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ABSTRACT
This paper proposes a method for predicting the traffic status of a
city within time windows. The method takes advantage of space-
partitioning, closed sequential pattern extraction, emerging pattern
detection, and Markov chain modeling. From trajectories, we iden-
tify active regions in which moving objects mostly visit. The traffic
status of each region is detected based on continuous tracking
of closed sequential patterns evolution over time. Based on the
proposed Markov model, the near-future status of traffic is then
predicted. The traffic status is reported on maps and can be used
to enhance future city transportation. The experiments on real-
world data sets show that the proposed method provides promising
results.

KEYWORDS
Closed sequential patterns, emerging patterns, Markov chains, mov-
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1 INTRODUCTION
Smart city concept has become essential to manage the city and
to provide innovative services to citizens. Traffic prediction is one
of these services and aims to improve the mobility in the city [16].
Indeed, the increasing of the urban population makes the creation
of intelligent transportation systems strategic. IT platforms and
sensor networks play a crucial role in the management of the spatio-
temporal data, preprocessing, traffic prediction and services [6]
[30]. Traffic prediction [25] refers to: (1) traffic status prediction:
congestion prediction in future time, (2) traffic flow prediction:
prediction of traffic flows in future time, and (3) travel demand
prediction: prediction of people’s travel demands in order to better
dispatch taxi vehicles for different regions. The practical goal of
this work is to deliver a global view of current or future traffic
status in regions of interest (see Figure 6). Prior short term traffic
predictions models can be used directly by experts to take relevant
actions against prevailing or incipient traffic trends. Developing
such prediction systems needs trajectory historical data analysis
which can be also used in other applications such as improving
route navigation and urban area planning [14] [17]. Markov models
have been widely used in the field of traffic prediction in order
to improve traffic flow [29], predict traffic conditions [20] [27],
forecast travel speed [28], and predict routes [13].

In this paper, we focus on traffic status prediction by analysing
the evolution of traffic. In fact, we analyze the trajectories of vehicles
in historical data to detect and visualize the evolution of traffic
in the city. We propose a new method for predicting the traffic
status (increasing, decreasing, etc.) in the next future. This method

is called SP4TP (Sequential Patterns for Traffic Prediction) and
its originality is to leverage space partitioning, closed sequential
pattern mining [9], emerging pattern mining [7], and Markov chain
modeling [22]. The space area is divided into regions (uniformed
squares) using a given spatial granularity value. Considering a
selected region and a time windows, our method based on Markov
models predicts the next traffic status. To train the proposedMarkov
model, we determine the traffic status by detecting the evolution
types (Emerging, Decreasing, etc.) of sequential formal concepts
(containing closed sequential patterns) extracted from trajectory
data [2] [3]. The prediction results are visualized in geotagged
maps. To the best of our knowledge, no prior methods based on
sequential patterns, emerging patterns, and Markov models have
been proposed to build traffic prediction models. Two real-world
data sets from two cities, Beijing and San Francisco, are used in the
experiments to evaluate our method and compare it to an itemset
based approach and a baseline method which does not use patterns.
We also assess the advantage of using sequential patterns in our
context.

The rest of the paper is organised as follows. Section 2 presents
the notions useful for understanding the paper. Related work is
discussed in Section 3. The proposed method, SP4TP, is detailed in
Section 4. Section 5 presents the experimental results. Finally, we
conclude in Section 6.

2 PRELIMINARIES
In this section, we present the notions useful to understand the
proposed method (in Section 4): frequent itemsets, sequential pat-
terns, formal concepts, emerging patterns, and Markov chains. We
illustrate some notions on an example: a set of moving object tra-
jectories (see Figure 1 (a)).

2.1 Processing Trajectories to Sequences
A trajectory 𝑇𝑟 𝑗𝑖 is an ordered set of points. A point is a times-
tamped GPS-location, i.e., (time, latitude, longitude) [30]. Figure 1
(b) presents 4 trajectories over two days. The space area is divided
into uniform grid cells, e.g., 40 meters (corresponding to the spatial
granularity value). Each trajectory is split according to the time
granularity value, e.g., one day, and labelled by the corresponding
time value. Let us note that a trajectory can be also split into sub-
trajectories reflecting several journeys in relation to the detected
long stops, for instance. 𝑇𝑟 𝑗1 has been slit into 5 sequences: 𝑠1, 𝑠2,
. . . , 𝑠5. Trajectories are then mapped in the raster area to obtain
the data set presented in Figure 1 (c). For instance, the sequence 𝑠2
occurs in Day 1 and is composed of grid cells 20, 16 and 15.
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(a) Moving object trajectories.

