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Cut-Pursuit Algorithm for Regularizing Nonsmooth Functionals with Graph Total Variation

We present an extension of the cut-pursuit algorithm, introduced by Landrieu & Obozinski (2017), to the graph total-variation regularization of functions with a separable nondifferentiable part. We propose a modified algorithmic scheme as well as adapted proofs of convergence. We also present a heuristic approach for handling the cases in which the values associated to each vertex of the graph are multidimensional. The performance of our algorithm, which we demonstrate on difficult, ill-conditioned large-scale inverse and learning problems, is such that it may in practice extend the scope of application of the total-variation regularization.

1. Introduction [START_REF] Landrieu | Cut pursuit: Fast algorithms to learn piecewise constant functions on general weighted graphs[END_REF] recently presented a workingset strategy for minimizing differentiable functions regularized by a total-variation seminorm structured on a weighted graph. We propose a modified scheme extending the scope of the algorithm to functions with a nondifferentiable part which is separable along the vertices of the graph. Given a finite graph G def = (V, E, w) with edge weights w ∈ R E + , the problem is to minimize F :

x → f (x) + v∈V g v (x v ) + (u,v)∈E w (u,v) |x u -x v | , (P1)
where f : R V → R is differentiable, and for all v ∈ V , g v : R → ]-∞,+∞]. Our framework allows us to make only weak assumptions on the regularity of the functions g v . In order to handle infinite values and nondifferentiability, we suppose that for all v ∈ V , g v is directionally differentiable; this is detailed later in definition 2.1, using the notions of domain and directional derivative. Our algorithm allows us to find stationary points of F , that is to say points at which all directional derivatives of F are nonnegative. It can be noted already that if all the considered functionals are convex, then the above hypothesis holds, and a stationary point is equivalent to a global minimum.

Our extension of the cut-pursuit algorithm is motivated by the presence of nondifferentiable terms besides the graph total variation in a wide variety of applications. In signal processing for example, the nondifferentiable 1 norm fidelity is used for outlier removal, or the denoising of images corrupted by a multiplicative noise, as presented in the works of [START_REF] Nikolova | A variational approach to remove outliers and impulse noise[END_REF] and [START_REF] Durand | Multiplicative noise removal using 1 fidelity on frame coefficients[END_REF], respectively. [START_REF] Wu | Mesh denoising using extended ROF model with 1 fidelity[END_REF] make also use of such fidelity terms for the 3D mesh denoising problem, in which noises of multiple natures and scales may coexist.

Alternatively, additional separable nondifferentiable regularization terms can also be considerded. On some problems, it is relevant to constrain the values associated to each vertex within a convex subset of the reals, yielding box constraints. Another popular regularization is the fused LASSO, introduced initially by [START_REF] Tibshirani | Sparsity and smoothness via the fused lasso[END_REF], where a LASSOlike penalty complements the total-variation regularizer for enforcing solutions which are both sparse and piecewise constant. [START_REF] Gramfort | Identifying predictive regions from fMRI with TV-1 prior[END_REF] propose applications in functional magnetic resonance imaging, [START_REF] Becker | Fast, variation-based methods for the analysis of extended brain sources[END_REF] in electroencephalography, [START_REF] Omranian | Gene regulatory network inference using fused LASSO on multiple data sets[END_REF] in genetics, and [START_REF] Takayama | Optimal wavelength selection on hyperspectral data with fused LASSO for biomass estimation of tropical rain forest[END_REF] in remote sensing.

In addition, we also consider extending the cut-pursuit algorithm to the cases where the values taken by the vertices belong to a multidimensional space rather than being scalar. This extension is motivated by the success of convex relaxations of the combinatorial Potts model to solve labeling problems, as reported by [START_REF] Nieuwenhuis | A survey and comparison of discrete and continuous multi-label optimization approaches for the Potts model[END_REF].

Related Works

Large-scale problems regularized with the graph total variation are typically solved using proximal splitting algorithms; see the general review of [START_REF] Combettes | A proximal decomposition method for solving convex variational inverse problems[END_REF], and the more specific approaches of [START_REF] Couprie | Dual constrained TV-based regularization on graphs[END_REF] or ours [START_REF] Raguet | Preconditioning of a generalized forward-backward splitting and application to optimization on graphs[END_REF]. These are however firstorder methods, for which convergence is known to be slow, even though preconditioning strategies can help as argued by [START_REF] Pock | Diagonal preconditioning for first order primal-dual algorithms in convex optimization[END_REF] and us [START_REF] Raguet | Preconditioning of a generalized forward-backward splitting and application to optimization on graphs[END_REF].

