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Abstract

In the last few years, the mechanical response of hollow thermoplastic microspheres-

elastomer matrix composites has been investigated. The large majority of the stud-

ies focuses on their compressive properties and particularly on the stress-strain

response. In the present paper, large strain uniaxial tension experiments are con-

ducted on thermoplastic microspheres filled polyurethane elastomer. Six volume

fractions of microspheres are considered. Thanks to a two-camera setup and dig-

ital image correlation measurements, the volumetric response of the materials is

extensively analyzed. As a major result, the remarkable volumetric behaviour is

highlighted: the hydrostatic pressure vs. volume change curves admit several ex-

trema that may be read as the macroscopic signature of the complex microstructural

phenomena involved during deformation. Moreover, it is shown that the size of the

volumetric loading-unloading hysteresis loop is directly related to the volume frac-

tion of microspheres in the materials.

1 Introduction

Polymer syntactic foams, i.e. materials made of microspherical inclusions embedded in a

matrix, are employed in various applications for their buoyant and/or acoustic behaviours,

their compressive strength but also their thermal insulation properties (Gupta et al, 2014).

In most of cases, glass microspheres are considered in rigid thermoset resins (Gupta et al,

2010) or elastomer (Brown et al, 2018) matrices.
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For the last few years, new thermoplastics microballoons/elastomer matrix composites

have been developed. They are made of hollow thermoplastics microspheres (HTMs in

the following, commercial name Expancel) encapsulating a gas (Curd et al, 2021) that

act as fillers in silicone (Shorter, 2014) or polyurethane (Yousaf et al, 2020) elastomer

matrix. In a large majority of studies devoted to these materials, the focus is laid on their

compressive properties: such experimental results are proposed by Paget et al (2021);

Yousaf et al (2020); Smith et al (2021). These investigations being very recent, only few

attempts of modelling have been published; roughly speaking authors are trying to account

for the (reversible) buckling of the HTMs by different approaches: simple physical models

(De Pascalis et al, 2013), numerical or analytical homogenization techniques (Shrimali

et al, 2020), or phenomenological compressible constitutive equations (Smith et al, 2021).

For uniaxial tension, and to the best of our knowledge, only two studies report exper-

iments on dumbbell samples:

• Shorter et al (2007) present the loading curves of an unfilled and three HTMs filled

silicone elastomers. It is shown that for low strain, higher the microspheres content,

higher the stiffness; the inverse phenomenon is observed for large strain (> 175%

strain).

• Yousaf et al (2022) propose a thorough investigation of the cyclic response of

HTMs/polyurethane elastomer syntactic foams up to 50% strain. Among the re-

sults, it is shown that the presence of microballoons highly increases the size of the

loading-unloading stress-strain hysteresis loop.

These two studies focus on macroscopic stress-strain unidimensional response but do

not investigate the compressibility of these materials, even if this property is of major

importance in applications.

In the following, the uniaxial tensile response of HTMs filled polyurethane elastomer is

reported. Experimental methods are presented in the next section: materials and samples,

then the two-camera setup are described. Results are presented and discussed in Section 3.

First, the data treatment is detailed. Then, after the presentation of classical stress-strain

results, the focus is laid on the volumetric response of the materials: hydrostatic pressure

vs. volume change curves are drawn and their comprehensive analysis is proposed. Finally,

a short conclusion closes the paper.

2 Methods

2.1 Materials and samples

Materials are made of a polyurethane elastomer matrix filled with HTMs. Six volume

fractions of HTMs (which will be sometimes referred to as “porosity” in the following)

are considered: 0, 5, 10, 15, 20, and 25% (nominal data given by the supplier). The
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volume fraction of each specimen has been verified with the following method. First,

the density of the polyurethane matrix is considered independent of the HTMs volume

fraction: it is equal to the one of the 0% material. Second, samples being produced by

a cutting punch, their in-plane geometry is assumed well-established. The thickness of

specimen is measured by a caliper with a precision of ± 0.01 mm, and the weight by a

balance with a precision of ± 0.002 g. Then the actual porosities are calculated. The

corresponding results are given in Table 1, each of them corresponds to the mean value

of three measurements on three different samples. In the following, the actual values will

Nominal porosity (%) 5 10 15 20 25

Actual porosity (%) 4.6± 0.10 9.3± 0.33 13.5± 0.18 17.5± 0.14 23.2± 0.18

Table 1: Nominal and actual volume fractions of HTMs in the five filled materials.

be considered for the computations, but for the sake of simplicity the nominal ones will

be used in the presentation of the results.

