
crass and home problems

The object of this column is to enhance our readers' collections of interesting and novel prob-
lems in chemical engineering. Problems of the type that can be used to motivate the student by
presenting a particular principle in class, or in a new light, or that can be assigned as a novel home
problem, are requested, as well as those that are more traditional in nature and that elucidate dif-
ficult concepts. Manuscripts should not exceed 14 double-spaced pages and should be accompanied
by the originals of any figures or photographs. Please submit them to Professor James O. Wilkes
(e-mail: wilkes@umich.edu), Chemical Engineering Department, University of Michigan, Ann
Arbor, MI48109-2136.

TEACHING TRANSPORT PHENOMENA
AROUND A CUP OF COFFEE
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Ecole Nationale Supérieure d'Ingénierrs en Arts Chimiques et Technologiques . Toulouse 31078

e are all arvare that teaching scientific matter is
much more accepted by students when it can be
related to situations they can experience in their

everyday life. A good example is the cooling of a cup of cof-
fee, rvhose scientific analysis is.much more instructive than
rve couid have thought at first sight. Indeed, we will see that
all heat transfer mechanisms (conduction, convection, and
radiation), as well as those of mass transfer, (because of the
evaporation of the coffee) are involved. This problem was
often addressed as "leisure in science" or "first approach
of science," and a quick search on the Web shows that this
problem has been proposed at all levels of education, from
beginning to university. The approach presented here is aimed
at being rigorous, but because we do not intend to use very
powerful numerical modeling, simplifications will be made.
An important quality for an engineer is to make the "right"
simplification, /.e., which results only in slight inaccuracies,
while respecting the correct hierarchy for the parameters. In
the case chosen here no chemical reaction is present, but the
coupling ofheat and mass transfer in a nonstationary process

is a common situation in chemical engineering. It can be
encountered, for instance, in small industrial units rvhen a

tank, after a batch transformation, is let to cool freely before
discharge. Another very important characteristic of the study
is that experiments to assess the modeling are easy to perform
with very simple tools, such as a thermometer, a stoprvatch,
and a balance (to estimate the loss by evaporation). Such ex-
periments could even be done in a kitchen, in full accordance
with the "everyday life" aspect of the situation. The method
to approach the problem, and the reflection about transport
phenomena that it induces, make it a good basis for discus-
sion betrveen students and teachers. To avoid a lengthy paper,
all equations given here are not discussed deeply and, for a
student, may deserve an additional look into textbooks or,
better. a discussion with teachers.
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PRESENTATION OF THE PROBLEM AND
HYPOTHESES

The problem: we put a cup of hot coffee on a table. Its

initial temperature, 00, is around 80 "C, and ambient air is

at temperature 0", rvith, for instance, a relative humidity of

50Vo (that means half-saturated). What is the temperature of

the coffee after l0 min. for instance? Or, more widely, when

will I be able to drink it safely and what parameters influence

this duration? A scheme of the situation is given in Figure

1 and the different fluxes will be discussed in paragraph 2.

To solve the problem we have to make a list of simplifying
hypotheses:

I. Temperature 0 is homogeneous through the liquid in
the cup. There is no lemperature gradient in the liquid, and
the inner v'all temperature of the cup is equal to that of the
liquid, because internalfree convection is suficiently high.
These are very important hypotheses and we will devote a
specifc paragraph to assess them.

2. Even if our system is time dependent, we will use
steady-state equations to model the heat and mass transfer

fuxes.This "pseudo steady-state approximation" is very
often proposed and isfully justified here, because establish-
ment of transfers is more rapid than evolution of tempera-
ture of the liquid. It is always dfficub to demonstrate this
statemenl, and intuition is often the only indicator. Such
ambiguiry* is rarely addressed, but it has been discussed by
Cussler in his book about ntass transfer.tt)

3. There is no heat loss through the bottom of the cup,
because the table blocks the heatflux. Nevertheless, we may

foresee îhat putting the cup on a massive metallic surface
will speed up the cooling. In this case, the bottom heat flux
would not obey the sready-stote law, (see, in textbooks,
the chapter devoted to conductive transfer in semi-infinite
medium).This will not be considered here.