The connection between graph cuts and total variation has been successfully exploited by [START_REF] Chambolle | On total variation minimization and surface evolution using parametric maximum flows[END_REF] to reformulate the graph total-variation regularization as a parametric maximum flow problem when f is a square 2 norm. [START_REF] Xin | Efficient generalized fused LASSO and its applications[END_REF] extend this to the fused LASSO regularization already mentioned, by composing the above method with the proximity operator of the 1 norm. They still have to resort to proximal splitting for dealing with more general functionals.

In another line of thought, [START_REF] Bach | Optimization with sparsity-inducing penalties[END_REF] have shown that the sparsity of the solution should be exploited computationally to solve large-scale optimization problems faster. Working-set algorithms have shown promising results for the convex setting, as demonstrated by [START_REF] Harchaoui | Conditional gradient algorithms for norm-regularized smooth convex optimization[END_REF].

These ideas are at the heart of the cut-pursuit algorithm originally proposed by [START_REF] Landrieu | Cut pursuit: Fast algorithms to learn piecewise constant functions on general weighted graphs[END_REF], which we detail in the following; we refer to their article for a more in-depth discussion on its connection with other works.

Cut-Pursuit for Differentiable Functions

The algorithmic structure of cut-pursuit is summarized in algorithm 1. We expose here the general principles behind it, recalling the situation where there is no nondifferentiable functional besides the graph total variation, reducing to problem P1 where for all v ∈ V , g v def = 0.

Thanks to the total-variation regularization, solutions are expected to be piecewise constant with respect to a partition V of V into few connected components. A key concept of the cut-pursuit algorithm is the reduced problem, which is problem P1 constrained on the space of piecewise constant vectors with respect to V; this can be formulated as minimizing over R V

F (V) : ξ -→ F U ∈V ξ U 1 U , ( P2 
)
where for all subset

U ⊆ V , 1 U ∈ R V denotes the vector such that for all v ∈ V , (1 U ) v def = 1 if v ∈ U , 0 otherwise. By factorizing finite differences, the graph total-variation term in F (V) becomes (U,U )∈E ω (U,U ) |ξ U -ξ U |
, where we note the set of adjacent components

E def = (U, U ) ∈ V 2 (U × U ) ∩ E = ∅ ,
and for all (U, U ) ∈ E, we define the total edge weight

ω (U,U ) def = (u,v)∈(U ×U )∩E w (u,v) . Since the term ξ → f U ∈V ξ U 1 U is
still differentiable, the reduced problem P2 is structured just as the original problem P1, but over the reduced graph G def = (V, E, ω), whose vertices are the components in V; it should be much easier to solve.

Algorithm 1 Principle of the cut-pursuit; D ⊂ R V is a set of directions adapted to the problem. initialize V ← {V }; repeat find ξ (V) ∈ R V , stationary point of F (V) : ξ → F U ∈V ξ U 1 U ; x ← U ∈V ξ (V) U 1 U ; find d (x) ∈ D, minimizing d → F (x, d); V ← U ∈V maximal constant connected components of d (x) u u∈U ; until F (x, d (x) ) ≥ 0; return x.
The cut-pursuit algorithm iteratively refines the partition V, initialized at {V }. At each iteration, the reduced problem corresponding to the current partition V is solved, and its solution is used in turn to refine the components of V.

The rationale of the refinement step stems from the structure of the directional derivative

F (x, d) of F at point x ∈ R V in direction d ∈ R V . Some calculus shows that F (x, d) can be expressed as F (x, d) = v∈V δ v (x)d v + (u,v)∈E (x) = w (u,v) |d u -d v | , (1)
where

δ v (x) def = ∇ v f (x) + (e,u)∈E×V e=(u,v) or (v,u)
w e sign(x v -x u ) , sign : R → {-1, 0, +1} : t → -1 if t < 0, 0 if t = 0 and +1 if t > 0, and

E (x) = def = {(u, v) ∈ E | x u = x v }
is the set of edges whose vertices share the same value. The first sum in equation 1 consists in unary terms, in which the sign of δ v (x) determines whether the value of each vertex should tend to decrease or increase. The second sum consists in binary terms, encouraging the values at neighboring vertices to evolve in unison.