The geometry of the dumbbell samples are shown in Figure 1(left). Fig. 1(right)

Figure 1: Sample. Left: dimensions (mm). Right: notations.

sketches the uniaxial tensile test, and introduces the notations: l0 × w0 × t0 strain gauge

deforms into l × w × t with the force F . Practically, l0 is about 20-25 mm. Thus, we

define

• the three stretch ratios

λ =
l

l0
, λw =

w

w0

, λt =
t

t0
, (1)
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respectively in the longitudinal, width, and thickness directions,

• and the nominal (first Piola-Kirchhoff) and true (Cauchy) stresses:

P =
F

w0 × t0
, σ =

F

w × t
. (2)

2.2 Experimental set-up

The experimental apparatus is shown in Figure 2. Uniaxial tensile experiments are con-

Figure 2: Experimental set-up with camera positioning.

ducted with a Instron ElectroPulse E10000 (linear-torsion all electric-dynamic machine);

it is equipped with a 1 kN load cell and high pressure grips. During the experiments, dis-

placement is prescribed at speed 10 mm/min, during the whole cycle (both loading and

unloading). For each porosity, the experiments are conducted twice, on different samples.

Both displacement and force F are recorded at 20 Hz.

In addition to these global measurements, local surface measurements of strain are car-

ried out. For this purpose, two Prosilica GT6600 29 Mpix cameras (resolution 6576×4384 Pix2)

with 100 mm Zeiss Makro-planar 2/100ZF lenses record the deformation of the sample

throughout the test: the front face camera records the deformation of the face normal

to the thickness, and the side face camera records the deformation of the face normal to

the width (see Fig. 2). Then, Digital Image Correlation (DIC) provides the three stretch

ratios of Eq. (1). The method used here is almost similar of the one of Crevoisier et al

(2012), with two cameras facing the two sides of the sample. Here, due to large strain

no parasitic bending occurs, then the authors assume that the strain field measured on

both sides are equal to the strain field on the corresponding opposite hidden faces. Note

that a more precise technique would consist in using two sets of two cameras and in per-

forming stereo correlation on two opposite sides of the sample (Wu et al, 2011). From a

practical point of view, the gauge length of the specimens is covered with a black paint
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Figure 3: Virtual strain gauges on undeformed samples. Top: front face. Bottom: side

face.

speckle as shown in Figure 3. Displacement and strain fields are computed thanks to

VIC-2D software (Correlated Solutions). Mean values of the logarithmic strain tensor are

calculated thanks to a virtual strain gauge (black rectangles in Fig. 3). The dimensions

of these gauges are about 15× 4.5 mm2 for the front face (Fig. 3(top)) and 15× 1.5 mm2

for the side face (Fig. 3(bottom)). The corresponding optical and DIC parameters are

summarized in Tables 2 and 3, respectively.

Camera Allied Vision Technology Prosilica GT6600

Dynamic range, image 8 bits

Lens 100 mm Zeiss Makro-planar 2/100ZF

Field of view 110× 73 mm2

Patterning technique Black spray paint

Table 2: Image acquisition parameters.

DIC Software VIC-2D version 8.

Subset shape function 6-tap spline

Strain formulation Logarithmic

Matching Criterion NSD

Table 3: DIC parameters.

3 Results and discussion

All data investigated here are available in Coret et al (2022). Thus, in the following we

sometimes choose to not present the results for all porosities.

5



3.1 Isotropy

Classically, isotropy of such materials is assumed. Thanks to the two cameras, it is possible

to verify this assumption. As examples, Figure 4 presents the comparison of λw and λt

for 0% and 20% filled materials. For all volume fractions (not shown here), results are

Figure 4: Isotropy of the materials. Porosity: 0% (left), 20% (right). The red and blue

lines correspond to two different experiments.

identical: λw = λt during all the experiments. Thus, all materials are isotropic.

In the following, only λw will be considered when necessary. Indeed, its measurement

is more precise than the one of λt because the analysed surface is larger in the width

direction (see Fig. 3).

