
HAL Id: hal-03481168
https://hal.science/hal-03481168

Submitted on 15 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cut-Pursuit Algorithm for Regularizing Nonsmooth
Functionals with Graph Total Variation

Hugo Raguet, Loic Landrieu

To cite this version:
Hugo Raguet, Loic Landrieu. Cut-Pursuit Algorithm for Regularizing Nonsmooth Functionals with
Graph Total Variation. Thirty-sixth International Conference on Machine Learning (ICM 2019)L,
Jun 2019, Long Beach, United States. �hal-03481168�

https://hal.science/hal-03481168
https://hal.archives-ouvertes.fr

Cut-Pursuit Algorithm for Regularizing Nonsmooth Functionals
with Graph Total Variation

Hugo Raguet 1 Loïc Landrieu 2

Abstract
We present an extension of the cut-pursuit al-
gorithm, introduced by Landrieu & Obozinski
(2017), to the graph total-variation regularization
of functions with a separable nondifferentiable
part. We propose a modified algorithmic scheme
as well as adapted proofs of convergence. We also
present a heuristic approach for handling the cases
in which the values associated to each vertex of
the graph are multidimensional. The performance
of our algorithm, which we demonstrate on diffi-
cult, ill-conditioned large-scale inverse and learn-
ing problems, is such that it may in practice ex-
tend the scope of application of the total-variation
regularization.

1. Introduction
Landrieu & Obozinski (2017) recently presented a working-
set strategy for minimizing differentiable functions regular-
ized by a total-variation seminorm structured on a weighted
graph. We propose a modified scheme extending the scope
of the algorithm to functions with a nondifferentiable part
which is separable along the vertices of the graph. Given a
finite graph G def

= (V,E,w) with edge weights w ∈ RE
+, the

problem is to minimize F :

x 7→ f(x) +
∑
v∈V

gv(xv) +
∑

(u,v)∈E

w(u,v)|xu−xv| , (P1)

where f : RV → R is differentiable, and for all v ∈ V ,
gv : R →]−∞,+∞]. Our framework allows us to make
only weak assumptions on the regularity of the functions gv .
In order to handle infinite values and nondifferentiability, we
suppose that for all v ∈ V , gv is directionally differentiable;
this is detailed later in definition 2.1, using the notions of
domain and directional derivative. Our algorithm allows

1LIVE, CNRS, Univ. Strasbourg, France 2Univ. Paris-Est,
LaSTIG MATIS, IGN, ENSG, F-94160 Saint-Mandé, France.
Correspondence to: Hugo Raguet <hugo.raguet@gmail.com>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

us to find stationary points of F , that is to say points at
which all directional derivatives of F are nonnegative. It can
be noted already that if all the considered functionals are
convex, then the above hypothesis holds, and a stationary
point is equivalent to a global minimum.

Our extension of the cut-pursuit algorithm is motivated by
the presence of nondifferentiable terms besides the graph
total variation in a wide variety of applications. In signal pro-
cessing for example, the nondifferentiable `1 norm fidelity
is used for outlier removal, or the denoising of images cor-
rupted by a multiplicative noise, as presented in the works
of Nikolova (2004) and Durand et al. (2010), respectively.
Wu et al. (2015) make also use of such fidelity terms for the
3D mesh denoising problem, in which noises of multiple
natures and scales may coexist.

Alternatively, additional separable nondifferentiable regular-
ization terms can also be considerded. On some problems, it
is relevant to constrain the values associated to each vertex
within a convex subset of the reals, yielding box constraints.
Another popular regularization is the fused LASSO, intro-
duced initially by Tibshirani et al. (2005), where a LASSO-
like penalty complements the total-variation regularizer for
enforcing solutions which are both sparse and piecewise
constant. Gramfort et al. (2013) propose applications in
functional magnetic resonance imaging, Becker et al. (2014)
in electroencephalography, Omranian et al. (2016) in genet-
ics, and Takayama & Iwasaki (2016) in remote sensing.

In addition, we also consider extending the cut-pursuit al-
gorithm to the cases where the values taken by the vertices
belong to a multidimensional space rather than being scalar.
This extension is motivated by the success of convex relax-
ations of the combinatorial Potts model to solve labeling
problems, as reported by Nieuwenhuis et al. (2013).

1.1. Related Works

Large-scale problems regularized with the graph total varia-
tion are typically solved using proximal splitting algorithms;
see the general review of Combettes & Pesquet (2008), and
the more specific approaches of Couprie et al. (2013) or
ours (Raguet & Landrieu, 2015). These are however first-
order methods, for which convergence is known to be slow,

Cut-Pursuit for Nonsmooth Functionals

even though preconditioning strategies can help as argued
by Pock & Chambolle (2011) and us (Raguet & Landrieu,
2015).

The connection between graph cuts and total variation has
been successfully exploited by Chambolle & Darbon (2009)
to reformulate the graph total-variation regularization as a
parametric maximum flow problem when f is a square `2
norm. Xin et al. (2016) extend this to the fused LASSO
regularization already mentioned, by composing the above
method with the proximity operator of the `1 norm. They
still have to resort to proximal splitting for dealing with
more general functionals.

In another line of thought, Bach et al. (2012) have shown
that the sparsity of the solution should be exploited compu-
tationally to solve large-scale optimization problems faster.
Working-set algorithms have shown promising results for the
convex setting, as demonstrated by Harchaoui et al. (2015).

These ideas are at the heart of the cut-pursuit algorithm
originally proposed by Landrieu & Obozinski (2017), which
we detail in the following; we refer to their article for a more
in-depth discussion on its connection with other works.