The refinement step does not require finding a "steepest descent" direction, but merely refining the current partition into a new one, thus adding relevant degrees of liberty to the next reduced problem. The goal is to split the current components into groups of vertices tending to increase together or decrease together, while taking coupling terms into account. Such a split can thus be encoded as a direction in the set {-1, +1} V . We thus look for a steepest binary direction

find d (x) ∈ arg min d∈{-1,+1} V F (x, d) , (P3) 
which can be solved by finding the minimum cut in an appropriate flow graph. The refined partition V is then defined by splitting each component U of the current partition according to the constant connected components of d

(x) u u∈U .
Beyond the computational efficiency of the cut-pursuit algorithm, the main result of [START_REF] Landrieu | Cut pursuit: Fast algorithms to learn piecewise constant functions on general weighted graphs[END_REF] is the optimality certificate, which states that if x is a solution of a reduced problem P2, and that the steepest binary direction problem P3 induces no refinement of the current partition then x is a solution of the main problem P1. In consequence, the algorithm converges in a finite number of steps to such a solution. In practice, since the number of components of V increases rapidly and the final partition is expected to be coarse, only a few iterations are needed.

Contributions 1

If we assume now that F has a nondifferentiable part other than the graph total variation, the analysis above does not stand because one cannot decompose the directional derivative into unary and binary contributions as in equation 1.

In contrast to what happens with the differentiable term, where each vertex either tends to increase or decrease, it is now possible that both directions +1 and -1 are unfavorable for some vertices. Thus, if one wants to keep the principle of the cut-pursuit algorithm for the regularization of nondifferentiable functions, it seems necessary to search for descent directions within the set {-1, 0, +1} V when refining the partition.

In this paper, we provide a new theoretical framework allowing to deal with directional derivatives in possibly noncontinuous settings. Then, we show that refining partitions with descent directions within {-1, 0, +1} V is actually sufficient in order to retain the optimality certificate of cut-pursuit with separable nondifferentiable terms. It seems to us that the original proofs proposed by [START_REF] Landrieu | Cut pursuit: Fast algorithms to learn piecewise constant functions on general weighted graphs[END_REF] cannot be extended to this setting, hence we propose a completely different approach; a benefit is that it can be applied to nonconvex setting without additional requirements.

Moreover, we show that the corresponding steepest direction problem can also be solved via minimum cuts in adapted flow graphs, for which we design a new and efficient architecture. Altogether, this unlocks the use of the cut-pursuit approach on a large class of new problems, central to machine learning applications as introduced above.

Finally, considering a problem in which each vertex takes multidimensional values, unit vectors encoding a descent direction at a vertex are not restricted to the finite {-1, +1} set. There is actually an infinity of such unit vectors, and searching for a steepest unit descent direction is intractable. However, we propose some heuristics, and show numerically that by restricting the search to a small set of well-chosen directions, one can still apply the cut-pursuit approach, drastically outperforming traditional proximal schemes. 1 The proofs of all the propositions in this paper can be found in our preprint [START_REF] Raguet | Cut-pursuit algorithm for regularizing nonsmooth functionals with graph total variation[END_REF] 

Extending Cut-Pursuit

Since the cut-pursuit relies on directional derivatives, we start with some definitions allowing us to manipulate them with the necessary degree of generality.

Definition 2.1. Let Ω be a real vector space, and h :

Ω → ]-∞,+∞]. The domain of h is dom h def = {x ∈ Ω | h(x) < +∞}. Given x ∈ dom h and d ∈ Ω, we say that h admits a directional derivative at point x in direc- tion d if the quantity h (x, d) def = lim t↓0 h(x+td)-h(x) t exists in ]-∞,+∞].
Finally, we say that h is directionally differentiable if it admits a directional derivative at every point of its domain and in every direction.

Our definition of directional derivatives would be standard, if it were not for infinite values. It can be shown easily that convexity implies directional differentiability. It is of particular importance because many applications would use convex optimization algorithms for solving the reduced problem P2. However, we underline that it is not a requirement, and that the cut-pursuit algorithm can be perfectly applied on nonconvex problems, provided that solutions of the reduced problems can be found.

In the remainder of this section, we first describe our method for extending the cut-pursuit algorithm, and the rationale behind it. We then further justify this rationale by providing a convergence proof. Subsequently, we specify some practical implementation details. Finally, we give an efficient heuristic for dealing with a similar setting where the values at each vertex are multidimensional.

