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COMBINATORICS OF QUASI-HEREDITARY STRUCTURES

MANUEL FLORES, YUTA KIMURA, AND BAPTISTE ROGNERUD

Abstract. A quasi-hereditary algebra is an Artin algebra together with a partial order on its set of
isomorphism classes of simple modules which satisfies certain conditions. In this article we investigate all
the possible choices that yield quasi-hereditary structures on a given algebra, in particular we introduce
and study what we call the poset of quasi-hereditary structures. Our techniques involve certain quiver
decompositions and idempotent reductions. For a path algebra of Dynkin type A, we provide a full
classification of its quasi-hereditary structures. For types D and E, we give a counting method for
the number of quasi-hereditary structures. In the case of a hereditary incidence algebra, we present a
necessary and sufficient condition for its poset of quasi-hereditary structures to be a lattice.
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1. Introduction

Quasi-hereditary algebras were introduced by Scott in [Sco87] as an algebraic axiomatization of the
theory of rational representations of semisimple algebraic groups. They were generalized to the concept
of highest weight categories soon after in [CPS88] allowing infinitely many simple objects. They form
a huge class of algebras and categories which appear in many areas of modern representation theory,
including complex semisimple Lie algebras, Schur algebras, algebras of global dimension at most two
and many more.
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A quasi-hereditary algebra is a pair (A, (I,C)) where A is an Artin algebra and (I,C) is a partially
ordered set indexing the isomorphism classes of simple A-modules which satisfies additional properties
involving the filtrations of the projective modules by the so-called standard modules (see Definition
2.11). In particular, an algebra is not intrinsically a quasi-hereditary algebra since the standard
modules heavily depend on the partial order (I,C).

In the early examples of highest weight categories and quasi-hereditary algebras, the partial orders
were easy to choose because they were related to the classical combinatorics of weights and roots and
we already knew that these partial orderings were related to the representation theory of our examples.
However, there are instances of quasi-hereditary algebras where there is no natural choice for the
partial ordering and even if there is such a natural choice, one may wonder about the other possible
orderings.

To our knowledge, there are two known results in this direction. The first, which is due to Dlab and
Ringel, asserts that an Artin algebra is hereditary if and only if it is quasi-hereditary for any total
ordering on I (see [DR89, Theorem 1] for more details). The second, due to Coulembier, says that if
an algebra has a simple preserving duality, then it has at most one ‘quasi-hereditary structure’ (see
[Cou19, Theorem 2.1.1] for more details, the notion of quasi-hereditary structure is explained below).

The main objective of this article is to continue the systematic study of all the possible choices of
partially ordered sets that yield quasi-hereditary structures on a given Artin algebra. We start by
known and easy remarks that will allow us to better define our objectives, and then give the foundations
for our investigations. The organisation of this article can be summarised chronologically as follows.

The first main issue when one tries to classify all the partial orders C on I such that (A, (I,C)) is a
quasi-hereditary algebra is that there are too many of them. However, as it has been proved by Conde
(see [Con16, Proposition 1.4.12]), that if (A, (I,C)) is a quasi-hereditary algebra, then the partial order
C is an adapted poset to A in the sense of Dlab and Ringel (see Definition 2.1). The definition of
adapted order is rather technical, but it reduces significantly the number of partial orders that we have
to consider.

The next step is to realize that we do not want to classify adapted partial orders, but we want
to classify equivalence classes for an appropriate equivalence relation. Indeed, as it can be seen in
Definition 2.11, the only place where the partial order (I,C) is involved is in the construction of the
standard modules. As a consequence, if (A, (I,C1)) and (A, (I,C2)) are two quasi-hereditary algebras
with same set of standard modules, it is then natural to say that the partial orders C1 and C2 are
equivalent, and we write C1 ∼ C2. We call the equivalence classes of this relation the quasi-hereditary
structures on the algebra A, and these are exactly what we want to classify. We denote by qh.str(A)
the set of quasi-hereditary structures on the algebra A.

This equivalence relation was introduced by Dlab and Ringel in [DR92] where they proved that
any quasi-hereditary structure contains at least one total ordering. This key fact is the reason why
in most of the references the authors usually assume the ordering on I to be total. However, for our
purpose, we should not restrict ourselves to total orderings since one equivalence class may contain
many different total orderings. For example, when A is a semisimple algebra with n isomorphism
classes of simple modules, it has a unique quasi-hereditary structure which contains n! total orderings.

Let (A, (I,C)) be a quasi-hereditary algebra with set of standard and costandard modules denoted
by ∆ and ∇. We define subsets Dec(C) and Inc(C) of I2 as follows:

Dec(C) := {(i, j) ∈ I2 | [∆(j) : S(i)] 6= 0}, Inc(C) := {(i, j) ∈ I2 | [∇(j) : S(i)] 6= 0}.

Then, we show in Lemma 2.8 that the transitive cover Cm of the relation (Dec(C)∪ Inc(C)) is equivalent
to C and we prove in Proposition 2.9 that it is the unique minimal element (with respect to the
inclusion of relations) in the quasi-hereditary structure containing C. These partial orders were already
considered by Coulembier under the name of essential orderings (see [Cou19, Definition 1.2.5]). Here,
we call them minimal adapted orders. The relations Dec(C) and Inc(C) are called the decreasing and
increasing relations of C. These names have been chosen to highlight the relationship of our work and
the work of Châtel, Pilaud and Pons on the weak order of integer posets (see [CPP19]). It turns out
that the combinatorics of the quasi-hereditary structures on an equioriented quiver of type A is the
same as their combinatorics of the “Tamari order element poset”(see Section 4). Moreover, in the case
of a quiver algebra, these names are particularly relevant since an increasing relation follows the paths
of the quiver, and a decreasing one goes against them.
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In addition to standard and costandard modules, a quasi-hereditary algebra has a distinguished
tilting module called the characteristic tilting module (see Proposition 2.16). This leads to the following
easy proposition.

Proposition 1.1 (Lemma 2.18). Let C1 and C2 be two partial orders on I such that (A, (I,C1)) and
(A, (I,C2)) are quasi-hereditary algebras. Then the following statements are equivalent.

(1) C1 ∼ C2.
(2) (C1)m = (C2)m.
(3) T1 ∼= T2, where Ti is the characteristic tilting module of (A, (I,Ci)) for i = 1, 2.

It is now clear that we should see the set of quasi-hereditary structures on A as a subposet of its
poset of tilting modules in the sense of Happel and Unger (see [HU05; RS91] for more details).

The poset of tilting modules is most of the time infinite, but the poset of quasi-hereditary structures
is always finite since any quasi-hereditary structure contains at least one total order. In Example 2.26
we show that the weak order on the set of permutations on n letters can be realized as the poset of
quasi-hereditary structures on the path algebra of a suitable orientation of a complete graph. The
Tamari lattices are obtained by considering path algebras of an equioriented orientation of a type A
Dynkin diagram. More precisely, we prove the following result in Section 4.

Theorem 1.2 (Theorem 4.7). Let n ∈ N, and An be an equioriented quiver of type A with n vertices,
and Λn = kAn. Then, there are explicit bijections between

(1) Minimal adapted posets to Λn,
(2) Binary trees with n vertices,
(3) Isomorphism classes of tilting modules over Λn.

Moreover, the poset of quasi-hereditary structures on Λn is isomorphic to the Tamari lattice.

This implies that the number of quasi-hereditary structures is given by the n-th Catalan number
cn = 1

n+1

(
2n
n

)
. Furthermore, any tilting module for this algebra is a characteristic tilting module.

The understanding of the other orientations of a type A quiver is obtained as a consequence of a
more general argument involving sources and sinks of a quiver.

A (iterated) deconcatenation of a quiver Q is a disjoint union Q1 t · · · tQ` of full subquivers Qi

of Q satisfying certain properties, see Subsection 3.1 for details. The quivers Qi are obtained by
deconcatenating Q at sources or sinks. Then in Section 3 we prove the following result.

Theorem 1.3 (Theorem 3.7). Let Q1 tQ2 t · · · tQ` be an iterated deconcatenation of Q. Let A be a
factor algebra of kQ modulo some admissible ideal and Ai := A/〈eu | u ∈ Q0 \Qi0〉. Then we have an
isomorphism of posets

qh.str(A) −→
∏̀
i=1

qh.str(Ai).

Under the isomorphism, we have an explicit construction of the characteristic tilting A-modules in
terms of the characteristic tilting Ai-modules, see Theorem 3.14.

A quiver Q whose underlying graph is of type A has an iterated deconcatenation Q1 tQ2 t · · · tQ`
such that each Qi is an equioriented quiver of type A. Therefore as a corollary we obtain a classification
of the quasi-hereditary structures on the path algebras of type A.

Theorem 1.4 (Theorems 4.9, 4.10). Let Q be a quiver whose underlying graph is of type A. Let
Q1 tQ2 t · · · tQ` be an iterated deconcatenation of Q such that each Qi is an equioriented quiver of
type Ani for some ni ∈ Z≥1. Then we have an isomorphism of posets

qh.str(kQ) −→
∏̀
i=1

qh.str(Λni).

Moreover, if C is a minimal adapted order to kQ and T =
⊕

i∈I T (i) is the characteristic tilting module
associated to C, then for vertices i, j ∈ Q0, a simple kQ-module associated to j is a composition factor
of T (i) if and only if j C i holds.
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In Section 5 we count the number of quasi-hereditary structures on the path algebras of Dynkin
types D and E. For the quivers of type D, by Theorem 1.3 and the duality argument of Lemma 2.22, it
is enough to consider only two orientations of Dn, with n ≥ 4, that is, the quivers D1 and D2 defined
below.

Theorem 1.5 (Lemmas 5.8, 5.9). Let n ≥ 3. Then,

(1) |qh.str(kD1)| = 2cn − 3cn−1,
(2) |qh.str(kD2)| = 3cn−1 − cn−2,

where cn is the n-th Catalan number and

D1 = 1 2 · · · n− 2
n− 1

n
, D2 = 1 2 · · · n− 2

n− 1

n
.

The type E case is explained in Example 5.10.
So far, in all our examples, we have found a lattice of quasi-hereditary structures: in the complete

graph case, we obtained the weak order and for quivers of type A we obtained products of Tamari
lattices. As it can be seen in Proposition 6.11, this is no longer true in the case of affine quivers of type
A. The question of understanding which Artin algebras have a lattice of quasi-hereditary structures is
both natural and very intriguing. We have the feeling that this will only happen in a few cases but our
progress is rather modest: in Section 6 we prove the following result.

Theorem 1.6 (Theorem 6.1). Let Q be a finite acyclic quiver whose underlying graph is a tree. Then
qh.str(kQ) is a lattice if and only if Q does not have the following quiver as a subquiver for any n ≥ 4:

1

2

3 4 · · · n− 1

n

n+ 1

.

When it is a lattice, we give an explicit description of the partial orders which represent a meet or a
join of given two quasi-hereditary structures, see Subsection 6.3.

As an immediate corollary of this theorem, we have the following one.

Corollary 1.7. For a Dynkin quiver Q, qh.str(kQ) is a lattice.

Curiously, Theorem 1.6 does not seem to have a nice generalization to the setting of finite acyclic
quivers. However, it seems to generalize to the setting of incidence algebras of a finite poset. We
denote by Zn the partially ordered set whose Hasse diagram is a zig-zag orientation of an affine quiver
of type An (see diagram 6.2) and we propose the following conjecture.

Conjecture 1.8. Let (P,≤) be a finite poset. Then, the poset of quasi-hereditary structures on the
incidence algebra of (P,≤) is a lattice if and only if Zn is not isomorphic to a full subposet of (P,≤)
for any n ≥ 4.

Actually, the setting of incidence algebras is not only a good setting for a generalization of our result,
it also simplifies our arguments. So we prove Theorem 1.6 as a corollary of the following theorem.

Theorem 1.9 (Theorem 6.5). Let (P,≤) be a finite poset. We assume that the incidence algebra A(P )
of (P,≤) is hereditary. Then, the poset of quasi-hereditary structures on A(P ) is a lattice if and only
if Zn is not isomorphic to a full subposet of (P,≤) for any n ≥ 4.

The relationship between Theorem 1.6 and Theorem 1.9 is explained in Remark 6.9.
Experiments were carried out using the GAP-package QPA [QPA19] and SageMath [Sag19]. The

code is available online [FR20].

Notation and conventions. Throughout this paper, k denotes a field of arbitrary characteristic. A
subcategory always means a full subcategory which is closed under isomorphisms. An Artin algebra is
an R-algebra A such that R is a commutative Artinian ring and A is finitely generated as an R-module.
For an Artin algebra, we usually deal with finitely generated right modules. We denote by modA the
category of finitely generated right A-modules. For an element or subset X of A, we denote by 〈X〉
the two-sided ideal of A generated by X. For a quiver Q, let kQ be the path algebra of Q. For two
arrows α, β of Q, if the terminating vertex of α equals the starting vertex of β, then αβ indicates the
composite of α with β. An order means a partially ordered set.
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2. Preliminaries

In this section, we give some definitions and preliminary results which we use throughout this paper.

2.1. Adapted posets. We first consider the so-called adapted partial orders introduced by Dlab and
Ringel in [DR92] on the set of isomorphism classes of simple modules over an Artin algebra A.

Let (I,C) be a finite partially ordered set with {S(i)}i∈I being a complete set of representatives of
isomorphism classes of simple A-modules. For i ∈ I, we denote by P (i) a projective cover of S(i) and
by I(i) an injective envelope of S(i). If M is an A-module, we denote by [M : S(i)] the Jordan-Hölder
multiplicity of S(i) in M .

Let Θ be a class of A-modules which is closed under isomorphisms. We denote by F(Θ) the
subcategory of modA consisting of all A-modules which have a Θ-filtration, that is, an A-module M
for which there exists a chain of submodules

0 = Mn ⊂Mn−1 ⊂ · · · ⊂M1 ⊂M0 = M

such that Mi/Mi+1 belongs to Θ. Let ∆(i) be the largest quotient of P (i) whose composition factors
S(j) are such that j C i. Similarly let ∇(i) be the largest submodule of I(i) whose composition factors
S(j) are such that j C i. Set ∆ = {∆(i)}i∈I and ∇ = {∇(i)}i∈I . The module ∆(i) (resp. ∇(i)) is
called the standard (resp. costandard) module with weight i.

If M ∈ F(∆), the number of times that ∆(i) appears in a ∆-filtration of M does not depend on the
choice of the filtration. We denote it by

(
M : ∆(i)

)
. Similarly, the number of times that ∇(i) appears

in N ∈ F(∇) is independent of the choice of the filtration and we denote it by
(
N : ∇(i)

)
.

Definition 2.1 (Dlab-Ringel). Let A be an Artin algebra with set of isomorphism classes of simple
modules {S(i)}i∈I . A partial order C on I is adapted to A if for every A-module M with top S(i) and
socle S(j), where i and j are incomparable, there is k ∈ I with iC k and j C k and [M : S(k)] 6= 0.

Lemma 2.2 (Dlab-Ringel). Let A be an Artin algebra with set of isomorphism classes of simple
modules {S(i)}i∈I . A partial order C on I is adapted to A if and only if for every A-module M
with top S(i) and socle S(j), where i and j are incomparable, there is k ∈ I with iC k or j C k and
[M : S(k)] 6= 0.

Proof. See [DR92] at the bottom of page 3. �

As a nice property of adapted posets, we have the following result.

Lemma 2.3 (Dlab-Ringel). Let (I,C1) be an adapted poset to A. Let C2 be a refinement of C1. For
l = 1, 2 let ∆l(i) be the standard module with weight i for the poset Cl. Then

∆1(i) = ∆2(i) ∀i ∈ I.

Proof. This is stated without proof at the top of page 4 of [DR92]. We sketch the proof for the
convenience of the reader. It is clear that there is a surjective map ψj : ∆2(j)→ ∆1(j). If this is not an
isomorphism, we consider i such that S(i) is a composition factor of ∆2(j) at the top of the kernel of
ψj . Then, there is a module M which is a non-split extension of ∆1(j) and S(i). Since C1 is adapted
to A one of the following holds.

(1) i and j are comparable in (I,C1).
(2) They are not comparable and there is a composition factor S(k) of ∆1(j) such that j C1 k and

iC1 k.

Since the composition factors in ∆1(j) are smaller than j with respect to C1, the second condition
cannot occur. For the first condition, since i C2 j and C2 is a refinement of C1 the only possibility is
that iC1 j and this contradicts the fact that S(i) is not a composition factor of ∆1(j). �

By duality we have a similar result for costandard modules.

Definition 2.4. Let A be an Artin algebra with set of isomorphism classes of simple modules {S(i)}i∈I .
Let C1 and C2 be two partial orders on I. Then C1 is equivalent to C2, denoted by C1 ∼ C2, if
∆1 = ∆2 and ∇1 = ∇2.