1.2. Cut-Pursuit for Differentiable Functions

The algorithmic structure of cut-pursuit is summarized in
algorithm 1. We expose here the general principles behind
it, recalling the situation where there is no nondifferentiable
functional besides the graph total variation, reducing to prob-
lem P1 where for all v ∈ V , gv

def
= 0.

Thanks to the total-variation regularization, solutions are
expected to be piecewise constant with respect to a parti-
tion V of V into few connected components. A key concept
of the cut-pursuit algorithm is the reduced problem, which
is problem P1 constrained on the space of piecewise con-
stant vectors with respect to V; this can be formulated as
minimizing over RV

F (V) : ξ 7−→ F
(∑
U∈V

ξU1U

)
, (P2)

where for all subset U ⊆ V , 1U ∈ RV denotes the vector
such that for all v ∈ V , (1U)v

def
= 1 if v ∈ U , 0 otherwise.

By factorizing finite differences, the graph total-variation
term in F (V) becomes

∑
(U,U ′)∈E ω(U,U ′)|ξU − ξU ′ |, where

we note the set of adjacent components

E def
=
{

(U,U ′) ∈ V2
∣∣ (U × U ′) ∩ E 6= ∅} ,

and for all (U,U ′) ∈ E , we define the total edge weight
ω(U,U ′)

def
=
∑

(u,v)∈(U×U ′)∩E w(u,v). Since the term ξ 7→
f
(∑

U∈V ξU1U
)

is still differentiable, the reduced prob-
lem P2 is structured just as the original problem P1, but over
the reduced graph G def

= (V, E , ω), whose vertices are the
components in V; it should be much easier to solve.

Algorithm 1 Principle of the cut-pursuit; D ⊂ RV is a set
of directions adapted to the problem.

initialize V ← {V };
repeat

find ξ(V) ∈ RV , stationary point of
F (V) : ξ 7→ F

(∑
U∈V ξU1U

)
;

x←
∑

U∈V ξ
(V)
U 1U ;

find d(x) ∈ D, minimizing d 7→ F ′(x, d);
V ←

⋃
U∈V

{
maximal constant
connected components of

(
d

(x)
u

)
u∈U

}
;

until F ′(x, d(x)) ≥ 0;
return x.

The cut-pursuit algorithm iteratively refines the partition V ,
initialized at {V }. At each iteration, the reduced problem
corresponding to the current partition V is solved, and its
solution is used in turn to refine the components of V .

The rationale of the refinement step stems from the structure
of the directional derivative F ′(x, d) of F at point x ∈ RV

in direction d ∈ RV . Some calculus shows that F ′(x, d)
can be expressed as

F ′(x, d) =
∑
v∈V

δv(x)dv +
∑

(u,v)∈E(x)
=

w(u,v)|du − dv| , (1)

where

δv(x)
def
= ∇vf(x) +

∑
(e,u)∈E×V

e=(u,v) or (v,u)

we sign(xv − xu) ,

sign: R 7→ {−1, 0,+1} : t 7→ −1 if t < 0, 0 if t = 0 and
+1 if t > 0, and E(x)

=
def
= {(u, v) ∈ E |xu = xv} is the set

of edges whose vertices share the same value. The first sum
in equation 1 consists in unary terms, in which the sign of
δv(x) determines whether the value of each vertex should
tend to decrease or increase. The second sum consists in
binary terms, encouraging the values at neighboring vertices
to evolve in unison.

The refinement step does not require finding a “steepest
descent” direction, but merely refining the current partition
into a new one, thus adding relevant degrees of liberty to the
next reduced problem. The goal is to split the current compo-
nents into groups of vertices tending to increase together or
decrease together, while taking coupling terms into account.
Such a split can thus be encoded as a direction in the set
{−1,+1}V . We thus look for a steepest binary direction

find d(x) ∈ arg min
d∈{−1,+1}V

F ′(x, d) , (P3)

which can be solved by finding the minimum cut in an appro-
priate flow graph. The refined partition V is then defined by
splitting each component U of the current partition accord-
ing to the constant connected components of

(
d

(x)
u

)
u∈U .

Cut-Pursuit for Nonsmooth Functionals

Beyond the computational efficiency of the cut-pursuit algo-
rithm, the main result of Landrieu & Obozinski (2017) is the
optimality certificate, which states that if x is a solution of a
reduced problem P2, and that the steepest binary direction
problem P3 induces no refinement of the current partition
then x is a solution of the main problem P1. In consequence,
the algorithm converges in a finite number of steps to such
a solution. In practice, since the number of components of
V increases rapidly and the final partition is expected to be
coarse, only a few iterations are needed.

1.3. Contributions 1

If we assume now that F has a nondifferentiable part other
than the graph total variation, the analysis above does not
stand because one cannot decompose the directional deriva-
tive into unary and binary contributions as in equation 1.

In contrast to what happens with the differentiable term,
where each vertex either tends to increase or decrease, it
is now possible that both directions +1 and −1 are unfa-
vorable for some vertices. Thus, if one wants to keep the
principle of the cut-pursuit algorithm for the regularization
of nondifferentiable functions, it seems necessary to search
for descent directions within the set {−1, 0,+1}V when
refining the partition.

In this paper, we provide a new theoretical framework allow-
ing to deal with directional derivatives in possibly noncon-
tinuous settings. Then, we show that refining partitions with
descent directions within {−1, 0,+1}V is actually sufficient
in order to retain the optimality certificate of cut-pursuit with
separable nondifferentiable terms. It seems to us that the
original proofs proposed by Landrieu & Obozinski (2017)
cannot be extended to this setting, hence we propose a com-
pletely different approach; a benefit is that it can be applied
to nonconvex setting without additional requirements.