3.2 Repeatability, averaging and smoothing

As mentioned above, experiments are conducted twice for a given material. In all cases,

measurements are repeatable and reproducible. Then a mean curve is calculated for each

material. This curve is a bit noisy due to the sampling frequency of the force measurement

(20 Hz) and to the low measured values of the loading force as compared to the load cell

capacity (1 kN). Then, it is smoothed by a Savitzky-Golay filter with a polynomial of

degree 2 (Scipy documentation, 2021). This process is illustrated in Figures 5 and 6 for

the 0% and 20% filled materials respectively. Similar results are obtained for the four

other materials.

Through the rest of the paper, all analyses will be performed considering smoothed

mean curves.
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Figure 5: Lateral stretch ratio (left) and nominal stress (right) vs. extension. Porosity:

0%. In blue and red: raw data of the two experiments; in black: the corresponding

averaged and smoothed curve.

Figure 6: Lateral stretch ratio (left) and nominal stress (right) vs. extension. Porosity:

20%. In blue and red: raw data of the two experiments; in black: the corresponding

averaged and smoothed curve

3.3 Classical results in uniaxial tension

Standard results of uniaxial tensile tests are depicted in Figure 7. The left-hand side plot

shows the evolution of the transversal stretch ratio (λw = λt) with respect to the longi-

tudinal one (λ), and the right-hand side plot shows the stress-strain loading-unloading
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Figure 7: Lateral stretch ratio (left) and nominal stress (right) vs. stretch ratio for all

materials.

curves.

From a general point of view, these results are very classical and looks like the ones

obtained with pure elastomers: stress-strain curves exhibit the traditional hysteresis loop.

Nevertheless, a more precise comparison of the curves leads to the following comments.

• At first sight, the λw vs. λ evolution curves are very similar whatever the volume

fraction of HTMs. Moreover, the corresponding hysteresis loops between loading

and unloading are very small.

• All stress-strain curves admit the same shape and the same initial stiffness. Loading

curves exhibit differences in stiffness for λ ' 1.6 − 1.7: the higher the porosity of

HTMs, the more the stiffness decreases. An opposite trend has been observed by

Shorter et al (2007), but the initial stiffness of the materials were highly different

from one to another. Moreover, it is to note that the curve of the 15% material does

not follow the general trend: for λ = 2.5, it is above the 5% and 10% curves.

• All stress-strain curves present a hysteresis loop between loading and unloading: the

higher the volume fraction of HTMs, the larger the hysteresis loop. This observation

is similar to the one of Yousaf et al (2022) for small strain (λ = 1.25 and 1.4).

• At λ = 1 on the unloading curves, there is almost no compressive stress. We

can roughly conclude that viscous effect are negligible for small strain rates (about

5.10−3 s−1 at small strain). This result is in accordance with the one of Yousaf

et al (2022) who measure about 5% strain for max(λ) = 1.25 and about 7-8% for

max(λ) = 1.4 at zero-stress on the unloading curves, whatever the fraction of HTMs.
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We argue that the viscoelasticity of the composite depends on the viscous properties

of the elastomer matrix and not on the HTMs volume properties.

3.4 Compressibility

As stated above, the response of the filled materials seems to be quite close to the one

of standard elastomers under uniaxial tensile loading conditions. Nevertheless, it is well-

known that the major feature of HTMs-elastomer composites is their volumetric response.

Thus, in the following we propose a complete analysis of this feature. This approach

resembles to the method proposed in Smith et al (2021) for compressive loading conditions.

First, we consider only kinematic quantities. Both the Poisson ratio ν (generalized to

large strain) and the volume ratio J (Jacobian determinant of the deformation gradient

tensor) are calculated:

ν = − log λw
log λ

and J = λ× λw × λt = λ× λ2w. (3)

The corresponding results are plotted in Figure 8.

Figure 8: Poisson ratio ν (left) and change in volume J (right) vs. extension. The

loading-unloading path is shown by the black arrows.

For both quantities, the curves exhibit hysteresis loops which size increases with the

volume fraction of HTMs. It is to note that this response was not predictable by examining

the evolution of lateral stretch in Fig. 7(left). As shown in Fig. 8(left), the results for λ <

1.2 are not relevant (division by log λ with λ near 1). For larger values, ν varies between

0.47 and 0.51. It reveals that the materials are almost incompressible, but the shape

of the curves highlight a complex response “around” incompressibility. This complexity

becomes obvious when examining the evolution of J depicted in Fig. 8(right). Except the
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curve of the pure polyurethane (0%), all curves admit a large hysteresis loop, with several

changes of slope during the cycle. It is important to note again that it corresponds to

very small changes in volume: between -0.5% to 4% for the material with 25% HTMs.