Steepest Ternary Direction

As stated in § 1.3, nondifferentiable terms in F prevent convenient decomposition of the directional derivatives as in equation 1. However, a similar decomposition can still be achieved by using positive homogeneity of the directional differential, although multiplicative terms δ v now depend on the sign of the corresponding direction coordinate.

Proposition 2.1. Under our assumptions, for all x ∈ dom F and for all d ∈ R V , F admits a directional derivative at x in direction d, equal to

F (x, d) = v∈V dv>0 δ + v (x)d v + v∈V dv<0 δ - v (x)d v + (u,v)∈E (x) = w (u,v) |d u -d v | , (2) 
where for all v ∈ V , we define

δ + v (x) def = ∇ v f (x) + g v (x v , +1) + (e,u)∈E×V e=(u,v) or (v,u) w e sign(x v -x u ), and δ - v (x) def = ∇ v f (x) -g v (x v , -1) + (e,u)∈E×V e=(u,v) or (v,u) w e sign(x v -x u ).
In contrast to the differentiable case, it is now possible that for some vertices, neither increasing +1 nor decreasing -1 direction is favorable, when looking for convenient descent directions. In this case, such vertices are inclined not to change their value, that is to say the null direction 0 should be favored; this leads to the steepest ternary direction problem

find d (x) ∈ arg min d∈{-1,0,+1} V F (x, d) , ( P4 
)
where for all x ∈ dom F and

d ∈ {-1, 0, +1} V , F (x, d) = v∈V dv=+1 δ + v (x) - v∈V dv=-1 δ - v (x) + (u,v)∈E (x) = w (u,v) |d u -d v | .
Remark that since F (x, 0) = 0, any solution d (x) of problem P4 must satisfy F (x, d (x) ) ≤ 0. Similarly to its binary counterpart, the steepest ternary direction corresponds to a minimum cut in a suitable flow graph, represented in figure 1, which we note G

(x) flow = V flow , E (x) 
flow , c (x) . The vertex set is V flow = (V × {1, 2}) ∪ {s, t}, s and t being respectively the specific source and sink vertices; we also use the convenient notation v (k) for (v, k) ∈ V × {1, 2}. The edge set is defined by

E (x) flow def = v∈V s, v (1) , v (1) , v (2) , v (2) , t ∪ (u,v)∈E (x) = k∈{1,2} u (k) , v (k) , v (k) , u (k) .
In accordance with figure 1, the edges defined in the left term are called vertical, while the edges defined in the right term are called horizontal.

The associated capacities c

(x) ∈ R |E (x) flow | + are defined, for the horizontal edges, for all (u, v) ∈ E (x) = and k ∈ {1, 2}, by c (x) (u (k) ,v (k) ) def = c (x) (v (k) ,u (k) ) def = w (u,v) ; and for the verti- cal edges, for all v ∈ V , by c (x) (s,v (1) ) def = -δ - v (x) + m v , c (x) (v (1) ,v (2) ) def = m v , and c (x) (v (2) ,t) def = δ + v (x) + m v , where m v def = max(0, δ - v (x), -δ + v (x)), δ - v (x) and δ + v (x)
being defined in proposition 2.1; note that our definition of directional derivatives implies that δ - v (x) < +∞ and -δ + v (x) < +∞. The definition of m v ensures that all capacities are nonnegative, although potentially infinite. An additional benefit is that for each v ∈ V , at least one of c for the steepest ternary direction problem P4. In this case,

(x) (s,v (1) ) , c (x) (v (1) ,v (2) ) and c (x) (v (2) ,t) is zero, allowing for faster computation of the s t u (1) v (1) w (1) u (2) v (2) w (2) w (u,v) w (v,u) -δ - u (x) + m u δ + u (x) + m u m u
x u = x v = x w .
minimum cut via an augmenting path algorithm, such as the one of [START_REF] Boykov | An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[END_REF].

It can also be noted that this flow graph is similar to the multistage structure proposed by [START_REF] Ishikawa | Exact optimization for Markov random fields with convex priors[END_REF], with one fewer stage and no infinite so-called constraint edges; this is once again favorable to augmenting path algorithms.

Proposition 2.2. Problem P4 can be solved by finding a minimum cut in the graph G (x) flow .

Convergence Proof

We now turn to the convergence of algorithm 1 towards a stationary point of F . In our context, a strictly negative directional derivative is called a strict descent direction, and a point x ∈ dom F is called stationary if it admits no strict descent direction.