Moreover, we show that the corresponding steepest direction
problem can also be solved via minimum cuts in adapted
flow graphs, for which we design a new and efficient archi-
tecture. Altogether, this unlocks the use of the cut-pursuit
approach on a large class of new problems, central to ma-
chine learning applications as introduced above.

Finally, considering a problem in which each vertex takes
multidimensional values, unit vectors encoding a descent
direction at a vertex are not restricted to the finite {−1,+1}
set. There is actually an infinity of such unit vectors, and
searching for a steepest unit descent direction is intractable.
However, we propose some heuristics, and show numerically
that by restricting the search to a small set of well-chosen
directions, one can still apply the cut-pursuit approach, dras-
tically outperforming traditional proximal schemes.

1The proofs of all the propositions in this paper can be found
in our preprint (Raguet & Landrieu, 2018)

2. Extending Cut-Pursuit
Since the cut-pursuit relies on directional derivatives, we
start with some definitions allowing us to manipulate them
with the necessary degree of generality.

Definition 2.1. Let Ω be a real vector space, and h : Ω →
]−∞,+∞]. The domain of h is domh

def
= {x ∈ Ω |

h(x) < +∞}. Given x ∈ domh and d ∈ Ω, we say
that h admits a directional derivative at point x in direc-
tion d if the quantity h′(x, d)

def
= limt↓0

h(x+td)−h(x)
t exists

in]−∞,+∞]. Finally, we say that h is directionally differ-
entiable if it admits a directional derivative at every point of
its domain and in every direction.

Our definition of directional derivatives would be standard,
if it were not for infinite values. It can be shown easily that
convexity implies directional differentiability. It is of particu-
lar importance because many applications would use convex
optimization algorithms for solving the reduced problem P2.
However, we underline that it is not a requirement, and that
the cut-pursuit algorithm can be perfectly applied on non-
convex problems, provided that solutions of the reduced
problems can be found.

In the remainder of this section, we first describe our method
for extending the cut-pursuit algorithm, and the rationale
behind it. We then further justify this rationale by providing
a convergence proof. Subsequently, we specify some prac-
tical implementation details. Finally, we give an efficient
heuristic for dealing with a similar setting where the values
at each vertex are multidimensional.

2.1. Steepest Ternary Direction

As stated in § 1.3, nondifferentiable terms in F prevent
convenient decomposition of the directional derivatives as
in equation 1. However, a similar decomposition can still be
achieved by using positive homogeneity of the directional
differential, although multiplicative terms δv now depend
on the sign of the corresponding direction coordinate.

Proposition 2.1. Under our assumptions, for all x ∈
domF and for all d ∈ RV , F admits a directional deriva-
tive at x in direction d, equal to

F ′(x, d) =
∑
v∈V
dv>0

δ+
v (x)dv +

∑
v∈V
dv<0

δ−v (x)dv

+
∑

(u,v)∈E(x)
=

w(u,v)|du − dv| ,
(2)

where for all v ∈ V , we define

δ+
v (x)

def
= ∇vf(x) + g′v(xv,+1) +

∑
(e,u)∈E×V

e=(u,v) or (v,u)

we sign(xv − xu),

Cut-Pursuit for Nonsmooth Functionals

and
δ−v (x)

def
= ∇vf(x)− g′v(xv,−1) +

∑
(e,u)∈E×V

e=(u,v) or (v,u)

we sign(xv − xu).

In contrast to the differentiable case, it is now possible that
for some vertices, neither increasing +1 nor decreasing −1
direction is favorable, when looking for convenient descent
directions. In this case, such vertices are inclined not to
change their value, that is to say the null direction 0 should
be favored; this leads to the steepest ternary direction prob-
lem

find d(x) ∈ arg min
d∈{−1,0,+1}V

F ′(x, d) , (P4)

where for all x ∈ domF and d ∈ {−1, 0,+1}V ,

F ′(x, d) =
∑
v∈V

dv=+1

δ+
v (x)−

∑
v∈V

dv=−1

δ−v (x)

+
∑

(u,v)∈E(x)
=

w(u,v)|du − dv| .

Remark that since F ′(x, 0) = 0, any solution d(x) of prob-
lem P4 must satisfy F ′(x, d(x)) ≤ 0. Similarly to its binary
counterpart, the steepest ternary direction corresponds to a
minimum cut in a suitable flow graph, represented in figure 1,
which we note G(x)

flow =
(
Vflow, E

(x)
flow, c

(x)
)
. The vertex set

is Vflow = (V × {1, 2}) ∪ {s, t}, s and t being respectively
the specific source and sink vertices; we also use the conve-
nient notation v(k) for (v, k) ∈ V × {1, 2}. The edge set is
defined by

E
(x)
flow

def
=
⋃
v∈V

{(
s, v(1)

)
,
(
v(1), v(2)

)
,
(
v(2), t

)}
∪

⋃
(u,v)∈E(x)

=

k∈{1,2}

{(
u(k), v(k)

)
,
(
v(k), u(k)

)}
.

In accordance with figure 1, the edges defined in the left
term are called vertical, while the edges defined in the right
term are called horizontal.