3.5 Volumetric response

To further investigate this unusual phenomenon, we consider now the stress-strain volu-

metric response of the materials. In this way, the hydrostatic pressure is calculated. It is

defined as

p = −1

3
trσ, (4)

where σ is the Cauchy stress tensor related to the nominal stress tensor P by

σ = (detF )−1 PF T , (5)

F being the deformation gradient tensor and ·T the transposition operator. Recalling

that in the principal directions of deformation (length, width and thickness directions of

the sample, see Fig. 1) F is the diagonal tensor which contains the stretch ratios, the

Cauchy stress in the loading direction reduces to P/λ2w and all other components of σ are

null. Thus,

p = −1

3

P

λ2w
. (6)

As this pressure is always negative in uniaxial tension (because P ≥ 0), −p is used to

plot the graphs. Nevertheless, we have to keep in mind that the pressure is positive, i.e.

it tends to increase the volume of the material.

The corresponding volumetric responses J vs. −p are presented in Figure 9. First,

Figure 9: Volumetric response of the six materials.
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the curve of the virgin material (0%) is classical for a quasi-incompressible elastomer: it

presents a small hysteresis and for a change in volume of about 0.5% (J = 1.005), the

pressure increases sharply with the volume change. Second, all the other curves have the

same complex shape: they present a hysteresis loop that increases with the HTMs volume

fraction. Moreover, they exhibit a non-monotonous form with several extrema.

In order to investigate the features of these hysteresis loops, some descriptive notations

are introduced. Consider the schematic hysteresis loop depicted in Figure 10. During a

Figure 10: Description of the volumetric response. Definition of the extrema and the

jumps, example of the 25% filled material.

loading-unloading cycle, the loop passes through points A to F defined by the blue circles

in the figure. Once again, arrows depict the loading-unloading path. Points are defined

as follow:

A. Departure point: J = 1 and −p ≈ 0. Then the volume increases until point B.

B. First maximum point. Then the volume decreases until point C.

C. The minimum of the loading part. It is to note in Fig. 9 that for 15% and 20%,

J ' 1 (it went back to the undeformed volume) for −p ' 1 MPa. For 25%, the

volume has diminished for the same pressure.

D. It is the maximum loading point, it corresponds to λ ' 2.5 and to the maximum

pressure borne by the material. The unloading begins and the volume continue to

increase until point E.

E. This is the maximum change in volume attained during the cycle. After this point,

the volume decreases through the rest of the unloading path.
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F . It is the end of the cycle; at this point λ = 1. There is a remanent change in volume.

With our results, it is difficult to know if it is irreversible (damage) or if the sample

will recover its initial dimensions (viscous effect).

To continue the discussion, four additional quantities are introduced: the pressure jumps

∆(−p)1 = − (p(C)− p(B)) and ∆(−p)2 = − (p(E)− p(C)) (7)

and the volume change jumps

∆J1 = J(C)− J(B) and ∆J2 = J(E)− J(C), (8)

as shown in Fig. 10.

First, Figure 11(left) shows the maximum of the hysteresis loops (points B, C, and

E) for the five filled materials. Second, Fig. 11(right) presents the corresponding jumps

couples (∆(−p),∆J). In Fig. 11(left), we verify the previous observation: the larger

Figure 11: Analysis of volumetric curves. Left: extrema; Right: jumps.

the HTMs volume fraction, the bigger the hysteresis loop. Indeed, extreme values of

the change in volume J increase with the HTMs porosity for the maxima (point E) and

decrease with it for the minima (point C). Nevertheless, it is interesting to mention

that these extrema take place for almost the same pressure whatever the material: about

0.4 MPa for point B, 1 MPa for point C and around 1.5 MPa for point E. Similar

conclusions can be drawn thanks to Fig. 11(right). For the jump in volume change, it

is obvious: the larger the HTMs volume fraction, the larger the second jump ∆J2 and

the smaller (negative) the first one ∆J1. For the pressure jump, it is more complicated,

because the second jump ∆(−p)2 decreases as the volume fraction increases.