(b) Mapping on raster area.

seq-Id Sequences Label

𝑇𝑟 𝑗1

𝑠1 <(13)(17)(21)(25)(26)(27)(28)(24)> Day1
𝑠2 <(20)(16)(15)> Day1
𝑠3 <(19)(23)(22)(18)> Day1
𝑠4 <(14)(10)(6)> Day1
𝑠5 <(5)(9)(13)(17)> Day1

𝑇𝑟 𝑗2
𝑠6 <(9)(10)(11)(15)> Day1
𝑠7 <(19)(23)(22)(26)> Day1

𝑇𝑟 𝑗3

𝑠8 <(20)(16)> Day2
𝑠9 <(15)(11)(10)(9)(13)> Day2
𝑠10 <(14)(15)(19)(23)(27)> Day2

𝑇𝑟 𝑗4
𝑠11 <(5)(6)(7)(11)(15)> Day2
𝑠12 <(14)(13)(9)(10)> Day2

(c) Sequential data set with time labels.

Figure 1: From trajectories to sequences.

2.2 Frequent Itemsets and Sequential Formal
Concepts

Frequent itemsets have been introduced in [1]. Their extraction
corresponds to finding the sets of items (i.e., attribute values) that
appear simultaneously in at least a certain given number of trans-
actions (i.e., objects) recorded in a database. In the case of ordered
items in the data set (like trajectory data), sequential patterns are
extracted [9].

Let I = {𝑖1, ..., 𝑖𝑘 } be a set of items. A subset 𝐼 ⊆ I is called
an itemset. |𝐼 | denotes the number of items of 𝐼 . A sequence is an
ordered list of itemsets. It can be represented as 𝑠 = <(𝐼1) (𝐼2) ...(𝐼𝑘 )>
where each 𝐼𝑖 is a subset of I and 𝐼𝑖 comes before 𝐼 𝑗 if 𝑖 ≤ 𝑗 .
The aim is to find all the frequent subsequences in a sequential
database. Let S = <𝑠1, ..., 𝑠𝑛> be a list of sequences in a database. A
sequence 𝑠1 = <𝑎1, . . . , 𝑎𝑚> is a subsequence of another sequence
𝑠2 = <𝑏1, . . . , 𝑏𝑛>, denoted by (𝑠1 ⊆ 𝑠2 ), if there are integers 1 ≤
𝑖1 ≤ 𝑖2 ≤ · · · ≤ 𝑖𝑚 ≤ 𝑛, such as 𝑎1 ⊆ 𝑏𝑖1 , 𝑎2 ⊆ 𝑏𝑖2, . . . , and
𝑎𝑚 ⊆ 𝑏𝑖𝑚 . 𝑠2 is called a super-sequence of 𝑠1 (𝑠2 contains 𝑠1).
The support of a sequence 𝑠𝑛 , noted 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑠), is the number of
occurrences of 𝑠𝑛 in S. A sequence 𝑠 is said to be a sequential
pattern (also called a frequent sequence) if 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑠) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝 ,
where𝑚𝑖𝑛𝑠𝑢𝑝 is the minimum support threshold value set by the
user. One of the limitations of using sequential pattern algorithms,
is that it generates the full set of sequential patterns and scans
the database many times when a longer pattern exists. This is
why, closed sequential patterns are interesting. Closed sequential
patterns are the set of sequential patterns that are not included in
other sequential patterns having the same support because they
represent the largest frequent subsequences common to sets of
sequences. A sequential pattern 𝑠1 is closed if �𝑠2 with 𝑠1 ⊂ 𝑠2 and
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑠1) = 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑠2).

In Figure 1 (c), the sequence 𝑠 = <(19) (23) (22)> is contained
in 𝑠3 end 𝑠7. If 𝑚𝑖𝑛𝑠𝑢𝑝 is set to 2, 𝑠 is frequent. Moreover, 𝑠 is
the maximal subsequence shared by 𝑠3 and 𝑠7, 𝑠 is thus a closed
sequential pattern.