4. At the vertical cylindricàl watl of rhe cup and at the
surJace of the liquid, heat loss occurs by free convecîion and

(fr"" 
"onr""tion

conduction

Fîgure 7. Schematics of the fluxes.

radiation. Moreover, at the liquid surface , evaporation of the
liquid simultaneously takes place. This evaporation induces
an extraheat Loss, corresponding to the heat neededfor
vaporization of water, that is provided fi'om a decrease in the
internal energy of the liquid and the cup. Forced convecion
by blowing air is not considered here, although it could be
very easily implemented through adapted cot tputation of
the coefficients of convection. It is important to mention here
rhat, at temperatures below 200 'C, chemical engineering
calculations usually ne glect radiation fuxe s because they
are competing with forced conyection fLoies, which are much
larger. When dealing only with free convection, this omission
would lead to signifcant errors, even at low temperature.

5. The coffee cup is simulated by a cylinder, external
height H,, internal diameter D,, with constant wall thick-
ness e., and with a thermnl conductivity 7,.. The area of the
external vertical wall surface i; A*" and that of the horizontal
liquid surfuce is A". Also, this hypothesis upon the geometry
of the cup is not very restrictive and can be adaptedJor other
cases. Liquid is supposed to fll the cup almost entirely.

6. Coffee is similar to water, and properties are eyalu-
ated at 60 'C.

Description ol the Equations for Modeling
The heat loss through the wall and at the liquid surface

results in a temperature decrease that may be described by
the instantaneous heat balance equation, where accumulation
of internal energy in the water and the cup (considering ho-
mogeneous temperature) equals the sum of all instantaneous
heat losses. Because water evaporates, lve also need an in-
stantaneous mass balance:

d0
(mCp. * MCp*, ) 

dr 
: -L heat losses (l)

dM - -"uuoorative flux Q)
dr

where m and Cp" refer, respectively, to the mass and specific
heat of the cup, and M and Cp*",, to mass and specific heat of
the water. We can now describe the different heat losses and
express them using steady-state equations ofheat and mass
transfer, as stated in hypothesis 2.

Heat Loss at the Vertical Wall of the Cup, Q*
This is a transfer, in series, by conduction through the wall,

then, in parallel, free convection and radiation to ambient
air. As stated in hypothesis 1, internal convection at the in-
ner rvall is not considered. This global transfer is accounted
for by a global coefficient U*., referred to the external area,
given by:

area,givenby : U*.

Il-'
l l e * l: lh^ ,+ t r  - .  

4+q I
t " " ' ^ - l

|  2 D , )

(3)

: U*.A*. (0 - 0" ) (4)
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We need to evaluate the coefflcient hnu for free convection
at the vertical wall. An equation for such a heat transfer coef-
ficient can be found in:l2l

/ c  - o  ) " 0
h" " :1 .351- l  ( s )

tH .  l
where Eq. (5) is adapted to be used directly for free convec-
tion in air. SI units are used throughout.

Radiation transfer is accounted for by a radiation coefficient
h*. To estimate h*, we can approximate ourcase by a sifuation
in rvhich a small gray surface at 0 radiates torvard a large gray
enclosure, the room at 0". In this case, and if0 and 0" are not
very different, it can be shown (see any heat transfer textbook,
for instance Reference 3), that h* is proportional to the third
power of the mean absolute temperature:

surface. From Reference 2,for air, it is given by:

f e - A  ) " 0
hn. : 1.311 :---:Â | (9)

( D .  J

Heat loss resulting from the evaporation, Q","o
We must first estimate the evaporative molar density of

flux, N*",. At the interface, air is saturated at the surface
liquid temperature 0, and water partial pressure is equal to
its vapor pressure P"(0) at this temperature. Far from the
surface, for half-saturated ambient air, the water partial pres-
sure is 0.5P"(0"). In the case of a single component we can
find explanations in mass transfer textbooks (see for instance
Reference 5):

