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Abstract

An extended, ready-to-implement 3D model for quasi-industrial problems of contact with friction and

recoverable interface adhesion between soft material is formulated using the Raous-Cangémi-Cocou

(RCC) interface model and a bi-potential based resolution method. According to the RCC description,

the recoverable adhesive interface behaviour derives from a free surface energy and a surface dissipation

pseudo-potential. The obtained interface law describes both the de-bonding process of adhesive links

due to tangential and normal interface deformation, and reversely, the bonding process that takes place

when two surfaces approach close enough. We then propose an associated formulation coupling 3D

extended interface law and Blatz-Ko hyperelastic material, that enables modelling large deformations

of foam type soft matters under conditions of contact and friction with recoverable adhesion. In the

end, the subsequent local contact nonlinear equations are solved using a Newton-like algorithm within

the bi-potential framework. Numerical examples are performed to demonstrate the capacity of the

proposed approach.

Keywords: Dynamic contact; Adhesion; RCC model; Bi-potential method; Time-integration;

Hyperelastic materials

1 Introduction

Dynamic frictional contact involving soft matters and recoverable interface adhesion represents a fre-

quent phenomenon of contact. Widely observed in nature, with examples on both the macroscopic scale

such as biological sticky pads of lizards and insects [1, 2], and the microscopic scale such as cell to cell

contact [3, 4], recoverable adhesive contact has attracted significant attention in research, and inspired

a variety of bio-mimetic applications [5–8].

In the area of numerical modelling, despite the efforts exerted over the last decade to develop adhe-

sive contact algorithms [9–11], modelling realistic 3D problems of contact and friction with recoverable

adhesion involving both bonding and de-bonding between soft matters, is still a challenging topic [12,13].
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Generally, describing such conditions of contact and friction requires developing appropriate 3D inter-

face laws that reflect behaviours of the adhesive interface, and robust resolution algorithms that can

tackle computational difficulties inherent to the contact non-linearity.

First, concerning the adhesive interface law, a number of models have been developed over the

past decades. The most prominent ones include Johnson-Kendall-Roberts (JKR) [14], Maugis-Dugdale

(MD) [15], and Greenwood and Johnson models [16]. These models, proposed as early as the 1970s

and considered as reference in the area ever since, provided the theoretical basis for the contact and

friction modelling of adhesive interfaces. Although these early models are limited to simple, normal-load

scenarios, they inspired numerous subsequent researches that offer an extension to mixed-load schemes

involving normal and tangential loads. We also note a few recent achievements based on finite element

continuum contact models that incorporate mixed mode constitutive interface laws [13, 17, 18], all of

which can describe the reaction of adhesive interfaces under complex load involving tension and shear.

In this work, in order to simulate complex interface behaviours with reversible adhesion, we adopt

the Raous-Cangémi-Cocou (RCC) model [19–22], which over the years has confirmed its robustness in

dealing with adhesive frictional contact. The RCC model incorporates a complete set of interface law

involving friction and reversible adhesion. It describes the strength of interface adhesion by prescribing

an intensity parameter β [23]. Varying between 0 and 1, β characterizes the damage level of the

interface adhesive bonds (0 refers to the state of complete de-bonding, 1 refers to complete bonding),

and subsequently describes the reversible de-bonding and bonding process as function of the geometrical

configuration of the contact interface [12, 24]. From a thermodynamic point of view, β derives from

a free surface energy and a surface dissipation pseudo-potential. In this regard, the RCC interface

model can be considered as a particular case of the unified adhesion interface model given in [25], which

is similar to the Generalized Standard Material (GSM) [26] for material modelling. Here, based on

3D extension to the RCC model, a complete contact and friction law is formulated which leads to an

extended Signorini condition and modified Coulomb friction rules.

The second aspect that requires attention is the severe non-linearities inherent to contact dynamics.

In addition, the non-smooth and multivalued nature of the adhesive interface law gives rise to further

computational difficulty. It is therefore necessary to apply robust, and stable algorithms to ensure

iteration convergence, solution accuracy with balanced efficiency. General computational methods for

numerical treatment of contact constraints include the penalty method [27], Lagrangian multiplier

method [28] and augmented Lagrangian method [29,30]. In the current work, we propose to use the bi-

potential theory which was developed based on the augmented Lagrangian method, and in the first place,

to solve contact problems in the context of what is called implicit standard materials (ISM) [31, 32].

Compared to the traditional approach, the bi-potential method couples the two variational inequalities

of the unilateral contact and friction law into one single displacement based variational principle with

one unique inequality. Introduced in the 1990s, the approach has been recently extended to problems

involving hyperelatic or elastic-to-plastic contact [33–35] with interface wear [36, 37]. In the area of

adhesive contact modelling, the bi-potential theory has been recently applied to solve 2D interface

adhesion between elastic materials [38]. Here, we extend its application to the context of 3D adhesive

contact involving Blatz-Ko hyperelastic material [39] under the condition of large deformation.

By extending the RCC interface model, we aim to propose a ready-to-implement 3D formulation

for solving quasi-industrial problems of adhesive contact with friction and recoverable interface be-

tween soft materials. The remaining content of the article is organized as follows: in Section 2, after

a brief description of the contact kinematics, we present the complete framework of the adhesive con-

tact law, which includes extended formulations of Signorini contact law and Coulomb friction rules.

Then we present its implementation within the bipotential framework, and provide the formulation of

the hyperelastic material used in this work. In Section 3, the complete finite element formulation of
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the problem, including the resolution algorithm, is provided. To validate the framework, we present

numerical examples in Section 4. In the end, a few concluding remarks are drawn in Section 5.

2 Problem setting

2.1 Contact kinematics

We describe in this section the geometric definitions and notations related to the contact kinematics.