The convergence proof relies on the same kind of optimality certificate than the one used in the original cut-pursuit paper by [START_REF] Landrieu | Cut pursuit: Fast algorithms to learn piecewise constant functions on general weighted graphs[END_REF], for regularization of differentiable functionals. Indeed, the steepest ternary direction at a point x not only indicates a refinement of the partition V, it also allows us to determine the optimality of x as a solution of the main problem P1, even though it is not a steepest descent direction in general.

Proposition 2.3. Let x ∈ dom F . If F admits a strict descent direction at point x, then it admits a strict descent direction in the set {-1, 0, +1} V .

In order to use the above results for proving the termination and correctness of algorithm 1, one should ensure that a stationary point of each reduced problem exists and can be found. In particular, note that when initializing the algorithm with V set = {V } as suggested, the mere existence of feasible points for the first reduced problem requires that ∩ v∈V dom g v = ∅. Of course, it is still possible to initialize with a finer partition if necessary, but these considerations are all problem-dependent. For the scope of the present article, we thus assume the necessary existence properties.

Corollary 2.1. Under our assumptions, algorithm 1 with D set = {-1, 0, +1} V finds a stationary point of the main problem P1.

Implementation Considerations

As with the regularization of differentiable functionals, the reduced problem P2 presents the same structure as the main problem P1 in the presence of a separable nondifferentiable part; indeed, it decomposes as

ξ → U ∈V v∈U g v (ξ U ) = U ∈V γ U (ξ U )
, where each γ U : R → ]-∞,+∞]. Thus, any algorithm solving the reduced problems can also solve the main problem. Nevertheless, it often happens that the former run much faster and give more precise results than the latter, and the cut-pursuit can leverage this. When solutions with large constant connected components exist, performance is improved by orders of magnitude, as we show numerically in § 3. Interestingly, we observe on these problems that both crucial steps, namely solving the reduced problem and refining the partition, take a significant share of the total computational load. We give here practical implementation considerations, important for robustness and efficiency.

DISCONTINUITIES A N D SOLUTIONS O F REDUCED PROBLEMS

The cut-pursuit algorithm relies on directional derivatives of nondifferentiable functions, thus problems of discontinuity are to be expected. For once, the definition of the steepest ternary problem P4 at a point x depends on the set of edges whose vertices share exactly the same value,

E (x) = def = {(u, v) ∈ E | x u = x v };
the absolute differences over all other edges are treated as differentiable terms at x, however small the difference is. Likewise, the computation of δ + (x) and δ -(x) requires identifying which coordinates x v lie at points of nondifferentiability of the corresponding g v . This is an important limitation, since in most applications, solutions of reduced problems are computed with iterative algorithms which are only asymptotically convergent; they are only approximate solutions, within a certain tolerance error. Such solutions sometimes even lie slightly outside the domain of the objective functionals, making things even worse. These facts cannot be ignored because nondifferentiability points are usually points of interest for the problem at hand; actually the very reason why nondifferentiable terms are considered in the first place. Consequently, we recommend setting up a threshold distance in coherence with the tolerance error specified for reduced problems. Coordinates which fall within this threshold of a nondifferentiability point are treated as if they were exactly at this point. When doing so, it is also profitable to merge together neighboring components in V which are assigned close values, because the lower the cardinal of V, the smaller the reduced graph G and the faster the solutions of the reduced problems.

Observe that calling on such approximations, optimality considerations of § 2.2 are not strictly valid anymore; in particular, neighboring components can be alternatively merged after the reduced problem and split again after the steepest direction problem, ad infinitum. Thus, we also advocate terminating the algorithm when the iterate evolution is below a certain threshold, once again in coherence with the tolerance on the reduced problems.

Another numerical difficulty which is worth mentioning is that components of V can be very different in size, leading to bad conditioning of the reduced problem because large components have much more importance than small ones, preventing accurate estimation of the latter. A method that allows dealing with bad conditioning is thus required for solving the reduced problem.

In our numerical experiments, we use the preconditioning of the forward-Douglas-Rachford splitting algorithm illustrated by one of the authors [START_REF] Raguet | A note on the forward-Douglas-Rachford splitting for monotone inclusion and convex optimization[END_REF], showing favorable behavior with respect to the above considerations on the problems that we consider.