N*ut : k"c, 
+(P, 

(e) - 0.5P, (e" )) (10)

k" is the mass transfer coefficient referred to a molar concen-
tration difference at low or equimolar transfer fluxes. F is the
logarithmic mean of the partial pressure of air, Pu. = Pr - P*^,
at the surface and far from the surface, and it accounts for the
influence of the bulk flow of air. So:

F -
(r, - o.sr" (e" ))- (P, - P" (0" )) (1 1)

n- =ooul(e+ztz)+(e" +zz:) ' l '
2 )

(6)

where e represents the emissivity of the surface and o is the
Stefan-Bolzman constant. This linearization of radiation
fluxes is very convenient and is a great help to account for
the radiation without adding complex equations.

An important quality for an engineer is to make
the "right" simpliftcation, i.e., which results
only in slight inaccuracies . . . .

Note that the convection coefficient, as rvell as the radiation
coefficient, depends on the outer wall temperature 0.. Indeed,
it is not convenient in the computation to evaluate the outer
rvall temperature, so, for estimation of these coefficients, rve
rvill equate the outer wall temperature to that of the liquid.
It results in some inaccuracy for h"u and h*. Eventually, this
inaccuracy is likely to be rveak because, for usual materials
and thicknesses, the thermal resistance of the wall is lorv in
respect to the outer thermal resistance, and the outer wall
temperature is actually not very different from the inner wall
temperature. It does not mean that the thermal resistance
of the wall is neglected here, because it does appear in the
equation of U [Eq. (3)]. The extreme case of an insulating
rvall (as for an expanded polystyrene cup, see paragraph 4)
lvhere the inaccuracy is maximum is well described because
the "inaccurate" temr has a weak numerical influence in the
computation of U [Eq. (3)].

Heat losg by Heat Transfer Only, at the Surtace of
the Liquid, Q,

It also occurs by free convection and radiation, in parallel,
and is accounted for by a global coefficient h. with:

h r : h n r t h * ,

Q , : h . A * ( 0 - 0 " )

C, is the total molar concentration. P"(0) can be computed
from a vapor pressure law for water, such as Clapeyron's or
Antoine's law. Here we have used, from Reference 4;

.  I o 5  l s o o s - l 6 6 8 2 1
P" (0) : i:-10 228+0 wherePu isinPa,0in'C (12)
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An important feature is now to estimate the mass transfer co-
efficient k". This can be done using the analogy between heat
and mass transfer, as first proposed by Chilton and Colburn.t6l
For the air-rvater system, because the Lewis number, Le, is
close to 1, it giveslTl:

,- P, - 0.5P, (0" )
I t l -

P r - P " ( e ^ )

k- - hn'
" 

Pui,CPa,
(1 3)

(1)

(8 )

The molar density of the flux is then

h l
N*,  :  _+-=(p, (0)-o.sp"(0") )  (14)

D l " . C p " , . F . - "  
r \  d / /

After some rearrangements, using the perfect gas law, mass
flux is:

w..- .  -  hn,f l*u '  I  4. ,  (p.(e)-0.5p (e ))  (15)w a r  
! f i * c p * F  

s r \  v \  /  v \  Â / /

Now, knowing the evaporative mass flux, the heat loss by
evaporation, Q"""o, ir given by:

Q"u"o : W*",AH, (16)

where AH" is the heat of vaporization of water per kg of
water.hn, represents the coefficient for free convection at a horizontal
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Finally the system of differential equations to solve is:

{ mcp. * MCp**,# : -n. ( e) A,. ( e - 0, ) - u* (e)A- (e - 0" ) - aH, *#ff +^,, (p, (e) - 0.sp, (0, )) o 7)

dM -  -  hn '%ou '  1e . ,  ( r  (0 ) -0 .5p  (0 -  ) )
dt  f iuuCpr,  F " t  "  '

with initial conditions at t = 0, 0 = 0o,and M = Mo. This system can
be solved numerically by the variable step Runge-Kutta method, for
instance. For all our computations, we have used a very convenient
commercial software, Mathcad 13, rvhere automatic resolution of
such system of equations is implemented. Listing of the program
can be found at <http://lgc.inp-toulouse.frlinternet/pers/condoret.
htm>.

