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Abstract

Image segmentation is often ambiguous at the level of
individual image patches and requires contextual informa-
tion to reach label consensus. In this paper we introduce
Segmenter, a transformer model for semantic segmentation.
In contrast to convolution-based methods, our approach
allows to model global context already at the first layer
and throughout the network. We build on the recent Vision
Transformer (ViT) and extend it to semantic segmentation.
To do so, we rely on the output embeddings corresponding
to image patches and obtain class labels from these embed-
dings with a point-wise linear decoder or a mask trans-
former decoder. We leverage models pre-trained for im-
age classification and show that we can fine-tune them on
moderate sized datasets available for semantic segmenta-
tion. The linear decoder allows to obtain excellent results
already, but the performance can be further improved by a
mask transformer generating class masks. We conduct an
extensive ablation study to show the impact of the different
parameters, in particular the performance is better for large
models and small patch sizes. Segmenter attains excellent
results for semantic segmentation. It outperforms the state
of the art on both ADE20K and Pascal Context datasets and
is competitive on Cityscapes.

1. Introduction
Semantic segmentation is a challenging computer vi-

sion problem with a wide range of applications includ-
ing autonomous driving, robotics, augmented reality, im-
age editing, medical imaging and many others [27, 28, 45].
The goal of semantic segmentation is to assign each im-
age pixel to a category label corresponding to the under-
lying object and to provide high-level image representa-
tions for target tasks, e.g. detecting the boundaries of peo-
ple and their clothes for virtual try-on applications [29].
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Figure 1: Our approach for semantic segmentation is purely
transformer based. It leverages the global image context at
every layer of the model. Attention maps from the first Seg-
menter layer are displayed for three 8× 8 patches and high-
light the early grouping of patches into semantically mean-
ingful categories. The original image (top-left) is overlayed
with segmentation masks produced by our method.

Despite much effort and large progress over recent years
[10, 22, 31, 37, 48, 65, 66], image segmentation remains a
challenging problem due to rich intra-class variation, con-
text variation and ambiguities originating from occlusions
and low image resolution.

Recent approaches to semantic segmentation typically
rely on convolutional encoder-decoder architectures where
the encoder generates low-resolution image features and the
decoder upsamples features to segmentation maps with per-
pixel class scores. State-of-the-art methods deploy Fully
Convolutional Networks (FCN) [44] and achieve impres-
sive results on challenging segmentation benchmarks [10,
23, 57, 58, 60, 64, 66]. These methods rely on learnable
stacked convolutions that can capture semantically rich in-
formation and have been highly successful in computer vi-
sion. The local nature of convolutional filters, however,
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limits the access to the global information in the image.
Meanwhile, such information is particularly important for
segmentation where the labeling of local patches often de-
pends on the global image context. To circumvent this issue,
DeepLab methods [8, 9, 10] introduce feature aggregation
with dilated convolutions and spatial pyramid pooling. This
allows to enlarge the receptive fields of convolutional net-
works and to obtain multi-scale features. Following recent
progresses in NLP [50], several segmentation methods ex-
plore alternative aggregation schemes based on channel or
spatial [22, 23, 61] attention and point-wise [66] attention to
better capture contextual information. Such methods, how-
ever, still rely on convolutional backbones and are, hence,
biased towards local interactions. An extensive use of spe-
cialised layers to remedy this bias [8, 10, 22, 58] suggests
limitations of convolutional architectures for segmentation.

To overcome these limitations, we formulate the prob-
lem of semantic segmentation as a sequence-to-sequence
problem and use a transformer architecture [50] to leverage
contextual information at every stage of the model. By de-
sign, transformers can capture global interactions between
elements of a scene and have no built-in inductive prior,
see Figure 1. However, the modeling of global interac-
tions comes at a quadratic cost which makes such meth-
ods prohibitively expensive when applied to raw image pix-
els [11]. Following the recent work on Vision Transform-
ers (ViT) [19, 49], we split the image into patches and
treat linear patch embeddings as input tokens for the trans-
former encoder. The contextualized sequence of tokens pro-
duced by the encoder is then upsampled by a transformer
decoder to per-pixel class scores. For decoding, we con-
sider either a simple point-wise linear mapping of patch
embeddings to class scores or a transformer-based decod-
ing scheme where learnable class embeddings are processed
jointly with patch tokens to generate class masks. We con-
duct an extensive study of transformers for segmentation
by ablating model regularization, model size, input patch
size and its trade-off between accuracy and performance.
Our Segmenter approach attains excellent results while re-
maining simple, flexible and fast. In particular, when us-
ing large models with small input patch size the best model
reaches a mean IoU of 53.63% on the challenging ADE20K
[68] dataset, surpassing all previous state-of-the-art convo-
lutional approaches by a large margin of 5.3%. Such im-
provement partly stems from the global context captured by
our method at every stage of the model as highlighted in
Figure 1.

