dx− n

π

∫ π

0

cosx(t(1− cosx) + cosx)n−1dx

= nf ′
n−1(t)−

n

π

∫ π

0

cosx(cosx(1− t) + t)n−1dx

= nf ′
n−1(t)−

n

π

∫ π

0

cosx(1− t) + t− t

1− t
(cosx(1− t) + t)n−1dx

= n

(
1 +

t

1− t

)
fn−1(t)−

n

1− t
fn(t) ⇔

t− 1

n
f ′
n(t) = fn(t)− fn−1(t) (5.2)

and taking t = x̂2n:

x̂2n − 1

n
f ′
2n(x̂2n) = 0 = f2n(x̂2n)− f2n−1(x̂2n).

With an obvious induction reasoning, the formula (5.2) gives:

fn(t)− t = fn(t)− f1(t) = (t− 1)

n∑
k=2

1

k
f ′
k(t). (5.3)

We think that these equalities have a probabilistic meaning, but did not manage to come up
with an explanation.

2. The general GW case for two opinions seems for the moment out of reach, even though our
simulations suggest that our results stay valid. Contrary to the article [5], the mean of the
reproduction law E[N ] does not seem to play a particular role: there seems to be always
convergence.
We have to study cases with more than two opinions: nevertheless, even in the case of a n-ary
tree, we can not hope to obtain formulas like 3.1. Moreover, we have seen that even in the
case with two opinions, parity plays an important role; already for n = 3, the calculations
become devilish and it seems to us that we need to find much finer methods than direct
computations.
For instance in figure 10, we can see that the shape of the graph is linked to the remainder
of the Euclidean division of n by 3 and the equivalent formula for fn is:

fn(t) =

n∑
k=0

(
n

3k

)(
3k

k

)(
2k

k

)
tn−3k

(
1− t

3

)3k

+ 3

n∑
k=0

(
n

2k

)(
2k

k

) n−2k∑
j=0

(
n− 2k

j

)
tn−2k−j

(
1− t

3

)2k+j

.
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Figure 10: n = 7 (blue), n = 9 (orange), n = 11 (green)

6 Appendix

In this appendix, we recall some classical definitions and results used throughout this paper.

The two following results are crucial to prove the stability statement of Section 3.2.1.

Theorem 6.1 (of Budan-Fourier)[3] Let P (x) = 0 be a polynomial equation with real coefficients of
degree n and let a < b be any two real numbers. Then, there exists k ∈ N such that the number of
roots (counted with multiplicity) of this equation in the interval (a, b] is equal to

Va(P )− Vb(P )− 2k ,

where, for c ∈ R, Vc(P ) is the number of sign variations in the sequence P (c), P ′(c), . . . , P (n)(c).

Lemma 6.2 Consider two positive sequences (µk)k≥0 and (νk)k≥0 such that (νk/µk)k≥0 is increasing.
Then, for every decreasing (resp. increasing) sequence (αk)k≥0 and for every 0 ≤ ℓ ≤ n,∑n

k=ℓ αkµk∑n
k=ℓ µk

≥
∑n

k=ℓ αkνk∑n
k=ℓ νk

(
resp. ≤

∑n
k=ℓ αkνk∑n
k=ℓ νk

)
. (6.1)

Proof. Assume that the sequence (νk/µk)k≥0 is increasing, which is equivalent to:

∀ 0 ≤ i ≤ j , µiνj ≥ µjνi.

When the sequence (αk)k≥0 is decreasing, the formula (6.1) is equivalent to:

n∑
i,j=ℓ

µiαiνj ≥
n∑

i,j=ℓ

µiαjνj ⇔
∑

ℓ≤i<j≤n

µiαiνj +
∑

ℓ≤j≤i≤n

µiαiνj ≥
∑

ℓ≤i<j≤n

µiαjνj +
∑

ℓ≤j≤i≤n

µiαjνj

⇔
∑

ℓ≤i<j≤n

µiαiνj +
∑

ℓ≤i≤j≤n

µjαjνi ≥
∑

ℓ≤i<j≤n

µiαjνj +
∑

ℓ≤i≤j≤n

µjαiνi

⇔
∑

ℓ≤i<j≤n

µiαiνj +
∑

ℓ≤i<j≤n

µjαjνi ≥
∑

ℓ≤i<j≤n

µiαjνj +
∑

ℓ≤i<j≤n

µjαiνi

⇔
∑

ℓ≤i<j≤n

(µiνj − µjνi)(αi − αj) ≥ 0 ,

which is true by hypothesis. □

In the following lemma, we state classical results on binomial coefficients.
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Lemma 6.3 For all n ∈ N:
n∑

k=0

(2k + 1)

(
n

2k + 1

)
=

n∑
k=0

2k

(
n

2k

)
= n2n−2 R when n ̸= 1 (6.2)

and

n∑
j=0

(
n

2j

)(
2j

j

)
2−2j = 2−n

(
2n

n

)
. (6.3)

Proof.