RESULTS OF THE MODELING AND
COMPARISON WITH EXPERIMENTS

The experimental apparatus, including a numerical thermometer,
a balance, and a stopwatch, is seen in Figure 2. Tttree different
porcelain cups (No.'s 1,2, and 3) were used filled with water. The
cups were put on the balance plate, hot water from an electric kettle
was poured in, and the temperature and mass variation of the liquid
rvere recorded. A piece of insulating material was set under the cups
to prevent direct contact with the balance plate. It proved to be
useful with respect to hypothesis 3. Physical and geometrical data
are given in Table l. Figures 3 a, b, and c presents the comparison
betlveen experimental temperature and the modeling as described
above. The modeling appears very good, although it slightly un-
derestimates the cooling rates in all cases. A simple explanation
could be that area of the handle was not taken into account in the
computations (indeed, cup No. 2. which gave the best results, had
a small handle). Figure 4 also presents good agreement between
experimental and modeled mass variation. As an example, Table 2
gives computed values of different terms of the equation for experi-
ments of cup No. 2, and relative contribution of each flux can be
appreciated. It can be seen, for instance, that the evaporative flux,
except at the end, is quite significant (see below, paragraph 4). Also
note that radiation and free convection coefficients are in the same
range (around 7 Wm-'? "C-')

Figure 2. Experimental apparatus.
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Figures 3. Variation of the
temperature of the liquid

for the 3 different cups:
a) cup No. 1, Mo= 78.6 g,

0 " =  2 2 . 3 ' C , g o =  8 2 . 5 ' C
(tl: experiment; -: ntodel)
b) cup No. 2, M"= 102.9 g,

0 o =  2 7 . 8 ' C , 0 o =  7 9 " ç
(L: experiment;

-. model.
----- : simplified model ;

----: model without
evaporation)

c) cup No. 3, M = 87.2 g,
0 o =  2 1 . 1  " C , 0 0 =  6 6  " ç

(l: expeiment' -' model).
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USE OF A SIMPLIFIED ANALYTICAL SOLUTION
One may feel frustrated to need a numerical solution for the system of differential equations. First note that the mass of water

varies only slightly (less than 3Vo), so we can suppress the mass balance equation and consider the mass of water as a constant,
equal to Mo. Furthermore, Table 2 shorvs that variation. in respect to the temperature, of heat and mass transfer coefficients
is not very large. We have found that use of parameter values computed at the mean temperature leads to very similar results.
Eventually, we can only consider one simplified differential equation, using averaged values:

(MoCp*' + mCp" )s: -h*uA* (0 - 0")- U*nuA*. (0 - 0" ) ffi* 
e,,(r, (e)-0.5p, (0" ))AH, (1e)

Nevertheless, even with the proposed averaging, Eq. (19) has still no
obvious analytical solution, due to the exponential term in the expression
of P"(0). But, if the function P,(0) is approximated by a parabolic equa-
tion, P,(0) = b02+ c0 + d, rve can propose an analytical solution. We found
by numerical fitting, that

b =18367 c =-1237 .2 d = 27753 in the range 40'C to 80 
'C

In this case, Eq. (19) is a differential equation rvith separated variables,
rvhose solution is:

r  t l z  / z u a e , e + . e \  z  l z v e a + A + c B \ \
t ( 0 J = l M o c p * o , * ' c P . / \ ; * ' - l  

,  / - ; " " * l  ,  / / t ' o '

with

t-': ./-+uneo" + 4bB2dm - A2 + 2AcB- c2B2

A: -h*uA* - U*u"A*"

(2r)

(22)

Figure 4. Loss of mass (g) for the S
r l i f {crcnt ntns:

a)  cup  No.  1 ,Mo= 78.6  g ,
0 o =  2 2 . 3 ' C , 9 0 =  8 2 . 5 ' C

Q: exPeriment; -' model)
b )  cup  No.  2 ,M"= 102.9  g ,

0 , =  2 7 . 8 ,  
' C , 0 0 =  7 9  ' ç

( L: exPeriment;-' model)
c) cup No. 3, Mo= 87.2 g,
0 o =  2 1 . 1  

' C , 0 0 =  g g  " ç

( l: exPetiment ; -' model)
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TABLE 1
Numerical Values of the Parameters of the Three Different Cups

Values are in SI units as given in the nomenclature.