Let’s consider two deformable bodies B1 and B2 coming into contact with Nc contact points. Each

body is discretized with finite elements with nodal positions represented by X1 (for B1) and X2 (for

B2) defined in the global coordinate system. Contact points belonging to B1 are denoted by Pα1
(α = 1, 2, ...Nc), and accordingly Pα2 . Positions of Pα1 and Pα2 can be written using an interpolation

matrix B1 (accordingly B2) as:

X(Pα1 ) = B1X1, X(Pα2 ) = B2X2. (1)

We consider on each Pα1 a local orthogonal coordinate system, formed by T1, T2 and N, representing

respectively the tangential, and normal direction vectors defined with respect to the global coordinates.

Therefore, Pα1 can be seen as the projection point of Pα2 on B1. We can build the relative position

between Pα1 and Pα2 by

Xα = X(Pα2 )−X(Pα1 ), (2)

with X(Pα1 ) and X(Pα2 ) the position vectors of Pα1 and Pα2 in the global coordinates. We can then

introduce xα, the local relative position vector of the contact point α, by projecting Xα in the system

(T1,T2,N):

xα =


xαt1 = TT

1 Xα

xαt2 = TT
2 Xα

xαn = NTXα

 . (3)

We can thus express the local position vector xα as function of the global vector X:

B1

B2

P1

P2

g N

T1

T2

Figure 1: Contact kinematics

xα = HαXα, (4)

where Hα is the transition matrix obtained by combining Eqs.(1,2,3). Similar relations can be deter-

mined with respect to contact forces. The local gap vector between two contact points can be derived
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from the incremental form of Eq.(4):

xαi+1 = Hα∆Xα
i + gα, (5)

with gα = (0, 0, gα)T , the initial gap vector.

Then, let’s denote the local and global contact force vectors with respectively rα and Rα. By

writing the virtual work

(rα)T δxα = (Rα)T δXα, (6)

we obtain the relation between contact force vectors expressed in local and global coordinate systems:

Rα = HT
αrα. (7)

Here, due to the presence of adhesion on the contact interface, contact reaction rα is composed of the

cumulative effects due to both dry contact and the interface adhesion, hence

rα = r̄α + r̃α, (8)

in which we use r̄ to denote dry contact reactions, and r̃ contact forces due to interface adhesion. Note

that the above relation can be projected to the local coordinate system according to the normal and

tangential directions: {
rαn = r̄αn + r̃αn
rαt = r̄αt + r̃αt

. (9)

We now assemble all the Nc contact points based on Eqs.(4,5,7), we obtain the following geometric

and kinematic relations: {
x = H∆X + g

R = HT r
, (10)

with

H =


H1

...

HNc

 , x =


x1

...

xNc

 , r =


r̄1 + r̃1

...

r̄Nc + r̃Nc

 , g =


g1

...

gNc

 . (11)

2.2 RCC model for recoverable adhesion

We use in this work the RCC model to describe the effect of recoverable adhesion between contact

surfaces introduced by Raous et al. [22], this model accounts for unilateral contact, friction and adhesion,

based on an energy description of the contact interface, involving a free surface energy Ψ written as:

Ψ(xt, xn, β) =
Cn
2
x2
nβ

2 +
Ct
2
‖xt‖2β2 − wβ +

⋃
<+

(xn) +
⋃
Q

(β) , (12)

and a pseudo-potential of the surface dissipation Φ:

Φ(ẋt, xn, β̇) = µ|rn − Cnxnβ2|‖ẋt‖+
b

2
|β̇|2 . (13)

In these expressions, β is a scalar parameter measuring the intensity of adhesion [23], with β ∈ [0, 1].

Specifically, β = 0 represents no adhesion, β = 1 indicates perfect adhesion. Therefore, any β ∈ (0, 1)

refers to partial adhesion between contact surfaces. Other parameters in Eqs.(12,13) include: Ct and

Cn: parameters characterizing the initial adhesive stiffness when adhesion is complete, w: decohesion

4



energy threshold,
⋃

: indicator function that assures unilateral contact (xn > 0), and meaningful values

of the degree of adhesion. The subscript Q indicates Q = {η | 0 6 η 6 1}, µ: friction coefficient, b:

surface viscosity.

Deriving the surface free energy Eq.(12), we obtain the expression of the normal force of adhesion:

radn = Cnxnβ
2 , (14)

and the tangential force of adhesion:

radt = Ctxtβ
2 . (15)

Both adhesion forces are dependent on the degree of adhesion β. Then deriving energy functions Eq.(12)

and Eq.(13) with respect to β and β̇ yields the incremental expression of β which gives its evolution in

time: 
bβ̇ ≥ 0 with β = 0

bβ̇ = w − (Cnx
2
n + Ct‖xt‖2)β with 0 < β < 1

bβ̇ ≤ w − (Cnx
2
n + Ct‖xt‖2) with β = 1 .

(16)

In Eq.(16), we can see that two components may impact the variation of β: the decohesion energy

w and the elastic energy of the interface. When interface elastic energy prevails, β̇ becomes negative,

leading to decreasing β. Otherwise, β̇ is positive, then β increases. We can view this adhesive model as

a special spring system whose elasticity incorporates damage and self-recoverable behaviours. In this

regard, the value of β can be seen as the degree of damage of the spring, whose stiffness is adjustable

based on β. Therefore, the decrease of the degree of adhesion β corresponds to the process of spring

damage and breaking. Inversely, it can be seen as a recovering process of the spring stiffness.