This equivalence relation is compatible with the notion of adapted poset in the following sense.
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Lemma 2.5. Let A be an Artin algebra and I be a set indexing the isomorphism classes of simple
A-modules. Let C1 be an adapted poset to A. If C is equivalent to C1, then C is adapted to A.

Proof. Let M be an indecomposable module with simple top S(i) and simple socle S(j) with i and
j incomparable with respect to C. Since M has simple top S(i) it is a quotient of P (i). We denote
by U(i) the kernel of the projection from P (i) to ∆(i) = ∆1(i). Since i and j are incomparable with
respect to C, the module S(j) is a composition factor of U(i). Then, there is a composition factor S(k)
which is at the top of U(i) and which is also a composition factor of M . We denote by N a non-split
extension of S(k) and ∆1(i). There is factor module N ′ of N with simple top S(i) and simple socle
S(k). In fact, the socle of N is of the form S(k)⊕ S′ for some semisimple module S′. Then a socle of a
factor module N/S′ has S(k) as a direct summand. By the induction on the length of N , we have the
desired factor module N ′ of N . Note that any composition factor of N ′/S(k) is a composition factor
of ∆1(i).

We show that iC1 k holds. If i and k are incomparable with respect to C1, then there exists ` ∈ I
such that i C1 ` and k C1 ` with [N ′ : S(`)] 6= 0 since C1 is an adapted poset. Then, as mentioned
above, S(`) is a composition factor of ∆1(i) or ` = k. Both of them induce contradictions. If k C1 i
holds, then since S(k) is at the top of U(i), ∆1(i) should have a composition factor S(k), which is a
contradiction. Therefore iC1 k holds.

By transitivity, if S(`) is a composition factor of ∆1(i), then ` C1 k holds. In particular, any
composition factor S(`) of N ′ satisfies ` C1 k. This implies that, by taking an injective envelop
N ′ → I(k), N ′ is contained in ∇(k) = ∇1(k). In particular, iC k holds. Thus we complete the proof
by Lemma 2.2. �

Partial orders on a finite set I can be ordered by inclusion of their sets of relations. This gives
a ‘poset of posets’ over I where the minimal element is the equality relation on I and the maximal
elements are the total orders. The poset obtained by taking the intersection of the relations of two
given posets C1 and C2 is called the intersection of C1 and C2.

Lemma 2.6. Let A be an Artin algebra with I a set indexing a complete set of isomorphism classes
of simple A-modules. Let C1 and C2 be two adapted orders in the same equivalence class. Then the
following statements hold.

(1) The intersection of C1 and C2 is an adapted order in the same equivalence class.
(2) In each equivalence class of adapted posets to A there is a unique minimal poset.

Proof. It is clear that (1) implies (2). Let C1 and C2 be two posets in the same equivalence class. We
denote by ∆ = ∆1 = ∆2 the corresponding set of standard modules. We let Cint be the intersection of
C1 and C2 and we denote by ∆int the corresponding set of standard modules.

Let i ∈ I. By definition ∆int(i) is the largest quotient of P (i) whose composition factors are S(j)
such that j C1 i and j C2 i. So ∆1(i) surjects onto ∆int(i). If they are not isomorphic, at the top
of the kernel there is a simple module S(j) such that j C1 i but j is not smaller that i for C2. This
contradicts ∆1(i) = ∆2(i). So, we have ∆int = ∆ and by a dual argument, we see that ∇int = ∇ and
the poset Cint is equivalent to the posets C1 and C2. The result follows from Lemma 2.5 �

Remark 2.7. Lemma 2.6 is used in the codes of the first and last authors [FR20].

For a partial order C on I, let ∆ be the set of standard A-modules and ∇ the set of costandard
A-modules associated to C. We define subsets Dec(C) and Inc(C) of I2 as follows:

Dec(C) := {(i, j) ∈ I2 | [∆(j) : S(i)] 6= 0}, Inc(C) := {(i, j) ∈ I2 | [∇(j) : S(i)] 6= 0}.

Clearly, Dec(C) and Inc(C) depend on only the equivalence class of C. For i, j ∈ I, we write iCD j if
(i, j) ∈ Dec(C) and write iCI j if (i, j) ∈ Inc(C). For i ∈ I, we have iCD i and iCI i.

For a subset R of I2, we denote by Rtc the transitive closure of R. Then the following lemma is easy
to prove.

Lemma 2.8. Let Cm = (Dec(C) ∪ Inc(C))tc.

(1) If iCm j, then iC j holds.
(2) Cm is a partial order on I.

Proof. By definition, iCD j implies iC j, and iCI j implies iC j. Thus the assertions hold. �
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Then we have the following proposition.

Proposition 2.9. Let A be an Artin algebra and I be a set indexing the isomorphism classes of simple
A-modules. For an adapted partial order C on I, let Cm = (Dec(C) ∪ Inc(C))tc.

(1) The partial orders C and Cm are equivalent.
(2) Cm is the unique minimal partial order among partial orders C′ on I with C ∼ C′.

Proof. (1) We denote by ∆m the set of standard A-modules associated to Cm. Fix i ∈ I. Since all
composition factors S(k) of ∆m(i) satisfy k Cm i, k C i holds by Lemma 2.8. We see that ∆m(i) is
a quotient of ∆(i). Conversely if S(k) is a composition factor of ∆(i), then by construction we have
kCm i. Since this holds for all the composition factors of ∆(i), we see that ∆(i) is a quotient of ∆m(i).

By a dual argument, we see that the set of costandard modules for C and Cm are equal.
(2) Since Dec(C) = Dec(C′) and Inc(C) = Inc(C′) hold, the assertion follows from Lemma 2.8. �

Definition 2.10. Let A be an Artin algebra. A partial order of the form Cm for an adapted order C
to A is called a minimal adapted order.

2.2. Quasi-hereditary algebras. Let A be an Artin algebra, and (I,C) be a finite partially ordered
set indexing the set {S(i)}i∈I of isomorphism classes of simple A-modules.

Definition 2.11 (Cline-Parshall-Scott [CPS88]). The pair (A, (I,C)) is a quasi-hereditary algebra if:

(1) [∆(i) : S(i)] = 1.
(2) P (i) ∈ F(∆).
(3)

(
P (i) : ∆(i)

)
= 1, and

(
P (i) : ∆(j)

)
6= 0 implies iC j.

In [DR92], Dlab and Ringel restrict themselves to adapted posets in order to work with total orders
(since an adapted poset is always equivalent to a total order). Using the next result by Conde, we see
that this is not a restriction.

Lemma 2.12 ([Con16]). If (A, (I,C)) is a quasi-hereditary algebra, then (I,C) is adapted to A.

Proof. The proof is a part of [Con16, Proposition 1.4.12 ]. We sketch it for the convenience of the
reader. Let M be a module with simple top S(i) and simple socle S(j). Since M is a quotient of P (i),
S(j) is a composition factor of P (i). Because the algebra is quasi-hereditary P (i) has a ∆-filtration.
So S(j) must be a composition factor of a standard module ∆(k) with iC k by Definition 2.11 (3). If
k = i then j C i. If k 6= i and S(j) is at the top of ∆(k) we have iC j. Finally, if S(j) is not at the top
of ∆(k) we have iC k and j C k. �

We can know considerably simplify the definition of quasi-hereditary algebras.

Proposition 2.13. Let A be an Artin algebra with a poset (I,C) indexing the isomorphism classes of
simple A-modules. Then (A, (I,C)) is a quasi-hereditary algebra if and only if

(1) (I,C) is adapted to A.
(2) For every i ∈ I, [∆(i) : S(i)] = 1.
(3) P (i) ∈ F(∆) for i ∈ I.

Proof. See [DR92, Theorem 1]. �

If an Artin algebra A is hereditary, then any adapted order automatically defines a quasi-hereditary
algebra.

Proposition 2.14. If A is hereditary, then for any adapted order (I,C) to A, the pair (A, (I,C)) is a
quasi-hereditary algebra.

Proof. By Lemma 2.3, we may assume that C is a total order. Then the assertion follows from [DR89,
Theorem 1]. �

We have the following well known property of quasi-hereditary algebras.

Lemma 2.15. Let (A, (I,C)) be a quasi-hereditary algebra, and assume that i is a maximal element of
(I,C). We denote by C|I\{i} the restriction of C on I \{i}. Then (A/ 〈ei〉 ,C|I\{i}) is a quasi-hereditary
algebra such that the standard A/ 〈ei〉-module with weight k ∈ I \ {i} corresponds to the standard
A-module with weight k.
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Proof. Since i is maximal, it is clear that the poset (I \ {i},C|I\{i}) is an order ideal. The subcategory
of modA consisting of all A-modules with composition factors S(j) with j ∈ I \ {i} coincides with
mod(A/ 〈ei〉). Then the Lemma is a consequence of [CPS88, Theorem 3.5]. �

For a subcategory C of modA, we denote by C⊥ (⊥C, respectively) the full subcategory of modA
consisting of modules M with ExtiA(C,M) = 0 (ExtiA(M,C) = 0, respectively) for any i > 0 and C ∈ C.
For a module M , we denote by addM the full subcategory of modA consisting of direct summands of
the direct sum of finitely many copies of M . For simplicity, write (addM)⊥ = M⊥ and so on.

We recall some properties of quasi-hereditary algebras which we use in this paper. For a quasi-
hereditary algebra (A, (I,C)), we have the following equalities, see [Rin91, Theorems 4, 4∗]:

F(∆) = ⊥F(∇), F(∇) = F(∆)⊥.(2.1)

An A-module T is called a tilting module if it satisfies the following three conditions:

(i) the projective dimension of T is finite,
(ii) ExtiA(T, T ) = 0 for all i > 0,
(iii) there exists an exact sequence 0→ A→ T0 → T1 → · · · → T` → 0, with Ti ∈ addT .

Let M be an A-module and C be a subcategory of modA. A left C-approximation of M is a morphism
f : M → C such that C ∈ C and the map HomA(f, C ′) : HomA(C,C ′) → HomA(M,C ′) is surjective
for any C ′ ∈ C. A right C-approximation of M is defined dually.

Proposition 2.16 ([Rin91]). Let (A, (I,C)) be a quasi-hereditary algebra. For each i ∈ I, there exists
an indecomposable A-module T (i) and short exact sequences

0→ ∆(i)
f−→ T (i)→ X(i)→ 0, 0→ Y (i)→ T (i)

g−→ ∇(i)→ 0,

where X(i) belongs to F(∆(j) | j C i, j 6= i) and Y (i) belongs to F(∇(j) | j C i, j 6= i) such that

(1) f is a left F(∇)-approximation of ∆(i).
(2) g is a right F(∆)-approximation of ∇(i).
(3) T =

⊕
i∈I T (i) is a tilting A-module satisfying addT = F(∆) ∩ F(∇).

(4) F(∆) = ⊥T and F(∇) = T⊥ hold.

A tilting module T =
⊕

i∈I T (i) in Proposition 2.16 is called a characteristic tilting module for a
quasi-hereditary algebra (A, (I,C)).

If the standard modules and the costandard modules have small projective or injective dimension,
then categories F(∆) and F(∇) have good properties. We only refer a statement about F(∆), the
statement for F(∇) is dual.

Lemma 2.17 ([Rin10, Appendix]). Let (A, (I,C)) be a quasi-hereditary algebra. Then F(∆) is closed
under submodules if and only if the projective dimension of any standard module is at most one.

2.3. Poset of quasi-hereditary structures. Let I be a set indexing the set of isomorphism classes
of simple A-modules. Let C1 and C2 be two partial orders on I. If (A, (I,C1)) is a quasi-hereditary
algebra and C2 ∼ C1 then (A, (I,C2)) is also a quasi-hereditary algebra since the definition of quasi-
hereditary algebra only depends on the set of standard modules. In this case, we can give various
characterizations of this equivalence relation.

Lemma 2.18. Let C1 and C2 be two partial orders on I such that (A, (I,C1)) and (A, (I,C2)) are
two quasi-hereditary algebras. Then the following statements are equivalent.

(1) C1 ∼ C2.
(2) ∆1 = ∆2.
(3) ∇1 = ∇2.
(4) F(∆1) = F(∆2).
(5) F(∇1) = F(∇2).
(6) T1 ∼= T2 where Ti is the characteristic tilting module of (A, (I,Ci)) for i = 1, 2.

Proof. We show (4) implies (2). For each i ∈ I, let K(i) be the sum of the kernels of non-zero surjective
maps P (i)→ X with X ∈ F(∆1). Then ∆1(i) = P (i)/K(i) holds by the proof of [Rin91, Corollary 4].
We have ∆1(i) = P (i)/K(i) = ∆2(i) by the assumption. Dually, (5) implies (3).

The other equivalences are induced from equation (2.1) and Proposition 2.16. �
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Definition 2.19. Let A be an Artin algebra with an adapted poset (I,C) indexing the isomorphism
classes of simple A-modules. The equivalence class of C with respect to ∼ is a quasi-hereditary structure
on A provided (A, (I,C)) is a quasi-hereditary algebra.

We denote by qh.str(A) the set of all quasi-hereditary structures on A and denote by [C] a quasi-
hereditary structure represented by C.

By Lemma 2.18, the equivalence class of C only depends on its characteristic tilting module. It
is then natural to order the quasi-hereditary structures in the following way. Let [C1] and [C2] be
two quasi-hereditary structures on A with respective set of standard modules ∆1 and ∆2, then we set
[C1] � [C2] if F(∆2) ⊆ F(∆1). By this ordering, we regard (qh.str(A),�) as a poset.

As we see in the next lemma, this ordering is induced from a partial ordering on tilting modules
[HU05; RS91].

Lemma 2.20. Let [C1] and [C2] be two quasi-hereditary structures on A and Ti be the characteristic
tilting module of (A,Ci) for i = 1, 2. The following statements are equivalent.

(1) [C1] � [C2].
(2) F(∇1) ⊆ F(∇2).
(3) T⊥1 ⊆ T⊥2 .

Proof. The assertions follow from F(∇) = F(∆)⊥, F(∆) = ⊥F(∇), F(∇) = T⊥ and F(∆) = ⊥T for a
characteristic tilting module T . �

Lemma 2.21. Let [C1] and [C2] be two quasi-hereditary structures on A.

(1) The following are equivalent.
(a) There is a surjective morphism ∆2(i)→ ∆1(i) for all i ∈ I.
(b) Dec(C1) ⊆ Dec(C2).

(2) The following are equivalent.
(c) There is an injective morphism ∇2(i)→ ∇1(i) for all i ∈ I.
(d) Inc(C2) ⊆ Inc(C1).

(3) If [C1] � [C2] holds, then the statements in (1) and (2) hold. Conversely, if A is a hereditary
algebra, then statements in (1) or (2) imply [C1] � [C2].

Proof. (1), (2) By the definitions of standard and costandard modules, (a) is equivalent to (b), and (c)
is equivalent to (d).

(3) It is clear that F(∆2) ⊆ F(∆1) implies (a). Assume that A is hereditary and (a) holds. We
prove by induction on (I,C2) that all standard modules in ∆2 are ∆1-filtered. If i is minimal in
(I,C2), then ∆2(i) is isomorphic to S(i). Since there is a surjection from ∆2(i) to ∆1(i) and ∆1(i) is
non-zero module, the surjection is an isomorphism. For i ∈ I, assume that ∆2(j) is ∆1-filtered for
any j which is strictly smaller than i with respect to C2. By assumption there is an exact sequence
0→ X → ∆2(i)→ ∆1(i)→ 0 for some module X. Since A is hereditary, the category F(∆2) is closed
under submodules by Lemma 2.17. Thus X is {∆2(j)}-filtered, where j is strictly smaller than i with
respect to C2. By induction hypothesis, X is ∆1-filtered and so is ∆2(i). �

Note that if I is a set indexing the simple A-modules, then I also indexes simple Aop-modules.
Since A is an Artin R-algebra, there exists a duality between modA and modAop induced from
D = HomR(−, E), where E is an injective envelop of the direct sum of representatives of all simple
R-modules up to isomorphisms. For a partial order C on I, we denote by ∆op (by ∇op, respectively)
the set of standard (costandard, respectively) Aop-modules associated to the partial order C. This
induces the following lemma, which is explained in Section 1 of [DR89] without proof.

Lemma 2.22. Let C be a partial order on I. Then the following statements hold.

(1) We have ∆op(i) ∼= D∇(i) and ∇op(i) ∼= D∆(i) for any i ∈ I. In particular, (A, (I,C)) is a
quasi-hereditary algebra if and only if (Aop, (I,C)) is a quasi-hereditary algebra.

(2) An assignment C 7→ C induces an anti-isomorphism between qh.str(A) and qh.str(Aop).