Given a sequential data set, there is a unique ordered set that
describes the inherent lattice structure defining natural groupings
and relationships among the objects and their related sequences

[10]. This structure is called a sequence concept lattice. Each el-
ement of the lattice is a couple, called sequence formal concept,
composed of a set of objects𝑂 (the extent) and a set of sequences 𝑆
(the intent). We call sequential formal concepts, the sequence for-
mal concepts that have at least𝑚𝑖𝑛𝑠𝑢𝑝 objects in their extent, and
sequential concept lattice, the lattice formed using the sequential
formal concepts.

In the example (Figure 1 (c),𝑚𝑖𝑛𝑠𝑢𝑝=2), the sequential formal
concepts are: ({𝑠3, 𝑠7} ; {<(19) (23) (22)>}), ({𝑠3, 𝑠7, 𝑠10} ; {<(19) (23)>}),
({𝑠4, 𝑠10, 𝑠12} ; {<(14)>}), ({𝑠4, 𝑠12} ; {<(14) (10)>}), etc.

2.3 Emerging Patterns
Given two data sets D𝑖 , D𝑗 , the quantitative evaluation of the
contrast between data sets brought by a pattern is measured by its
growth rate [7]. The growth rate of a pattern 𝑋 from D𝑗 to D𝑖 is
defined by (1).

𝐺𝑅 𝑗,𝑖 (𝑋 ) =
|D𝑗 |
|D𝑖 |

× 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑋,D𝑖 )
𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑋,D𝑗 )

. (1)

The more𝐺𝑅 𝑗,𝑖 (𝑋 ) is high, the more 𝑋 characterizes D𝑖 compared
to D𝑗 . Given a threshold value𝑚𝑖𝑛𝑔𝑟 > 1, a pattern 𝑋 is an emerg-
ing pattern from D𝑗 to D𝑖 if 𝐺𝑅 𝑗,𝑖 (𝑋 ) ≥ 𝑚𝑖𝑛𝑔𝑟 . An important
class of emerging patterns are jumping emerging patterns which
correspond to a subset of patterns that is present in one class and
absent from the other. If 𝐺𝑅 𝑗,𝑖 (𝑋 ) = +∞, 𝑋 is said to be a jumping
emerging pattern from D𝑗 to D𝑖 .

Considering sequential patterns and the example of Figure 1
(c), we observe that 𝑠 = <(19) (23) (22)> is not present in Day2
(𝑠𝑢𝑝𝑝𝑜𝑟𝑡 (𝑠, 𝐷𝑎𝑦2) = 0) whereas its support in Day1 is equal to 2.
Thus, 𝑠 is a jumping emerging sequential pattern from Day2 to
Day1.

2.4 Predictive Models and Markov Chains
Markov chains are a mathematical formalism from probability the-
ory which is used to model the possible states of a system and the
transitions among these states over time [22]. Figure 2 presents a
simple transition diagram of a Markov model. The nodes represent
the states of the model, and the arrows represent the transitions.
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𝑒1 𝑒2𝜆𝑒1𝑒1

𝜆𝑒2𝑒1

𝜆𝑒1𝑒2

𝜆𝑒2𝑒2

Figure 2: Markov chain example.

The change from the state 𝑒1 to state 𝑒2 is activated by the occur-
rence of the transition with probability 𝜆𝑒1𝑒2 . Let us note that the
transition rates are associated in case of continuous time, while
we have probabilities in discrete time. The duration of residence
in each state are random variables of an exponential distribution.
At an instant of time, the change to a next state depends only on
the current state and not on the time elapsed in that state. Markov
chain models can also be represented by a transition matrix. For
example, for the two states 𝑒1, 𝑒2, Four combinations are possible
and can be represented in a transition matrix as follows:

𝑒1 𝑒2

P =
𝑒1
𝑒2

[
𝜆𝑒1𝑒1 𝜆𝑒1𝑒2
𝜆𝑒2𝑒1 𝜆𝑒2𝑒2

]
(2)

The sum of all the probabilities of the transitions from a state
must be 1.0. Two types of prediction can be obtained from such
models: long term and short term predictions. A stationary analysis
for Markov models allows to make a long-term prediction. This
is the probability that remains unchanged as time progresses. To
compute the stationary probabilities, a vector 𝜋 which satisfies
the equation 𝜋 .𝑃=0 is needed. This vector 𝜋 can be found by two
different ways: iterative methods (Gauss-Seidel method, Power
method, etc.) or direct methods [22]. While the transient analysis
allows to predict the evolution of the model from a given state
and for a specified period, mainly it represent the distribution of
the system at a given time (short-term prediction). In order to find
the transient probabilities, the uniformization method [11] can be
employed to compute how many 𝜋 = 𝑃 (𝜋-1) are necessary to arrive
to 1 time unit from the initial state. The transient distribution at
time 𝑡 is obtained by computing an approximation to the infinite
summation. Equation 3 presents the uniformization formula where
𝜋 (0) is an initial distribution, and (Γ𝑡 )𝑘

𝑘! 𝑒−Γ𝑡 is the probability that
a Poisson random variable with uniform rate parameter Γ takes the
value 𝑘 (see Equation 4).