In summary, our work provides the following four con-
tributions: (i) We propose a novel approach to semantic seg-
mentation based on the Vision Transformer (ViT) [19] that
does not use convolutions, captures contextual information
by design and outperforms FCN based approaches. (ii) We
present a family of models with varying levels of resolu-
tion which allows to trade-off between precision and run-
time, ranging from state-of-the-art performance to models

with fast inference and good performances. (iii) We pro-
pose a transformer-based decoder generating class masks
which outperforms our linear baseline and can be extended
to perform more general image segmentation tasks. (iv) We
demonstrate that our approach yields state-of-the-art results
on both ADE20K [68] and Pascal Context [38] datasets and
is competitive on Cityscapes [14].

2. Related work
Semantic segmentation. Methods based on Fully Convo-
lutional Networks (FCN) combined with encoder-decoder
architectures have become the dominant approach to se-
mantic segmentation. Initial approaches [21, 36, 39, 40]
rely on a stack of consecutive convolutions followed by spa-
tial pooling to perform dense predictions. Consecutive ap-
proaches [1, 4, 34, 41, 43] upsample high-level feature maps
and combine them with low-level feature maps during de-
coding to both capture global information and recover sharp
object boundaries. To enlarge the receptive field of convolu-
tions in the first layers, several approaches [8, 33, 59] have
proposed dilated or atrous convolutions. To capture global
information in higher layers, recent work [9, 10, 65] em-
ploys spatial pyramid pooling to capture multi-scale con-
textual information. Combining these enhancements along
with atrous spatial pyramid pooling, Deeplabv3+ [10] pro-
poses a simple and effective encoder-decoder FCN archi-
tecture. Recent work [22, 23, 57, 58, 61, 66] replace coarse
pooling by attention mechanisms on top of the encoder fea-
ture maps to better capture long-range dependencies.

While recent segmentation methods are mostly focused
on improving FCN, the restriction to local operations im-
posed by convolutions may imply inefficient processing of
global image context and suboptimal segmentation results.
Hence, we propose a pure transformer architecture that cap-
tures global context at every layer of the model during the
encoding and decoding stages.

Transformers for vision. Transformers [50] are now
state of the art in many Natural Language Processing (NLP)
tasks. Such models rely on self-attention mechanisms and
capture long-range dependencies among tokens (words) in
a sentence. In addition, transformers are well suited for par-
allelization, facilitating training on large datasets. The suc-
cess of transformers in NLP has inspired several methods
in computer vision combining CNNs with forms of self-
attention to address object detection [7], semantic segmen-
tation [53], panoptic segmentation [51], video processing
[54] and few-shot classification [18].

Recently, the Vision Transformer (ViT) [19] introduced
a convolution-free transformer architecture for image clas-
sification where input images are processed as sequences
of patch tokens. While ViT requires training on very
large datasets, DeiT [49] proposes a token-based distilla-
tion strategy and obtains a competitive vision transformer
trained on the ImageNet-1k [16] dataset using a CNN as a
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Figure 2: Overview of our approach Segmenter. (Left) Encoder: The image patches are projected to a sequence of embed-
dings and then encoded with a transformer. (Right) Decoder: A mask transformer takes as input the output of the encoder
and class embeddings to predict segmentation masks. See text for details.

teacher. Concurrent work extends this work to video classi-
fication [2, 6] and semantic segmentation [35, 67]. In more
detail, SETR [67] uses a ViT backbone and a standard CNN
decoder. Swin Transformer [35] uses a variant of ViT, com-
posed of local windows, shifted between layers and Upper-
Net as a pyramid FCN decoder.

Here, we propose Segmenter, a transformer encoder-
decoder architecture for semantic image segmentation. Our
approach relies on a ViT backbone and introduces a mask
decoder inspired by DETR [7]. Our architecture does not
use convolutions, captures global image context by design
and results in competitive performance on standard image
segmentation benchmarks.

3. Our approach: Segmenter
Segmenter is based on a fully transformer-based

encoder-decoder architecture mapping a sequence of patch
embeddings to pixel-level class annotations. An overview
of the model is shown in Figure 2. The sequence of patches
is encoded by a transformer encoder described in Section
3.1 and decoded by either a point-wise linear mapping or
a mask transformer described in Section 3.2. Our model is
trained end-to-end with a per-pixel cross-entropy loss. At
inference time, argmax is applied after upsampling to ob-
tain a single class per pixel.

3.1. Encoder

An image x ∈ RH×W×C is split into a sequence of
patches x = [x1, ..., xN ] ∈ RN×P 2×C where (P, P ) is
the patch size, N = HW/P 2 is the number of patches
and C is the number of channels. Each patch is flattened

into a 1D vector and then linearly projected to a patch
embedding to produce a sequence of patch embeddings
x0 = [Ex1, ...,ExN ] ∈ RN×D where E ∈ RD×(P 2C).
To capture positional information, learnable position em-
beddings pos = [pos1, ..., posN ] ∈ RN×D are added to the
sequence of patches to get the resulting input sequence of
tokens z0 = x0 + pos.