2.3 Adhesive contact law and friction rule

2.3.1 Modified Signorini law with adhesion

We recall the unilateral contact law, also called Signorini law, which for classical dry contact is charac-

terized by conditions of non-penetration and non adhesion. By using r̄αn to denote local normal contact

force on the point α due to dry contact, and the contact distance xn, we have{
xαn = ∆xαn + g = 0, r̄αn > 0

xαn = ∆xαn + g > 0, r̄αn = 0
⇒ xαn r̄

α
n = 0 . (17)

The first relation eliminates geometric penetration between contact surfaces. The second inequality

indicates the absence of adhesion forces between dry contact surfaces once they are separated. For

adhesive contact, since contact forces result from both the effects of dry contact and adhesion, the

classical conditions of unilateral contact should be modified by considering Eq.(8), hence{
xαn = 0, rαn − r̃αn > 0

xαn > 0, rαn = r̃αn
⇒ xαn(rαn − r̃αn) = 0 . (18)

Here, adhesive forces r̃αn are zeros with surfaces in contact. They will appear when contact surfaces

start to separate (the second relation), and r̃αn will tend to maintain the contact surfaces together. By

considering Eq.(14), a modified Signorini condition with account for adhesion writes{
xαn = 0, rαn − Cnxαnβ2 > 0

xαn > 0, rαn = Cnx
α
nβ

2
⇒ xαn(rαn − Cnxαnβ2) = 0 . (19)
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The obtained unilateral contact law that incorporates the effect of interface adhesion (Eq.(19)) can

be graphically represented by Figure 2.

xn

r n

xlim

D
am

age evolution

β = 1 1 > β > ε

 

separationLi
ne

ar
 e

la
st

ic

ε > β 

Figure 2: Modified Signorini law with adhesion: graphic representation of normal
adhesion forces and the level of damage that evolves with contact distance. An empirical
limit of β, denoted by ε, is adopted. With β < ε (ε = 10−4), adhesion bonds are considered
broken.

By assuming perfect adhesion (β = 1) at xn = 0, the state of interface adhesion that evolves with

xn can be distinguished by three major phases:

(i) Fully bonded adhesion: Adhesion bonds remain undamaged (β = 1). In this phase, elastic

energy due to xn does not exceed the decohesion threshold w. Hence, linear behaviour dominates

the adhesion force vs. displacement curve (light green area in Figure 2).

(ii) Adhesion with damage: This phase is highlighted by the light cyan area in Figure 2. In

this phase, β decreases as the decohesion energy w is overpassed. Damage starts to accumulate

on adhesion bonds. Adhesion force r̃αn = Cnx
α
nβ

2 continues to increase briefly with xn, before

it decreases under the effect of the decreasing quadratic term β2, that represents the effect of

damage to the interface adhesion.

(iii) Separation: Contact surfaces are separated due to broken adhesion bonds. β significantly

decreases during the process. According to Eq.(16), the decreasing β only tends towards zero

without exactly reaching zero. It is therefore convenient to consider a limit of β, that we denote

by ε, below which the adhesion bonds can be considered as completely broken. In practice, we

adopt an empirical ε = 10−4 which is associated with adhesion forces on the 10−9 magnitude

according to our tests (An example is provided in supplementary information).

2.3.2 Modified Coulomb friction rule with adhesion

Classically, friction problems are studied using the Coulomb friction model which is characterized by a

set of rate-independent slip rules. It describes tangential contact forces as a function of normal forces

in the context of dry friction:{
‖r̄αt ‖ 6 µr̄αn ∀ ‖xαt ‖ = 0 (sticking)

r̄αt = −µr̄αn
xαt
‖xαt ‖

∀ ‖xαt ‖ 6= 0 (sliding) .
(20)
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Taking adhesion into consideration, both tangential and normal contact forces are supplemented by

contributions due to interface adhesion as shown in Eq.(8), the above rules become{
‖rαt ‖ 6 µrαn ∀ ‖xαt ‖ = 0 (sticking)

rαt = −µ(rαn − r̃αn)
xαt
‖xαt ‖

+ r̃αt ∀ ‖xαt ‖ 6= 0 (sliding) ,
(21)

in which r̃αt , the adhesive tangential force on contact point α can be calculated by considering Eq.(15):

r̃αt = −Ctxαt β2 , (22)

and in the normal direction, contact forces are{
rαn − r̃αn = r̄αn ∀ xαn = 0 (unseparated)

rαn − r̃αn = 0 ∀ xαn > 0 (separated) .
(23)

Taking interface adhesion into consideration, tangential friction is made from two contributions. The

first follows the classical Coulomb rule and disappears once contact surfaces are separated. The second,

r̃αt , the adhesive tangential force appears when slip occurs, and maintains even with the surface starting

to separate.

The obtained rule of tangential contact with interface adhesion (Eqs.(21,22)) can be graphically

interpreted by Figure 3. By assuming perfect adhesion (β = 1) at xt = 0, the state of interface

xt

xlim

xti

Ctxtiβ2

-Ctxtiβ2

rt1

Complete separation

Denbonding process

β = 1

1 > β > ε

ε > β 

Fully bonded adhesion

rt2

rt1

rt2
rt

Figure 3: Modified Coulomb rule with adhesion: evolution of tangential adhesive forces
and the level of damage vs. slip

adhesion that evolves with xt can be distinguished, similar to the normal scenario described in the

previous section, by three major phases: (i) fully bonded adhesion, (ii) adhesion with damage, and

(iii) separation. Here, since both the slip vector xαt and the tangential adhesion force vector r̃αt lie

in the local plane (T1,T2), their projection in the local system gives rise to expressions of tangential

displacement and forces according to axis T1 and T2. In the case of isotropic tangential behaviour, the

adhesion stiffness can be described by a unique parameter Ct. Therefore, vectors of tangential forces

lie on a circle of radius Ctxtβ
2. For any given slip value xt, one distinct circle can be drawn, which

graphically leads to a conic representation of the adhesion force by swiping xt from 0 to +∞ as shown

in Figure 3.