Proof. A dual of a simple A-module indexed by i is a simple Aop-module indexed by i. Thus the
isomorphisms in (1) are obtained from the definition of (co)standard modules. By (1), the assignment
induces a bijection from qh.str(A) to qh.str(Aop). By the isomorphisms in (1), we haveDF(∆) = F(∇op).
This implies that the map reverses the ordering on quasi-hereditary structures. �



10 MANUEL FLORES, YUTA KIMURA, AND BAPTISTE ROGNERUD

For a path algebra over a field, the following proposition says that we may assume that the quiver
has no multiple arrows if we want to study its poset of quasi-hereditary structures.

Let Q be a finite acyclic quiver. We say that Q has multiple arrows if there exist vertices i, j of Q0

such that the number of arrows between i and j is greater than one. In this case, the arrows between
i and j are said to be multiple arrows. If Q has multiple arrows, we denote by Qmf a finite acyclic
quiver such that Qmf

0 = Q0 and draw exactly one arrow from i to j in Qmf if and only if there is an
arrow from i to j in Q. In particular, Qmf has no multiple arrows.

Proposition 2.23. Let Q be a finite acyclic quiver. Then we have

qh.str(kQ) = qh.str(kQmf).

Proof. If Q has no multiple arrows, then Q = Qmf holds, so there is nothing to show. Assume that
there exist multiple arrows form i′ to j′ in Q. We denote by Q′ a quiver obtained by removing one
arrow α between i′ and j′ in Q. We show that qh.str(kQ) = qh.str(kQ′) holds. Since kQ′ = kQ/ 〈α〉,
a canonical surjection from kQ to kQ′ induces a fully faithfull functor from mod kQ′ to mod kQ. By
this functor, we regard kQ′-modules as kQ-modules.

Let C be a partial order on I = Q0 = Q′0. We claim that (I,C) is adapted to kQ if and only if it is
adapted to kQ′. Assume that (I,C) is adapted to kQ. Let M be a kQ′-module with top S(i) and
socle S(j). Since Q′ is acyclic, there is a path from i to j in Q′. By regarding M as a kQ-module,
there is a vertex k such that i C k, j C k and [M : S(k)] 6= 0. Therefore (I,C) is adapted to kQ′.
Conversely, assume that (I,C) is adapted to kQ′. Let N be a kQ-module with top S(i) and socle
S(j). Since Q is acyclic, there is a path p from i to j in Q such that S(`) is a composition factor of N
for each vertex ` where p passes. By the construction of Q′, we can take such path in Q′. There is a
kQ′-module X(p) along with the path p, that is, X(p) is a uniserial kQ′-module with top S(i), socle
S(j) and S(`) is a composition factor of X(p) if and only if p passes through `. Since (I,C) adapted
to kQ′, there is a vertex k where p passes such that iC k, j C k and [X(p) : S(k)] 6= 0. Since S(k) is
also a composition factor of N , we have that (I,C) is adapted to kQ.

Let C1 and C2 be partial order of I which are adapted to kQ and kQ′. By Proposition 2.14, both of
then define quasi-hereditary structures of kQ and kQ′. Since we need to distinguish quasi-hereditary
structures of kQ or kQ′, we write C1 and C2 when we regard them as partial orders of Q0, and write
C′1 and C′2 when we regard them as partial orders of Q′0.

First we show that Dec(C`) = Dec(C′`) for ` = 1, 2. Indeed, (i, j) ∈ Dec(C`) if and only if there is a
path p in Q from j to i such that k C` j holds for each vertex k where passes p. If p contains α, then
by replacing by another arrow from i′ to j′, we have that a path in Q′, so we get (i, j) ∈ Dec(C′`). The
converse is trivial because a path in Q′ is also a path in Q.

By Lemma 2.21, two adapted orders are equivalent if and only if they have the same sets of decreasing
relations. Hence, two adapted orders for kQ are equivalent if and only if they are equivalent for kQ′.
Moreover, since both algebras are hereditary, by Lemma 2.21, the partial ordering of the quasi-hereditary
structures only involves the set of decreasing relations. Hence, [C1] � [C2] in qh.str(kQ) if and only if
[C′1] � [C′2] in qh.str(kQ′). Therefore, we have qh.str(kQ) = qh.str(kQ′). �

Remark 2.24. Proposition 2.23 is elementary from the point of view of equivalence classes of adapted
orders, but it is more surprising from the point of view of characteristic tilting modules. For example,
if Q is a generalized Kronecker quiver with m arrows. The tilting theory of Q is very simple if
m = 1: there are only two tilting modules and they both are characteristic tilting modules for some
quasi-hereditary structures. However, when m > 1, there are infinitely many tilting modules but only
two characteristic tilting modules.

Example 2.25. Let Q be a finite acyclic quiver and kQ be the path algebra of Q. Then qh.str(kQ)
always admits both a unique maximal element and a unique minimal element. In fact, it is easy to
construct a total order C on Q0 such that all corresponding standard modules are projective by Lemma
2.15. Then [C] is a unique maximal element in qh.str(kQ).

Example 2.26. Let Kn be a quiver such that the set of vertices is I = {1, 2, . . . , n} and there is a
unique arrow from i to j whenever i > j. In particular, the underlying graph of Kn is a complete
graph. It is easy to see that any adapted order to kKn is a total order on I, and two distinct total
orders on I induce different quasi-hereditary structures on kKn.
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Let Sn be the permutation group on I. For v, w ∈ Sn, we write v ≤S w if every pair i, j in I such
that i < j and w−1(i) > w−1(j) also satisfies v−1(i) > v−1(j). It is well known that this ≤S induces a
partial order on Sn called the weak (Bruhat) order (we refer to [BB05, Proposition 3.1.3] for the proof
and to [BB05, Chapter 3] for historical comments on the weak order.)

We have a bijection from Sn to qh.str(kKn) by w 7→ w(1)Cw w(2)Cw · · ·Cw w(n). This bijection
gives an isomorphism of posets:

(Sn,≤S) ∼= (qh.str(kKn),�).

In fact, by Lemma 2.21, it is enough to show that v ≤S w holds if and only if Dec(Cv) ⊆ Dec(Cw)
holds. This holds because, by the construction of Kn, a pair (i, j) ∈ I2 belongs to Dec(C) if and only
if i ≤ j and iC j hold for a total order C on I.

3. Quasi-hereditary structures and deconcatenations

3.1. Deconcatenations at a sink or a source. Throughout this section, let Q be a finite connected
quiver and v be a sink or a source of Q. All algebras are assumed to be finite dimensional over a field.

Definition 3.1. A deconcatenation of Q at a sink or a source v is a disjoint union Q1 tQ2 t · · · tQ`
of proper full subquivers Qi of Q satisfying the following properties:

(1) each Qi is a connected full subquiver of Q having a vertex v,

(2) Q0 =
(
Q1

0 \ {v}
)
t · · · t

(
Q`0 \ {v}

)
t {v} and Qi0 ∩Q

j
0 = {v} hold, and

(3) there are no arrows between u and w in Q, where u ∈ Qi0\{v} and w ∈ Qj0\{v} for 1 ≤ i 6= j ≤ `.

Example 3.2. Let Q = 1→ 2← 3← 4→ 5. Then we have two deconcatenations of Q.

(1→ 2) t (2← 3← 4→ 5), (1→ 2← 3← 4) t (4→ 5).

Moreover, the former has a deconcatenation at 4 and the latter has a deconcatenation at 2, and the
resulting quiver is the same as follows:

(1→ 2) t (2← 3← 4) t (4→ 5).

In this section, for a given deconcatenation Q1 tQ2 t · · · tQ` of Q, we compare quasi-hereditary
structures on algebras whose Gabriel quivers are Q and Qi. It is easy to see that if Q1 t Q2 is a
deconcatenation of Q at a vertex v, and Q3 t Q4 is a deconcatenation of Q2 at the vertex v, then
Q1 tQ3 tQ4 is a deconcatenation of Q. Therefore, we consider a deconcatenation which is the disjoint
union of two full subquivers.

Let Q1 tQ2 be a deconcatenation of Q at a sink or a source v. Let A be a factor algebra of kQ
modulo some admissible ideal. For each ` = 1, 2, let

A` :=
A

〈eu | u ∈ Q0 \Q`0〉
.

Thus we have a surjective morphism of algebras A→ A`, and this induces a fully faithful exact functor
modA` → modA. By this functor, we regard modA` as a full subcategory of modA. Therefore, an
A-module M is an A`-module if and only if Meu = 0 for any u ∈ Q0 \Q`0. For a vertex i ∈ Q`0, let P `(i),
I`(i), S`(i) be the indecomposable projective, indecomposable injective and the simple A`-module
associated to the vertex i, respectively. The following lemma is easy and we omit the proof.

Lemma 3.3. Let Q1 tQ2 be a deconcatenation of Q at a sink or a source v. Let ` = 1, 2.

(1) For any vertex i ∈ Q`0, we have S(i) ∼= S`(i).
(2) For any i ∈ Q`0 \ {v}, we have P (i) ∼= P `(i) and I(i) ∼= I`(i).
(3) If v is a sink, then we have S(v) ∼= P (v) ∼= P `(v) for ` = 1, 2.
(4) If v is a source, then we have S(v) ∼= I(v) ∼= I`(v) for ` = 1, 2.
(5) Let M be a non-zero A-module. If both of the top and the socle of M are simple, then one of

M ∈ modA1 or M ∈ modA2 holds.
(6) Let M ∈ modA` and i ∈ Q0. If [M : S(i)] 6= 0, then i ∈ Q`0 holds.

Let C be a partial order on Q0. By restricting this order, we have a partial order C|Q`0 on Q`0 for

` = 1, 2. We first compare standard and costandard modules associated to these orders.
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Lemma 3.4. Let Q1 tQ2 be a deconcatenation of Q at a sink or a source v. Let C be a partial order
on Q0 and ∆ (∇, respectively) the set of standard (costandard, respectively) A-modules associated to
C. Let ` = 1, 2. We denote by ∆` (∇`, respectively) the set of standard (costandard, respectively)
A`-modules associated to C|Q`0. Then we have the following statements.

(1) For any i ∈ Q`0 \ {v}, we have ∆(i) ∼= ∆`(i) and ∇(i) ∼= ∇`(i).
(2) If v is a sink, then we have S(v) ∼= ∆(v) ∼= ∆`(v).
(3) If v is a source, then we have S(v) ∼= ∇(v) ∼= ∇`(v).
(4) If C defines a quasi-hereditary structure on A, then C|Q`0 defines a quasi-hereditary structure

on A` for each ` = 1, 2.

Proof. (1) Since P (i) ∼= P `(i) for i ∈ Q`0 \ {v}, a composition factor S(j) of P (i) satisfies j ∈ Q`0. Since
C` is a restriction of C, for any j ∈ Q`0, j C i if and only if j C` i. Thins implies that ∆`(i) ∼= ∆(i).
Similarly, we have ∇`(i) ∼= ∇(i). (2) (3) The assertions are clear. (4) Assume that v is a sink. Let
i ∈ Q`0. By (1), ∆(i) ∼= ∆`(i) holds. Thus we have [∆`(i) : S`(i)] = 1 by Lemma 3.3. Since any
composition factor of P (i) is a simple A`-module, a ∆-filtration of P (i) in modA gives a ∆`-filtration
of P `(i) in modA`. Clearly, this filtration satisfies the axiom (3) of Definition 2.11. Thus C|Q`0 defines

a quasi-hereditary structure on A`. If v is a source, then by Lemma 2.22, the assertion holds. �

Set 1 = 2 and 2 = 1. Next we construct a partial order on Q0 from partial orders on Q`0. Let C` be
partial orders on Q`0 for ` = 1, 2. Then we have a partial order C = C(C1,C2) on Q0 as follows: for
i, j ∈ Q0, iC j if one of the following two statements holds:

(1) i, j ∈ Q`0 and iC` j holds for some `,

(2) i ∈ Q`0, j ∈ Q`0, iC` v and v C` j hold.

Lemma 3.5. Let Q1 tQ2 be a deconcatenation of Q at a sink or a source v. Let C` be a partial order
on Q`0 and ∆` (∇`, respectively) the set of standard (costandard, respectively) A`-modules associated
to C` for ` = 1, 2. We denote by ∆ (∇, respectively) the set of standard (costandard, respectively)
A-modules associated to C = C(C1,C2). Let ` = 1, 2. Then we have the following statements.

(1) For any i ∈ Q`0 \ {v}, we have ∆(i) ∼= ∆`(i) and ∇(i) ∼= ∇`(i).
(2) If v is a sink, then we have S(v) ∼= ∆(v) ∼= ∆`(v).
(3) If v is a source, then we have S(v) ∼= ∇(v) ∼= ∇`(v).
(4) If C` defines a quasi-hereditary structure on A` for both ` = 1, 2, then C = C(C1,C2) defines

a quasi-hereditary structure on A.

Proof. (1) Since P (i) ∼= P `(i) for i ∈ Q`0 \ {v}, a composition factor S(j) of P (i) satisfies j ∈ Q`0. Then
by the definition of C, we have that, for a composition factor S(j) of P (i), j C i holds if and only if
j C` i holds. This implies the assertion. This implies that ∆(i) ∼= ∆`(i). (2) (3) The assertions are
clear. (4) Assume that v is a sink. Let i ∈ Q`0. By (1), we have ∆(i) ∼= ∆`(i). In particular, we have
[∆(i) : S(i)] = 1. By Lemma 3.3, P (i) ∼= P `(i) holds for i ∈ Q`0. Since C` defines a quasi-hereditary
structure on A`, P (i) has a ∆`-filtration. Since the number (P (i) : ∆(j)) does not depend on the
choice of the filtration, the axiom (3) of Definition 2.11 is satisfied. If v is a source, then by Lemma
2.22, the assertion holds. �

Let Q1 tQ2 be a deconcatenation of Q at a sink or a source v. Let A be a factor algebra of kQ
modulo some admissible ideal. By Lemmas 3.4 and 3.5, we have the following map.

Φ: qh.str(A) −→ qh.str(A1)× qh.str(A2), [C] 7→
(

[C|Q1
0
], [C|Q2

0
]
)
.

We also have an inverse map

Ψ: qh.str(A1)× qh.str(A2) −→ qh.str(A),
(
[C1], [C2]

)
7→ [C(C1,C2)].

For two posets (A,≤A), (B,≤B) and (a1, b1), (a2, b2) ∈ A×B, we write (a1, b1) ≤ (a2, b2) if a1 ≤A a2
and b1 ≤B b2 hold. Then (A×B,≤) is a poset, called the product poset.

Proposition 3.6. The map Φ is an isomorphism of posets and its inverse is Ψ.

Proof. Consider the product poset on qh.str(A1)× qh.str(A2). Then the assertion directly follows from
Lemmas 2.18, 3.4 and 3.5, since (co)standard modules are preserved by the maps. �
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Let Q1tQ2t· · ·tQ` be a deconcatenation of Q at a vertex v. If Q`+1t· · ·tQm is a deconcatenation
of Q` at a vertex u, then we have a disjoint union Q1 t Q2 t · · · t Q`−1 t Q`+1 t · · · t Qm of full
subquivers of Q, and so on for each connected quiver Qi. We call a disjoint union Q1 tQ2 t · · · tQ`′

of full subquivers of Q obtained by iterated operations as above an iterated deconcatenation of Q.
Then we have the following theorem.

Theorem 3.7. Let Q1 tQ2 t · · · tQ` be an iterated deconcatenation of Q at sink or source vertices.
Let A be a factor algebra of kQ modulo some admissible ideal and Ai := A/〈eu | u ∈ Q0 \Qi0〉. Then
we have an isomorphism of posets

qh.str(A) −→
∏̀
i=1

qh.str(Ai),

which is given by [C] 7→
(

[C|Qi0 ]
)`
i=1

.

Proof. By applying Proposition 3.6 iteratively, we have the assertion. �

Example 3.8. Let Q = 1→ 2← 3← 4→ 5. We have an isomorphism of posets

qh.str(kQ) −→ qh.str(Λ2)× qh.str(Λ3)× qh.str(Λ2),

where Λn is the path algebra of an equioriented quiver of type An. We study qh.str(Λn) precisely in
Section 4.

We use the following lemma later.

Lemma 3.9. Let Q1 tQ2 be a deconcatenation of Q at a sink or a source v. Let A be a factor algebra
of kQ modulo some admissible ideal. Let C (C1, C2 respectively) be a partial order on Q0 (Q1

0, Q2
0,

respectively) defining a quasi-hereditary structure on A (A1, A2, respectively). Then the following
statements hold.

(1) If C is a minimal adapted order, then both C|Q1
0

and C|Q2
0

are minimal adapted orders.

(2) If C1 and C2 are minimal adapted orders, then C(C1,C2) is a minimal adapted order.

In particular, if C is minimal, then C = C(C|Q1
0
,C|Q2

0
) holds.

Proof. We show only (1) and the last assertion. The assertion (2) is shown similarly. We show
that C1 := C|Q1

0
is a minimal adapted order. Let C′1 be a partial order on Q1

0 such that C′1 ∼ C1.