1. For all x, y ∈ R and n ≥ 0, the relation

h(x, y) :=

n∑
k=0

(
n

2k

)
x2kyn−2k =

(x+ y)n + (y − x)n

2
(6.4)

implies that

∂h

∂x
(x, y) =

n∑
k=0

2k

(
n

2k

)
x2k−1yn−2k =

n(x+ y)n−1 − n(y − x)n−1

2
.

Taking x = y = 1 and n ̸= 1, we obtain the right equality of (6.2).
Moreover, with a very similar reasoning:

g(x, y) = (x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k and

∂g

∂x
(x, y) = n(x+ y)n−1 =

n∑
k=0

(
n

k

)
kxk−1yn−k

and taking x = y = 1, we obtain

n∑
k=0

(
n

k

)
k = n2n−1.

We conclude by using

n∑
k=0

k

(
n

k

)
=

n∑
k=0

2k

(
n

2k

)
+

n∑
k=0

(2k + 1)

(
n

2k + 1

)
.

2. In [7], the author uses an expansion of (x2+2x)n to prove (6.3) (see the formula (1.65) there).
We will use here the following series expansion, for ℓ ∈ N and x ∈ [0, 1) (which also permit
to prove the generalization of (6.3) stated in Remark 6.4 below):

xℓ

(1− x)ℓ+1
=
∑
n≥0

(
n

ℓ

)
xn and

1√
1− x

=
∑
n≥0

(
2n

n

)
2−2nxn.

The first one can be obtained by induction and the second one is classical. Thus:∑
n≥0

∑
j≥0

(
n

2j

)(
2j

j

)
2−2jxn =

∑
j≥0

(
2j

j

)
2−2j

∑
n≥0

(
n

2j

)
xn =

∑
j≥0

(
2j

j

)
2−2j x2j

(1− x)2j+1

=
1

1− x

∑
j≥0

(
2j

j

)
2−2j

(
x

1− x

)2j

=
1

1− x
× 1√

1−
(

x
1−x

)2
=

1√
1− 2x

=
∑
n≥0

(
2n

n

)
2−2n(2x)n =

∑
n≥0

(
2n

n

)
2−nxn.

Identifying the coefficients, we obtain (6.3).
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□

Remark 6.4 Adapting the above proof of (6.3), we can show that for all n ∈ N and all ℓ ∈ N∗:

n∑
j=0

j . . . (j − ℓ+ 1)

(
n

2j

)(
2j

j

)
2−2j = 2−n

(
2(n− ℓ)

n− ℓ

)
(n− ℓ) . . . (n− 2ℓ+ 1).

We conclude this appendix with this last lemma, giving some properties of the Wallis integrals
and of the strongly related quantities ξ2n := 1

22n

(
2n
n

)
defined in (3.8).

Lemma 6.5 For all n ∈ N, define the Wallis integral

Wn :=

∫ π/2

0

sinn tdt.

The sequence (Wn)n≥0 is positive and strictly decreasing and, for all n ≥ 1:√
π

2(n+ 1)
< Wn <

√
π

2n
(6.5)

We have moreover the following properties:

1. The sequence (ξ2n)n≥0 is strictly decreasing.

2. For all n ≥ 1:
2√

2π(2n+ 1)
< ξ2n <

1√
πn

(6.6)

and hence

ξ4n <
1√
2
e

1
4n ξ2n . (6.7)

Proof. Let us prove the well-known formula (6.5) for the sake of completeness. For n ≥ 0, as
0 ≤ sin t ≤ 1 in [0, π/2] (and 0 < sin t < 1 in (0, π/2)):

Wn > 0 and Wn+1 −Wn =

∫ π/2

0

sinn t(sin t− 1)dt < 0,

implying the (strict) monotonicity of (Wn)n≥0. Moreover, for every n ∈ N:

Wn+2 =

∫ π/2

0

sin t sinn+1 tdt = (n+ 1)

∫ π/2

0

cos2 t sinn tdt = (n+ 1)(Wn −Wn+2)

⇔ (n+ 2)Wn+2 = (n+ 1)Wn

⇔ (n+ 2)Wn+2Wn+1 = (n+ 1)Wn+1Wn.

Consequently, the sequence
(
(n+ 1)Wn+1Wn

)
n≥0

is constant and then:

∀n ∈ N∗ , nWnWn−1 = W1W0 =
π

2
.

Using the monotonicity of (Wn), we obtain the formula (6.5) since:

∀n ≥ 0 , nW 2
n <

π

2
< (n+ 1)W 2

n .

Recall now that for all n ≥ 0 (see (3.2)),

W2n =
π

2

(2n)!

22n(n!)2
=

π

2
ξ2n.

Thus:
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1. The (strict) monotonicity of the sequence (ξ2n)n≥0 follows from the one of (Wn)n≥0.

2. Using (6.5), we obtain:√
π

2(2n+ 1)
< W2n <

√
π

4n
=⇒ 2√

2π(2n+ 1)
< ξ2n <

1√
πn

.

□
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