A transformer [50] encoder composed of L layers is ap-
plied to the sequence of tokens z0 to generate a sequence of
contextualized encodings zL ∈ RN×D. A transformer layer
consists of a multi-headed self-attention (MSA) block fol-
lowed by a point-wise MLP block of two layers with layer
norm (LN) applied before every block and residual connec-
tions added after every block:

ai−1 = MSA(LN(zi−1)) + zi−1, (1)
zi = MLP(LN(ai−1)) + ai−1, (2)

where i ∈ {1, ..., L}. The self-attention mechanism is
composed of three point-wise linear layers mapping tokens
to intermediate representations, queries Q ∈ RN×d, keys
K ∈ RN×d and values V ∈ RN×d. Self-attention is then
computed as follows

MSA(Q,K,V) = softmax

(
QKT

√
d

)
V. (3)

The transformer encoder maps the input sequence z0 =
[z0,1, ..., z0,N ] of embedded patches with position encod-
ing to zL = [zL,1, ..., zL,N ], a contextualized encoding se-
quence containing rich semantic information used by the
decoder. In the following section we introduce the decoder.
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3.2. Decoder

The sequence of patch encodings zL ∈ RN×D is de-
coded to a segmentation map s ∈ RH×W×K whereK is the
number of classes. The decoder learns to map patch-level
encodings coming from the encoder to patch-level class
scores. Next these patch-level class scores are upsampled
by bilinear interpolation to pixel-level scores. We describe
in the following a linear decoder, which serves as a baseline,
and our approach, a mask transformer, see Figure 2.
Linear. A point-wise linear layer is applied to the patch
encodings zL ∈ RN×D to produce patch-level class logits
zlin ∈ RN×K . The sequence is then reshaped into a 2D
feature map slin ∈ RH/P×W/P×K and bilinearly upsam-
pled to the original image size s ∈ RH×W×K . A softmax
is then applied on the class dimension to obtain the final
segmentation map.
Mask Transformer. For the transformer-based decoder,
we introduce a set of K learnable class embeddings cls =
[cls1, ..., clsK ] ∈ RK×D where K is the number of classes.
Each class embedding is initialized randomly and assigned
to a single semantic class. It will be used to generate the
class mask. The class embeddings cls are processed jointly
with patch encodings zL by the decoder as depicted in Fig-
ure 2. The decoder is a transformer encoder composed ofM
layers. Our mask transformer generates K masks by com-
puting the scalar product between L2-normalized patch em-
beddings z′M ∈ RN×D and class embeddings c ∈ RK×D

output by the decoder. The set of class masks is computed
as follows

Masks(z′M, c) = z′Mc
T (4)

where Masks(z′M, c) ∈ RN×K is a set of patch se-
quence. Each mask sequence is then reshaped into a 2D
mask to form smask ∈ RH/P×W/P×K and bilinearly
upsampled to the original image size to obtain a feature
map s ∈ RH×W×K . A softmax is then applied on the
class dimension followed by a layer norm to obtain pixel-
wise class score forming the final segmentation map. The
masks sequences are softly exclusive to each other i.e.∑K

k=1 si,j,k = 1 for all (i, j) ∈ H ×W .
Our mask transformer is inspired by DETR [7], Max-

DeepLab [52] and SOLO-v2 [55] which introduce object
embeddings [7] to produce instance masks [52, 55]. How-
ever, unlike our method, MaxDeep-Lab uses an hybrid ap-
proach based on CNNs and transformers and splits the pixel
and class embeddings into two streams because of compu-
tational constraints. Using a pure transformer architecture
and leveraging patch level encodings, we propose a sim-
ple approach that processes the patch and class embeddings
jointly during the decoding phase. Such approach allows to
produce dynamical filters, changing with the input. While
we address semantic segmentation in this work, our mask
transformer can also be directly adapted to perform panop-
tic segmentation by replacing the class embeddings by ob-
ject embeddings.

Model Backbone Layers Token size Heads Params

Seg-Ti ViT-Ti 12 192 3 6M
Seg-S ViT-S 12 384 6 22M
Seg-B ViT-B 12 768 12 86M
Seg-B† DeiT-B 12 768 12 86M
Seg-L ViT-L 24 1024 16 307M

Table 1: Details of Transformer variants.

4. Experimental results
4.1. Datasets and metrics

ADE20K [68]. This dataset contains challenging scenes
with fine-grained labels and is one of the most challenging
semantic segmentation datasets. The training set contains
20,210 images with 150 semantic classes. The validation
and test set contain 2,000 and 3,352 images respectively.
Pascal Context [38]. The training set contains 4,996 im-
ages with 59 semantic classes plus a background class. The
validation set contains 5,104 images.
Cityscapes [14]. The dataset contains 5,000 images from
50 different cities with 19 semantic classes. There are 2,975
images in the training set, 500 images in the validation set
and 1,525 images in the test set.
Metrics. We report Intersection over Union (mIoU) aver-
aged over all classes.