The associated capacities c(x) ∈ R|E
(x)
flow|

+ are defined, for
the horizontal edges, for all (u, v) ∈ E(x)

= and k ∈ {1, 2},
by c

(x)

(u(k),v(k))

def
= c

(x)

(v(k),u(k))

def
= w(u,v); and for the verti-

cal edges, for all v ∈ V , by c(x)

(s,v(1))

def
= −δ−v (x) + mv,

c
(x)

(v(1),v(2))

def
= mv, and c

(x)

(v(2),t)

def
= δ+

v (x) + mv, where

mv
def
= max(0, δ−v (x),−δ+

v (x)), δ−v (x) and δ+
v (x) being

defined in proposition 2.1; note that our definition of direc-
tional derivatives implies that δ−v (x) < +∞ and−δ+

v (x) <
+∞. The definition ofmv ensures that all capacities are non-
negative, although potentially infinite. An additional benefit
is that for each v ∈ V , at least one of c(x)

(s,v(1))
, c(x)

(v(1),v(2))

and c(x)

(v(2),t)
is zero, allowing for faster computation of the

s

t

u(1) v(1) w(1)

u(2) v(2) w(2)

w(u,v)

w(v,u)

−δ−u (x) +mu

δ+u (x) +mu

mu

Figure 1: Schematic representation of the flow graph G(x)
flow

for the steepest ternary direction problem P4. In this case,
xu = xv 6= xw.

minimum cut via an augmenting path algorithm, such as the
one of Boykov & Kolmogorov (2004).

It can also be noted that this flow graph is similar to the
multistage structure proposed by Ishikawa (2003), with one
fewer stage and no infinite so-called constraint edges; this
is once again favorable to augmenting path algorithms.

Proposition 2.2. Problem P4 can be solved by finding a
minimum cut in the graph G(x)

flow.

2.2. Convergence Proof

We now turn to the convergence of algorithm 1 towards
a stationary point of F . In our context, a strictly negative
directional derivative is called a strict descent direction, and
a point x ∈ domF is called stationary if it admits no strict
descent direction.

The convergence proof relies on the same kind of optimal-
ity certificate than the one used in the original cut-pursuit
paper by Landrieu & Obozinski (2017), for regularization
of differentiable functionals. Indeed, the steepest ternary
direction at a point x not only indicates a refinement of the
partition V , it also allows us to determine the optimality of
x as a solution of the main problem P1, even though it is not
a steepest descent direction in general.

Proposition 2.3. Let x ∈ domF . If F admits a strict de-
scent direction at point x, then it admits a strict descent
direction in the set {−1, 0,+1}V .

In order to use the above results for proving the termina-
tion and correctness of algorithm 1, one should ensure that

Cut-Pursuit for Nonsmooth Functionals

a stationary point of each reduced problem exists and can
be found. In particular, note that when initializing the algo-
rithm with V set

= {V } as suggested, the mere existence of
feasible points for the first reduced problem requires that
∩v∈V dom gv 6= ∅. Of course, it is still possible to initialize
with a finer partition if necessary, but these considerations
are all problem-dependent. For the scope of the present
article, we thus assume the necessary existence properties.

Corollary 2.1. Under our assumptions, algorithm 1 with
D

set
= {−1, 0,+1}V finds a stationary point of the main

problem P1.

2.3. Implementation Considerations

As with the regularization of differentiable functionals,
the reduced problem P2 presents the same structure
as the main problem P1 in the presence of a sepa-
rable nondifferentiable part; indeed, it decomposes as
ξ 7→

∑
U∈V

∑
v∈U gv(ξU) =

∑
U∈V γU (ξU), where

each γU : R 7→]−∞,+∞]. Thus, any algorithm solving
the reduced problems can also solve the main problem.
Nevertheless, it often happens that the former run much
faster and give more precise results than the latter, and the
cut-pursuit can leverage this. When solutions with large
constant connected components exist, performance is im-
proved by orders of magnitude, as we show numerically
in § 3. Interestingly, we observe on these problems that
both crucial steps, namely solving the reduced problem and
refining the partition, take a significant share of the total
computational load. We give here practical implementation
considerations, important for robustness and efficiency.

2.3.1. D ISCONTINUITIES AND SOLUTIONS OF
REDUCED PROBLEMS

The cut-pursuit algorithm relies on directional derivatives
of nondifferentiable functions, thus problems of disconti-
nuity are to be expected. For once, the definition of the
steepest ternary problem P4 at a point x depends on the
set of edges whose vertices share exactly the same value,
E(x)

=
def
= {(u, v) ∈ E |xu = xv}; the absolute differences

over all other edges are treated as differentiable terms at x,
however small the difference is. Likewise, the computation
of δ+(x) and δ−(x) requires identifying which coordinates
xv lie at points of nondifferentiability of the corresponding
gv .

This is an important limitation, since in most applications,
solutions of reduced problems are computed with iterative
algorithms which are only asymptotically convergent; they
are only approximate solutions, within a certain tolerance
error. Such solutions sometimes even lie slightly outside
the domain of the objective functionals, making things even
worse. These facts cannot be ignored because nondifferentia-
bility points are usually points of interest for the problem at

hand; actually the very reason why nondifferentiable terms
are considered in the first place. Consequently, we recom-
mend setting up a threshold distance in coherence with the
tolerance error specified for reduced problems. Coordinates
which fall within this threshold of a nondifferentiability
point are treated as if they were exactly at this point. When
doing so, it is also profitable to merge together neighboring
components in V which are assigned close values, because
the lower the cardinal of V , the smaller the reduced graph G
and the faster the solutions of the reduced problems.

Observe that calling on such approximations, optimality
considerations of § 2.2 are not strictly valid anymore; in par-
ticular, neighboring components can be alternatively merged
after the reduced problem and split again after the steepest
direction problem, ad infinitum. Thus, we also advocate ter-
minating the algorithm when the iterate evolution is below a
certain threshold, once again in coherence with the tolerance
on the reduced problems.