𝜋 (𝑡) =
∞∑︁
𝑘=0

𝜋 (0)𝑃𝑘 (Γ𝑡)
𝑘

𝑘!
𝑒−Γ𝑡 (3)

P{𝑁 (𝑡) = 𝑘} = (Γ𝑡)𝑘
𝑘!

𝑒−Γ𝑡 𝑘 ≥ 0, 𝑡 ≥ 0 (4)

The proposed method in this paper is concerned with Discrete
TimeMarkov Chain (DTMC) where the state of a system is observed
at discrete set of times, including periodicity and recurrence in a
finite state-space case.

3 RELATEDWORK
Markov chains are often used in a traffic prediction context contrary
to sequential patterns. Sequential pattern mining is used in a more
general context to analyze spatio-temporal data.

In [24] the authors adapted the classical closed frequent sequence
pattern mining algorithm CloSpan to moving trajectory frequent
pattern mining. This algorithm, called MTCloSpan, is tested ac-
cording to the𝑚𝑖𝑛𝑠𝑢𝑝 value and the characteristics of trajectories
(number and length). The authors of [15] proposed an algorithm,
called CST-SPMiner, to discover all participation index strong spatio-
temporal sequential patterns from event data. Nevertheless, event
data are quite different to moving object trajectory data and this
work can not be used in our context. Sequential patterns are very
usual. However, our method extracts more than sequential patterns,
we compute sequential formal concepts which are more informative
(transactions IDs, sequence sets) and allow easier exploitation.

Wang et al. proposed a periodic pattern mining of structural
evolution in the case of complex trajectories [23]. Mining peri-
odic patterns from spatio-temporal trajectories reveals information
about people’s regular and recurrent movements and behaviors.
In [12], the authors proposed a method to mine spatio-temporal
periodic patterns in the traffic data and use these periodic behaviors
to summarize the huge road network by clustering. In our work, we
do not interest in periodicity but in evolution of extracted patterns
over time (between two studied time windows, are they emerging,
jumping, lost, etc.?). The evolution types of our method character-
ize the traffic status trends. We want to predict the traffic status in
the next future.

Many recent works has been devoted to develop methods based
onMarkovmodels in order to predict, for instance, traffic conditions,
congestions, routes and destinations. In [20], the authors proposed
a probabilistic approach using Hidden Markov Model (HMM) to
model the stochastic variation of traffic conditions and predict the
traffic conditions over short time periods. The model defines traffic
states based on speed observations of vehicles. Zaki et al. presented
in [27] a model, based on HMM, to define the traffic states during
peak hours in two dimensional space. The model uses mean speed
and contrast to capture the variability in traffic patterns.

Most of works based on vehicles speed use sensors at specific
road places. We can say that these methods are local while our
approach is global. Our method operates at a more macroscopic
level by using any mobility GPS data.

Bouyahia et al. [4] presented a two stage method for predicting
traffic congestions. The first stage uses a Markov random field to
model and predict the propagation of traffic congestion. The road
network is assimilated to a graph. The second stage allows to or-
ganize the deployment of the traffic regulation resources using a
Markov decision process. In [21], Rathore et al. proposed a frame-
work for trajectory prediction from GPS data. The framework is
based on trajectory clustering to find frequent route patterns. For
each cluster of trajectories, a Markov chain model is trained to
make future trajectory prediction. As our method, a special step
is done before training the Markov models. In our case, this is the
computation of the sequential formal concepts and the detection of
their evolution types.
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The previously mentioned works show that Markov models are
widely used in a traffic context. Nevertheless, to the best of our
knowledge, there is no work combining sequential patterns, detec-
tion of patterns evolution, and Markov models to predict trends
and traffic evolution.