4.2. Implementation details

Transformer models. For the encoder, we build upon the
vision transformer ViT [19] and consider ”Tiny”, ”Small”,
”Base” and ”Large” models described in Table 1. The pa-
rameters varying in the transformer encoder are the num-
ber of layers and the token size. The head size of a multi-
headed self-attention (MSA) block is fixed to 64, the num-
ber of heads is the token size divided by the head size and
the hidden size of the MLP following MSA is four times the
token size. We also use DeiT [49], a variant of the vision
transformer. We consider models representing the image at
different resolutions and use input patch sizes 8×8, 16×16
and 32×32. In the following, we use an abbreviation to
describe the model variant and patch size, for instance Seg-
B/16 denotes the ”Base” variant with 16×16 input patch
size. Models based on DeiT are denoted with a †, for in-
stance Seg-B†/16.
ImageNet pre-training. Our Segmenter models are pre-
trained on ImageNet, ViT is pre-trained on ImageNet-21k
with strong data augmentation and regularization [47] and
its variant DeiT is pre-trained on ImageNet-1k. The origi-
nal ViT models [19] have been trained with random crop-
ping only, whereas the training procedure proposed by [47]
uses a combination of dropout [46] and stochastic depth
[30] as regularization and Mixup [62] and RandAugment
[15] as data augmentations. This significantly improves
the ImageNet top-1 accuracy, i.e., it obtains a gain of +2%
on ViT-B/16. We fine-tuned ViT-B/16 on ADE20K with
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(a) Patch size 32× 32 (b) Patch size 16× 16 (c) Patch size 8× 8 (d) Ground Truth

Figure 3: Impact of the model patch size on the segmentation maps.

models from [19] and [47] and observe a significant differ-
ence, namely a mIoU of 45.69% and 48.06% respectively.
In the following, all the Segmenter models will be initial-
ized with the improved ViT models from [47]. We use pub-
licly available models provided by the image classification
library timm [56] and Google research [20]. Both models
are pre-trained at an image resolution of 224 and fine-tuned
on ImageNet-1k at a resolution of 384, except for ViT-B/8
which has been fine-tuned at a resolution of 224. We keep
the patch size fixed and fine-tune the models for the se-
mantic segmentation task at higher resolution depending on
the dataset. As the patch size is fixed, increasing resolu-
tion results in longer token sequences. Following [19], we
bilinearly interpolate the pre-trained position embeddings
according to their original position in the image to match
the fine-tuning sequence length. The decoders, described
in Section 3.2 are initialized with random weights from a
truncated normal distribution [25].
Data augmentation. During training, we follow the stan-
dard pipeline from the semantic segmentation library MM-
Segmentation [13], which does mean substraction, random
resizing of the image to a ratio between 0.5 and 2.0 and ran-
dom left-right flipping. We randomly crop large images and
pad small images to a fixed size of 512×512 for ADE20K,
480×480 for Pascal-Context and 768×768 for Cityscapes.
On ADE20K, we train our largest model Seg-L-Mask/16
with a resolution of 640×640, matching the resolution used
by the Swin Transformer [35].
Optimization. To fine-tune the pre-trained models for the
semantic segmentation task, we use the standard pixel-wise
cross-entropy loss without weight rebalancing. We use
stochastic gradient descent (SGD) [42] as the optimizer
with a base learning rate γ0 and set weight decay to 0. Fol-
lowing the seminal work of DeepLab [33] we adopt the
”poly” learning rate decay γ = γ0 (1 − Niter

Ntotal
)0.9 where

Niter and Ntotal represent the current iteration number and
the total iteration number. For ADE20K, we set the base
learning rate γ0 to 10−3 and train for 160K iterations with
a batch size of 8. For Pascal Context, we set γ0 to 10−3

and train for 80K iterations with a batch size of 16. For
Cityscapes, we set γ0 to 10−2 and train for 80K itera-
tions with a batch size of 8. The schedule is similar to
DeepLabv3+ [10] with learning rates divided by a factor
10 except for Cityscapes where we use a factor of 1.

Stochastic Depth
0.0 0.1 0.2

D
ro

po
ut 0.0 45.01 45.37 45.10

0.1 42.02 42.30 41.14
0.2 36.49 36.63 35.67

Table 2: Mean IoU comparison of different regularization
schemes using Seg-S/16 on ADE20K validation set.

Method Backbone Patch size Im/sec ImNet acc. mIoU (SS)

Seg-Ti/16 ViT-Ti 16 396 78.6 39.03

Seg-S/32 ViT-S 32 1032 80.5 40.64
Seg-S/16 ViT-S 16 196 83.7 45.37

Seg-B†/16 DeiT-B 16 92 85.2 47.08

Seg-B/32 ViT-B 32 516 83.3 43.07
Seg-B/16 ViT-B 16 92 86.0 48.06
Seg-B/8 ViT-B 8 7 85.7 49.54

Seg-L/16 ViT-L 16 33 87.1 50.71

Table 3: Performance comparison of different Segmenter
models with varying backbones and input patch sizes on
ADE20K validation set.