2.3.3 Complete contact law with adhesion

By combining the modified Signorini law and Coulomb rule, we obtain the complete contact law with

the account for interface adhesion as follows:
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Separation : xαn > 0, rα = r̃α

Sticking : xαn = 0 and ‖xαt ‖ = 0, rα = r̄α

Sliding : xαn = 0 and ‖xαt ‖ > 0, rαn = r̄αn
rαt = −µr̄αn

xαt
‖xαt ‖

− Ctxαt β2 ,

(24)

in which r̄αn refers to the normal contact force on point α when surfaces are in contact. In the Sticking

situation, since no relative motion occurs, adhesive forces are absent, contact force vector r̄α lies in the

classical Coulomb cone Kµ, defined by

Kµ = {r̄α ∈ R3 | rαn > 0, ‖rαt ‖ − µrαn 6 0}. (25)

However, with the appearance of relative motion, either following the normal direction (Separation

case), or the tangential direction (Sliding case), the contact force vector rα exceeds the boundary of the

classical Coulomb cone Kµ due to the adhesive forces r̃α. Contrary to the classical Coulomb model for

dry friction, the resultant contact force rα will not remain on the boundary of the Coulomb Cone since

the relation between ‖rαt ‖ and rαn is no longer linear, but subject to variations due to evolving β, xαt
and xαn. We cannot conclude an explicit expression relating r to x. In the work of Terfaya et al. [38],

the adhesion is directly incorporated into the bipotential [32]. We have adopted a different approach

where the progression of adhesion is solved at the resolution level by the augmented Lagrangian method,

which offers as accurate results.

2.4 Contact law within the bipotential method

The bipotential function and inequality of contact law is as follows:

bc(−xα, rα) =
⋃
<−

(−xαn) +
⋃
Ku

(rα) + µrαn || − xαt || (26)

bc(−xα, r′α)− bc(−xα, rα) ≥ −xα · (r′α − rα), ∀ r′α ∈ Kµ , (27)

where
⋃

is the indicator function. <− and Kµ represent respectively the negative real numbers and

Coulomb cone.

The indicator functions become null when the variables −xα and rα comply with the restraining

conditions.

We multiply both sides of the inequality (27) a parameter ρ, which is used to ensure numerical

convergence, and substitude (26) into (27):

ρµ(r′αn − rαn)|| − xαt ||+ [rα − (rα − ρxα)] · (r′α − rα) ≥ 0 . (28)

Taking into account the decomposition x = xt + xnn, the following inequality has to be satisfied:

(rα − r∗α) · (r′α − rα) ≥ 0, ∀ r′α ∈ Kµ , (29)

where the modified augmented contact force r∗α is defined by:

r∗α = rα − ρ(x + µ|| − xαt ||n) , (30)

rα is the projection of r∗α onto the closed convex Coulomb cone:

rα = Proj(r∗α,Ku) . (31)
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According to the three different contact states, the projection procedure becomes:

if µ||r∗αt || < −r∗αn then rα = 0 separating

elseif ||r∗αt || ≤ µr∗αn then rα = r∗α sticking

else rα = rα∗ − (
||rα∗
t ||−µr

α∗
n

1+µ2 )(
rα∗
t

||rα∗
t ||

+ µn) sliding .

(32)

2.5 Blatz-Ko hyperelastic model for soft materials

Blatz-Ko hyperelastic model [39] is widely used to describe behaviours of compressible foam type soft

materials. In practical situations, such materials undergo large deformations. To deal with the geo-

metrical transformation with large deformation, we use the deformation gradient tensor F for the soft

bodies in contact:

F = I +∇u, (33)

where I is the unity tensor and u the displacement vector. The right Cauchy-Green deformation tensor

C is defined as C = FTF, and the Green-Lagrangian strain tensor E = 1
2 (C − I). In the case of

hyperelastic law, there exists a strain energy density function W which is a scale function of one of the

strain tensors, whose derivative with respect to a strain component determines the corresponding stress

component. This can be expressed by

S = 2
∂W

∂C
, (34)

where S is the second Piola-Kirchhoff stress tensor. In the particular case of isotropic hyperelasticity [40],

Eq.(34) can be written by

S = 2

[
I3
∂W

∂I3
C−1 +

(
∂W

∂I1
+ I1

∂W

∂I2

)
I− ∂W

∂I2
C

]
, (35)

where Ii denotes the three invariants of the right Cauchy-Green deformation tensor C:

I1 = Cii; I2 = (I2
1 − CijCij)/2; I3 = det(C). (36)

The Blatz-Ko strain energy density function is given as follows:

W =
G

2

(
I2

I3
+ 2
√

I3 − 5

)
, (37)

where G is the shear modulus. By deriving the energy density (37) with respect to the three invariants,

we obtain
∂W

∂I1
= 0;

∂W

∂I2
=

G

2I3
;
∂W

∂I3
=
G

2

(
− I2

I2
3

+
1√
I3

)
. (38)

Reporting the result in the second Piola-Kirchhoff stress tensor (35) gives

S = G
(
JC−1 −C−2

)
, (39)

where J = det(F), the Cauchy stress tensor σ is calculated from the second Piola-Kirchhoff stress tensor

as follows:

σ =
1

J
FSFT . (40)
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3 Numerical implementation

3.1 Finite element formulation of the nonlinear problem

Since contact between soft bodies involves treatment of nonlinear kinematic relations and hyperelastic

constitutive models (Section 2.5), we formulate the nonlinear finite element problem within the frame-

work of large deformations. In this work, we use Green-Lagrangian strain tensor E which comprises

both linear and nonlinear terms, as a function of nodal displacements u:

E =
(
BL +

1

2
BNL(u)

)
u, (41)

where BL is the matrix relating the linear strain term to nodal displacements, and BNL(u), relates

the nonlinear strain term to nodal displacements. From Eq.(41), the incremental form of the strain-

displacement relationship can be written as:

δE =
(
BL + BNL(u)