Another numerical difficulty which is worth mentioning is
that components of V can be very different in size, leading
to bad conditioning of the reduced problem because large
components have much more importance than small ones,
preventing accurate estimation of the latter. A method that
allows dealing with bad conditioning is thus required for
solving the reduced problem.

In our numerical experiments, we use the preconditioning
of the forward-Douglas–Rachford splitting algorithm illus-
trated by one of the authors (Raguet, 2018), showing favor-
able behavior with respect to the above considerations on
the problems that we consider.

2.3.2. MAXIMUM FLOW

Although different strategies have been developed for find-
ing maximum flows in graphs, we only considered the aug-
menting path strategy of Boykov & Kolmogorov (2004),
which seems well adapted to the structure of the flow graph
G

(x)
flow described in § 2.1 and figure 1. Let us underline that

the horizontal structure of the flow graph is determined by
the original graphG and the components in the current parti-
tion V ; in particular, there is no horizontal edge between two
different components of the partition, and a path from the
source to the sink always goes through a unique component.
This provides a natural way of parallelizing the computation
of the maximum flow along the components. Moreover, the
refinement of the partition which we propose is essentially
hierarchical, each component being split into several parts,
which also suggests a parallelization of the search for max-
imal connected components and might ease the memory
structure. We have not implemented such parallelization so
far, and leave it for future works.

In addition, the steepest ternary direction problem P4 can

Cut-Pursuit for Nonsmooth Functionals

be solved by an alternative minimum cut strategy. For d ∈
RV , define respectively the coordinate-wise minimum and
maximum min(d, 0),max(d, 0) ∈ RV , by for all v ∈ V ,
min(d, 0)v

def
= min(dv, 0) and max(d, 0)v

def
= max(dv, 0).

Then, it can be shown from proposition 2.1 that for all x ∈
domF , F ′(x, d) = F ′(x,min(d, 0)) + F ′(x,max(d, 0)),
so that d 7→ F ′(x, d) is minimized over {−1, 0,+1}V by
the sum of a minimizer over {−1, 0}V and of a minimizer
over {0,+1}V . Each of the latter minima can be found
by a minimum cut in an adapted flow graph like the one
of figure 1, but with only one stage. This can be used to
reduce memory requirements; alternatively, if memory is
not a concern, the two minimizations could be performed
in parallel. On our experiments below, we implemented this
serially, with substantial gain in terms of memory and no
loss in terms of running time.

2.4. Extension to Multidimensional Values

The very idea of the cut-pursuit algorithm 1 can be summa-
rized as follows: solving a reduced problem on a partition of
V , finding a steepest descent direction within a set D, and
refining the partition accordingly. In theory, this strategy
could be applied in any setting; however, if the nondiffer-
entiable part of F besides the graph total variation is not a
separable sum of unidimensional functionals, two difficul-
ties arise. First, the set of descent directions D necessary
for obtaining an optimality certificate as in § 2.2 might be
infinite. Second, even if D is finite, the problem of finding
the steepest descent direction might not be tractable.

Nevertheless, one can think of situations where these prob-
lems can be heuristically addressed. A typical one is when
the nonsmooth functionals are not sums of unidimensional
functionals, but are still separable over the graph G, in the
sense that there is no edge between the coordinates over
which each one is defined. This situation is better modeled
by saying that the values at the vertices are multidimen-
sional, say in RK where K is a finite set. The absolute
value in the graph total variation can be replaced by any
norm overRK , and the resulting objective functional is then
defined, for all x ∈ RV×K , as

F (x)
def
= f(x) +

∑
v∈V

gv(xv) +
∑

(u,v)∈E

w(u,v)‖xu − xv‖ ,

where now for all v ∈ V , xv
def
=
(
x(v,k)

)
k∈K ∈ R

K and
gv : RK →]−∞,+∞].

Compared to the setting of § 2.1, positive homogeneity of
directional derivatives of the gv still holds but unit descent
directions cannot be summarized by ascending, +1, or de-
scending, −1: as soon as |K| ≥ 2, there is an infinity of
unit vectors. However, for a given vertex, only a handful of
descent directions in RK might seem relevant for the prob-
lem. Our first heuristic is to restrict the set of considered

directions by choosing them greedily for each vertex. For
example, if for each vertex v only one direction d̄v ∈ RK

is considered, the set of directions is the Cartesian product
D

set
=×v∈V {0, d̄v} ⊂ R

V×K , and the corresponding steep-
est descent direction problem is binary. It is easy to show
that for all x ∈ domF and d ∈ D,

F ′(x, d) =
∑
v∈V
dv=d̄v

δ(x, d̄v) +
∑

(u,v)∈E(x)
=

w(u,v)‖du − dv‖ ,

where the δ(x, d̄v) does not depend on d; so the problem
can again be solved by finding a minimum cut in a (single
stage) flow graph according to theorem 4.1 of Kolmogorov
& Zabih (2004), where condition (7) reduces to the triangle
inequality for the norm defining the total variation.

It must be underlined here that the set D above might be
different at each iteration, depending on the current iterate
x. Moreover, one can consider richer sets of direction per
vertex, D set

=×v∈V Dv , where each Dv is a finite subset of
RK . Now, the steepest descent direction problem is a multil-
abel one, and in general cannot be easily solved. Fortunately,
greedy strategies such as α-expansion or α-β swap, as de-
scribed for instance by Boykov et al. (2001), can provide
satisfactory approximate solutions by solving a succession
of a few binary problems like the above.