Inference. To handle varying image sizes during inference,
we use a sliding-window with a resolution matching the
training size. For multi-scale inference, following standard
practice [10] we use rescaled versions of the image with
scaling factors of (0.5, 0.75, 1.0, 1.25, 1.5, 1.75) and left-
right flipping and average the results.

4.3. Ablation study

In this section, we ablate different variants of our ap-
proach on the ADE20K validation set. We investigate
model regularization, model size, patch size, model perfor-
mance, training dataset size, compare Segmenter to convo-
lutional approaches and evaluate different decoders. Unless
stated otherwise, we use the baseline linear decoder and re-
port results using single-scale inference.
Regularization. We first compare two forms of regulariza-
tion, dropout [46] and stochastic depth [30], and show that
stochastic depth consistently improves transformer train-
ing for segmentation. CNN models rely on batch nor-
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Figure 4: Images per second and mean IoU for our ap-
proach compared to other methods on ADE20K validation
set. Segmenter models offer a competitive trade-off in terms
of performance and precision.

malization [32] which also acts as a regularizer. In con-
trast, transformers are usually composed of layer normaliza-
tion [3] combined with dropout as a regularizer during train-
ing [17, 19]. Dropout randomly ignores tokens given as in-
put of a block and stochastic depth randomly skips a learn-
able block of the model during the forward pass. We com-
pare regularizations on Seg-S/16 based on ViT-S/16 back-
bone. Table 2 shows that stochastic depth set to 0.1, drop-
ping 10% of the layers randomly, consistently improves
the performance, with 0.36% when the dropout is set to 0
compared to the baseline without regularization. Dropout
consistently hurts performances, either alone or when com-
bined with stochastic depth. This is consistent with [49]
which observed the negative impact of dropout for image
classification. From now on, all the models will be trained
with stochastic depth set to 0.1 and without dropout.
Transformer size. We now study the impact of transform-
ers size on performance by varying the number of layers
and the tokens size for a fixed patch size of 16. Table 3
shows that performance scales nicely with the backbone ca-
pacity. When doubling the token dimension, from Seg-S/16
to Seg-B/16, we get a 2.69% improvement. When doubling
the number of layers, from Seg-B/16 to Seg-L/16, we get
an improvement of 2.65%. Finally, our largest Segmenter
model, Seg-L/16, achieves a strong mIoU of 50.71% with a
simple decoding scheme on the ADE20K validation dataset
with single scale inference. The absence of tasks-specific
layers vastly used in FCN models suggests that transformer
based methods provide more expressive models, well suited
for semantic segmentation.
Patch size. Representing an image with a patch sequence
provides a simple way to trade-off between speed and accu-
racy by varying the patch size. While increasing the patch
size results in a coarser representation of the image, it re-

Method Decoder Small Medium Large mIoU (SS)

DeepLab RNeSt-101 UNet 37.85 50.89 50.67 46.47

Seg-B/32 Linear 31.95 47.82 49.44 43.07
Seg-B-Mask/32 Mask 32.29 49.44 50.82 44.19

Seg-B†/16 Linear 38.31 50.91 52.08 47.10
Seg-B†-Mask/16 Mask 40.49 51.37 54.24 48.70

Seg-B/16 Linear 39.57 51.32 53.28 48.06
Seg-B-Mask/16 Mask 40.16 52.61 52.66 48.48

Seg-B/8 Linear 41.43 54.35 52.85 49.54

Seg-L/16 Linear 42.08 54.67 55.39 50.71
Seg-L-Mask/16 Mask 42.02 54.83 57.06 51.30

Table 4: Evaluation with respect to the object size
on ADE20k validation set (mean IoU). Comparison of
DeepLabv3+ ResNeSt-101 to Segmenter models with a lin-
ear or a mask transformer decoder.

Dataset Size 4k 8k 12k 16k 20k

mIoU (SS) 38.31 41.87 43.42 44.61 45.37

Table 5: Performance comparison of Seg-S/16 mod-
els trained with increasing dataset size and evaluated on
ADE20K validation set.

sults in a smaller sequence that is faster to process. The
third and fourth parts of Table 3 report the performance for
ViT backbones and varying patch sizes. We observe that the
patch size is a key factor for semantic segmentation perfor-
mance. It is similarly important to the model size. Indeed,
going from a patch size 32 to 16 we observe an improve-
ment of 5% for Seg-B. For Seg-B, we also report results
for a patch size of 8 and report an mIoU of 49.54%, re-
ducing the gap from ViT-B/8 to ViT-L/16 to 1.17% while
requiring substantially fewer parameters. This trend shows
that reducing the patch size is a robust source of improve-
ment which does not introduce any parameters but requires
to compute attention over longer sequences, increasing the
compute time and memory footprint. If it was computation-
ally feasible, ViT-L/8 would probably be the best perform-
ing model. Going towards more computation and memory
efficient transformers handling larger sequence of smaller
patches is a promising direction.