)
δu. (42)

Using the principle of virtual displacement, we can write the virtual work δU of the problem as:

δU = δuTMü + δuTAu̇ +

∫
V0

δETS dV − δuTFext − δuTR = 0, (43)

where the second Piola-Kirchhoff stress tensor S, in the case of Blatz-Ko material model is given in

Section 2.5 by Eq.(39). The vector of contact reaction force R is expressed in the global coordinate

system. It is obtained by considering Eqs.(7,8,10) and includes in particular contributions due to

adhesion:

R = HT (r̄ + r̃), (44)

with r̄ and r̃ determined according to the contact and friction rules given in Section 2.3. Other notations

in Eq.(43) include V0, volume of the initial configuration; Fext, vector of external loads; M, mass matrix;

A, damping matrix; u̇, vector of velocity, and ü, vector of acceleration. Substituting δE from Eq.(42)

into Eq.(43) results in

δU = δuTMü + δuTAu̇ + δuT
∫
V0

(
BL + BNL(u)

)T
S dV − δuTFext − δuTR = 0. (45)

We can identify in Eq.(45) the vector of internal force:

Fint =

∫
V0

(
BL + BNL(u)

)T
SdV. (46)

Since δu is arbitrary, a set of nonlinear equations can be obtained as

Mü + Au̇ + Fint − Fext −R = 0. (47)

It is noted that the stiffness effect is taken into account by the internal force vector Fint. Eq.(47) can

be transformed into

M ü = F + R, where F = Fext − Fint −Au̇, (48)

with the initial conditions at t = 0

u̇ = u̇0 and u = u0. (49)
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Taking the derivative of Fint with respect to the nodal displacements u gives the tangent stiffness

matrix as

K =
∂Fint
∂u

=

∫
V0

[(
BL + BNL(u)

)T ∂S

∂u
+
∂BT

NL(u)

∂u
S
]
dV. (50)

In addition, by considering Eqs.(42, 39), the tangent stiffness matrix can be written as the sum of the

elastic stiffness matrix Ke, the geometric stiffness (or initial stress stiffness) matrix Kσ and the initial

displacement stiffness matrix Ku:

K = Ke + Kσ + Ku, (51)

with

Ke =

∫
V0

BT
LDBL dV

Kσ =

∫
V0

∂BT
NL

∂u
S dV

Ku =

∫
V0

(
BT
LDBNL + BT

NLDBL + BT
NLDBNL

)
dV.

(52)

3.2 Numerical integration algorithm

Now we need to integrate Eq.(48) between consecutive time configuration t and t+ ∆t. The Newmark

method is the most common method which is based on a second order algorithm. However, higher

order approximation does not necessarily mean better accuracy and may even be redundant in impact

problems. In cases presenting sudden change of contact conditions (impact, release of contact), we

observe discontinuous velocity and acceleration, which lead to excessive regularity constraints that may

cause serious errors. For this reason, we use the method of Non-Smooth Contact Dynamics (NSCD) [41]

involving a first order time stepping algorithm. Implementation of this algorithm for adhesion problems

has been investigated in [42]. Based on NSCD, Eq.(48) can be transformed into:

M du̇ = F dt+ R dt . (53)

This algorithm is based on the following approximations:∫ t+∆t

t

M du̇ = M
(
u̇t+∆t − u̇t

)
(54)

∫ t+∆t

t

F dt = ∆t
(
(1− ξ) Ft + ξFt+∆t

)
(55)

∫ t+∆t

t

R dt = ∆tRt+∆t (56)

ut+∆t − ut = ∆t
[
(1− θ) u̇t + θ u̇t+∆t

]
, (57)

where 0 ≤ ξ ≤ 1; 0 ≤ θ ≤ 1. In the iterative solution procedure, all the values at time t+∆t are replaced

by the values of the current iteration i + 1; for example, Ft+∆t = Fi+1. A standard approximation of

Fi+1 gives

Fi+1 = Fiint +
∂F

∂u
(ui+1 − ui) +

∂F

∂u̇
(u̇i+1 − u̇i) = Fiint −Ki ∆u−Ai ∆u̇ . (58)
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Finally, we obtain the recursive form of (53) in terms of displacements:

K̄i ∆u = F̄i + F̄iacc + Ri+1

ui+1 = ui + ∆u ,
(59)

where the so-called effective terms are given by

K̄
i

= ξKi +
ξ

θ∆t
Ai +

1

θ∆t2
Mi (60)

F̄
i
acc = − 1

θ∆t2
Mi(ui − ut −∆t u̇t) (61)

F̄
i

= (1− ξ)
(
Ftint + Ftext

)
+ ξ

(
Fiint + Ft+∆t

ext

)
. (62)

At the end of each time step, the velocity is updated by

u̇t+∆t =
(

1− 1

θ

)
u̇t +

1

θ∆t
(ut+∆t − ut) . (63)

By setting θ = 1
2 , this scheme is then called the implicit trapezoidal rule and it is equivalent to the

Tamma - Namburu method in which the acceleration need not be computed [43].

It is noted that Eq.(59) is strongly non-linear, because of large rotations and large displacements of

solid, for instance in multibody contact/impact problems. Besides, as mentioned above, the constitutive

law of contact with friction is usually represented by inequalities and the contact potential is even non

differentiable. Instead of solving this equation in consideration of all nonlinearities at the same time,

Feng [44] has proposed a solution strategy which consists in separating the nonlinearities in order to

overcome the complexity of calculation and to improve the numerical stability. As ∆u and R are both

unknown, Eq.(59) cannot be directly solved. First, the vector R is determined by the bi-potential

method and the adhesive model in a reduced system, which only concerns contact nodes. Then, the

vector ∆u can be computed in the whole structure, using adhesive contact reactions as external loading.