We say that these approaches are heuristics because in the
general case no optimality can be provided, neither for the
original optimization problem, nor for the steepest descent
problem when more than two descent directions are consid-
ered per vertex. Nonetheless, we show below, on a simplex-
constrained labeling problem, that they can be efficient.

3. Numerical Experiments
One of the authors (Raguet, 2018) illustrates his precon-
ditioning of the forward-Douglas–Rachford splitting algo-
rithm (PFDR) on medium- and large-scale problems arising
respectively from signal processing and machine learning
tasks, on which it compares favorably with state-of-the-art
proximal splitting methods. We show the considerable im-
provement offered by the cut-pursuit (CP) approach on the
exact same optimization problems, using PFDR for solving
the reduced problems. In the comparisons, we also include
the preconditioned primal-dual splitting algorithm of Pock
& Chambolle (2011, PPD) because of its popularity; note
that it is closely related to the alternating direction method
of multipliers, often coined ADMM.

The experimental setting is extensively described by Raguet
(2018, § 4), and we refer the reader to this note for details.
The source code for CP and PFDR is available at one of the
author’s GitHub repository.2

21a7r0ch3/CP_PFDR_graph_d1

https://github.com/1a7r0ch3/CP_PFDR_graph_d1

Cut-Pursuit for Nonsmooth Functionals

In the following, if C is a convex closed set of a vector
space Ω, we note the convex indicator functional ιC : Ω →
]−∞,+∞] : x 7→ 0 if x ∈ C, +∞ otherwise.

3.1. Inverse Problem in Electroencephalography

Electroencephalography records brain activity via electrodes
put at the surface of a subject’s head. The relationship be-
tween activation of the brain regions and the electrodes’
recording can be modeled by a linear operator called lead-
field operator. The brain regions are modeled as vertices of
a tridimensional mesh, G set

= (V,E), and a brain activation
map is thus a vector of RV . Yet, the number of electrodes
being much smaller (here, N set

= 91) than the resolution
of the desired brain image (here, |V | set

= 19 626), the prob-
lem of retrieving brain activation map from the electrodes’
recording is ill-posed. Moreover, the latter usually suffers
from acquisition noise.

Fortunately, following Becker et al. (2014), a reasonable
assumption is that at a given time, only scarce regions of
the brain are really activated, and that spatially neighboring
regions are often similarly activated. In addition, we use a
recording time point where the entire signal is known to be
nonnegative. All this prior knowledge can be enforced by
modeling the brain source as a minimizer over RV of

F : x 7→ 1
2‖y − Φx‖2 +

∑
v∈V

(
λv|xv|+ ιR+

(xv)
)

+
∑

(u,v)∈E

w(u,v)|xu − xv| ,

where y ∈ RN is the observation over N electrodes and
Φ: RV → RN is the lead-field operator. The first term is a
square Euclidean norm ensuring coherence with the obser-
vation; it is differentiable. The second term is comprised of
both a weighted `1-norm and a convex indicator, enforcing
respectively sparsity and positivity; it is nondifferentiable
but separable over G. The third term is the graph total varia-
tion enforcing spatial similarity.

Altogether, this is of the form of problem P1, and the cut-
pursuit algorithm can be easily applied following §§ 2.1
and 2.3. Once again, we refer the reader to the note of
Raguet (2018, § 4) for details on the competing algorithms.
Following his methodology, we prescribe stopping criteria
as minimum relative evolution of the iterates, decreasing
from 10−4 to 10−6; for the reduced problems in CP, the
stopping criterion is set to one thousandth of this value. We
also consider longer runs of the algorithms with a stopping
criterion of 10−8 for CP and stopped after 105 iterations for
PPD and PFDR.

In this experiment, and for all stopping criteria considered,
CP terminates after 11 iterations, with only 20 maximal con-
stant connected components. In such a favorable case, it
outperforms the two other algorithms by several orders of

F
−
F
∞

F
∞

0 20 40
10
−6

10
−3

10
0 CP

PFDR

PPD

t (s)

Figure 2: Optimization for brain source identification in elec-
troencephalography.

magnitude, as illustrated on figure 2, where the optimal F∞
is approximated with CP with stopping criterion 10−8. For
more in-depth comparison, we also report the computing
timesin table 1. Moreover, as the data are synthetic, the orig-
inal brain activity is known, and we can assess the relevance
of the model for brain source identification by computing
the Dice score between the supports of the retrieved activity
and of the ground truth. We also report an approximate Dice
score, DSa, where small absolute values of the solutions are
discarded with a simple 2-means algorithm.

Table 1: Brain source identification in electroencephalog-
raphy: prediction performance and running time compar-
isons.1 For the 10−8 stopping criterion, PPD and PFDR were
stopped at 105 iterations. Time given in seconds.

stop.
criter.

CP PFDR PPD
DS DSa time DS DSa time DS DSa time

10−4 .32 .78 .17 .24 .76 3 .13 .66 7
10−5 .32 .78 .17 .31 .74 12 .25 .78 22
10−6 .32 .78 .19 .31 .78 47 .30 .78 34
10−8 .32 .78 .25 .32 .78 191 .32 .78 180

3.2. Semantic Labeling of 3D Point Cloud

We consider the task of assigning a semantic label (car,
vegetation, road, etc...) to each point of a 3D point cloud
acquired with a LiDAR. This is usually performed with a
supervised classifier such as a random forest, whose features
can be derived from the local neighborhood of the points, or
from the global structure of the scene; see for instance the
works of Weinmann et al. (2015) and Guinard & Landrieu
(2017).