D H e m Cp €
cup
N" l

0.0520 0.0495 0.0040 0.1092 970 0.924

cup
N"2

0.0512 0.0610 0.0020 0.0642 970 0924

cuP
N"3

0.0520 0.0635 0.0040 o.t278 970 0.924

TABLE 2
Numerical Values Given by the Model for Experiment of Cup No. 2 (M" = 0.1029 kg, 0" = 2f.8 'C)

Values are in SI units as siven in the nomenclature.

tlme temp. mass(9, Qevap Qw Qs hnrv hns hRw hRs Uwe

0 79.0 1o2.9 t2.o 8.6 2 . 1 t . ) 1 À 7 . 1 7.6 t4.1

90 75.2 102.5 9.5 7-8 1 . 9 L J 7.3
'7.0 7.5 r 3.9

r80 11.9 r02.1 / . d
'7.2 '7 '7.2 7 .2 6.9 t3.7

270 69.0 1 0 1 . 8 6.6 b .  / .Cl L I 7 . 1 6.8 '1.2
I  J . )

360 66.3 101.5 5 .6 6-3 5 '7.0 7.0 6 . 1 7.2 I J . J

450 64.0 101.3 4.9 5.9 À 6.9 6.9 6.6 7 . 1 t3.2

540 6 1 . 8 1 0 1 . t 4-3 5.5 .3 6.8 6 .8 6 .5 '7.0 13.0

630 59.8 t0  i .0 3 .8 5 .2 .2 6.7 6 ; 7 ô.) 6.9 12.9

720 58.0 100.8 J . 4 4.9 .2 o . / 6.6 6.4 6.9 12.7

8 1 0 56.3 r00.7 3.1 4.6 6.6 6.6 6.4 6.8 12.6

900 54;7 100.6 2 .8 4.4 .0 6 .5 6 .5 6 .3 6 .8 12.5
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Figure 3b compares the numerical and the analytical so-
lution of the equation, and shorvs that the simplification is
quite valid.

The case may be further simplified if we consider that
evaporation does not occur (insulating cover on the cup). In
this case Eq. (18) becomes:

(Mocp*^, +mcp.)+ : -u*",A*"(e-e") Q5)" d r

which is very easily integrated to

0, -0 
:.-G&oo-F-*.i'

o, -0"

Results of this analytical solution are presented in Figure
3b, shorving that the final temperature is significantly higher in
this case. This situation exists in real life. It conesponds to the
"fast food coffee," which is served in expanded polystyrene
cups with a cover that insulates and blocks evaporation. This
absence of evaporation combined with an increased thermal
resistance of the wall (expanded polystyrene has a very low
conductivity) results in very slow cooling. This explains why
we often burn our lips at the end of a fast food meal when we
drink our coffee without precaution. as we cannot imagine it
is still so hot after the duration of the meal!

COMMENTS ON THE HYPOTHESIS OF
HOMOGENEOUS LIQUID TEMPERATURE

We can use the analogy rvith the well known case of heating
or cooling of a solid. The homogeneity of the solid tempera-
ture is usually assessed by considering the Biot number,

Bi :  E
\

where L is a characteristic length of the system. The Biot
number evaluates the ratio between inner conductive trans-
fer and outer convective transfer. When the Biot number is
much smaller than I , homogeneity of the solid temperature is
insured. In our case, the Biot number can be written as:

Br:u*D/2 (28\
\*ut

So withUrv = 14Wm'2"C-1,D =4 x 10-2 m, and l"*",=0.67y9
m-r "C-r, we obtain Bi = 0.8. This value is not "much" smaller
than 1, but we have considered here that only thermal con-
duction occurs in the liquid, while free convection is actually
present, and greatly increases the inner transfer. For instance,
we can estimate the enhancement of the "apparent" conductiv-
ity by the value of the Nusselt number, Nu. To evaluate this
value, we can use a simplified sketch and consider inner free