MAXIMUM FLOW

Although different strategies have been developed for finding maximum flows in graphs, we only considered the augmenting path strategy of [START_REF] Boykov | An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision[END_REF], which seems well adapted to the structure of the flow graph G (x) flow described in § 2.1 and figure 1. Let us underline that the horizontal structure of the flow graph is determined by the original graph G and the components in the current partition V; in particular, there is no horizontal edge between two different components of the partition, and a path from the source to the sink always goes through a unique component. This provides a natural way of parallelizing the computation of the maximum flow along the components. Moreover, the refinement of the partition which we propose is essentially hierarchical, each component being split into several parts, which also suggests a parallelization of the search for maximal connected components and might ease the memory structure. We have not implemented such parallelization so far, and leave it for future works.

In addition, the steepest ternary direction problem P4 can be solved by an alternative minimum cut strategy. For d ∈ R V , define respectively the coordinate-wise minimum and maximum min(d, 0), max(d, 0) ∈ R V , by for all v ∈ V , min(d, 0)

v def = min(d v , 0) and max(d, 0) v def = max(d v , 0).
Then, it can be shown from proposition 2.1 that for all x ∈ dom F , F (x, d) = F (x, min(d, 0)) + F (x, max(d, 0)), so that d → F (x, d) is minimized over {-1, 0, +1} V by the sum of a minimizer over {-1, 0} V and of a minimizer over {0, +1} V . Each of the latter minima can be found by a minimum cut in an adapted flow graph like the one of figure 1, but with only one stage. This can be used to reduce memory requirements; alternatively, if memory is not a concern, the two minimizations could be performed in parallel. On our experiments below, we implemented this serially, with substantial gain in terms of memory and no loss in terms of running time.

Extension to Multidimensional Values

The very idea of the cut-pursuit algorithm 1 can be summarized as follows: solving a reduced problem on a partition of V , finding a steepest descent direction within a set D, and refining the partition accordingly. In theory, this strategy could be applied in any setting; however, if the nondifferentiable part of F besides the graph total variation is not a separable sum of unidimensional functionals, two difficulties arise. First, the set of descent directions D necessary for obtaining an optimality certificate as in § 2.2 might be infinite. Second, even if D is finite, the problem of finding the steepest descent direction might not be tractable.

Nevertheless, one can think of situations where these problems can be heuristically addressed. A typical one is when the nonsmooth functionals are not sums of unidimensional functionals, but are still separable over the graph G, in the sense that there is no edge between the coordinates over which each one is defined. This situation is better modeled by saying that the values at the vertices are multidimensional, say in R K where K is a finite set. The absolute value in the graph total variation can be replaced by any norm over R K , and the resulting objective functional is then defined, for all x ∈ R V ×K , as

F (x) def = f (x) + v∈V g v (x v ) + (u,v)∈E w (u,v) x u -x v , where now for all v ∈ V , x v def = x (v,k) k∈K ∈ R K and g v : R K → ]-∞,+∞].
Compared to the setting of § 2.1, positive homogeneity of directional derivatives of the g v still holds but unit descent directions cannot be summarized by ascending, +1, or descending, -1: as soon as |K| ≥ 2, there is an infinity of unit vectors. However, for a given vertex, only a handful of descent directions in R K might seem relevant for the problem. Our first heuristic is to restrict the set of considered directions by choosing them greedily for each vertex. For example, if for each vertex v only one direction dv ∈ R K is considered, the set of directions is the Cartesian product D set = × v∈V {0, dv } ⊂ R V ×K , and the corresponding steep- est descent direction problem is binary. It is easy to show that for all x ∈ dom F and d ∈ D,

F (x, d) = v∈V dv= dv δ(x, dv ) + (u,v)∈E (x) = w (u,v) d u -d v ,
where the δ(x, dv ) does not depend on d; so the problem can again be solved by finding a minimum cut in a (single stage) flow graph according to theorem 4.1 of [START_REF] Kolmogorov | What energy functions can be minimized via graph cuts[END_REF], where condition (7) reduces to the triangle inequality for the norm defining the total variation.

It must be underlined here that the set D above might be different at each iteration, depending on the current iterate x. Moreover, one can consider richer sets of direction per vertex, D set = × v∈V D v , where each D v is a finite subset of R K . Now, the steepest descent direction problem is a multilabel one, and in general cannot be easily solved. Fortunately, greedy strategies such as α-expansion or α-β swap, as described for instance by [START_REF] Boykov | Fast approximate energy minimization via graph cuts[END_REF], can provide satisfactory approximate solutions by solving a succession of a few binary problems like the above.

We say that these approaches are heuristics because in the general case no optimality can be provided, neither for the original optimization problem, nor for the steepest descent problem when more than two descent directions are considered per vertex. Nonetheless, we show below, on a simplexconstrained labeling problem, that they can be efficient.