If V denotes the set of points and K the set of labels, the
random forest classifier provides a probabilistic classifica-

Cut-Pursuit for Nonsmooth Functionals

tion q ∈ RV×K , where for each v ∈ V , qv
def
= (q(v,k))k∈K

belongs to the simplex 4K
def
= {p ∈ RK |

∑
k∈K pk =

1 and ∀ k ∈ K, pk ≥ 0}. Although it generally gives good
results, it lacks the spatial regularity which can be expected
from LiDAR acquisitions; following Landrieu et al. (2017),
this can be improved by encoding an adjacency structure
on a graph G set

= (V,E), and minimizing over RV×K the
functional

F : p 7→
∑
v∈V

KL(βu+ (1− β)qv, βu+ (1− β)pv)

+
∑
v∈V

ι4K
(pv) +

∑
(u,v)∈E

w(u,v)‖pu − pv‖1 ,

where for all r, s ∈ 4K , KL(r, s)
def
=
∑

k∈K rk log(rk/sk)

is the Kullback–Leibler divergence, u def
= (1/|K|)k∈K ∈

4K is the uniform discrete distribution, and β ∈]0, 1[is a
small smoothing parameter. The first term favors similarity
with the original predictions; it is differentiable. The sec-
ond term ensures that each labeling is a discrete probability
distribution; it is nondifferentiable but separable over G.
The third term is the graph total variation enforcing spa-
tial similarity, where we use the `1 norm, well adapted to
simplex-constrained values.

Altogether, this satisfies the multidimensional setting de-
scribed in § 2.4. To construct the set of candidate descent
directions, consider an iterate p ∈ 4K

V and a direction d ∈
RV×K . Note that that for all v ∈ V , ι4K

′(pv, dv) = +∞ if∑
k∈K d(v,k) 6= 0, or if there exists k ∈ K such that, either

p(v,k) = 0 and d(v,k) < 0, or p(v,k) = 1 and d(v,k) > 0.
Consequently, for each v ∈ V , we propose to define kv ∈
arg maxk∈K {p(v,k)} a label with maximum probability,
and setDv

set
= {0}∪

{
1{k} − 1{kv} ∈ RK

∣∣ k ∈ K \ {kv}}.
The steepest descent direction is then a combinatorial prob-
lem with |K| labels which we approximately solve with a
single α-expansion cycle.

The graph contains |V | = 3 000 111 vertices and |E| =
17 206 938, and the task comprises |K| = 6 classes.
Stopping criteria are again taken from the experiments of
Raguet (2018), and an estimate of the optimal value F∞ is
computed with a longer run. Figure 3 represents the evolu-
tion of the objective functional values over time. The results
are less impressive than in the previous experiment, but once
again, CP reaches lower objective values an order of magni-
tude faster than PFDR; after only 4 iterations, with a total
of 863 maximal constant connected components.

Let us underline that in this setting, the majority of the com-
putational time is devoted to graph cuts. Indeed, starting at
the direction d = 0, an entire α-expansion cycle requires
five successive graph cuts, over the huge original graph.
There is thus room for significant improvements by paral-
lelizing the cuts as explained along § 2.3.2, or by exploring
better strategies for searching descent directions.

F
−
F
∞

F
∞

0 20 40
10
−6

10
−3

10
0 CP

PFDR

PPD

t (s)

0 1000 2000 3000

10
−2

10
0

10
2

CP

PFDR

PPD

t (s)

Figure 3: Optimization for labeling of 3D point cloud.

4. Conclusion and Perspectives
This paper provides a theoretical and practical framework
for harnessing the speed of efficient graph-cut algorithms
for a large class of graph-structured problems involving
nondifferentiable terms alongside the total variation.

We believe that our algorithm overcomes three impor-
tant limitations. First, solving total-variation regularized
problems in high dimension is known to be difficult.
Computational limitations might have led some works to
use unconverged solutions, providing unsatisfying or incon-
sistent results. Cut-pursuit addresses this problem through
its considerable acceleration, at least when the number of
final constant connected components is reasonable. Second,
even when satisfying solutions can be found, practical appli-
cations often require lengthy exploration of regularization
parameters at a prohibitive computational cost. Cut-pursuit
can benefit from warm-restart of the partition, for scanning
from high to low regularization strength, as already pointed
out by Landrieu et al. (2017, § 2.6). Third, convexity of
the total-variation, while being convenient for optimization
considerations, makes it sometimes not restrictive enough
as a regularizer, admitting several solutions with many level
sets. In some cases it is preferable to obtain spatially ho-
mogeneous solutions with only few level sets, which are
in general better enforced with nonconvex regularizations.
On the basis of its very principle and of our first numerical
experiments, we argue that the cut-pursuit scheme favors the
solutions with the fewest constant connected components,
mitigating this third concern.

Altogether, it seems that many applications of the total-
variation would benefit from our approach, which might
spark a renewed interest of this regularization in the future.

Cut-Pursuit for Nonsmooth Functionals

Acknowledgements
Hugo Raguet is supported by ANR project HYEP (ANR
14-CE22-0016).

References
Bach, F., Jenatton, R., Mairal, J., and Obozinski, G.

Optimization with sparsity-inducing penalties.
Foundations and Trends in Machine Learning, 4
(1):1–106, 2012.

Becker, H., Albera, L., Comon, P., Gribonval, R., and Merlet,
I. Fast, variation-based methods for the analysis of ex-
tended brain sources. In European Signal Processing
Conference, 2014.

Boykov, Y. and Kolmogorov, V. An experimental compari-
son of min-cut/max-flow algorithms for energy minimiza-
tion in vision. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(9):1124–1137, 2004.

Boykov, Y., Veksler, O., and Zabih, R. Fast approximate
energy minimization via graph cuts. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 23(11):
1222–1239, 2001.