4 SP4TP METHOD
In this section, we present the proposed method, called SP4TP (Se-
quential Patterns for Traffic Prediction), which considers extracting
traffic evolution status in a study area to make predictions. Figure
3 shows a general overview of this method. The main steps are:

• Spatio-temporal preprocessing (see Section 4.1),
• Pattern mining and status detection (see Section 4.1),
• Region traffic model construction (see Section 4.2),
• Prediction (see Section 4.2).

For a given region and two time windows, the method computes the
closed formal concepts (i.e., closed sequential patterns associated to
sequence IDs) and detects their evolution types between the times
windows. These evolution types (considered as traffic status) are
used as input to train the proposed Markov model, which will use
to predict the traffic status in the next future windows.

4.1 Pattern Mining and Status Detection
In order to extract specific region traffic status, we applied the
method mentioned in Section 2.1. The studied area is divided into
grid cells according to a spatial granularity value. Trajectories are
then mapped in the discretized area. This discrete representation of
trajectory is used to compute the sequential formal concepts (see
Section 2.2) according to𝑚𝑖𝑛𝑠𝑢𝑝 (the minimum threshold value to
consider the traffic).

Let (𝑂, 𝑆) be a sequential formal concept, 𝜃 be the minimum
threshold value of emergence, and 𝜖 be the error tolerance. In this
context, the pattern evolution of each concept (𝑂, 𝑆) between time
𝑖 and time 𝑖-1 is detected by computing 𝐾𝑖 , an indicative value of
𝑆 , between time 𝑖 and time 𝑖-1 (see Equation 5). 𝐾𝑖 is related to the
growth rate of a pattern (see Section 2.3).

𝐾𝑖 (𝑂, 𝑆) =
𝑐𝑜𝑢𝑛𝑡 (𝑂, 𝑡𝑖 )
𝑐𝑜𝑢𝑛𝑡 (𝑂, 𝑡𝑖−1)

(5)

Where 𝑐𝑜𝑢𝑛𝑡 (𝑂, 𝑡 𝑗 ) is the number of trajectories of 𝑂 labeled by
the corresponding 𝑡 𝑗 . We apply the following rules based on the 𝐾𝑖
value. If 𝐾𝑖 (𝑂, 𝑆) = 0 ± 𝜖 , then the type of 𝑆 is lost. If ((𝐾𝑖 (𝑂, 𝑆) >
𝜃 ) ∧ (𝜃 = 1)) ∨ ((𝐾𝑖 (𝑂, 𝑆) ≥ 𝜃 ) ∧ (𝜃 > 1))) then the type of 𝑆
is emerging. If 𝐾𝑖 (𝑂, 𝑆) < 𝜃 , then the type of 𝑆 is decreasing. If
𝐾𝑖 (𝑂, 𝑆) = 1 ± 𝜖 , then the type of 𝑆 is latent. If 𝐾𝑖 (𝑂, 𝑆) = +∞, then
the type of 𝑆 is jumping. In a more intuitive way, Emerging means
that the presence of the pattern increased in 𝑡𝑖+1 compared to 𝑡𝑖 ;
Decreasing means that the presence of the pattern decreased in
𝑡𝑖+1 compared to 𝑡𝑖 ; Latent means that the presence of the pattern
is quite similar in both time. Jumping means the pattern which
was absent in 𝑡𝑖 , appeared in 𝑡𝑖+1. Lost means that the pattern
disappeared in 𝑡𝑖+1.

Table 1 presents some examples of evolution type detection from
the sequential data in Figure 1 (c). The sequence < (14) (10) > has
been detected as Latent, 𝐾2 is equal to 1. This sequence appears in
the same way at time 1 and time 2.

Table 1: Some sequential formal concepts and their evolution
types obtained from Figure 1 (c) with𝑚𝑖𝑛𝑠𝑢𝑝 = 2, 𝜃 = 1, and
𝜖 = 0

Extent (O) Intent (S) 𝐾2 Evolution type
{𝑠3, 𝑠7} {< (19) (23) (22) >} 0 Lost

{𝑠3, 𝑠7, 𝑠10} {< (19) (23) >} 0.5 Decreasing
{𝑠4, 𝑠10, 𝑠12} {< (14) >} 2 Emerging
{𝑠4, 𝑠12} {< (14) (10) >} 1 Latent