To further study the impact of patch size, we show seg-
mentation maps generated by Segmenter models with de-
creasing patch size in Figure 3. We observe that for a patch
size of 32, the model learns a globally meaningful seg-
mentation but produces poor boundaries, for example the
two persons on the left are predicted by a single blob. Re-
ducing the patch size leads to considerably sharper bound-
aries as can be observed when looking at the contours of
persons. Hard to segment instances as the thin streetlight
pole in the background are only captured at a resolution
of 8. In Table 4, we report mean IoU with respect to the
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object size and compare Segmenter to DeepLabv3+ with
ResNeSt backbone. To reproduce DeepLabv3+ results, we
used models from the MMSegmentation library [13]. We
observe how Seg-B/8 improvement over Seg-B/16 comes
mostly from small and medium instances with a gain of
1.27% and 1.74% respectively. Also, we observe that over-
all the biggest improvement of Segmenter over DeepLab
comes from large instances where Seg-L-Mask/16 shows
an improvement of 6.39%.
Decoder variants. In this section, we compare different
decoder variants. We evaluate the mask transformer intro-
duced in Section 3.2 and compare it to the linear baseline.
The mask transformer has 2 layers with the same token and
hidden size as the encoder. Table 4 reports the mean IoU
performance. The mask transformer provides consistent im-
provements over the linear baseline. The most significant
gain of 1.6% is obtained for Seg-B†/16, for Seg-B-Mask/32
we obtain a 1.1% improvement and for Seg-L/16 a gain of
0.6%. In Table 4 we also examine the gain of different mod-
els with respect to the object size. We observe gains both
on small and large objects, showing the benefit of using dy-
namical filters. In most cases the gain is more significant for
large objects, i.e., 1.4% for Seg-B/32, 2.1% for Seg-B†/16
and and 1.7% for Seg-L/16. The class embeddings learned
by the mask transformer are semantically meaningful, i.e.,
similar classes are nearby, see Figure 8 for more details.
Transformer versus FCN. Table 4 and Table 6 compare
our approach to FCN models and DeepLabv3+ [10] with
ResNeSt backbone [63], one of the best fully-convolutional
approaches. Our transformer approach provides a signif-
icant improvement over this state-of-the-art convolutional
approach, highlighting the ability of transformers to capture
global scene understanding. Segmenter consistently out-
performs DeepLab on large instances with an improvement
of more than 4% for Seg-L/16 and 6% for Seg-L-Mask/16.
However, DeepLab performs similarly to Seg-B/16 on small
and medium instances while having a similar number of pa-
rameters. Seg-B/8 and Seg-L/16 perform best on small and
medium instances though at higher computational cost.
Performance. In Figure 4, we compare our models to sev-
eral state-of-the-art methods in terms of images per sec-
onds and mIoU and show a clear advantage of Segmenter
over FCN based models (green curve). We also show
that our approach compares favorably to recent transformer
based approach, our largest model Seg-L-Mask/16 is on-
par with Swin-L and outperforms SETR-MLA. We observe
that Seg/16 models perform best in terms of accuracy versus
compute time with Seg-B-Mask/16 offering a good trade-
off. Seg-B-Mask/16 outperforms FCN based approaches
with similar inference speed, matches SETR-MLA while
being twice faster and requiring less parameters and out-
performs Swin-B both in terms of inference speed and per-
formance. Seg/32 models learn coarser segmentation maps
as discussed in the previous section and enable fast infer-
ence with 400 images per second for Seg-B-Mask/32, four

Method Backbone Im/sec mIoU +MS

OCR [60] HRNetV2-W48 83 - 45.66
ACNet [24] ResNet-101 - - 45.90
DNL [57] ResNet-101 - - 45.97
DRANet [22] ResNet-101 - - 46.18
CPNet [58] ResNet-101 - - 46.27
DeepLabv3+ [10] ResNet-101 76 45.47 46.35
DeepLabv3+ [10] ResNeSt-101 15 46.47 47.27
DeepLabv3+ [10] ResNeSt-200 - - 48.36

SETR-L MLA [67] ViT-L/16 34 48.64 50.28
Swin-L UperNet [35] Swin-L/16 34 52.10 53.50

Seg-B†/16 DeiT-B/16 77 47.08 48.05
Seg-B†-Mask/16 DeiT-B/16 76 48.70 50.08
Seg-L/16 ViT-L/16 33 50.71 52.25
Seg-L-Mask/16 ViT-L/16 31 51.82 53.63

Table 6: State-of-the-art comparison on ADE20K valida-
tion set.

times faster than ResNet-50 while providing similar perfor-
mances. To compute the images per second, we use a V100
GPU, fix the image resolution to 512 and for each model
we maximize the batch size allowed by memory for a fair
comparison.
Dataset size. Vision Transformers highlighted the impor-
tance of large datasets to attain good performance for the
task of image classification. At the scale of a semantic
segmentation dataset, we analyze Seg-S/16 performance on
ADE20k dataset in Table 5 when trained with a dataset of
increasing size. We observe an important drop in perfor-
mance when the training set size is below 8k images. This
shows that even during fine-tuning transformers performs
best with a sufficient amount of data.