Let i, j ∈ Q1
0 and assume that i C1 j holds. This implies that i C j. By Proposition 3.6, we have

C′ := C(C′1,C|Q2
0
) ∼ C. Since C is minimal, iC′ j holds. By the definition of C′, we have iC′1 j. The

last assertion follows from a uniqueness of a minimal adapted order. �

3.2. Characteristic tilting modules and deconcatenations. In this subsection, we compare
characteristic tilting modules via deconcatenations. Throughout this subsection let Q1 t Q2 be a
deconcatenation of Q at a sink v. We denote by A a factor algebra of kQ modulo some admissible
ideal. Let A` = A/

〈
eu | u ∈ Q0 \Q`0

〉
for ` = 1, 2. Since A1 and A2 are factor algebras of A, we regard

A1-modules and A2-modules as A-modules.
Let C be a partial order on Q0 defining a quasi-hereditary structure on A and C` := C|Q`0 for ` = 1, 2.

By Lemma 3.4, C` defines a quasi-hereditary structure on A`. We denote by ∆∗(i), ∇∗(i), T ∗(i) a
standard module, a costandard module and an indecomposable direct summand of the characteristic
tilting module of a quasi-hereditary algebra (A∗, (Q∗0,C

∗)) for ∗ = ∅, 1, 2. Note that ∇(v) is obtained
by the push-out of ∇1(v)← S(v)→ ∇2(v). By Lemma 3.4, we have that F(∆`) is contained in F(∆)
and F(∇`(u) | u 6= v) is contained in F(∇) for ` = 1, 2. Since v is a sink, ∆1(v) = ∆2(v) = S(v) is a
simple projective A∗-module for ∗ = ∅, 1, 2.

Let e` =
∑

u∈Q`0
eu. Then it is easy to see that A` ∼= e`Ae` as algebras. Thus we have an exact

functor modA → modA` defined by M 7→ Me`. Moreover, we have ∆(i)e` ∼= ∆`(i) if i ∈ Q`0 and
∆(i)e` = 0 if i /∈ Q`0. This restricts to functors F(∆) → F(∆`) and F(∇) → F(∇`), since the
functor is exact and ∇(v)e` = ∇`(v) holds. Note that by regarding Me` as an A-module via a map
A→ A` ∼= e`Ae`, we have an injective morphism Me` →M of A-modules.
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Throughout this subsection, we fix one i ∈ Q1
0. Let T 1(i) be an indecomposable direct summand of

the characteristic tilting A1-module. We denote by m the length of an S(v)-socle socv(T
1(i)) of T 1(i),

that is, the maximal direct summand of soc(T 1(i)) which is a direct sum of copies of S(v). So there
exists an injective morphism s : S(v)⊕m → T 1(i). Recall that by Proposition 2.16 we have a short
exact sequence

0→ S(v)
f−→ T 2(v)→ X2(v)→ 0,

where X2(v) belongs to F(∆2(j) | j C v, j 6= v). Consider the following push-out diagram.

S(v)⊕m T 1(i)

T 2(v)⊕m U(i)

f⊕m

s

β(3.1)

In Theorem 3.14 we show that U(i) is isomorphic to T (i). Since the cokernel of β is isomorphic to
X2(v)⊕m, U(i) belongs to F(∆). We have the following proposition.

Proposition 3.10. The push-out U(i) belongs to F(∆) ∩ F(∇). Moreover, we have U(i)e1 ∼= T 1(i)
and U(i)e2 ∼= T 2(v)⊕m.

Proof. The diagram induces a short exact sequence 0 → S(v)⊕m → T 2(v)⊕m ⊕ T 1(i) → U(i) → 0.
Note that multiplication by an idempotent yields an exact functor. Thus by multiplying U(i) on the
right by e1 and e2, we have U(i)e1 ∼= T 1(i) and U(i)e2 ∼= T 2(v)⊕m.

We show that U(i) belongs to F(∇). By [DR92, Theorem 1], F(∇) = {Y ∈ modA | Ext1A(∆, Y ) = 0}
holds. Therefore we show that Ext1A(∆(j), U(i)) = 0 for any j ∈ Q0. Indeed, if j = v, then
Ext1A(∆(v), U(i)) = 0 holds, since ∆(v) is a projective A-module. Take a short exact sequence

0→ U(i)→ X
g−→ ∆(j)→ 0(3.2)

in modA. Assume that j ∈ Q1
0\{v}. We have a short exact sequence 0→ U(i)e1 → Xe1

ge1−−→ ∆(j)e1 →
0 in mod(e1Ae1). Since U(i)e1 ∼= T 1(i) and ∆(j)e1 ∼= ∆1(j) and T 1(i) belongs to F(∇1) = {Y ∈
mod A1 | Ext1A1(∆1, Y ) = 0}, then this sequence splits. Thus there exists an (e1Ae1)-morphism

h : ∆(j)e1 → Xe1 such that ge1 ◦h = id. By Lemma 3.4, ∆(j) = ∆(j)e1 holds. So a map h : ∆(j)→ X
given by d 7→ h(d) is well-defined. We show that h is a morphism of A-modules. Let a ∈ A and d ∈ ∆(j).
Note that da = de1ae1 holds, since ∆(j) = ∆(j)e1 holds. Then we have that h(da) = h(d)e1ae1. On the
other hand, since im(h) ⊂ Xe1, we have h(d)a = h(d)e1ae1 +h(d)e1a(1−e1). However, e1A(1−e1) = 0
holds, since Q1 t Q2 is a deconcatenation at a sink. It is easy to see that g ◦ h = id, that is, the
short exact sequence (3.2) splits. If j ∈ Q2

0 \ {v}, then by using the fact that U(i)e2 ∼= T 2(v)⊕m,
∆(j) = ∆(j)e2 ∼= ∆2(j) and e2A(1− e2) = 0, we can show that g is a split morphism in a similar way
as before. �

Lemma 3.11. In the diagram (3.1), the morphism β is a left F(∇)-approximation of T 1(i).

Proof. By Proposition 3.10, U(i) ∈ F(∇). Let M ∈ F(∇) and g : T 1(i)→M be a morphism. Since the
image of gs is a direct sum of copies of S(v), the image is contained in Me2. Since Me2 ∈ F(∇2) and
S(v)→ T 2(v) is a left F(∇2)-approximation of S(v), there exists a morphism h : T 2(v)⊕m →M such
that hf⊕m = gs. Because the diagram is a push-out diagram, there exists a morphism g′ : U(i)→M
such that g′β = g. �

Recall that ∆(i) = ∆1(i) holds for i ∈ Q1
0.

Lemma 3.12. Let f1 : ∆(i)→ T 1(i) be a morphism obtained by Proposition 2.16. Then the composite

∆(i)
f1−→ T 1(i)

β−→ U(i) is a left F(∇)-approximation of ∆(i).

Proof. We denote by ι : Me1 →M the inclusion map. Let M ∈ F(∇) and h : ∆(i)→M be a morphism.
Since ∆1(i) = ∆(i) holds, there exists a morphism h′ : ∆(i) → Me1 with h = ιh′. Since f1 is a left
F(∇1)-approximation of ∆(i) and Me1 ∈ F(∇1), there exists a morphism f ′1 : T 1(i) → Me1 with



COMBINATORICS OF QUASI-HEREDITARY STRUCTURES 15

h′ = f ′1f1. By Lemma 3.11, there exists a morphism f ′′1 : U(i) → M with ιf ′1 = f ′′1 β. Then we have
h = ιh′ = ιf ′1f1 = f ′′1 βf1.

∆(i) T 1(i) U(i)

Me1 M

f1

h′

h

β

f ′1

f ′′1

ι �

Let R be a ring with a surjective ring morphism R→ R/I. It is easy to see that if R/I is a local
ring and I is contained in the radical of R, then R is a local ring. The following lemma implies that
U(i) is indecomposable.

Lemma 3.13. Let A be a finite dimensional algebra and S be a simple A-module. Let X,Y be
A-modules such that the S-socles are S⊕m and S, respectively, with m ≥ 1. Consider the following
push-out diagram of A-modules

S⊕m X

Y ⊕m Z

a

b β

α

such that a and b are inclusion morphisms associated to S-socles. Assume that the following conditions
hold:

(1) there exist no non-zero morphisms from X to the cokernel of b,
(2) there exist no non-zero morphisms from Y to the cokernel of a,
(3) β is a left (addZ)-approximation of X,
(4) X and Y are indecomposable.

Then Z is indecomposable.

Proof. Note that since we have a push-out diagram, coker(a) ' coker(α) and coker(b) ' coker(β).
Moreover, as a and b are injective, α and β are also injective. By this injective morphisms, we regard
Y ⊕m and X as submodules of Z.

We show that the endomorphism algebra of Z is a local algebra. Let π : Z → coker(β) be a canonical
morphism. By the assumption (1), for each φ ∈ EndA(Z), πφβ = 0. Thus we have a morphism
of algebras RX : EndA(Z) → EndA(X) given by RX(φ) = φ|X . By the assumption (3), this RX is
surjective. We have an exact sequence

0→ ker(RX)→ EndA(Z)→ EndA(X)→ 0.

By the assumption (4), EndA(X) is a local algebra. Thus it is enough to show that ker(RX) is contained
in the radical of EndA(Z).

Let φ be an endomorphism of Z with RX(φ) = 0. We show that φ belongs to the radical of
EndA(Z). By the assumption (2), in an analogous way as the definition of RX , we have a morphism of
algebras RY ⊕m : EndA(Z)→ EndA(Y ⊕m) given by RY ⊕m(ψ) = ψ|Y ⊕m . The endomorphism RY ⊕m(φ)
is presented by a (m×m)-matrix with entries in EndA(Y ). Since the S-socle of Y is S and φ|S⊕m =
(φ|X)|S⊕m = 0, all the entries of a matrix presentation of RY ⊕m(φ) are not isomorphisms and so these
morphisms belongs to the radical of a local algebra EndA(Y ). This implies that RY ⊕m(φ) belongs to
the radical of EndA(Y ⊕m). In particular, RY ⊕m(φ) is nilpotent. Let f ∈ EndA(Z) be any morphism.
Then, as before, (fφ)|S⊕m = 0 holds since RX(φ) = 0. Thus by the same argument, RY ⊕m(fφ) is
nilpotent. By the universality of the push-out diagram, fφ is nilpotent for any f ∈ EndA(Z). This
implies that idZ −fφ is an isomorphism, and so φ belongs to the radical of EndA(Z). �

Then we have the following result.

Theorem 3.14. For i ∈ Q1
0, let m be the length of an S(v)-socle of T 1(i). Then the push-out U(i) of

T 2(v)⊕m ← S(v)⊕m → T 1(i) as (3.1) is isomorphic to T (i).

Proof. By Lemmas 3.11, 3.12 and 3.13, U(i) is indecomposable. By Lemma 3.12, U(i) gives a left
F(∇)-approximation of ∆(i). Therefore, U(i) is isomorphic to T (i). �
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Note that if v is a source, then an analogous results can be derived with T (i) being obtained through
a pull-back.

4. Path algebras of type A

4.1. Path algebra of an equioriented quiver of type A. Let An = 1 → 2 → · · · → n be an
equioriented quiver of type A. It was first noticed by Gabriel that tilting modules over Λn := kAn
are counted by the n-th Catalan number cn = 1

n+1

(
2n
n

)
[Gab81]. In this subsection we show that the

number of different quasi-hereditary structures on the path algebra Λn coincides with cn.
Recall that binary trees can be defined inductively as follows. A binary tree T is either the empty

set or a tuple (r, L,R) where r is a singleton set, called the root of T , and L and R are two binary
trees. The empty set has no vertex but has one leaf. The set of leaves of T = (r, L,R) is the disjoint
union of the set of leaves of L and R. The size of the tree is its number of vertices (equivalently the
number of leaves minus 1). It is classical that binary trees are counted by the Catalan numbers.

A binary search tree is a binary tree labeled by integers such that if a vertex x is labeled by k, then
the vertices of the left subtree (resp. right subtree) of x are labeled by integers less than (resp. superior
to) k. If T is a binary tree with n vertices, there is a unique labeling of the vertices by each of the
integers 1, 2, . . . , n that makes it a binary search tree. This procedure is sometimes called the in-order
traversal of the tree or simply as the in-order algorithm (recursively visit left subtree, root and right
subtree). The first vertex visited by the algorithm is labeled by 1, the second by 2 and so on, see Fig. 1.

4

2

1 3

5

Figure 1. Binary search tree of size 5 labeled by the in-order algorithm.

Let T be a binary tree of size n viewed as a binary search tree. Then T induces a poset CT on
{1, 2, . . . , n} by setting iCT j if i labels a vertex in the subtree of the vertex labeled by j. For example,
CT of the above binary search tree is the transitive closure of {1CT 2, 3CT 2, 2CT 4, 5CT 4}.

Proposition 4.1. Let C be a partial order on {1, 2, . . . , n}. Then there is a binary tree T such that
C = CT if and only if the following two conditions hold.

(1) For every i < j incomparable with respect to C, there exists k such that i < k < j and iC k
and j C k.

(2) For every i < j < k, if iC k then j C k and if k C i then j C i.

Proof. See [CPP19, Proposition 2.21]. �

Remark 4.2. Condition (1) is equivalent to the following weaker condition: for every i < j incompa-
rable there exists k such that i < k < j and iC k or j C k.

In the proof of the following lemma, we denote by [i, j] the interval in {1, 2, . . . , n} in numerical
order ≤, that is [i, j] = {k ∈ Z | i ≤ k ≤ j} for i, j ∈ {1, 2, . . . , n}.

Lemma 4.3. (1) Let T be a binary tree of size n. Then CT is an adapted poset to Λn.
(2) If C is an adapted poset to Λn, then there is a binary tree T such that C ∼ CT .

Proof. We first show (1). The indecomposable Λn-modules can be identified with usual intervals in
{1, 2, . . . , n}. Then the assertion follows from Proposition 4.1.

We next show (2). Let C be an adapted poset to Λn and let Cm be the minimal adapted poset
equivalent to C. Then by Proposition 2.9, we have Cm = (Dec(C) ∪ Inc(C))tc. We may assume that
C = Cm. The relation j C i is decreasing if [∆(i) : S(j)] 6= 0. Since P (i) has basis the set of paths
starting at i, this implies that there is a path from i to j. Our choice of orientation implies that
i ≤ j. In addition for every i ≤ k ≤ j, the simple module S(k) is a composition factor of ∆(i), so
k C i ∈ Dec(C). This proves that the decreasing relations, and by a similar argument the increasing
relations, satisfy the assertions (2) of Proposition 4.1. Conversely a relation j C i, such that i ≤ j
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and any k ∈ [i, j] satisfies k C i, is decreasing. Analogously, a relation j C i is increasing if and only if
j ≤ i and any k ∈ [j, i] satisfies k C i. It is then easy to see that the relation obtained as transitivity of
two decreasing (increasing) relations is also decreasing (increasing). Moreover if iC j ∈ Inc(C) and
j C k ∈ Dec(C) with k 6= j, then we have k < i, because if k ∈ [i, j], then k C j which contradicts the
antisymmetry of C. For x ∈ [k, i] we have x C k, so i C k is decreasing. With a similar argument,
the relation obtained as transitivity of a decreasing relation and an increasing one is increasing. This
shows that Cm = Dec(C) ∪ Inc(C) and that every relation satisfies (2) of Proposition 4.1. Because Cm
is adapted it satisfies (1), so there is a binary tree T such that Cm = CT . �

Proposition 4.4. Let n ∈ N. The map sending a binary tree T to the equivalence class of the adapted
poset CT is a bijection between the set of binary trees of size n and the set of equivalence classes of
adapted posets for Λn.

Proof. We already know that this map is surjective, we need to see that it is injective. For that we
explain how we can recover the tree for the set of standard and costandard modules.

Let T be a binary tree. Then CT is an adapted poset to Λn by Lemma 4.3 and (Λn,CT ) is a
quasi-hereditary algebra. It is easy to see that the composition factors of the ∆(i) are indexed by the
elements in the left subtree of i and the composition factors of ∇(i) are indexed the elements of the
right subtree. It follows that two different trees induce two non-equivalent posets. �

Remark 4.5. The surjectivity of the map in Proposition 4.4 can be found in the proof of [CPP19,
Proposition 2.44]. For the convenience of the reader we sketch two constructions of the binary tree
associated to a minimal adapted poset. It has a greatest element m and each element covers at most
two elements. If x is covered by y, and x < y for the usual ordering of the integers, then x is a left
child of y and it is a right child otherwise. Hence starting with the maximal element and going down
in the Hasse diagram of the poset we construct the desired binary seach tree.

Alternatively, the minimal adapted orders for Λn are particular cases of interval posets in the sense
of [CP15] (in fact they are examples of exceptional interval posets in the sense of [Rog20]). Hence,
we can use the bijection of [CP15, Theorem 2.8] which gives a nice algorithm to reconstruct the tree
starting only from the increasing (or decreasing) relations of the minimal poset. The construction is
purely combinatorial: the Hasse diagram of the poset of increasing relations is a planar forest that we
can transform into a binary tree using the so-called Knuth correspondence. We refer to [CP15] for
more details.