The iterative solution procedure involving contact modeling is written as Figure 4:
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-Determine mass matrix M and damping matrix C

-Read the data

-Time iteration

-Determine Fext

-Detect contact conditions in local frame
-Newton iteration

- Compute K and Fint

- Compute K and F
- Solve KΔu= F
- Compute r, r and β by bipotential and 
adhesive model in local frame,  R=HT(r+r)
- Solve KΔu= F+R
- Actualize u=u+Δu
- Check convergence criteria

if not convergence-Compute velocity
-Gather element nodal displacement
-Compute stress and strains

Figure 4: The iterative solution procedure

4 Numerical results

The algorithm presented above has been implemented within the in-house finite element code FER/Contact.

In this section, four numerical examples based on contact simulations are presented to show normal

and tangential behaviours of the adhesive contact interface under unidirectional and mixed loading

conditions.

4.1 Indentation on adhesive hyperelastic material

The adhesion effect is usually most significant in the normal direction. In order to clearly show the

evolution of β during the complete process of bonding and de-bonding, the first example simulates the

normal adhesive contact between an elastic semi-sphere and a hyperelastic block, shown in Figure 5(a).

The density of two bodies is: ρ = 2500 kg/m−3 (sphere indentor); ρ = 1000 kg/m−3 (block). Blatz-Ko

hyperelastic material model is used and the shear modulus G for the indentor and the hyperelastic

block are respectively 2.6 × 1010 Pa and 16 × 106 Pa. In this case, the sphere indentor behaves as a

rigid body compared to the block.

A time dependent displacement is prescribed on the upper surface of the semi-sphere, so that a

complete cycle of indentation is performed in 4 seconds. Figure 5(b) is the load curve showing the

displacement of the upper surface of the sphere.

Figure 6(e) lists three different sets of adhesive parameters used in the test, whose results are

reported in Figure 6(c). Cocou et al. investigated similar scenarios and obtained concordant results [12].

Figure 6(a) shows the evolution of β on 7 contact nodes in Case 1. On any contact point, its horizontal

distance from the center point O determines the time length of the contact process on this point,

involving bonding and de-bonding. The sequence of β evolution is thus distinctive on each point.

Figure 6(b) shows the normal adhesion force of the 7 contact nodes in Case 1. Similarly, the distance

from the center point O determines the sequence of separation, which however does not influence the

adhesion force at the moment of separation. Figure 6(c) shows evolution of β on the contact point A
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Figure 5: Indentation on a hyperelastic material with adhesive surface: (a) Problem
set; (b) Loaded displacement on the upper surface of the sphere.

under 3 groups of different adhesive parameters. Figure 6(d) shows the normal adhesion force of the

contact point A during the de-bonding process under 3 cases. We can see that the increase of Cn makes

the detachment difficult. The difference in adhesion force determines the rate of decrease of β as shown

in Figure 6(c).

4.2 Rolling adhesion of a hyperelastic wheel

This example investigates the rolling adhesion of a hyperelastic wheel confined between 2 rigid plates.

As shown in Figure 7(a), the upper and lower plates exert compression on the hyperelastic wheel,

and slide simultaneously in opposite directions, driving the wheel in rotation under both the effects of

interface adhesion and friction. As a result of the interface adhesion, the rotating wheel presents inclined,

asymmetrical geometry during rotation. Since the rotating motion is cyclic, any point belonging to the

wheel’s adhesive surface will cyclically go through bonding and de-bonding process. The recoverability

of interface adhesion is thus accounted for. The present case follows the next loading sequence: the

upper plate first descends vertically for 5×10−4 m at the velocity of 0.1 m/s, exerting slight compression

on the wheel. Then, still on the upper plate, we prescribe a sliding motion at the velocity of 1 m/s

so as to drive the compressed wheel in rotation. We investigate the effect of material properties on

the adhesion by testing 3 different shear modulus G = 5 × 106 Pa, 1 × 107 Pa, and 1.5 × 107 Pa

for the hyperelastic wheel. Concerning the interface properties, the following parameters are used:

friction coefficient µ = 0.4. Note that setting non-zero friction here is important to drive the wheel to

rotate. The wheel rotates consequently under the combined effects of interface friction and adhesion.

Parameters for the adhesive are : w = 20 J.m−2, Cn = Ct = 2× 109 N.m−3, and b = 0.1 N.s.m−1.

Figure 7(c) shows the morphology and Von Mises stress distribution of the hyperelastic wheel just

following application of the compression by the upper plate. Figure 7(d) shows the state of deformation

and Von Mises stress distribution of the wheel during its rotation. Due to the combined effects of the

interface friction, which exerts pure tangential force on the wheel, and the interface adhesion, which

results in both normal and tangential forces on the wheel surface, the rotating wheel deforms into

inclined, asymmetrical geometry. This morphology is the result of the adhesion force (attraction) that

appears at the separation (de-bonding) between the plate and the wheel. In case adhesion is absent

and under the exclusive effect of friction, the wheel will not present inclined shape during rotation, but

remain in the configuration of Figure 7(c).

Figure 8(a) shows the evolution of the adhesion parameter β, and the adhesion forces calculated

on 3 selected nodes as indicated in Figure 7(b) with shear modulus G = 1 × 107 Pa. The de-bonding

sequence is consistent with the wheel’s rotation direction. Figure 8(b) presents the evolution of β

calculated on the first node (among the three selected nodes) under the 3 tested hyperelastic materials
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(shear modulus G = 5× 106 Pa, 1× 107 Pa, and 1.5× 107 Pa ). We demonstrate that material shear

modulus has no effect on β during the bonding process, since the 3 curves perfectly coincide on this

segment. However, during the de-bonding process, greater shear modulus accelerates the rupture of the

adhesive bonds, which is obvious since stiffer material deforms less, and gets detached more easily from

the plate during the prescribed rotation. The same observation is obtained on the normal adhesion

force curves (Figure 8(c) and (d)).