4.4. Comparison with state of the art
In this section, we compare the performance of Seg-

menter with respect to the state-of-the-art methods on
ADE20K, Pascal Context and Cityscapes datasets.
ADE20K. Seg-B†/16 pre-trained on ImageNet-1k matches
the state-of-the-art FCN method DeepLabv3+ ResNeSt-
200 [63] as shown in Table 6. Adding our mask trans-
former, Seg-B†-Mask/16 improves by 2% and achieves
a 50.08% mIoU, outperforming all FCN methods. Our
best model, Seg-L-Mask/16 attains a state-of-the-art per-
formance of 53.63%, outperforming by a margin of 5.27%
mIoU DeepLabv3+ ResNeSt-200 and the transformer-
based methods SETR [67] and Swin-L UperNet [35].
Pascal Context Table 7 reports the performance on Pas-
cal Context. Seg-B†models are competitive with FCN
methods and the larger Seg-L/16 model already provides
state-of-the-art performance, outperforming SETR-L. Per-
formances can be further enhanced with our mask trans-
former, Seg-L-Mask/16, improving over the linear decoder
by 2.5% and achieving a performance of 59.04% mIoU. In
particular, we report an improvement of 2.8% over OCR
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Figure 5: Qualitative comparison of Seg-L-Mask/16 performance with DeepLabV3+ ResNeSt-101. See Section C for addi-
tional qualitative results.

Method Backbone mIoU (MS)

DeepLabv3+ [10] ResNet-101 48.5
DANet [23] ResNet-101 52.6
ANN [69] ResNet101 52.8
CPNet [58] ResNet-101 53.9
CFNet [64] ResNet-101 54.0
ACNet [24] ResNet-101 54.1
APCNet [26] ResNet101 54.7
DNL [57] HRNetV2-W48 55.3
DRANet [22] ResNet-101 55.4
OCR [60] HRNetV2-W48 56.2

SETR-L MLA [67] ViT-L/16 55.8

Seg-B†/16 DeiT-B/16 53.9
Seg-B†-Mask/16 DeiT-B/16 55.0
Seg-L/16 ViT-L/16 56.5
Seg-L-Mask/16 ViT-L/16 59.0

Table 7: State-of-the-art comparison on Pascal Context val-
idation set.

HRNetV2-W48 and 3.2% over SETR-L MLA.
Cityscapes. Table 8 reports the performance of Segmenter
on Cityscapes. We use a variant of mask transformer for
Seg-L-Mask/16 with only one layer in the decoder as two
layers did not fit into memory due to the large input res-
olution of 768×768. Both Seg-B and Seg-L methods are
competitive with other state-of-the-art methods with Seg-
L-Mask/16 achieving a mIoU of 81.3%.
Qualitative results. Figure 5 shows a qualitative compar-
ison of Segmenter and DeepLabv3+ with ResNeSt back-
bone, for which models were provided by the MMSegmen-
tation [13] library. We can observe that Deeplabv3+ tends
to generate sharper object boundaries while Segmenter pro-
vides more consistent labels on large instances and handles
partial occlusions better.

5. Conclusion
This paper introduces a pure transformer approach for

semantic segmentation. The encoding part builds up on the

Method Backbone mIoU (MS)

PSANet [66] ResNet-101 79.1
DeepLabv3+ [10] Xception-71 79.6
ANN [69] ResNet-101 79.9
MDEQ [5] MDEQ 80.3
DeepLabv3+ [10] ResNeSt-101 80.4
DNL [57] ResNet-101 80.5
CCNet [31] ResNet-101 81.3
Panoptic-Deeplab [12] Xception-71 81.5
DeepLabv3+ [10] ResNeSt-200 82.7

SETR-L PUP [67] ViT-L/16 82.2

Seg-B†/16 DeiT-B/16 80.5
Seg-B†-Mask/16 DeiT-B/16 80.6
Seg-L/16 ViT-L/16 80.7
Seg-L-Mask/16 ViT-L/16 81.3

Table 8: State-of-the-art comparison on Cityscapes valida-
tion set.

recent Vision Transformer (ViT), but differs in that we rely
on the encoding of all images patches. We observe that the
transformer captures the global context very well. Applying
a simple point-wise linear decoder to the patch encodings
already achieves excellent results. Decoding with a mask
transformer further improves the performance. We believe
that our end-to-end encoder-decoder transformer is a first
step towards a unified approach for semantic segmentation,
instance segmentation and panoptic segmentation.
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Appendix

This appendix presents additional results. We study the
impact of ImageNet pretraining on the performance and
demonstrate its importance in Section A. To gain more in-
sight about our approach Segmenter, we analyze its atten-
tion maps and the learned class embeddings in Section B.
Finally, we give an additional qualitative comparison of
Segmenter to DeepLabv3+ on ADE20K, Cityscapes and
Pascal Context in Section C.