Lemma 4.6. Let T be a binary tree of size n. Then CT is a minimal adapted order to Λn.

Proof. Let C′ be an adapted poset to Λn such that CT ∼ C′. Then there exists a binary tree T ′ such
that C′ ∼ CT ′ , by Lemma 4.3. Thus T = T ′ by Proposition 4.4, and the proof of Lemma 4.3 (2) shows
that CT is extended by C′, which shows the claim. �

If C is an adapted order to Λn, the pair (Λn,C) is a quasi-hereditary algebra so it has a characteristic
tilting module T which is characterized by add(T ) = F(∆) ∩ F(∇). Since Λn is a hereditary algebra,
the module T is a tilting module. Moreover, the tilting module only depends on the equivalence class
of the partial order. So we have a map char from the set of equivalence classes of adapted partial
orders to the set of isomorphism classes of tilting modules for Λn which sends the equivalence class of
C to the characteristic tilting module of (Λn,C).

Theorem 4.7. We have a commutative diagram of bijections

{Binary trees of size n}
T 7→CT

tt

φ

))
{Adapted partial orders to Λn}/ ∼

char // {Tilting modules over Λn}/ ∼=

where φ is the classical bijection between binary trees and tilting modules for Λn.

Proof. In the proof of Proposition 4.4 we determined the set of standard and costandard modules from
the binary tree T ′. We claim that the indecomposable direct summand T (i) of the characteristic tilting
module T is the indecomposable module with composition factors indexed by the interval consisting of
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i and the label of its subtrees (left and right). Since the map φ sends T ′ to the module constructed in
this way (see [Hil06, Section 9]), the proof follows from this claim.

We denote by M(i) the indecomposable module with composition factors indexed by the interval
consisting of i and the label of its subtrees (left and right). By induction on the size of the subtrees we
show that the module M(i) is in F(∆) ∩ F(∇). This is clear for the subtrees of size one since in this
case T (i) = S(i) = ∆(i) = ∇(i).

In the general case, if il (resp. ir) denotes the left (resp. right) child of i we have two exact sequences

0→ ∆(i)→M(i)→M(il)→ 0

and
0→M(ir)→M(i)→ ∇(i)→ 0.

If i has no left (resp. right) child then we let M(il) = 0 (resp. M(ir) = 0) and we still have the two
exact sequences. By induction M(il) ∈ F(∆) and M(ir) ∈ F(∇), so M(i) ∈ F(∆) ∩ F(∇). The result
follows. �

Corollary 4.8. Let n ≥ 1. Then qh.str(Λn) and the Tamari lattice of size n are isomorphic as partially

ordered sets. We have that |qh.str(Λn)| = cn = 1
n+1

(
2n
n

)
is the Catalan number.

Proof. As explained in the proof of Lemma 4.3 our notion of decreasing and increasing relations coincide
with the one of [CPP19]. The result is then a consequence of [CPP19, Proposition 41]. Note that
char is a morphism of posets by Lemma 2.20. Moreover, it is well known that φ is also a morphism of
posets if the set of binary trees is endowed with the usual partial ordered induced by rotations. �

4.2. Path algebras of type A: general case. Let Q be a quiver whose underlying graph is of type
An and I = Q0. In this subsection, we classify all the quasi-hereditary structures on kQ and its
characteristic tilting modules.

Theorem 4.9. Let Q1 t Q2 t · · · t Q` be an iterated deconcatenation of Q such that each Qi is an
equioriented quiver of type Ani for some ni ∈ Z≥1. Then there is a bijection

qh.str(kQ) −→
∏̀
i=1

qh.str(Λni)

given by [C] 7→
(
[C|Qi0 ]

)`
i=1

. Moreover, if C is a minimal adapted order, then there exists a binary tree

Ti of size ni such that C|Qi0 = CTi, for each 1 ≤ i ≤ `.

Proof. The bijection follows from Theorem 3.7. The second assertion is consequence of Lemmas 3.9
and 4.6 and Proposition 4.4. �

Since any indecomposable kQ-module is determined by its composition factor, the following theorem
gives a complete construction of characteristic tilting modules from minimal adapted orders.

Theorem 4.10. Let C be a minimal adapted order to kQ and T =
⊕

i∈I T (i) be the characteristic
tilting module associated to C. Then for vertices i, j ∈ I, S(j) is a composition factor of T (i) if and
only if j C i holds.

Proof. The only if part follows from Proposition 2.16. Assume that Q has an iterated deconcatenation
with ` components such that each quiver is an equioriented quiver of type A. We show the if part by
an induction on `. If ` = 1, then the assertion holds by the proof of Theorem 4.7. Assume that ` > 1.
We have a deconcatenation Q1 tQ2 of Q at a vertex v ∈ Q0 such that Q1 is an equioriented quiver of
type A, and Q2 has an iterated deconcatenation with `− 1 components such that each quiver is an
equioriented quiver of type A. By Lemma 3.9, the adapted orders C|Q1

0
and C|Q2

0
are also minimal. If

v is a source, then apply Lemma 2.22, and we may assume that v is a sink. For k = 1, 2 and i ∈ Qk0,
let T k(i) be the indecomposable direct summand of the characteristic tilting kQk-module associated
to an adapted order C|Qk0 . Let ek =

∑
u∈Qk0

eu and 1 = 2, 2 = 1. If i ∈ Qk0, then by Proposition 3.10

and Theorem 3.14 we have T (i)ek ∼= T k(v), T (i)ek ∼= T k(v) if [T (i) : S(v)] 6= 0 and T (i)ek = 0 if
[T (i) : S(v)] = 0. The assertion follows by induction on ` and Theorem 4.7. �

We finish this section by giving a concrete example.
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Example 4.11. Let A = kQ, where Q = 1→ 2← 3← 4→ 5 as before. Then we have that

2

1

2

3

4 4

5

are the Hasse diagrams of some minimal adapted posets to k(1 → 2), k(2 ← 3 ← 4) and k(4 → 5),
respectively. Then, by Lemma 3.9 we have that the concatenation of the last Hasse diagrams

1

2

3

4

5

is the corresponding minimal adapted poset to A. In this case |qh.strA| = 20. In Fig. 2 we depict the
Hasse diagram of qh.str(A). The vertices correspond to minimal adapted orders to A which represent
all the quasi-hereditary structures on A. Note that if a total order is a minimal adapted order, then it
is the unique element in its equivalence class.
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Figure 2. Poset of quasi-hereditary structures on A = k( 1 2 3 4 5 ).

5. Path algebras of types D and E

In this section, we count the number of quasi-hereditary structures on kQ for a quiver Q of Dynkin
type D and E.
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5.1. Idempotent reduction. Let A be a finite dimensional algebra and {S(i)}i∈I the set of isomor-
phism classes of simple A-modules. Fix i ∈ I and a corresponding idempotent ei in A. For a partial
order C on I \ {i}, we denote by C′ a partial order on I such that C′|I\{i} = C and i is a unique
maximal element.

Lemma 5.1. If C is an adapted order to A/〈ei〉, then C′ is an adapted order to A.

Proof. Let M be an A-module such that topM ∼= S(j) and socM ∼= S(k) for some j, k ∈ I \ {i}, and
j, k are incomparable with respect to C′. If M is an A/〈ei〉-module, then there is nothing to show,
since C is an adapted order to A/〈ei〉. On the other hand, if Mei 6= 0, then j C′ i, k C′ i implies that
C′ is adapted to A. �

Lemma 5.2. Let C1,C2 be partial orders on I \{i} which define quasi-hereditary structures on A/ 〈ei〉.
Assume that both C′1,C

′
2 define quasi-hereditary structures on A. Then C1 ∼ C2 if and only if C′1 ∼ C′2.

Proof. By Lemma 2.15, it is clear that C′1 ∼ C′2 implies C1 ∼ C2. Since i is a unique maximal element
in I, ∆′1(i) = P (i) = ∆′2(i) holds. Thus the converse is also true. �

Then we concentrate on path algebras. Let Q be a finite acyclic quiver and fix i ∈ Q0. By Lemmas
5.1 and 5.2, we have the following well-defined injective map:

ιi : qh.str(kQ/ 〈ei〉) −→ qh.str(kQ) [C] 7→ [C′].

Lemma 5.3. For a finite acyclic quiver Q, we have

qh.str(kQ) =
⋃
i∈Q0

Im(ιi),

and each Im(ιi) bijectively corresponds to qh.str(kQ/ 〈ei〉).

Proof. Let C be a partial order on Q0 which defines a quasi-hereditary structure on kQ. Then we may
assume that C is a total order with a unique maximal element i. Then we have a total order C|Q0\{i}
on Q0 \ {i} and we have ιi([C|Q0\{i}]) = [C]. �

5.2. Decomposition of the set of quasi-hereditary structures. Throughout this subsection, let
r, s, t ∈ Z≥1 and Q = Q(r, s, t) the following quiver:

ar ar−1 · · · a1 a0

b1 · · · bs

c1 · · · ct

(5.1)

Recall that we have qh.str(kQ) =
⋃
i Im(ιi), where i runs over all the vertices of the quiver Q. Each Im(ιi)

bijectively corresponds to qh.str(kQ/ 〈ei〉). Let Qb0 := {bk | 1 ≤ k ≤ s} and Qc0 := {ck | 1 ≤ k ≤ t}. We
begin with the following lemma.

Lemma 5.4. Let i, j be vertices of Q with i 6= j. If Im(ιi) ∩ Im(ιj) 6= ∅, then we have i ∈ Qb0 and

j ∈ Qc0, or j ∈ Qb0 and i ∈ Qc0.

Proof. Let q ∈ Im(ιi) ∩ Im(ιj) and denote by ∆ the set of standard kQ-modules associated to q. For
each ` = i, j, by the definition of ι`, there exist a partial order C′` on Q0 such that [C′`] = q and ` is a
unique maximal element of C′`. By extending C′` and Lemma 2.3, we may assume that C′` is totally
ordered for each ` = i, j. We have ∆(i) = P (i) and ∆(j) = P (j).

Assume that P (i) and P (j) have a common composition factor S(k). Then we can take k = i or
k = j because of the shape of the quiver Q. If k = i, then ∆(j) = P (j) implies that i C′i j, which
is a contradiction. Similarly, k = j induces a contradiction. Thus P (i) and P (j) have no common
composition factor. This implies the assertion. �

Then we observe the intersection Im(ιi) ∩ Im(ιj) for i ∈ Qb0 and j ∈ Qc0. For each vertex i ∈ Q0, we
have a fully faithful functor mod(kQ/ 〈ei〉)→ mod kQ. By this functor, we regard kQ/ 〈ei〉-modules
as kQ-modules.
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Lemma 5.5. Let i ∈ Qb0, j ∈ Qc0 and qi ∈ qh.str(kQ/ 〈ei〉). The following statements are equivalent.

(1) There exists a partial order C on Q0 \{i} such that [C] = qi and a vertex j is a unique maximal
element by C.

(1′) There exists a partial order C on Q0 \ {i} such that [C] = qi and a vertex j is a maximal
element by C.

(2) ιi(qi) ∈ Im(ιj).

Proof. Clearly, (1) implies (1′). For (1′) to (1), take a total order on I such that it is a refinement of C
and j is a unique maximal element. By Lemma 2.3, the total order also defines qi.

We show (1) implies (2). Let C be a partial order as in (1). Let C′ be a partial order on Q0 such
that C′|Q0\{i} = C and kC′ i holds for any k ∈ Q0. We denote by C̃ a partial order on Q0 obtained by

switching i and j with respect to C, that is, for k, ` ∈ Q0 \ {j}, kC̃` holds if and only if k C′ ` holds,
and iC̃j holds, and k. Since i ∈ Qb0, j ∈ Qc0 and the shape of the quiver Q, C̃ and C′ define the same
quasi-hereditary structure on kQ, which is equal to ιi(qi) := [C′]. By Lemma 2.15, C̃|Q0\{j} defines a
qu

asi-hereditary structure on kQ/ 〈ej〉, denote the structure by q′. We have ιi(qi) = [C′] = [C̃] = ιj(q
′).

We show (2) implies (1). Assume that there exists qj ∈ qh.str(kQ/ 〈ej〉) with ιi(qi) = ιj(qj). For
` = i, j, let C` be a partial order on Q0 \ {`} such that [C`] = q`. We have [C′`] = ι`(q`). We denote
by ∆ the standard kQ-modules with respect to ιi(qi) = ιj(qj). Since ιi(qi) = ιj(qj) is represented by
both C′i and C′j , for any k ∈ Q0 \ {i, j}, ∆(k) does not have composition factors S(i) and S(j), and

∆(i) = P (i), ∆(j) = P (j) hold.
We denote by Ci the partial order on Q0 \ {i} obtained by restricting C′j to Q0 \ {i}. We show that

[Ci] = qi holds. Let ∆i and ∆i the standard kQ/ 〈ei〉-modules of Ci and Ci, respectively. We show
that ∆i(k) = ∆(k) = ∆i(k) holds for any k ∈ Q0 \ {i}. Since ιi(qi) is represented by C′i, we have
∆i(k) = ∆(k) for any k ∈ Q0 \ {i} by Lemma 2.15. Let k ∈ Q0 \ {i}. Since j is maximal by Ci, i ∈ Qb0
and j ∈ Qc0, ∆i(j) = P (j) = ∆(j) holds. Assume that k 6= j. Again since j is maximal by Ci, ∆i(k)
does not have a composition factor S(j). Then we can show that for any v ∈ Q0 \ {i, j}, S(v) is a
composition factor of ∆i(k) if and only if S(v) is a composition factor of ∆(k). In fact, since Ci is
obtained by restricting C′j , ∆i(k) is a factor of ∆(k). Namely, the only if part holds. On the other

hand, if S(v) is a composition factor of ∆(k), then there exists a (unique) path p in Q from k to v
such that each vertex u of the path p satisfies uC′j k. Since S(i) is not a composition factor of ∆(k),

the path p does not factor through a vertex i. Thus the path p is a path in Q \ {i}. This implies that
S(v) is a composition factor of ∆i(k). We have ∆(k) = ∆i(k). �

For 1 ≤ k ≤ t, we denote by Ck a subset of qh.str(kQ/ 〈eck〉) consisting of q such that there exists
no partial order C on Q0 \ {ck} such that [C] = q and C has one of b1, . . . , bs as a maximal element.
Then by Lemmas 5.3, 5.4 and 5.5, we have the following proposition.

Proposition 5.6. We have a bijection

r⊔
i=0

qh.str

(
kQ

〈eai〉

)
t

s⊔
j=1

qh.str

(
kQ〈
ebj
〉) t t⊔

k=1

Ck −→ qh.str(kQ),

where the map is given by ιi.

5.3. Counting quasi-hereditary structures. In this subsection, we count the number of quasi-
hereditary structures on path algebras of Dynkin type D. Let Q = Q(r, s, t) be the quiver defined in
Eq. (5.1). We consider type Dn for an integer n ≥ 4. By taking the opposite quiver and Theorem 3.7,
it is enough to study the following two cases.

Q(n− 3, 1, 1) : an−3 · · · a1 a0

b1

c1
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Q(1, n− 3, 1) : a1 a0

b1 · · · bn−3

c1

In both cases, t = 1, so we study C1 for both cases. We denote by cn the n-th Catalan number
cn = 1

n+1

(
2n
n

)
. We begin with the following easy observation.

Lemma 5.7. Let Q = n→ · · · → 2→ 1 be an equioriented quiver of type An. For 1 ≤ i ≤ n, let qh(i)
be a subset of qh.str(kQ) consisting of q which is represented by a partial order having i as a maximal
element. Then the following statements hold.

(1) Any adapted order to kQ has a unique maximal element.
(2) The image of the map ιi : qh.str(kQ/ 〈ei〉)→ qh.str(kQ) corresponds to qh(i), that is, Im(ιi) =

qh(i). In particular, we have a decomposition qh.str(kQ) =
⊔n
i=1 Im(ιi).

Proof. (1) By Theorem 4.7, any adapted order to kQ is an extension of the adapted order induced
from a binary tree. Clearly, each partial order induced from binary trees has a unique maximal element.
(2) directly follows from the definition of ιi. �

Lemma 5.8. Let Q = Q(n− 3, 1, 1). Then we have the following equalities.

(1) |C1| = cn−1 − cn−2
(2) |qh.str(kQ)| = 2cn − 3cn−1

Proof. (1) Recall that C1 a subset of qh.str(kQ/ 〈ec1〉) consisting of q such that there exist no partial
orders on Q0 \ {c1} which represent q and have b1 as a maximal element. Therefore, by Lemma 5.7,
we have C1 = qh.str(kQ/ 〈ec1〉) \ Im(ιb1). Therefore, we have |C1| = |qh.str(kQ/ 〈ec1〉)| − |Im(ιb1)| =
|qh.str(kQ/ 〈ec1〉)| − |qh.str(kQ/ 〈ec1 , eb1〉)| = cn−1 − cn−2 by Corollary 4.8.