The status of a grid cell is set by considering the evolution type
of all the sequential formal concepts that contain this grid cell in its
intent and by applying a majority vote. Let 𝑆𝑇 be the set of status
labels: 𝑆𝑇={𝐿𝑎𝑡𝑒𝑛𝑡 (LA), 𝐸𝑚𝑒𝑟𝑔𝑖𝑛𝑔 (E), 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 (D), 𝐽𝑢𝑚𝑝𝑖𝑛𝑔
(J), 𝐿𝑜𝑠𝑡 (LO), 𝑁𝑜𝑡ℎ𝑖𝑛𝑔 (∅)}. For each grid cell 𝑔𝑖 , we determine
the status vector𝑉𝑔𝑖 =< 𝑆𝑇𝑡𝑚𝑖𝑛

, 𝑆𝑇𝑡2 , ...., 𝑆𝑇𝑡𝑚𝑎𝑥
> where 𝑆𝑇𝑡 𝑗 is the

detected status for 𝑔𝑖 at time 𝑡 𝑗 , and [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ] is the studied time
interval. This vector expresses a sequence of changing states over
a discrete time.

Figure 4 presents an example to determine status vectors. The
status vector of 𝑔13 is𝑉𝑔𝑖 =< 𝐽 , 𝐸, 𝐸, 𝐸, ., ., . >. For 𝑡3, there are three
detected status: 𝐸, 𝐸, and 𝐿𝐴. A majority voting process is needed
and gives 𝐸 as result.

Status vectors are used in the next step of our method as input
to train the proposed Markov model.

4.2 Modeling Traffic Status by Markov Chains
To predict traffic status, we propose a method based on Markov
model representations. Our method uses a specific area and a time
window as inputs for studying each grid cell pattern trends. The
proposed algorithm that builds the model is composed of three main
steps. The first step leads to a graph, where nodes are status of a
grid cell and edges represent the transition between two status. The
strength of a given transition between nodes A and B is represented
by the parameter 𝜆𝑎𝑏 . The role of the second step is to compute
values of all parameters 𝜆. The last step computes the transits state
probability vector for an initial state. More details about these three
steps are given below.

Step 1: Considering the set of status 𝑆𝑇 (see Section 4.1), we
construct the structure of the model presented as a graph in Figure
5, which represents the Discrete-Time Markov Chain model for
each grid cell. The corresponding transition matrix (𝑛 ×𝑛 with 𝑛=6)
is defined in Equation 6. Let us remark that the real-world modeling
leads to ignore some transitions. For instance, there is no transition
from LO to D because it is not possible to switch from Lost status
(LO) to Decreasing status (D).

E D LA J LO ∅

P =

E
D
LA
J
LO
∅



𝜆𝑒𝑒 𝜆𝑒𝑑 𝜆𝑒𝑙𝑎 0 𝜆𝑒𝑙𝑜 𝜆𝑒 ∅
𝜆𝑑𝑒 𝜆𝑑𝑑 𝜆𝑑𝑙𝑎 0 𝜆𝑑𝑙𝑜 𝜆𝑑 ∅
𝜆𝑙𝑎𝑒 𝜆𝑙𝑎𝑑 𝜆𝑙𝑎𝑙𝑎 0 𝜆𝑙𝑎𝑙𝑜 𝜆𝑙𝑎∅
𝜆 𝑗𝑒 𝜆 𝑗𝑑 𝜆 𝑗𝑙𝑎 0 𝜆 𝑗𝑙𝑜 𝜆 𝑗 ∅
𝜆𝑙𝑜𝑒 0 0 𝜆𝑙𝑜 𝑗 0 𝜆𝑙𝑜 ∅
𝜆∅𝑒 0 𝜆∅𝑙𝑎 𝜆∅ 𝑗 0 𝜆∅∅


(6)
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Figure 3: Overview of the proposed method.
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Figure 4: Example of grid computed status vector.

Wewill use two indexes 𝑖 and 𝑗 for accessing to a transition value
𝜆 between the nodes𝐴 and 𝐵 corresponding to 𝑖 and 𝑗 , respectively.
For example, 𝑝12 corresponds to 𝜆𝑒𝑑 (the transition from E to D).

Step 2: During this second step, we compute the transition prob-
abilities 𝜆. A discrete-time Markov chain is a process whose state
space is finite with time interval indexes as 𝑡 = (1, 2, ...). The gen-
erated discrete time vector of status for each grid cell (see Figure
4) has randomness and the probability to have a certain state that
depends only on the current state and not the whole previous states
in the generated vector. 𝑃 is the transition probability matrix where
each 𝑝𝑖 𝑗 representing the probability of moving from state 𝑖 to state

𝑗 . The matrix elements are not negative, and
𝑛∑
𝑗=1

𝑝𝑖 𝑗 = 1 ∀𝑖 . Thus,

the probability 𝑝𝑖 𝑗 is given by Equation 7.