Chambolle, A. and Darbon, J. On total variation minimiza-
tion and surface evolution using parametric maximum
flows. International Journal of Computer Vision, 84(3):
288–307, 2009.

Combettes, P. L. and Pesquet, J.-C. A proximal decom-
position method for solving convex variational inverse
problems. Inverse problems, 24(6):65014–65040, 2008.

Couprie, C., Grady, L., Najman, L., Pesquet, J.-C., and
Talbot, H. Dual constrained TV-based regularization on
graphs. SIAM Journal on Imaging Sciences, 6(3):1246–
1273, 2013.

Durand, S., Fadili, J., and Nikolova, M. Multiplicative noise
removal using `1 fidelity on frame coefficients. Journal of
Mathematical Imaging and Vision, 36(3):201–226, 2010.

Gramfort, A., Thirion, B., and Varoquaux, G. Identifying
predictive regions from fMRI with TV-`1 prior. In Pattern
Recognition in Neuroimaging. IEEE, 2013.

Guinard, S. and Landrieu, L. Weakly supervised
segmentation-aided classification of urban scenes from
3D LiDAR point clouds. ISPRS Archives of
the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 2017.

Harchaoui, Z., Juditsky, A., and Nemirovski, A. Conditional
gradient algorithms for norm-regularized smooth convex
optimization. Mathematical Programming, 152(1-2):75–
112, 2015.

Ishikawa, H. Exact optimization for Markov random fields
with convex priors. IEEE transactions on pattern analysis
and machine intelligence, 25(10):1333–1336, 2003.

Kolmogorov, V. and Zabih, R. What energy functions can be
minimized via graph cuts? IEEE Transactions on Pattern
Analysis and Machine Intelligence, 26(2):147–159, 2004.

Landrieu, L. and Obozinski, G. Cut pursuit: Fast algorithms
to learn piecewise constant functions on general weighted
graphs. SIAM Journal on Imaging Sciences, 10(4):1724–
1766, 2017.

Landrieu, L., Raguet, H., Vallet, B., Mallet, C., and
Weinmann, M. A structured regularization framework
for spatially smoothing semantic labelings of 3D point
clouds. Journal of Photogrammetry and Remote Sensing,
132:102–118, 2017.

Nieuwenhuis, C., Töppe, E., and Cremers, D. A survey and
comparison of discrete and continuous multi-label opti-
mization approaches for the Potts model. International
journal of computer vision, 104(3):223–240, 2013.

Nikolova, M. A variational approach to remove outliers and
impulse noise. Journal of Mathematical Imaging and
Vision, 20(1-2):99–120, 2004.

Omranian, N., Eloundou-Mbebi, J. M., Mueller-Roeber, B.,
and Nikoloski, Z. Gene regulatory network inference
using fused LASSO on multiple data sets. Scientific
reports, 6, 2016.

Pock, T. and Chambolle, A. Diagonal preconditioning for
first order primal-dual algorithms in convex optimization.
In IEEE International Conference on Computer Vision,
pp. 1762–1769. IEEE, 2011.

Raguet, H. A note on the forward-Douglas–Rachford split-
ting for monotone inclusion and convex optimization.
Optimization Letters, pp. 1–24, 2018.

Raguet, H. and Landrieu, L. Preconditioning of a general-
ized forward-backward splitting and application to opti-
mization on graphs. SIAM Journal on Imaging Sciences,
8(4):2706–2739, 2015.

Raguet, H. and Landrieu, L. Cut-pursuit algorithm for regu-
larizing nonsmooth functionals with graph total variation.
preprint, 2018. URL https://1a7r0ch3.github.
io/cp/index.html.

Takayama, T. and Iwasaki, A. Optimal wavelength se-
lection on hyperspectral data with fused LASSO for
biomass estimation of tropical rain forest. ISPRS
Annals of Photogrammetry, Remote Sensing and Spatial
Information Sciences, pp. 101–108, 2016.

https://1a7r0ch3.github.io/cp/index.html
https://1a7r0ch3.github.io/cp/index.html

Cut-Pursuit for Nonsmooth Functionals

Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight,
K. Sparsity and smoothness via the fused lasso. Journal
of the Royal Statistical Society: Series B (Statistical
Methodology), 67(1):91–108, 2005.

Weinmann, M., Jutzi, B., Hinz, S., and Mallet, C. Semantic
point cloud interpretation based on optimal neighbor-
hoods, relevant features and efficient classifiers. ISPRS
Journal of Photogrammetry and Remote Sensing, 105:
286–304, 2015.

Wu, X., Zheng, J., Cai, Y., and Fu, C.-W. Mesh denoising
using extended ROF model with `1 fidelity. In Computer
Graphics Forum, volume 34, pp. 35–45. Wiley Online
Library, 2015.

Xin, B., Kawahara, Y., Wang, Y., Hu, L., and Gao, W.
Efficient generalized fused LASSO and its applications.
ACM Transactions on Intelligent Systems and Technology,
7(4):1–22, 2016.

	Introduction
	Related Works
	Cut-Pursuit for Differentiable Functions
	Contributions The proofs of all the propositions in this paper can be found in our preprint RaguetLandrieu18

	Extending Cut-Pursuit
	Steepest Ternary Direction
	Convergence Proof
	Implementation Considerations
	Discontinuities and Solutions of Reduced Problems
	Maximum Flow

	Extension to Multidimensional Values

	Numerical Experiments
	Inverse Problem in Electroencephalography
	Semantic Labeling of 3D Point Cloud

	Conclusion and Perspectives