(2) We show the equality by an induction on n. Although we are considering D type, it is easy to
see that the equality holds for n = 3. Assume that n > 3. We have the following equalities.

|qh.str(kQ)| =

∣∣∣∣∣
n−3⊔
i=0

qh.str

(
kQ

〈eai〉

)∣∣∣∣∣+

∣∣∣∣qh.str

(
kQ

〈eb1〉

)∣∣∣∣+ |C1|(5.2)

=
n−3∑
i=0

cn−i−3(2ci+2 − 3ci+1) + cn−1 + cn−1 − cn−2(5.3)

= 2(cn − cn−1 − cn−2)− 3(cn−1 − cn−2) + 2cn−1 − cn−2(5.4)

= 2cn − 3cn−1.

For the first and the second equalities (5.2) and (5.3), we use the statement (1), Theorem 4.7, Proposition
5.6, Lemma 5.7, and an inductive hypothesis. For the third equality (5.4), we use the well known
equality cn+1 =

∑n
i=0 cn−ici. �

Lemma 5.9. Let Q = Q(1, n− 3, 1). Then the following equalities hold.

(1) |C1| = cn−2 + cn−3
(2) |qh.str(kQ)| = 3cn−1 − cn−2

Proof. (1) Recall that C1 is a subset of qh.str(kQ/ 〈ec1〉) consisting of q such that there exist no partial
orders on Q0 \ {c1} which represent q and have one of b1, . . . , bn−3 as a maximal element. Therefore,
by Lemma 5.7 and Corollary 4.8, we have |C1| = |qh.str(kQ/ 〈ec1 , ea1〉)| + |qh.str(kQ/ 〈ec1 , ea0〉)| =
cn−2 + cn−3.
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(2) We show the equality by an induction on n. For n = 3, the equality holds. Assume that n > 3.
We have the following equalities.

|qh.str(kQ)| =

∣∣∣∣∣
n−3⊔
i=1

qh.str

(
kQ

〈ebi〉

)∣∣∣∣∣+

∣∣∣∣qh.str

(
kQ

〈ea1〉

)∣∣∣∣+

∣∣∣∣qh.str

(
kQ

〈ea0〉

)∣∣∣∣+ |C1|

=

n−3∑
i=1

(3ci+1 − ci)cn−i−3 + 2cn−2 + cn−3 + cn−2 + cn−3

= 3(cn−1 − cn−3 − cn−2)− (cn−2 − cn−3) + 3cn−2 + 2cn−3

= 3cn−1 − cn−2.

All equalities are deduced in a similar way as those of the proof of Lemma 5.8. �

We find the following correspondence to OEIS sequences [OEI20].

Q Formula OEIS

Q(n− 3, 1, 1)
|C1| cn−1 − cn−2 A000245(n− 2)

|qh.str(kQ)| 2cn − 3cn−1 A070031(n− 2)

Q(1, n− 3, 1) |C1| cn−2 + cn−3 A005807(n− 3)

The sequence (3cn−1 − cn−2)n≥2 is not listed in [OEI20] until the publication of this article.

Example 5.10. Here we give a list of the numbers of quasi-hereditary structures on path algebras of
Dynkin types E6, E7, and E8. By taking the opposite quiver and Theorem 3.7, it is enough to calculate
the following cases of Q = Q(r, s, t).

(1) For E6, (r, s, t) = (1, 2, 2) or (2, 2, 1).
(2) For E7, (r, s, t) = (1, 3, 2), (2, 3, 1) or (3, 2, 1).
(3) For E8, (r, s, t) = (1, 4, 2), (2, 4, 1) or (4, 2, 1).

(r, s, t) |C1| |C2| |qh.str(kQ)|

E6
(1, 2, 2) 7 19 106

(2, 2, 1) 23 0 130

E7

(1, 3, 2) 19 52 322

(2, 3, 1) 66 0 416

(3, 2, 1) 76 0 453

E8

(1, 4, 2) 56 154 1020

(2, 4, 1) 202 0 1368

(4, 2, 1) 255 0 1584

https://oeis.org/
https://oeis.org/A000245
https://oeis.org/A070031
https://oeis.org/A005807
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For example, let Q = Q(1, 3, 2). Then |C1|, |C2| and |qh.str(kQ)| are obtained as follows:

|C1| = |qh.str(kQ/ 〈ec1〉)| −
3∑
i=1

|qh.str(kQ/ 〈ec1 , ebi〉)|

= c5 − c2c2 − c3 − c4 = 19,

|C2| = |qh.str(kQ/ 〈ec2〉)| −
3∑
i=1

|qh.str(kQ/ 〈ec2 , ebi〉)|

= (3c5 − c4)− c3c2 − (3c3 − c2)− (3c4 − c3) = 52,

|qh.str(kQ)| =
1∑
i=0

|qh.str(kQ/ 〈eai〉)|+
3∑
i=1

|qh.str(kQ/ 〈ebi〉)|+ |C1|+ |C2|

= c3c2 + c4c3 + c4c2 + (3c4 − c3) + |qh.str(kQ(1, 2, 2))|+ 19 + 52

= 322.

6. Lattice of quasi-hereditary structures

Throughout this section, all algebras are defined over a fixed field k.

6.1. Lattice properties and incidence algebras. We denote by D̃n the following quiver,

◦

◦

◦ ◦ · · · ◦ ◦

◦

◦

(6.1)

where the number of vertices is n+ 1.
Recall that for a finite acyclic quiver Q, the underling graph of Q is a non-oriented graph (possibly

having multiple edges) obtained by ignoring orientations of arrows of Q. Such underlying graph is
called a tree if there is no closed walks with its length greater two.

The main result of this section is the following theorem.

Theorem 6.1. Let Q be a finite acyclic quiver whose underlying graph is a tree. Then the set qh.str(kQ)

of quasi-hereditary structures on kQ is a lattice if and only if Q does not have a quiver D̃n as a subquiver
for any n ≥ 4.

From now on we assume that a finite acyclic quiver Q has no multiple arrows. To show Theorem
6.1, by Proposition 2.23, it is enough to study under this assumption.

Curiously, this characterization does not seem to have a natural generalization to the setting of
general acyclic quivers. However, a tree quiver Q can be naturally seen as a partial order (Q0, ) where
x y if there is a (necessarily unique) path from x to y. Then, the path algebra of Q is isomorphic to
the incidence algebra of (Q0, ). Our experimentation suggests that this may be a good setting for a
generalization of Theorem 6.1.

Let n ∈ N be an even integer and Zn be the following zigzag orientation of an affine Dynkin diagram
of type A.

◦1 ◦2

◦3

◦4

◦
n− 2

◦n− 1

◦n
(6.2)
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We may view Zn as a quiver, or as the Hasse diagram of a poset. Even for tree quivers, the language

of posets is more flexible: for example, it is easy to see that Z4 is not a subquiver of D̃4 but it is a

(full) subposet of (D̃4, ).
We remind the reader that (P,≤P ) is a subposet of (Q,≤Q) if P ⊆ Q and the inclusion P ↪→ Q is a

morphism of posets. Now we recall the following central definitions for this section.

Definition 6.2. Let (P,≤P ) and (Q,≤Q) be two posets and φ : P → Q a morphism of posets. Then,

(1) The map φ is full if for any p1, p2 ∈ P , p1 ≤P p2 holds if and only if φ(p1) ≤Q φ(p2) holds.
(2) If φ is full and injective, the image of φ is called a full subposet of (P,≤P ).

We remark that some authors call weak subposets to our subposets, and full subposets are also
known as induced subposets.

Let (P,≤) be a poset. For i ≤ j in P , an interval [i, j] is always considered with respect to ≤, that
is, [i, j] := {k ∈ P | i ≤ k ≤ j}.

Definition 6.3. Let (P,≤) be a finite poset. The incidence algebra of P over k, denoted by A(P ) is
the k-vector space with basis the set of intervals [i, j] in the poset P with multiplication induced by
[i, j] · [k, l] = [i, l] if j = k, and 0 otherwise.

Then, we propose the following generalization of Theorem 6.1.

Conjecture 6.4. Let (P,≤) be a finite poset. Then, the poset of quasi-hereditary structures on the
incidence algebra of (P,≤) is a lattice if and only if Zn is not isomorphic to a full subposet of (P,≤)
for any n ≥ 4.

Actually, the setting of incidence algebras is not only a good setting for a generalization of our result,
it also simplifies our arguments. So we prove Theorem 6.1 as a corollary of the following theorem.

Theorem 6.5. Let (P,≤) be a finite poset. We assume that the incidence algebra A(P ) of (P,≤) is
hereditary. Then, the poset of quasi-hereditary structures on A(P ) is a lattice if and only if Zn is not
isomorphic to a full subposet of (P,≤) for any n ≥ 4.

Proof. The only if part follows from Proposition 6.11 and Theorem 6.22. The if part follows from
Theorem 6.23. �

We prove Theorem 6.22 in Subsection 6.2 and show Theorem 6.23 in Subsection 6.3. For Theorems
6.1 and 6.5 we need the following Lemmas. The precise comparison between Theorem 6.1 and Theorem
6.5 is given in Remark 6.9.

Lemma 6.6. Let Q be a finite quiver whose underlying graph is a tree. Then the following statements
hold.

(1) Zn is not a full subposet of (Q0, ) for any even n ≥ 6.

(2) Z4 is not a full subposet of (Q0, ) if and only if D̃n is not a full subquiver of Q for any n ≥ 4.

Proof. (1) Assume that there exists a subset Z = {1, 2, . . . , n} of Q0 such that (Z, |Z) is isomorphic
to Zn. So we have paths in Q of the form:

n  1 2  · · · n− 2  n− 1 n.

For the rest of this proof, integers are considered modulo n. For each odd k, there exists a vertex
k′ ∈ Q0 and three paths k  k′, k′  (k− 1) and k′  (k+ 1) such that k′  (k− 1) and k′  (k+ 1)
have no common vertices except k′. Similarly, for each even k, there exist a vertex k′ and three paths
(k − 1)  k′, (k + 1)  k′ and k′  k such that (k − 1)  k′ and (k + 1)  k′ have no common
vertices except k′. In particular, we have the following paths:

n′

n

1

1′

2′

2

3

3′

· · ·

· · ·

(n− 2)′

(n− 2)

(n− 1)

(n− 1)′

n′

n

Let k be an odd integer. Since Q is tree, both k′ and (k + 1)′ appear in the path k  (k + 1). If
there exists a path from (k + 1)′ to k′, then there exists a path from (k + 2) to (k − 1). This is a
contradiction, since Zn is a full subposet of (Q0, ) and n ≥ 6. Therefore we assume that there exists
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a path from k′ to (k + 1)′. Similarly, for even k, we assume that there exists a path from (k + 1)′ to k′.
We have paths as follows:

n′  1′  2′  · · · (n− 2)′  (n− 1)′  n′.

Because of the construction of k′, any two adjacent paths have no common vertices. This is a
contradiction, since Q is tree.

(2) Assume that D̃n is a full subquiver of Q for some n. Let Z = {1, 2, 3, 4} be the four vertices

of D̃n such that each of them is a sink or a source. Then (Z, |Z) is isomorphic to Z4. Conversely,
assume that Z4 is a full subposet of (Q0, ). Then the same argument in the proof of (1) implies that

D̃n is a full subquiver of Q for some n. �

We first observe under which conditions an incidence algebra is hereditary and we collect some basic
properties of such an incidence algebra. For that, we recall the next concept.

Let (P,≤) be a finite poset. We say that P is diamond-free if it does not have four elements a, b, c,
and d forming a diamond suborder with a ≤ b ≤ d and a ≤ c ≤ d and with b and c incomparable. The
Hasse diagram of this type of poset is also called a multi-tree.

Lemma 6.7. Let (P,≤) be a finite poset. Then

(1) The algebra A(P ) is hereditary if and only if P is a diamond-free poset.
(2) If (Q,≤) is a full subposet of (P,≤) and A(P ) is a hereditary algebra, then A(Q) is a hereditary

algebra.

Proof. Recall that the incidence algebra of a finite poset is isomorphic to the quotient of the path
algebra of its Hasse quiver modulo the relations of total commutativity. As a consequence, if (P,≤) is a
diamond-free poset, there is no relation to mod out, so the incidence algebra is hereditary. Conversely,
assume that there are a, b, c and d in P such that a ≤ b ≤ d, a ≤ c ≤ d and b and c are incomparable
with respect to ≤. Let M be the submodule of Pa supported by the elements larger or equal than b or
c. Its top is Sb and Sc, so its projective cover is Pb ⊕ Pc. However Sd appears twice as a composition
factor in this direct sum but only once in Pa. So Pa has a submodule which is not projective and the
algebra is not hereditary. The second statement of the lemma is a direct consequence of the first. �

Lemma 6.8. Let (P,≤) be a connected finite poset which is diamond-free and has no Zn as full
subposet for any n ≥ 4. Then, its Hasse diagram is a tree.

Proof. We only sketch the proof. Assume that there is a cycle in the unoriented Hasse diagram of
(P,≤). Since (P,≤) is a poset, it is neither an oriented cycle nor a 3-cycle. The cycle has at least one
source and one sink. If it has exactly one source and one sink, then it is not diamond-free. So, it has
at least two sources and two sinks, and the number of sources is equal to the number of sinks. Then,
the subset consisting of all the sources and sinks of the cycle induces a full subposet isomorphic to Zn
for some n ≥ 4. �

Remark 6.9. As a consequence of Lemmas 6.6, 6.8 and Theorem 6.5 we see that:

(1) An hereditary incidence algebra of a finite poset (P,≤) has a lattice of quasi-hereditary structures

if and only if the Hasse quiver of (P,≤) is a tree which does not have D̃n as subquivers for any
n ≥ 4.

(2) On the other hand, Theorem 6.5 is slightly stronger than Theorem 6.1 since it allows to treat
more general quivers such as (6.2).

We list easy properties about the incidence algebra of a diamond-free poset. All the properties are
easy to show and we omit the proof, and we use the following lemma without referring.

Lemma 6.10. Let (P,≤) be a finite diamond-free poset and i, j ∈ P . The following statements hold.

(1) If i ≤ j, then ([i, j],≤) is a total order. In other words, in the Hasse quiver of (P,≤) there is a
unique path from i to j.

(2) If i ≤ j, then there exists an A(P )-module with simple top S(i) and simple socle S(j), and
such that a simple module S(k) is a composition factor of it if and only if i ≤ k ≤ j holds.

(3) Let L be a submodule of an indecomposable projective A(P )-module. Then any non-zero
indecomposable direct summand of L has a simple top.
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We end this subsection by showing the following key result.

Proposition 6.11. For an even integer n ≥ 4, the poset of quasi-hereditary structures on the path
algebra kZn is not a lattice.

Proof. We assume that the quiver is labeled as in (6.2). This means that the sources of the quiver are
labeled by odd integers and the sinks by even integers. Moreover we view the labels as elements of
Z/nZ in order to have a cyclic labeling.

The projective indecomposable kZn-modules indexed by sinks are simple and the projective inde-
composable module indexed by a source i has top S(i) and socle S(i− 1)⊕ S(i+ 1). The injective
indecomposable kZn-modules indexed by sources are simple and the projective indecomposable module
indexed by a sink i has source S(i) and top S(i− 1)⊕ S(i+ 1). For vertices i, j, we denote by Eij , if it

exists, a (unique) uniserial module of length two with top S(i) and socle S(j).
For each vertex s, we consider a total order Cs defined by

sCs s+ 1Cs · · ·Cs s− 1.

This ordering is total, so this is adapted. Since the algebra is hereditary, this represents a quasi-
hereditary structure of kZn. We denote by ∆s (resp. ∇s) the corresponding set of standard (resp.
costandard) modules. We show that C1 and C3 does not admit a join.

By direct calculation, we have that for each odd i and each even i′:

∆i(j) =

{
S(j) j is even, or j = i

Ejj−1 j 6= i is odd
, ∆i′(j) =


S(j) j is even

Ejj−1 j 6= i′ − 1 is odd

P (j) j = i′ − 1

Therefore these total orders represent different quasi-hereditary structures and we have [Ci] � [Ci′ ] for
each odd i and each even i′ by Lemma 2.21. Assume that there exists a join of C1 and C3, and we
denote it by CJ . Since CJ is a join of C1 and C3, [C`] � [CJ ] � [Ci′ ] holds for ` = 1, 3 and each even
i′. Again by Lemma 2.21, for each vertex j, there exist surjective morphisms ∆i′(j)→ ∆J(j)→ ∆`(j)
for ` = 1, 3 and each even i′. Since we have surjective morphisms

P (1) = ∆2(1)� ∆J(1)� ∆3(1) = E1
n,

we have that ∆J(1) = P (1) or ∆J(1) = E1
n. In both case, ∆J(j) = S(j) if j is even and ∆J(j) = Ejj−1

if j 6= 1 is odd, because of ∆2(j)→ ∆J(j)→ ∆1(j). This implies that j−1CJ j for j 6= 1 odd. Assume
that ∆J(1) = E1

n. Since for each odd i, P (i) is filtered by ∆J(i) and ∆J(i+ 1), by Definition 2.11 (3),
iCJ i+ 1 holds. This implies that 1CJ 2CJ · · ·CJ nCJ 1, which is a contradiction. Thus we have
∆J(1) = P (1). On the other hand, we have surjective morphisms

E1
n = ∆n(1)� ∆J(1)� ∆3(1) = E1

n.