A. ImageNet pre-training
To study the impact of ImageNet pre-training on Seg-

menter, we compare our model pre-trained on ImageNet
with equivalent models trained from scratch. To train
from scratch, the weights of the model are initialized
randomly with a truncated normal distribution. We use a
base learning rate of 10−3 and two training procedures.
First, we follow the fine-tuning procedure and use SGD
optimizer with ”poly” scheduler. Second, we follow a
more standard procedure when training a transformer from
scratch where we use AdamW with a cosine scheduler
and a linear warmup for 16K iterations corresponding
to 10% of the total number of iterations. Table 9 reports
results for Seg-S/16. We observe that when pre-trained
on ImageNet-21k using SGD, Seg-S/16 reaches 45.37%
yielding a 32.9% improvement over the best randomly
initialized model.

Method Pre-training Optimizer mIoU (SS)

Seg-S/16 None AdamW 4.42
Seg-S/16 None SGD 12.51
Seg-S/16 ImageNet-21k AdamW 34.77
Seg-S/16 ImageNet-21k SGD 45.37

Table 9: Impact of pretraining on the performance on
ADE20K validation set.

B. Attention maps and class embeddings
To better understand how our approach Segmenter pro-

cesses images, we display attention maps of Seg-B/8 for 3
images in Figure 6. We resize attention maps to the origi-
nal image size. For each image, we analyze attention maps
of a patch on a small instance, for example lamp, cow or
car. We also analyze attention maps of a patch on a large
instance, for example bed, grass and road. We observe that
the attention map field-of-view adapts to the input image
and the instance size, gathering global information on large

instances and focusing on local information on smaller in-
stances. This adaptability is typically not possible with
CNN which have a constant field-of-view, independently
of the data. We also note there is progressive gathering of
information from bottom to top layers, as for example on
the cow instance, where the model first identifies the cow
the patch belongs to, then identifies other cow instances.
We observe that attention maps of lower layers depends
strongly on the selected patch while they tend to be more
similar for higher layers.

Additionally, to illustrate the larger receptive field size of
Segmenter compared to CNNs, we reported the size of the
attended area in Figure 7, where each dot shows the mean
attention distance for one of the 12 attention heads at each
layer. Already for the first layer, some heads attend to dis-
tant patches which clearly lie outside the receptive field of
ResNet/ResNeSt initial layers.

To gain some understanding of the class embeddings
learned with the mask transformer, we project embeddings
into 2D with a singular value decomposition. Figure 8
shows that these projections group instances such as means
of transportation (bottom left), objects in a house (top) and
outdoor categories (middle right). It displays an implicit
clustering of semantically related categories.

C. Qualitative results
We present additional qualitative results including com-

parison with DeepLabv3+ ResNeSt-101 and failure cases
in Figures 9, 10 and 11. We can see in Figure 9 that Seg-
menter produces more coherent segmentation maps than
DeepLabv3+. This is the case for the wedding dress in
(a) or the airplane signalmen’s helmet in (b). In Figure
10, we show how for some examples, different segments
which look very similar are confused both in DeepLabv3+
and Segmenter. For example, the armchairs and couchs
in (a), the cushions and pillows in (b) or the trees, flow-
ers and plants in (c) and (d). In Figure 11, we can see
how DeepLabv3+ handles better the boundaries between
different people entities. Finally, both Segmenter and
DeepLabv3+ have problems segmenting small instances
such as lamp, people or flowers in Figure 12 (a) or the cars
and signals in Figure 12 (b).
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Figure 6: Seg-B/8 patch attention maps for the layers 1, 4, 8 and 11.
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Figure 7: Size of attended area by head and model depth.

Figure 8: Singular value decompostion of the class embeddings learned with the mask transformer on ADE20K.
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Figure 9: Segmentation maps where Seg-L-Mask/16 produces more coherent segmentation maps than DeepLabv3+ ResNeSt-
101.
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(a)

(b)

(c)

DeepLabv3+ Segmenter Ground Truth

(d)

Figure 10: Examples for Seg-L-Mask/16 and DeepLabv3+ ResNeSt-101 on ADE20K, where elements which look very
similar are confused.
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Figure 11: Comparison of Seg-L-Mask/16 with DeepLabV3+ ResNeSt-101 for images with near-by persons. We can observe
that DeepLabV3+ localizes boundaries better.
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Figure 12: Failure cases of DeepLabV3+ ResNeSt-101 and Seg-L-Mask/16, for small instances such as (a) lamp, people,
flowers and (b) cars, signals.
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