𝑝𝑖 𝑗 =
𝑓𝑖 𝑗∑𝑛

𝑘=1 𝑓𝑖𝑘
(7)

Where 𝑓𝑖 𝑗 is the number of occurrences of the transitions from 𝑖

to 𝑗 observed in the data, and
∑𝑛
𝑘=1 𝑓𝑖𝑘 is the sum of the frequencies

of 𝑖 to all other states 𝑘 .
In our context, a transition represents a change in traffic status

from one time interval to another. For each transition, a probability
is associated which is the ratio of the number of changes from state
𝑖 to state 𝑗 divided by the total number of changes from state 𝑖 .

Step 3: In the last step, we calculate the transits state probability
vector for a given initial state 𝑠0 which is defined according to the
requested time to be predicted. Our assumption is that the detected
traffic status at some point in the future (t+1) can be determined
as a function of current traffic status (t), more precisely: 𝑝𝑖 𝑗 =
P(𝑉𝑛+1 = 𝑗 | 𝑉𝑛 = 𝑖), which is one step transition probability.

Given a positive integer 𝑚, the m-step transition probability
𝑝
(𝑚)
𝑖 𝑗

is the probability to reach the state 𝑗 after𝑚 steps starting

from the state 𝑖 , 𝑝 (𝑚)
𝑖 𝑗

= P(𝑉𝑛+𝑚 = 𝑗 | 𝑉𝑛 = 𝑖). In this work, we are
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Figure 5: Proposed model for each grid cell.

interested in computing the traffic status after𝑚 steps. Thus, the
uniformization method (see Equation 3 in Section 2.4) is used to
solve the model and obtain the vector of transient probability.

Let us consider the example of the grid cell𝑔13 (see Figure 4). The
vector 𝑉𝑔13 =< 𝐽 , 𝐸, 𝐸, 𝐸, 𝐿𝐴, 𝐷, ∅ > contains the observed status
for each time 𝑡 . From this vector, the transition probabilities are
computed as described in Step 2. Starting from 𝑠0=𝐽 in 𝑡1, the vector
𝜋 is computed by applying the power method and uniformization
method (there are 16 iterations). The maximal value in this vector
is obtained for the transition 𝑗 → 𝑒 (the value is 0.522977). Thus,
the predicted status for the next time 𝑡2 is 𝐸 (i.e., Emerging).

5 EXPERIMENTS
This section presents the experiments performed on two real-world
data sets. After the description of the data sets, we describe the
experimental protocol and discuss the results.

5.1 Data
In the experiments, we have used two real-world taxi mobility data
sets from two cities: Beijing (China) and San Francisco (USA). Table
2 provides a summary of those data sets.

T-Drive data set contains a large amount of taxi GPS trajectories
collected in Beijing by Microsoft Research Asia [26]. The original
data set contains the trajectories of 10,357 taxis during one week
from 2 February 2008 to 8 February 2008. The total number of points
is about 15 million and the total distance of the trajectories reaches
9 million kilometers. The GPS coordinates were returned every 5 to

Table 2: Taxi mobility data sets

Characteristics Beijing (T-Drive) San Francisco
Measurement GPS GPS

Number of samples 15 million 11 million
Duration 1 week 24 days

Number of taxis 10,357 500

10 seconds. In order to perform our experiments, we have chosen
222 taxis randomly.

The second data set is Taxi cabs San Francisco which is available
from the CRAWDAD website [18]. San Francisco data set includes
500 taxis trajectories over 24 days during the period from 17 May
2008 to 10 June 2008 in the San Francisco Bay Area. This data set
contains approximately 11 million taxi GPS samples, with a median
time gap between two consecutive GPS measures of 60 seconds.
After a preprocessing step of the data, we have obtained 455 active
taxis.

5.2 Protocol
The following experimental protocol has been applied to each data
set. First, we started by preprocessing all the trajectory data. The
trajectories were segmented according to the time granularity value
set to 12 hours (AM, PM). The study areas were divided into regions
by setting the spatial granularity value to 15, 30, 60, or 120 meters.