Finally, to close this presentation of the results, the volume and pressure jumps are

plotted with respect to the porosity in Figure 12. Examining Fig. 12(left) leads to a
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Figure 12: Jumps vs. porosity. Left: volume change; right: hydrostatic pressure.

surprising observation: both volume change jumps evolve linearly with the HTMs volume

fraction. For pressure, it is not exactly similar: the data corresponding to 15% are

not exactly aligned with other points (see Fig. 12(right)). It is related to the previous

observation of Fig. 7(right) in which the 15% stress-strain curve is above the 5% and

10% ones. In our opinion, this discrepancy may be due to defects in the 15% material

(even if the two tests were almost superimposed); but it does not mitigate the remarkable

characteristics of the phenomena highlighted in the present paper.

4 Conclusion

In this paper, a thorough analysis of uniaxial tensile experiments on polyurethane elas-

tomer filled with hollow thermoplastics spheres has been conducted. Thanks to a two-

camera setup and digital image correlation, the surprising volumetric response of such

materials has been exhibited. Even if the lateral stretch and nominal stress vs. loading

stretch curves are very classical and look like the ones of standard elastomers, the change

in volume vs. pressure curve exhibits several slope changes in the loading-unloading

hysteresis loop.

This remarkable macroscopic response is the signature of complex microstructural

phenomena; as emphasized by Yousaf et al (2022) in the case of uniaxial extension it might

be explained by the “debonding of microspheres from the matrix material”. Such possible

explanations necessitate further investigation, and we hope that the present observations

will help to understand and model the mechanical response of HTMs filled elastomers.

13



References

Brown JA, Carroll JD, Huddleston B, et al (2018) A multiscale study of damage in

elastomeric syntactic foams. Journal of Materials Science 53(14):10,479–10,498. https:

//doi.org/https://doi.org/10.1007/s10853-018-2263-y

Coret M, Verron E, Rublon P (2022) Images and data accompanying article: Remarkable

response of hollow thermoplastic microspheres-elastomer matrix composites in uniax-

ial tension. [data set]. Zenodo https://doi.org/https://doi.org/10.5281/zenodo.

6390478

Crevoisier JD, Besnard G, Merckel Y, et al (2012) Volume changes in a filled elastomer

studied via digital image correlation. Polymer Testing 31(5):663–670. https://doi.

org/https://doi.org/10.1016/j.polymertesting.2012.04.003

Curd ME, Morrison NF, Smith MJA, et al (2021) Geometrical and mechanical character-

isation of hollow thermoplastic microspheres for syntactic foam applications. Compos-

ites Part B: Engineering 223:108,952. https://doi.org/https://doi.org/10.1016/

j.compositesb.2021.108952

De Pascalis R, Abrahams ID, Parnell WJ (2013) Predicting the pressure–volume

curve of an elastic microsphere composite. Journal of the Mechanics and Physics of

Solids 61(4):1106–1123. https://doi.org/https://doi.org/10.1016/j.jmps.2012.

11.005

Gupta N, Ye R, Porfiri M (2010) Comparison of tensile and compressive characteris-

tics of vinyl ester/glass microballoon syntactic foams. Composites Part B: Engineering

41(3):236–245. https://doi.org/https://doi.org/10.1016/j.compositesb.2009.

07.004

Gupta N, Zeltmann SE, Shunmugasamy VC, et al (2014) Applications of polymer matrix

syntactic foams. JOM, The Journal of Minerals, Metals & Materials Society 66(2):245–

254. https://doi.org/https://doi.org/10.1007/s11837-013-0796-8

Paget B, Zinet M, Cassagnau P (2021) Syntactic foam under compressive stress: Compar-

ison of modeling predictions and experimental measurements. Journal of Cellular Plas-

tics 57(3):329–346. https://doi.org/https://doi.org/10.1177/0021955X20943112

Scipy documentation (2021) https://docs.scipy.org/doc/scipy/reference/

generated/scipy.signal.savgol_filter.html. Version 171

Shorter R (2014) The mechanical behaviour of elastomers when hollow microspheres are

used as a particulate filler. PhD thesis, Queen Mary University of London

14



Shorter R, Thomas AG, Busfield JJC, et al (2007) The physical behaviour of elastomers

containing hollow spherical fillers. In: Boukamel A, Laiarinandrasana L, Méo S, et al
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