Numerical Experiments

One of the authors [START_REF] Raguet | A note on the forward-Douglas-Rachford splitting for monotone inclusion and convex optimization[END_REF] illustrates his preconditioning of the forward-Douglas-Rachford splitting algorithm (PFDR) on medium-and large-scale problems arising respectively from signal processing and machine learning tasks, on which it compares favorably with state-of-the-art proximal splitting methods. We show the considerable improvement offered by the cut-pursuit (CP) approach on the exact same optimization problems, using PFDR for solving the reduced problems. In the comparisons, we also include the preconditioned primal-dual splitting algorithm of Pock & Chambolle (2011, PPD) because of its popularity; note that it is closely related to the alternating direction method of multipliers, often coined ADMM.

The experimental setting is extensively described by Raguet (2018, § 4), and we refer the reader to this note for details. The source code for CP and PFDR is available at one of the author's GitHub repository. 2 In the following, if C is a convex closed set of a vector space Ω, we note the convex indicator functional ι C : Ω → ]-∞,+∞] : x → 0 if x ∈ C, +∞ otherwise.

Inverse Problem in Electroencephalography

Electroencephalography records brain activity via electrodes put at the surface of a subject's head. The relationship between activation of the brain regions and the electrodes' recording can be modeled by a linear operator called leadfield operator. The brain regions are modeled as vertices of a tridimensional mesh, G set = (V, E), and a brain activation map is thus a vector of R V . Yet, the number of electrodes being much smaller (here, N set = 91) than the resolution of the desired brain image (here, |V | set = 19 626), the problem of retrieving brain activation map from the electrodes' recording is ill-posed. Moreover, the latter usually suffers from acquisition noise.

Fortunately, following [START_REF] Becker | Fast, variation-based methods for the analysis of extended brain sources[END_REF], a reasonable assumption is that at a given time, only scarce regions of the brain are really activated, and that spatially neighboring regions are often similarly activated. In addition, we use a recording time point where the entire signal is known to be nonnegative. All this prior knowledge can be enforced by modeling the brain source as a minimizer over R V of

F : x → 1 2 y -Φx 2 + v∈V λ v |x v | + ι R+ (x v ) + (u,v)∈E w (u,v) |x u -x v | ,
where y ∈ R N is the observation over N electrodes and Φ : R V → R N is the lead-field operator. The first term is a square Euclidean norm ensuring coherence with the observation; it is differentiable. The second term is comprised of both a weighted 1 -norm and a convex indicator, enforcing respectively sparsity and positivity; it is nondifferentiable but separable over G. The third term is the graph total variation enforcing spatial similarity.

Altogether, this is of the form of problem P1, and the cutpursuit algorithm can be easily applied following § § 2.1 and 2.3. Once again, we refer the reader to the note of Raguet (2018, § 4) for details on the competing algorithms.

Following his methodology, we prescribe stopping criteria as minimum relative evolution of the iterates, decreasing from 10 -4 to 10 -6 ; for the reduced problems in CP, the stopping criterion is set to one thousandth of this value. We also consider longer runs of the algorithms with a stopping criterion of 10 -8 for CP and stopped after 10 5 iterations for PPD and PFDR.

In this experiment, and for all stopping criteria considered, CP terminates after 11 iterations, with only 20 maximal constant connected components. In such a favorable case, it outperforms the two other algorithms by several orders of magnitude, as illustrated on figure 2, where the optimal F ∞ is approximated with CP with stopping criterion 10 -8 . For more in-depth comparison, we also report the computing timesin table 1. Moreover, as the data are synthetic, the original brain activity is known, and we can assess the relevance of the model for brain source identification by computing the Dice score between the supports of the retrieved activity and of the ground truth. We also report an approximate Dice score, DS a , where small absolute values of the solutions are discarded with a simple 2-means algorithm. We consider the task of assigning a semantic label (car, vegetation, road, etc...) to each point of a 3D point cloud acquired with a LiDAR. This is usually performed with a supervised classifier such as a random forest, whose features can be derived from the local neighborhood of the points, or from the global structure of the scene; see for instance the works of [START_REF] Weinmann | Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers[END_REF] and [START_REF] Guinard | Weakly supervised segmentation-aided classification of urban scenes from 3D LiDAR point clouds[END_REF].