142

convection in a horizontal cell. Equations for such situation
can be found in Reference 9:

hL
l \g  :  -  :  0.069Ra033 Proo74

\

with 3xlo5 ( Ra : 
H,gÊao 

< Txloe
0v

and pr: + eg)
^

In our case, if we rvant to accept a temperature difference
Â0 = I 'C, between bottom and surface of the liquid, Eq.
(29) predicts a conductivity enhancement of around seven-
fold that now allows a better fulfillment of the Biot criterion.
Remember that this very simplified approach aims only at es-
timating if we are in the acceptable range.If we norv consider
the case of the industrial tank with a characteristic length of
1 m, Eq. (29)-which gives a conductivity enhancement of
12O-fold-allows maintaining the Biot number at a low value,
and the hypothesis of homogeneity is still valid.

CONCLUSION
The agreement between modeling and experiments (Figures

3 and 4) was sulprisingly good. Indeed, every experienced
researcher knows that a totally predictive model is often
disappointing and parameter adjustment is common practice
(conversely, students are very confident in these predictive
models!). Nevertheless, be alvare of the numerous simplifica-
tions we used that here proved to be reasonable. As a practical
conclusion, note that rvhen preparing a cup of coffee another
scenario is possible: hot coffee from the pot is poured into the
cup. In this case there is flrst cooling ofthe coffee by exchange
of enthalpy with the cup. The cup and the liquid quickly reach
an equilibrium temperature, 0"0, given by the equation:

(23)

(24)

(26)

(27)

d m : d - 0 . 5 P , ( 0 " )

(30)

Indeed, the temperature decrease is significant and this
speeds up considerably the desired cooling. Evaluation ofthe
kinetics ofthis process is not easy, but is useless because its
rapidity (a few tens ofseconds) can be easily demonstrated.
So, an even more efficient cooling process rvould be to pour
the coffee again into a new cup (as massive as possible), and
repeat if necessary. Because everyday life situations are an
unlimited source of scientific questions, what rvill happen if
we add sugar to the liquid? Will this influence the cooling
rate? This is another story, worth being discussed-around
a cup of coffee!

NOMENCLATURE
A area (m2)

A term defined by Eq. (22)
B term defined by Eq. (23)
Bi Biot number, Eq. (27)

Cp specifrc heat (J kg't'6-t;

o _MoCp*u,0, +mCp"O^
-cq 

MoCp** * mCp.

Chemical  Engineer ing Educat ion



Cr total concentration (Mol m-i)
D diameter (m)
e thickness (m)
F logarithmic mean of partial pressures of air (pa)
H heighr (m)
hn free convection heat transfer coeflicient (Wmr "Ç,r;
hR radiation heat transfer coefficient (Wm.2.C-r)
k" lorv or equimolar flux mass transfer coeff. (kg s-rmr)
L characrerisric length (m)
Le Lervis number= ratio of thermal and massic drffusivities
M mass of water (kg)
m mass of the cup (kg)
YJI molecule weight (kg Mol-r)
N molar density of flux (Mol s-rmr)
Nu Nusselt number, Eq. (29)
a heat flux (W m")
Pr Prandt number,Eq. (29)
P" vapor pressure (pa)
Q"".0 evaporative heat flux (W m'2)
Ra Rayleigh number, Eq. (29)
t time (s)
U global heat exchange coefficient (W m*C-r)
W mass flux (kg s-r)
ÂH, massic latent heat of water (J kg-r)
0, thermal diffusivity (m, s-')
p thermal expansion coefficient (K-r)
e emissivity of the surface
\ thermal conductivity
v kinematic diffusivity (m2 s-r)
çt density (kg mr)
o Stefan Boltzman constant = 5.67 x lO-s (W m-2 Ka)

0 temperature ("C)

subscripts

0 initial
a ambient
air air
av average
c cup
e extemal
i internal
s surface
v vertical
w wall
wal \vater
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