This implies that ∆J(1) = E1
n, which is a contradiction. Therefore C1 and C3 do not admit a join. �

6.2. Quasi-hereditary structures of full subposets. In this subsection, we construct a morphism
between the sets of quasi-hereditary structures on the incidence algebras of two finite posets such that
one is a full subposet of the other (Proposition 6.18). This map will be used to prove the ‘only if’ part
of Theorem 6.5, see Theorem 6.22.

We fix, for all this subsection, the following setting and notation: Let (P,≤) be a finite poset and
(Q,≤) be a full subposet. We fix C an adapted poset to the incidence algebra of Q. We let R = P \Q.
The relation ≤ induces a poset structure on R.

We consider the binary relation Ĉ on P defined as follows:

(1) For r1, r2 ∈ R, r1 Ĉ r2 if and only if r1 ≤ r2.
(2) For q1, q2 ∈ Q, q1 Ĉ q2 if and only if q1 C q2.

In other words Ĉ restricts as ≤ on R and C on Q. There is no relations of the form q Ĉ r with r ∈ R
and q ∈ Q. The relations r Ĉ q are of two possible shapes:

(3) If r ≤ q then r Ĉ q if and only if there exists q1 ∈ [r, q]∩Q such that q1Cq and [r, q1]∩Q = {q1}.
(4) If q ≤ r then r Ĉ q if and only if there exists q1 ∈ [q, r]∩Q such that q1Cq and [q1, r]∩Q = {q1}.

These two conditions may look unnatural for now, but we will see in Lemma 6.17 that they induce a
natural set of standard modules.
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Lemma 6.12. The transitive cover of Ĉ is a partial order on P .

Proof. For this proof we use the symbol Ĉ for the relation described above and Ĉ
tc

for its transitive

cover. Let us verify that it is an antisymmetric relation. Let x, y ∈ P with x Ĉ
tc
y. Then, there is

a1, . . . , an ∈ P such that
x Ĉ a1 Ĉ · · · Ĉ an Ĉ y.

If there is i ∈ {1, . . . , n} such that ai ∈ Q, then ai+1, . . . , an and y are in Q and ai C y by transitivity

of the partial order C on the elements of Q. So, if x ∈ Q, then y ∈ Q and we have xC y. If y Ĉ
tc
x,

then by the same argument y C x and y = x since C is antisymmetric. If x ∈ R and there exits

i ∈ {1, 2, . . . , n} such that ai ∈ Q, then y ∈ Q and y 6̂
tc
x.

If x ∈ R and all the ai’s are in R, then x ≤ y. If y Ĉ
tc
x, then there exist b1, . . . , br in P such that

y Ĉ b1 Ĉ b2 · · · Ĉ br Ĉ x. Since x ∈ R, all the bi’s are in R and y ≤ x. So x = y by antisymmetry of ≤.

This shows that Ĉ
tc

is antisymmetric and it is by construction reflexive and transitive. �

From now on the symbol Ĉ is used for the partial order of Lemma 6.12.

Lemma 6.13. Let (P,≤) be a finite poset and (Q,≤) be a full subposet of (P,≤). Let C be an adapted
poset to A(Q). Then Ĉ is an adapted poset to A(P ).

Proof. Let x, y ∈ P such that x ≤ y. If x and y are both in R, then x Ĉ y. If x and y are both in Q,
there exists q1 ∈ [x, y]∩Q such that xC q1 and yC q1. Since Ĉ coincides with C on the elements of Q,
we have x Ĉ q1 and y Ĉ q1.

We assume that x = r ∈ R and y = q ∈ Q and r and q are incomparable with respect to Ĉ. Let
q1 ∈ Q such that r ≤ q1 ≤ q and q1 is minimal for this property. Then r Ĉ q1. Now the poset C is
adapted so there exists q2 ∈ [q1, q[ such that q1 C q2 and q C q2. By transitivity, we have r Ĉ q2 and
q Ĉ q2. The case x ∈ Q and y ∈ R is similar. �

Let us describe the increasing and decreasing relations for Ĉ.

Lemma 6.14. Let r ∈ R and q ∈ Q. Then

(1) r Ĉ q is increasing if and only if r ≤ q and

∀q1 ∈ [r, q] ∩Q, q1 C q.
(2) r Ĉ q is decreasing if and only if q ≤ r and

∀q1 ∈ [q, r] ∩Q, q1 C q.

Proof. We only prove the second point since the proof of the first is similar. If r Ĉ q is decreasing, then
we have q ≤ r and ∀x ∈ [q, r], we have x Ĉ q. This is in particular true for x ∈ Q. Since Ĉ restricts
as C on the elements of Q, we have xC q. Conversely assume that q ≤ r and ∀q1 ∈ [q, r] ∩Q, q1 C q.
Let x ∈ [q, r]. Let q1 ∈ Q such that q ≤ q1 ≤ x and q1 is maximal for this property. Then, q1 C q by
hypothesis, and x Ĉ q by definition of Ĉ. �

Remark 6.15. We see that our rather technical definition of Ĉ leads to natural increasing and
decreasing relations: they are the relations that are increasing or decreasing when forgetting the
elements which are not in Q.

To describe precisely the standard modules associated with this partial order we consider the
functors in the right part of the classical idempotent recollement associated to the idempotent
eQ =

∑
q∈Q[q, q] ∈ A(P ) corresponding to Q.

Lemma 6.16. The algebra eQA(P )eQ is isomorphic to A(Q).

Proof. The incidence algebra of P over k has basis the set of intervals [x, y] such that x ≤P y are two
elements of P . Multiplying on the right and the left by eQ, we have a basis consisting of intervals [x, y]
such that x, y ∈ Q and x ≤P y. Since Q is a full subposet of P , this is exactly the set of intervals [x, y]
such that x, y ∈ Q and x ≤Q y. �

There is a ‘restriction’ functor (−)eQ : modA(P )→ modA(Q) which sends an A(P )-module M to
MeQ. It has a left adjoint L = −⊗A(Q) eQA(P ). We recall without proofs the following well-known,
and easy to check, properties of these functors:
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(1) The functor (−)eQ is exact.
(2) The functor L is right exact, fully faithful and sends projective modules to projective modules.
(3) (−)eQ ◦ L ∼= IdmodA(Q).

Lemma 6.17. Let (P,≤) be a finite poset and (Q,≤) be a full subposet. Let C be an adapted poset to

A(Q). We denote by ∆ its set of standard modules. We denote by ∆̂ the set of standard modules for
A(P ) corresponding to Ĉ. Then,

(1) If r ∈ P \Q, then ∆̂(r) = S(r).

(2) If q ∈ Q, then ∆̂(q) = L(∆(q)).

Proof. Let r ∈ R. If x Ĉ r, then x ∈ R and x ≤ r. Since the composition factors of P (r) are indexed
by the elements larger than r in P , we have the first point.

Let q ∈ Q. We know that the composition factors of ∆̂(q) are indexed by the elements x ∈ P such
that xC q is a decreasing relation. Lemma 6.14 gives us the decreasing relations. It remains to compute
the composition factors of L(∆(q)) and check that the two sets coincide. Recall that ∆(q) is the largest
quotient of P (q) having composition factors indexed by elements q′ such that q′ C q. Let m be the set
of q′ such that q ≤ q′, q′ 6C q and q′ is minimal for this property. Then,⊕

x∈m
P (x)→ P (q)→ ∆(q)→ 0,

is the beginning of a (minimal) projective presentation of ∆(q). Applying the functor L we get that⊕
x∈m

P (x)→ P (q)→ L(∆(q))→ 0,

is the beginning of a projective presentation of L(∆(q)). Let us also recall that all the non-zero
morphisms between projective indecomposable modules are injective. So, to compute the composition
factors of L(∆(q)) we have to compute the composition factors of P (q) which are not in P (x) for x ∈ m.
If S(y) is a composition factor of P (x) for x ∈ m, then q ≤ x ≤ y and x 6C q. Conversely we assume
that there is q1 ∈ Q such that q ≤ q1 ≤ y and q1 6C q. If q1 is minimal for this property q1 ∈ m. If not,
let q2 such that q ≤ q2 ≤ q1 such that q2 6C q and q2 is minimal for this property. Then q2 ∈ m and
S(y) is a composition factor of P (q2). This shows that the composition factors of L(∆(q)) are indexed
by the elements x such that q ≤ x and ∀q1 ∈ [q, x] ∩Q, q1 C q. The result now follows from Lemma
6.14. �

Proposition 6.18. Let (P,≤) be a finite poset such that A(P ) is a hereditary algebra. Let (Q,≤) be
a full subposet of Q. Then C 7→Ĉ induces a well-defined full embedding of posets from qh.str(A(Q)) to
qh.str(A(P )).

Proof. Since the algebra A(P ) is hereditary, all the adapted orders give rise to quasi-hereditary
structures.

Lemma 6.17 implies that the mapping is compatible with the equivalence relation. Lemma 6.17 and
(−)eQ ◦L ∼= IdmodA(Q) implies that it is injective. Lemma 2.21 and right exactness of L implies that it
is a morphism of posets and (−)eQ ◦ L ∼= IdmodA(Q) implies that it is full. �

Definition 6.19. Let φ : (O1,≤1)→ (O2,≤2) be a morphism of posets. Then φ is interval-preserving
if for every x, y ∈ O1 and z ∈ O2 we have φ(x) ≤2 z ≤2 φ(y) if and only if there is z′ ∈ O1 such that
x ≤1 z

′ ≤1 y and φ(z′) = z.

Proposition 6.20. The morphism [C] 7→ [Ĉ] from qh.str(A(Q)) to qh.str(A(P )) of Proposition 6.18
is interval-preserving.

Proof. Let C be an adapted order such that [C1] � [C] � [C2]. We use the following notation:
∆1,∇1,∆,∇,∆2,∇2 for the set of standard and costandard modules respectively induced by [C1], [C]
and [C2].

Using Lemma 2.21, for x ∈ P we have:

∆2(x)� ∆(x)� ∆1(x),

and
∇2(x) ↪→ ∇(x) ↪→ ∇1(x).
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In particular for r ∈ R := P \Q, we have ∆(r) = S(r) and there is no composition factor of ∇r indexed
by an element of Q since the elements of Q are not smaller for Ĉ1 that the elements of R.

For q ∈ Q, the beginning of a minimal projective presentation of ∆(q) is

(6.3)
⊕
y∈m

P (y)→ P (q)→ ∆(q)→ 0,

where m is the set of y ∈ P such that q ≤ y, y 6C q and y is minimal (with respect to ≤) for this
property. Since C is an adapted order, we have q C y or there is q < x < y such that q C x and y C x.
The second possibility contradicts the minimality of y, so we have q C y. Moreover, by minimality of y,
if q < x < y, we have xC q C y. This implies that the relation q C y is increasing. In other words, the
simple module S(q) is a composition factor of ∇(y). As explained above the composition factors of
the costandard modules indexed by the elements of R are in R, so we must have y ∈ Q. Then, by the
presentation (6.3) and an isomorphism L(eQA(P )eQ) ∼= eQA(P ), we obtain ∆(q) = L(∆(q)eQ).

In order to finish the proof, we have to show that there is a quasi-hereditary structure on A(Q)
which has {∆(q)eQ ; q ∈ Q} as set of standard modules. The obvious candidate is C|Q the restriction
of the poset C to the elements of Q. For q ∈ Q, we denote by ∆′(q) the standard module induced by
the poset C|Q. Then the beginning of a minimal projective presentation of ∆′(q) is⊕

q′∈m′
P (q′)→ P (q)→ ∆′(q)→ 0,

where m′ is the set of q′ ∈ Q such that q ≤ q′, q′ 6C q and q′ is minimal (with respect to ≤) for this
property. As explained above, this set equals m. Since the functor (−)eQ is exact, by applying it to
the exact sequence (6.3), we get ∆′(q) = ∆(q)eQ.

Now we check that [C|Q] is a quasi-hereditary structure for A(Q). For q ∈ Q, we let

0 ⊂M0 ⊂M1 ⊂ · · · ⊂Mn = P (q)

be a ∆-filtration. Since the functor (−)eQ is exact we have:

0 ⊂M0eQ ⊂M1eQ ⊂ · · · ⊂MneQ = P (q)

For i ∈ {1, . . . , n} we have (MieQ)/(Mi−1eQ) ∼= ∆(x) for x ∈ P . If x ∈ R, we have ∆(x) = S(x) and
∆(x)eQ = 0. So MieQ = Mi−1eQ. In this case, we remove Mi−1 from the sequence of submodules. By
induction, we end up with

0 ⊂Mi0eQ ⊂Mi1eQ ⊂ · · · ⊂MireQ = P (q)

MijeQ/Mij−1eQ
∼= ∆(q)eQ for some q ∈ Q. This proves that [C|Q] is a quasi-hereditary structure for

A(Q) and [C] = ([Ĉ|Q]).
Finally we have to check that [C1] ≤ [C|Q] ≤ [C2]. This is an easy consequence of Lemma 2.21 and

Lemma 6.7 �

We state the following basic lemma.

Lemma 6.21. Let X,Y be posets. Assume that there exists a morphism of posets φ : X → Y which
is a full embedding and which is interval-preserving. If there does not exist a join of a, b ∈ X and
U = {c ∈ X | a, b ≤ c} is a non empty finite set, then there does not exist a join of φ(a), φ(b) ∈ Y .

Proof. Since a join of a, b does not exist, U has at least two minimal elements, we denote them by
c, d ∈ U . We have φ(i) ≤ φ(j) for i ∈ {a, b} and j ∈ {c, d}. Assume that φ(a) and φ(b) admits a join
in Y , we denote the join by e ∈ Y . we have φ(i) ≤ e ≤ φ(j) for i ∈ {a, b} and j ∈ {c, d}. Since φ is
a full embedding and interval-preserving, there exists f ∈ X such that i ≤ f ≤ j for i ∈ {a, b} and
j ∈ {c, d}. This contradicts to the minimality of c, d in U . Therefore Y does not admits join. �

Theorem 6.22. Let (P,≤) be a finite poset such that A(P ) is a hereditary algebra. Let (Q,≤) be a
full subposet of (P,≤) such that qh.str(A(Q)) is not a lattice. Then qh.str(A(P )) is not a lattice.

Proof. By Propositions 6.18 and 6.20, there is a poset morphism qh.str(A(Q))→ qh.str(A(P )) which
is a full embedding and interval-preserving. It is easy to check that ≤op induces a unique maximal
quasi-hereditary structure of A(Q). Let a, b ∈ qh.str(A(Q)) be elements such that there does not
exist a join of them in qh.str(A(Q)). Since qh.str(A(Q)) admits a unique maximal element, the set
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U = {c ∈ qh.str(A(Q)) | a, b � c} is a non empty finite set. Therefore by Lemma 6.21, qh.str(A(P )) is
not a lattice. �

6.3. Quasi-hereditary structures of diamond-free posets. In this subsection we prove the reci-
procity of Theorem 6.5.

Theorem 6.23. Let (P,≤) be a finite poset such that A(P ) is a hereditary algebra. If Zn is not a
full subposet of (P,≤) for any n ≥ 4, then qh.str(A(P )) is a lattice and the join and the meet of two
quasi-hereditary structures [C1] and [C2] are represented by the following partial orders

C1 ∧C2 =
((

Dec(C1) ∩ Dec(C2)
)
∪ Inc(C1) ∪ Inc(C2)

)tc
,

C1 ∨C2 =
(
Dec(C1) ∪ Dec(C2) ∪

(
Inc(C1) ∩ Inc(C2)

))tc
.

Our strategy for the proof is as follows: first we prove that the candidate for the meet is a partial
order (this is the technical part, Proposition 6.28) and then we prove that it induces a quasi-hereditary
structure and check that it gives a meet of [C1] and [C2] in the poset of quasi-hereditary structures
(Proposition 6.31). Since qh.str(A(Q)) is a finite poset with a greatest element, this is enough to prove
that it is a lattice.

For the rest of this subsection, we fix a finite poset (P,≤) and fix two adapted orders C1 and C2 on
P . Let

C′ =
((

Dec(C1) ∩ Dec(C2)
)
∪ Inc(C1) ∪ Inc(C2)

)tc
.