4.3 Adhesive friction between a hyperelastic plate and a de-

formable semi-cylinder

In this example, we investigate the adhesive friction of a hyperelastic plate that slides on top of a

deformable semi-cylinder, as shown in Figure 9(a). Both the plate and the semi-cylinder are modelled by

Blatz-Ko hyperelastic material, based on the same material property with shear modulus G = 10 MPa.

Radius of the cylinder is 5 mm, and the plate thickness H = 2 mm. The plate is sufficiently long so as

to ensure contact between the plate and the cylinder during the simulation. While the plate is allowed

to slide horizontally, the bottom surface of the semi-cylinder is fixed. The simulated scenario involves

2 stages. On the first stage, the upper plate descends for 1 mm to exert a slight compression on the

cylinder. Then on the second stage, a lateral displacement is prescribed on the plate at a constant

velocity. As a result of the combined effect of friction and adhesion, the cylinder is dragged to deform,

and we investigate the interfacial behaviour during the process. In particular, by varying the descent

velocity of the first stage, we modulate the total time of compression before sliding, during which the

bonding process takes place. This will have impact on the final adhesion level (characterized by β)

before de-bonding starts at the onset of the sliding stage. In order to explore the influence of the

adhesion level β on the subsequent adhesive friction behaviour, we set up 5 groups of cases with for

each group a different descent velocity (summarized by Figure 10(a)). Then for each group, we test on

5 different friction coefficients µ, so as to investigate the combined effect of friction and adhesion on the

tangential interface behaviour. The adhesive parameters used in the simulations are: w = 20 J.m−2,

Cn = 2× 109 N.m−3 and b = 0.1 N.s.m−1.

Figure 9(b) and (c) present the Von Mises stress distributions of the sliding system, respectively at

the onset of sliding, and during the sliding process. We post-process the frictional adhesive behaviour

by isolating 2 nodes belonging to the system: as seen in Figure 9(a), one blue node on the lower surface

of the plate in contact with the cylinder, and one red node on top of the cylinder, in contact with the

plate. Here, we investigate the evolution of β during the first stage. By considering different descent

velocities of the plate, varying from 1000 mm/s to 200 mm/s, we modulate for each case the time for

the bonding process. As shown in Figure 10(c), the case with the plate slowly descending at 200 mm/s

(green curve) had sufficient time to achieve perfect bonding of adhesive links (β reached 1), whereas

the most rapid descent (blue curve) did not allow enough time for the formation of complete bonding.

In this case, de-bonding was already initiated after β reached 0.2. We then investigate the influence of

friction coefficient µ on the de-bonding behaviour, by prescribing varying friction coefficients µ while

considering the same plate descent velocity. We report in Figure 10(b) 5 simulations based on 5 values

of µ ranging from 0 to 0.8. All the 5 cases consider the same plate descent velocity of 1000 mm/s

(Case 1 of Figure 10(a)). Results in Figure 10(b) indicate the formation of stronger bond (higher β)

on rougher surfaces (greater µ). This can be interpreted by the fact that a rougher surface (higher µ)

delays the onset of sliding motion, according to the Coulomb friction model, which results in longer time

for better bonding of adhesive links. Therefore, we observe a concordant trend on the curves reflecting

tangential adhesion forces. With a greater friction coefficient (Figure 10(d)), the onset of de-bonding
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is delayed, creating increased level of adhesion force. Then, lower descent velocity on the first stage

(Figure 10(e)) also creates the effect of delaying the onset of de-bonding, permitting better bonding

and more significant adhesion forces.

4.4 3D frictional adhesive twisting

We investigate the evolution of interface behaviours of a 3D twist tribosystem (Figure 11) under the

combined effect of adhesion and friction. The system is composed of an elastomer block that slides

on a rigid surface under twisting load. The elastomer block is 3 mm high, and has a 10 × 10 mm

square section. The adhesive interface parameters are : w = 100 J.m−2, Cn = 2 × 1010 N.m−3 and

b = 0.1 N.s.m−1. The simulation scenario involves 2 stages. On the first stage, we prescribe a slight

compression on the elastomer by descending its upper surface by 0.1 mm. Then at the second stage, a

twisting motion is applied on the upper surface at the angular velocity of 20 rad/s so as to drive the

compressed elastomer block in clockwise twisting. The elastomer is modelled using Blatz-Ko material.

To prevent excessive shear deformation of the elastomer body during the twist, we apply a significant

shear modulus G = 2.1× 106 MPa.

We first investigate the effect of interface adhesion on the friction behaviour by comparing 2 test

cases, one based on dry friction twist, the other involves friction with adhesion. Figure 12 compares

the normal reaction forces of the two cases during the twist process. 9 frames of results are extracted

in chronological order to represent the evolving twist process. On each frame, we compare distributions

of the normal force calculated on the contact interface between dry friction and adhesive friction. Since

the combined motion of compressive twisting is prescribed on the upper surface of the elastomer, the

elastomer body undergoes shear deformation during the twist. On each side of the elastomer body, and

along the direction of motion, the shearing kinematics creates a rotating moment that tends to press

the frontal part of the body against the ground surface while detaching the rear part. This results

in the evolving normal force distribution shown in Figure 12, where the increasing blue colour reveals

local interface detachment, and the red colour indicates increased local compression. This phenomenon

significantly increases with the interface adhesion, which becomes the prevailing source of resistance to

the prescribed twist motion. Compared to the case of dry friction, interface sliding remains unnoticeable

up to t = 0.007 s on the adhesive case: contact interface appears untwisted despite the external load,

implying unbroken adhesive bonds. On the contrary, the dry friction interface is easily twisted by the

external load, and the normal force distribution appears more homogeneous throughout the simulation.