F -F ∞ F ∞ - - CP PFDR PPD t (s)
If V denotes the set of points and K the set of labels, the random forest classifier provides a probabilistic classifica-tion q ∈ R V ×K , where for each

v ∈ V , q v def = (q (v,k) ) k∈K belongs to the simplex K def = {p ∈ R K | k∈K p k = 1 and ∀ k ∈ K, p k ≥ 0}.
Although it generally gives good results, it lacks the spatial regularity which can be expected from LiDAR acquisitions; following Landrieu et al. (2017), this can be improved by encoding an adjacency structure on a graph G set = (V, E), and minimizing over R V ×K the functional

F : p → v∈V KL(βu + (1 -β)q v , βu + (1 -β)p v ) + v∈V ι K (p v ) + (u,v)∈E w (u,v) p u -p v 1 ,
where for all r, s ∈ K , KL(r, s)

def = k∈K r k log(r k /s k ) is the Kullback-Leibler divergence, u def = (1/|K|) k∈K ∈
K is the uniform discrete distribution, and β ∈ ]0, 1[ is a small smoothing parameter. The first term favors similarity with the original predictions; it is differentiable. The second term ensures that each labeling is a discrete probability distribution; it is nondifferentiable but separable over G. The third term is the graph total variation enforcing spatial similarity, where we use the 1 norm, well adapted to simplex-constrained values.

Altogether, this satisfies the multidimensional setting described in § 2.4. To construct the set of candidate descent directions, consider an iterate p ∈ K V and a direction d ∈ R Stopping criteria are again taken from the experiments of [START_REF] Raguet | A note on the forward-Douglas-Rachford splitting for monotone inclusion and convex optimization[END_REF], and an estimate of the optimal value F ∞ is computed with a longer run. Figure 3 represents the evolution of the objective functional values over time. The results are less impressive than in the previous experiment, but once again, CP reaches lower objective values an order of magnitude faster than PFDR; after only 4 iterations, with a total of 863 maximal constant connected components.

V ×K . Note that that for all v ∈ V , ι K (p v , d v ) = +∞ if k∈K d (v,k) = 0,
Let us underline that in this setting, the majority of the computational time is devoted to graph cuts. Indeed, starting at the direction d = 0, an entire α-expansion cycle requires five successive graph cuts, over the huge original graph. There is thus room for significant improvements by parallelizing the cuts as explained along § 2.3.2, or by exploring better strategies for searching descent directions. 

Conclusion and Perspectives

This paper provides a theoretical and practical framework for harnessing the speed of efficient graph-cut algorithms for a large class of graph-structured problems involving nondifferentiable terms alongside the total variation. We believe that our algorithm overcomes three important limitations. First, solving total-variation regularized problems in high dimension is known to be difficult. Computational limitations might have led some works to use unconverged solutions, providing unsatisfying or inconsistent results. Cut-pursuit addresses this problem through its considerable acceleration, at least when the number of final constant connected components is reasonable. Second, even when satisfying solutions can be found, practical applications often require lengthy exploration of regularization parameters at a prohibitive computational cost. Cut-pursuit can benefit from warm-restart of the partition, for scanning from high to low regularization strength, as already pointed out by Landrieu et al. (2017, § 2.6). Third, convexity of the total-variation, while being convenient for optimization considerations, makes it sometimes not restrictive enough as a regularizer, admitting several solutions with many level sets. In some cases it is preferable to obtain spatially homogeneous solutions with only few level sets, which are in general better enforced with nonconvex regularizations. On the basis of its very principle and of our first numerical experiments, we argue that the cut-pursuit scheme favors the solutions with the fewest constant connected components, mitigating this third concern.

Altogether, it seems that many applications of the totalvariation would benefit from our approach, which might spark a renewed interest of this regularization in the future.
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 1 Figure 1: Schematic representation of the flow graph G (x) flow
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 2 Figure 2: Optimization for brain source identification in electroencephalography.

  or if there exists k ∈ K such that, either p (v,k) = 0 and d (v,k) < 0, or p (v,k) = 1 and d (v,k) > 0. Consequently, for each v ∈ V , we propose to define k v ∈ arg max k∈K {p (v,k) } a label with maximum probability, and setD v set = {0}∪ 1 {k} -1 {kv} ∈ R K k ∈ K \ {k v } .The steepest descent direction is then a combinatorial problem with |K| labels which we approximately solve with a single α-expansion cycle.The graph contains |V | = 3 000 111 vertices and |E| = 17 206 938, and the task comprises |K| = 6 classes.
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 3 Figure 3: Optimization for labeling of 3D point cloud.
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