Leveraging Joint-Diagonalization in Transform-Learning NMF - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Signal Processing Année : 2022

Leveraging Joint-Diagonalization in Transform-Learning NMF

Sixin Zhang
  • Fonction : Auteur
  • PersonId : 745281
  • IdHAL : zhang-sixin
Emmanuel Soubies
Cédric Févotte

Résumé

Non-negative matrix factorization with transform learning (TL-NMF) is a recent idea that aims at learning data representations suited to NMF. In this work, we relate TL-NMF to the classical matrix joint-diagonalization (JD) problem. We show that, when the number of data realizations is sufficiently large, TL-NMF can be replaced by a two-step approach -- termed as JD+NMF -- that estimates the transform through JD, prior to NMF computation. In contrast, we found that when the number of data realizations is limited, not only is JD+NMF no longer equivalent to TL-NMF, but the inherent low-rank constraint of TL-NMF turns out to be an essential ingredient to learn meaningful transforms for NMF.

Dates et versions

hal-03481041 , version 1 (15-12-2021)

Licence

Identifiants

Citer

Sixin Zhang, Emmanuel Soubies, Cédric Févotte. Leveraging Joint-Diagonalization in Transform-Learning NMF. IEEE Transactions on Signal Processing, 2022, ⟨10.1109/TSP.2022.3188177⟩. ⟨hal-03481041⟩
118 Consultations
0 Téléchargements

Altmetric

Partager

More