In this example, we observed initiation of de-bonding at t = 0.007 s ∼ 0.008 s where normal forces

decreased significantly, and the contact interface twisting quickly caught up with the dry friction case.

Upon complete de-bonding, as can be seen in the frame t = 0.009 s, both cases present consistent

configuration, with synchronized twists and similar distribution of normal forces.

We then explore the effect of friction coefficients on the combined adhesive-frictional interface

behaviour, which includes interface forces and adhesion strength. Using 3 sets of friction coefficients µ =

0.2, 0.4 and 0.6, we carry out simulations based on the previous adhesive tribosystem, and investigate, for

each friction coefficient, the evolution of normal and tangential reactions, and the intensity of adhesion

(represented by β). Figure 13 presents the distribution of normal contact forces that evolve with time

for the tested 3 friction coefficients. Results obtained are concordant with what can be predicted by the

Coulomb friction model, since under equivalent conditions of compression, stronger friction coefficients

will have the effect of delaying the onset of interface sliding, and subsequently the initiation of the

de-bonding process. For the same reason since the elastomer block admitted higher shear deformation

before complete de-bonding, increased level of normal forces are observed on cases with higher friction

coefficients. The effect of higher friction coefficients on the de-bonding process can be further confirmed
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by investigating the evolution of β, as shown in Figure 14, in which the light yellow colour indicates the

state of complete bonding of interface adhesives. We observe directly that higher friction coefficients

significantly delay the onset of the de-bonding process.

We also investigate the evolution of tangential forces on the 3 sets of simulations. In Figure 15,

Euclidean norm of tangential forces are presented, allowing us to observe the evolving intensity of

tangential forces on the contact interface. In this figure, similar distribution of tangential forces can

be observed on frames µ = 0.2 / t = 0.006 s, µ = 0.4 / t = 0.007 s, and µ = 0.6 / t = 0.008 s,

then, on frames µ = 0.2 / t = 0.007 s, µ = 0.4 / t = 0.008 s, and µ = 0.6 / t = 0.009 s, and so

on. This observation also results from the effect of higher friction coefficients on delaying the onset of

be-bonding process, and subsequently the appearance of every distribution pattern of tangential forces.

Chronologically, at the beginning of loading, tangential forces are most significant on the outskirts of

the contact area since linear velocity is higher. However, for the same reason, this is also where the onset

of de-bonding initiates and propagates towards the centre area. Consequently, the peak of tangential

forces is observed as an evolving circular band, whose radius decreases with the twisting load, before it

gradually disappears in the centre of rotation, leading to complete de-bonding of interface adhesives.
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Figure 6: Indentation on a hyperelastic material with adhesive surface: (a) Evolution
of β calculated on 7 contact nodes of the hyperelastic block. At t = 0 s, the only contact
point between the indentor and the block is point O, see Figure 5(a), and d represents
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Figure 7: Rolling adhesion and friction of a confined hyperelastic wheel: (a) Problem
setup; (b) The initial state of hyperelastic wheel; (c) Shape and Von Mises stress distribu-
tion of the confined wheel just before rotation; (d) Deformed shape and Von Mises stress
distribution of the hyperelastic wheel during its rotation.
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Figure 12: 3D adhesive frictional twisting: Evolution of the interface normal forces
R̄n distribution during the twisting process. Comparison between dry friction (left) and
adhesive friction (right) on each frame of time. For both cases, friction coefficient µ = 0.4
is used.
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5 Conclusions

In this work, an extended 3D formulation for quasi-industrial problems of adhesive contact with re-

coverable interface between soft materials under large deformation is implemented by using the RCC

interface model and the bi-potential resolution method. The RCC model proposes a straightforward

description of the interface adhesion based on a local scalar parameter, and enables coupling the effect

of adhesion, friction and unilateral contact within a unified framework. Both normal and tangential

effects are taken into account by the adhesive interface model, involving both the process of bonding and

de-bonding of the interface links. We have combined the 3D extended RCC adhesive interface model

with 3D Blatz-Ko hyperelasticity to account for frictional contact of foam type soft material structures

with recoverable interface under conditions of large deformation. To illustrate the ability of the im-

plemented model to deal with real problems, we have treated various 3D test cases involving normal,

tangential, and mixed-directional scenarios of adhesive contact with/without adhesion recoverability,

which is very close to quasi-industrial modelling situations. Future extensions of this work include, for

example, the account for anisotropic interface behaviours and the effect of interface fatigue which is a

common phenomenon in adhesive applications involving cyclic loads.
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[31] G. de Saxcé and Z.-Q. Feng. New inequality and functional for contact with friction: The implicit

standard material approach. Mechanics of Structures and Machines, 19(3):301–325, 1991.
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interface model

1 Supplementary information

According to Eq.(16), β significantly decreases during the process of debonding. It

tends towards zero but never exactly reaches zero. For reasons of practice, it is convenient

to introduce a limit value of β, denoted by ε, that indicates complete debonding between

the adhesive contact surfaces. Therefore with β < ε, we can consider that the adhesion

bonds are completely broken. In this work, we adopt an empirical value of ε = 10−4 for

which adhesion forces drop to the 10−9 magnitude. An example depicting the evolution

of β during debonding is provided here, based on the test case illustrated in Section 4.3.

We focus on the phase of separation between the soft semi-cylinder that slides on the

rigid plate with adhesive interface.
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Figure 1: Evolution of adhesion forces as function of β on logarithmic scale: with β on the order of

10−4, adhesion forces become negligible on the 10−9 order.

Figure 1 shows the evolution of adhesion forces as function of β on logarithmic

scale. Starting from Point O, adhesion force first increases with the gap between contact

surfaces, then due to the surface debonding, very quickly drops to insignificant levels.

With β on the order of 10−4, we observe negligible adhesion forces on the 10−9 order.
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