We denote by ∆1, ∆2 the set of standard A(P )-modules associated to C1 and C2, respectively. For
i, j ∈ P , we write iCD j if (i, j) ∈ Dec(C1)∩Dec(C2) and write iCIm j if (i, j) ∈ Inc(Cm) for m = 1, 2.

For i, j ∈ P we have jCD i if and only if i ≤ j and every k ∈ [i, j] satisfies kC1 i and kC2 i. Similarly,
for m = 1, 2, j CIm i holds if and only if i ≤ j and every k ∈ [i, j] satisfies k Cm i.

The following lemma is obvious, but it is important to realize that without the diamond-free
hypothesis it is false.

Lemma 6.24. Let (P,≤) be a diamond-free poset. Then CD is a transitive relation.

Proof. Assume that k CD j CD i for i ≤ j ≤ k ∈ P . Let x ∈ [i, k]. Since P is diamond-free, x is either
smaller than j or larger than j. If x is smaller than j, then xCm i holds for m = 1, 2. If x is larger
than j, then xCm j Cm i holds for m = 1, 2. This implies k CD i. �

Lemma 6.25. Let i, j ∈ P . Assume that i ≤ j and any k ∈ [i, j] \ {j} satisfies k CD i. Then one of
j CD i, iCI1 j or iCI2 j holds.

Proof. We used the argument that we proved in the proof of Proposition 6.20: if j is minimal for ≤
such that j 6Cs i, then iC1 j ∈ Inc(Cs) for s = 1, 2. So if j 6C Di, then either j 6C1 i or j 6C2 i holds. In
the first case we have iCI1 j holds and in the second case iCI2 j holds. �

Lemma 6.26. Assume that there exists a sequence of elements of P such that

i0 C
Ix(0) i1 C

Ix(1) · · ·CIx(`−1) i`,

where x(k) ∈ {1, 2} for k = 0, . . . , `− 1. If i` CD i0 holds, then i0 = i1 = · · · = i` holds.

Proof. Since i` CD i0 holds, we have i0 ≤ i`. On the other hand, we have i0 ≤ i1 ≤ · · · ≤ i`. Since
i1 ∈ [i0, i`] we have i1C1 i0 and i1C2 i0. By antisymmetry of C1 and C2, we have i1 = i0. By induction
on `, we have the assertion. �

In Lemma 6.27 and Proposition 6.28, we show that C′ is a partial order on P if Zn is not a full
subposet of (P,≤) for any n ≥ 4.

Lemma 6.27. Let (P,≤) be a finite poset and ` be an odd integer with ` ≥ 3. Assume that (P,≤)
does not have Zn as a full subposet for any even n ≥ 4. If there exist relations in P of the form:

i0 ≥ i1 ≤ i2 ≥ · · · ≤ i`−1 ≥ i` ≤ i0,
then there exists k ∈ {0, 1, . . . , `} such that we have at least one of the following ik ≤ ik+2, ik+2 ≤ ik
where k considered modulo `+ 1.
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Proof. In this proof the labels are considered modulo `+ 1. We prove the result by induction on ` ≥ 3.
We need a precise inductive hypothesis: let Z = {a0, . . . , an} be a subposet consisting of n + 1

consecutive elements of {i0, . . . , i`} and which induces a subposet isomorphic to Zn+1. Then, there is
k ∈ {0, 1, . . . n+ 1} such that ak ≤ ak+2 or ak+2 ≤ ak and {ak, ak+1, ak+2} is a set of three consecutive
elements of {i0, . . . , i`}.

If n = 3, then we have a subposet isomorphic to Z4 which by hypothesis is not full. So, we must
have a relation between a0 and a2 or a relation between a1 and a3.

We assume now that n ≥ 5 and that we have a subposet Z = {a0, . . . , an} isomorphic to Zn+1.
Without loss of generality we can assume that ai ≤ ai+1 when i is odd. Since it is not full, there
are two indices k and j with k /∈ {j − 1, j, j + 1} and a relation ak ≤ aj in (P,≤). If k is even,
then ak+1 ≤ ak ≤ aj and ak−1 ≤ ak ≤ aj . Moreover at least one of ak+1 and ak−1 is not in the set
{aj−1, aj , aj+1}. Replacing ak by this element, we may assume k to be odd. Similarly, if j is even,
then we have ak ≤ aj ≤ aj+1 and ak ≤ aj ≤ aj−1 and for at least one j′ ∈ {j − 1, j + 1}, we have
k /∈ {j′ − 1, j′, j′ + 1}. Changing aj by aj′ we may assume that j′ is even.

The relation ak ≤ aj splits Z into two subposets Z1 and Z2 which are isomorphic to Zm1 and Zm2

for some integers m1 and m2. By assumption k is odd and j is even, so we have 4 ≤ m1 < n and
4 ≤ m2 < n. Precisely, Z1 is the set consisting of the elements after or equal to ak and before or equal
to aj in the cyclic ordering and Z2 consists of the elements after or equal to aj and before or equal
ak in the cyclic ordering. One of Z1 or Z2 satisfies the hypothesis of consecutive elements and by
induction we have the result. �

Proposition 6.28. Let (P,≤) be a diamond-free poset. Assume that (P,≤) does not have Zn as a
full subposet. Then for any two adapted orders C1 and C2 on P , a binary relation

C′ =
((

Dec(C1) ∩ Dec(C2)
)
∪ Inc(C1) ∪ Inc(C2)

)tc
.

is a partial order on P .

Proof. By the definition, C′ is reflexive and transitive. We show that C′ is antisymmetric. It is enough
to show the following claim: if there a sequence of vertices of P such that

i0 C
X0 i1 C

X1 · · ·CX`−1 i` = i0,(6.4)

where Xk ∈ {D, I1, I2} for k = 0, . . . , `− 1, then we have i0 = i1 = · · · = i`−1.
By Lemma 6.24 CD is transitive, so we may assume that there is no k with Xk = Xk+1 = D. Let

d be the number of k = 0, . . . , ` − 1 such that Xk = D. We prove the claim by an induction on
d. Assume that d = 0, then we have i0 ≤ i1 ≤ · · · ≤ i`−1 ≤ i0, so i0 = i1 = · · · = i`−1. Assume
that d = 1. Without loss of generality, we may assume that X0 = D. By applying Lemma 6.26 to
i1 CX1 · · ·CX`−1 i` = i0, we have i0 = i1 = · · · = i`−1.

Assume that d > 1. Without loss of generality, we may assume that X0 = D. There exists a function
δ : {0, 1, . . . , d− 1} → {0, . . . , `− 1} such that Xδ(k) = D, δ is strictly increasing and δ(0) = 0. Then
we have a sequence

i0 C
D i1 C

X1 · · ·CXδ(k)−1 iδ(k) C
D iδ(k)+1 C

Xδ(k)+1 · · ·CX`−1 i` = i0,

and this sequence induces the following relations in (P,≤).

i0 ≥ i1 ≤ iδ(1) ≥ iδ(1)+1 ≤ · · · ≥ iδ(d−1)+1 ≤ i` = i0.

Since there is no k with Xk = Xk+1 = D, and d > 1, we have δ(d− 1) + 1 ≥ 3. By applying Lemma
6.27, without loss of generality, there is at least one of the following relation:

i0 ≤ iδ(1), iδ(1) ≤ i0, i1 ≤ iδ(1)+1, iδ(1)+1 ≤ i1.
If i0 ≤ iδ(1) holds, then i0 ∈ [i1, iδ(1)] holds since (P,≤) is a diamond-free poset. Then there exists

an integer m ∈ {1, · · · , δ(1) − 1} such that i0 ∈ [im, im+1]. Since im CXm im+1 and Xm ∈ {I1, I2},
i0 CXm im+1 holds. By removing vertices i1, i2, . . . , im from (6.4), we have a sequence

i0 C
Xm im+1 C

Xm+1 · · ·CX`−1 i` = i0.

In this sequence, the number of k such that Xk = D is d− 1. Thus by inductive hypothesis, we have
i0 = im+1 = · · · = i`−1. Applying Lemma 6.26 to the sequence i1 CX1 i2 CX2 · · · CXm im+1 = i0, we
have the claim.
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If we have the relation iδ(1) ≤ i0, then the elements i2, i3, . . . , iδ(1) appear in [i1, i0]. In particular,

iδ(1) C
D i1 holds. By applying Lemma 6.26 to a sequence i1 CX1 i2 CX2 · · · CXδ(1)−1 iδ(1), we have

i1 = i2 = · · · = iδ(1). By identifying i1 = i2 = · · · = iδ(1) in the sequence (6.4), since CD is transitive
and by an inductive hypothesis, we have the claim.

If we have the relation i1 ≤ iδ(1)+1, then there exists an integer m ∈ {1, . . . , δ(1) − 1} such that

iδ(1)+1 ∈ [im, im+1]. We have iδ(1)+1 C
Xm im+1. By applying Lemma 6.26 to a sequence

iδ(1)+1 C
Xm im+1 C

Xm+1 · · ·CXδ(1)−1 iδ(1),

we have im+1 = · · · = iδ(1) = iδ(1)+1. By an inductive hypothesis, we have the claim.

If we have the relation iδ(1)+1 ≤ i1, then i1 ∈ [iδ(1)+1, iδ(1)]. In particular, i1 CD iδ(1)+1 holds. Then
by an inductive hypothesis, we have the claim.

We proved the claim and it induces that C′ is antisymmetric. �

We show that the partial order C′ gives a meet of [C1] and [C2].

Lemma 6.29. Let (P,≤) be a diamond-free poset and i, j ∈ P . Assume that C′ is a partial order on
P . Let ∆′ be the set of standard A(P )-modules associated to C′. Then S(j) is a composition factor of
∆′(i) if and only if S(j) is a composition factor of both ∆1(i) and ∆2(i).

Proof. The if part is easy. If j = i, then the assertion is clear. So let j 6= i. Assume that S(j) is
a composition factor of ∆′(i). Then i ≤ j and any k ∈ [i, j] satisfies k C′ i. Let m be the maximal
element k ∈ [i, j] such that ik′ CD i holds for any i ≤ k′ ≤ k. If k = j, then S(j) is a composition
factor of both ∆1(i) and ∆2(i).

Suppose that k 6= j. By Lemma 6.25, the minimal element l in [k, j] satisfies either iCI1 l or iCI2 l.
This implies i = l, since C′ is antisymmetric. This is a contradiction, since i never equals to l. Therefore
we have k = j and the assertion holds. �

Lemma 6.30. Assume that (P,≤) is a diamond-free poset and that C′ is a partial order on P . Let
∆′ be the set of standard A(P )-modules associated to C′. Then F(∆1) ∪ F(∆2) ⊂ F(∆′) holds.

Proof. We show that ∆1(i) belongs to F(∆′) for any i ∈ P . It is enough to show that for a submodule
K of ∆1(i), if ∆1(i)/K belongs to F(∆′), then there exists a surjective morphism from K to a product
of some ∆′(j)’s. Assume that L is an indecomposable direct summand of K. Since A(P ) is hereditary,
L has a simple top S(j) for some j ∈ P . Let k ∈ P . We show that S(k) is a composition factor of L if
S(k) is a composition factor of ∆′(j). Since A(P ) is hereditary, we have that S(k) is a composition
factor of L if and only if S(k) is a composition factor of ∆1(i) and j ≤ k holds.

Since L is a submodule of ∆1(i), i ≤ j holds and any u ∈ [i, j] satisfies uC1 i. Assume that S(k) is
a composition factor of ∆′(j). Then j ≤ k holds and any v ∈ [j, k] satisfies v C′ j. By Lemma 6.29,
such v satisfies v C1 j. Thus for the interval [i, k], we have that any u ∈ [i, k] satisfies u C1 i. Thus
S(k) is a composition factor of ∆1(i), and therefore S(k) is a composition factor of L. �

Proposition 6.31. Let (P,≤) be a diamond-free poset. For given two quasi-hereditary structures [C1]
and [C2] on A(P ), assume that C′ is a partial order on P . Let ∆′ be the set of standard A(P )-modules
associated to C′. Then we have the following statements.

(1) The partial order C′ induces a quasi-hereditary structure on A(P ).
(2) The meet of [C1] and [C2] in qh.str(A(P )) exists and is represented by C′.

Proof. (1) We show that (A(P ), (P,C′)) satisfies (1), (2) and (3) of Definition 2.4. By the definition
and Lemma 6.30, (1) and (2) hold. Clearly (P (i) : ∆′(i)) = 1 holds for any i ∈ P . Assume that
(P (i) : ∆′(j)) 6= 0 for j ≤ i ∈ P . We show iC′ j. Since P (i) belongs to F(∆′), there exist the following
sequence of submodules of P (i):

M`+1 ⊂M` ⊂ · · · ⊂M0 = P (i)

such that Mk/Mk+1
∼= ∆′(ik) for k = 0, . . . , `, i0 = i and i` = j. Let i′k be the maximal element in

[ik−1, ik] \ {ik} for k = 1, . . . , `. We have a disjoint union of intervals

[i, j] = [i0, i
′
1] t [i1, i

′
2] t · · · t [i`−1, i

′
`] t {i`}.
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For each k = 0, . . . , `− 1 and any m ∈ [ik, i
′
k+1], S(m) is a composition factor of ∆′(ik). Therefore by

Lemma 6.29, we can apply Lemma 6.25 to each interval [ik−1, ik] = [ik−1, i
′
k] t {ik}. We have that

ik−1 CI∗ ik for each k = 1, . . . , ` and some ∗ ∈ {1, 2}. Namely, we have iC′ j.
(2) Let C3 be an adapted order on P with [C3] � [C1] and [C3] � [C2]. Let ∆3 be the standard

modules associated to C3. By Lemma 2.20, any composition factor of ∆3(i) is a composition factor of
both ∆1(i) and ∆2(i). By Lemma 6.29, there exists a surjection from ∆′(i) to ∆3(i). Therefore, we
have [C3] � [C′]. �

Then we complete the proof of Theorem 6.23.

Proof of Theorem 6.23. Let (P,≤) be a diamond-free poset such that Zn is not a full subposet for any
n ≥ 4. For two quasi-hereditary structures [C1] and [C2], consider the following two binary relations
on P :

C′ =
((

Dec(C1) ∩ Dec(C2)
)
∪ Inc(C1) ∪ Inc(C2)

)tc
,

C′′ =
(
Dec(C1) ∪ Dec(C2) ∪

(
Inc(C1) ∩ Inc(C2)

))tc
.

By Propositions 6.28 and 6.31, C′ defines a quasi-hereditary structure on A(P ) and [C′] is a meet of
[C1] and [C2].

Let B be the incidence algebra of the opposite poset (P,≤op) of (P,≤). It is easy to see that the
opposite algebra of A(P ) is isomorphic to B. Let DecB and IncB be a decreasing and a increasing over
B, respectively. By Lemma 2.22 (1), for a partial order C on P and i, j ∈ P , we have

• (i, j) ∈ Dec(C) if and only if (j, i) ∈ IncB(C).
• (i, j) ∈ Inc(C) if and only if (j, i) ∈ DecB(C).

Therefore, we have the following equality of binary relations on P :

C′′ =
((

DecB(C1) ∩ DecB(C2)
)
∪ IncB(C1) ∪ IncB(C2)

)tc
.

By applying Propositions 6.28 to B, C′′ is a partial order on P . By Lemma 2.22, we have an anti-
isomorphism of posets between qh.str(A(P )) and qh.str(B) which is induced from an identity map of
the set of partial orders on P . Thus Cm defines a quasi-hereditary structure [Cm]B on B for m = 1, 2.
By Proposition 6.31, C′′ represents a meet of [C1]B and [C2]B in qh.str(B). This implies that C′′

represents a join of [C1] and [C2] in qh.str(A(P )). �
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6 (1981), pp. 4–5.
[HU05] D. Happel and L. Unger. “On a partial order of tilting modules”. In: Algebr. Represent.

Theory 8.2 (2005), pp. 147–156.
[Hil06] L. Hille. “On the volume of a tilting module”. In: Abh. Math. Sem. Univ. Hamburg 76

(2006), pp. 261–277.
[OEI20] OEIS Foundation Inc. (2020). The On-Line Encyclopedia of Integer Sequences. url: https:

//oeis.org/.
[RS91] C. Riedtmann and A. Schofield. “On a simplicial complex associated with tilting modules”.

In: Comment. Math. Helv. 66.1 (1991), pp. 70–78.
[Rin10] C. M. Ringel. “Iyama’s finiteness theorem via strongly quasi-hereditary algebras”. In: J.

Pure Appl. Algebra 214.9 (2010), pp. 1687–1692.
[Rin91] C. M. Ringel. “The category of modules with good filtrations over a quasi-hereditary algebra

has almost split sequences”. In: Math. Z. 208.2 (1991), pp. 209–223.
[Rog20] B. Rognerud. “Exceptional and modern intervals of the Tamari lattice”. English. In: Sémin.
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