After this preprocessing step, we detected the traffic status of
each region between each pair of contiguous time windows (see
Section 4.1). For this, we set𝑚𝑖𝑛𝑠𝑢𝑝 to 10 for T-Drive and𝑚𝑖𝑛𝑠𝑢𝑝
to 45 for San Francisco data set, 𝜃 = 1, and 𝜖 = 0. Let us remark
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Table 3: Global average accuracy for T-Drive (Beijing) Data

Spatial gr. Baseline SP4TP (it.) SP4TP (seq.)
15 m 0.747 0.921 0.962
30 m 0.785 0.906 0.942
60 m 0.807 0.902 0.929
120 m 0.831 0.900 0.920

that the parameter setting is proper to each data set and requires
some tests. We present here the best obtained results.

Considering the previous detected traffic status as data, the
Markov model has been built for each region (see Section 4.2).
The proposed method have been applied by changing the start state
𝑠0 during a time interval of 7 days for T-drive, and 24 days in San
Francisco data. From 𝑡𝑖 , the traffic state of 𝑡 𝑗 has been predicted,
𝑖 = 1 . . . 6 and 𝑗 = 2 . . . 7 for T-Drive. 𝑖 = 1 . . . 23 and 𝑗 = 2 . . . 24 for
San Francisco data.

For the evaluation step, we have compared the predicted status
to the real status. We have computed the local accuracy values,
the accuracy values for each traffic status and the global average
accuracy values. We have compared our proposition to two other
approaches to detect traffic status: a baseline approach that does
not consider patterns (only singletons), and an itemset approach
that does not consider the order of items. In each case, we have
used our Markov model and only the way to obtain the traffic status
are different. So, we evaluated the gain of using our approach based
on sequential patterns.

We have implemented our proposition mainly with JAVA. We
have used the SPMF library [8] (developed in JAVA) for computing
patterns, and the PEPS software tool [5] (developed in C++) for
solving Markov models. All the experiments were performed on an
Intel Xeon X5560 2.8GHz with 16GB of memory.

5.3 Results
Tables 3 and 4 present the global average accuracy obtained by
applying our proposition (noted SP4TP seq.) and the two other
methods: Baseline and Itemsets (noted SP4TP it.) on T-Drive and San
Francisco data sets. We can observe that if the spatial granularity
value decreases, the accuracy tends to increase for SP4TP (it. and
seq.). Nevertheless, the spatial granularity value can not be too
low because there will be some difficulties to detect patterns (high
number of regions, execution time, memory space). For the Baseline
approach, if the spatial granularity value decreases, the accuracy
tends to decrease. The absence of relations between grid cells (i.e.,
patterns) is the explanation. For T-Drive (Beijing), our proposition
outperforms the frequent pattern and the baseline approach for all
different spatial granularity values. For San Francisco data set, our
proposition has obtained best results for low spatial granularity
values but the gain is not very significant. We can explain that by
the relative quality of the collected data of San Francisco, especially
the high time between two GPS measures (this can be a problem to
correctly detect patterns).

Tables 5 and 6 present the average accuracy values per status
obtained with T-Drive and San Francisco data set, respectively. As
we can see, the Lost and Jumping status are particular. They are very
few and well predicted (almost no errors). We obtained very high

Table 4: Global average accuracy for San Francisco Data

Spatial gr. Baseline SP4TP (it.) SP4TP (seq.)
15 m 0.8984 0.922 0.924
30 m 0.901 0.909 0.910
60 m 0.899 0.897 0.899
120 m 0.903 0.902 0.909

Table 5: Average accuracy per status for T-Drive (Beijing)
Data

Status Baseline SP4TP (it.) SP4TP (seq.)
Emerging 0.653 0.775 0.849
Decreasing 0.754 0.936 0.945
Latent 0.784 0.969 0.987
Lost 0.880 1 0.999

Jumping 0.754 0.987 0.986
Nothing 0.929 0.778 0.863

Table 6: Average accuracy per status for San Francisco Data

Status Baseline SP4TP (it.) SP4TP (seq.)
Emerging 0.732 0.827 0.836
Decreasing 0.729 0.790 0.797
Latent 0.944 0.990 0.988
Lost 0.997 1 1

Jumping 0.997 1 1
Nothing 0.999 0.837 0.841

values. We can say that, here, these status are not very significant.
Let us focus on Emerging, Decreasing and Latent. SP4TP (especially
with sequences) outperforms the Baseline method which has its
worst results. We can remark that the Baseline method has obtained
the best result for the status Nothin but this status is not very
informative and useful for user applications. For example, Figure
6 presents a tagged maps of Beijing. Regions having the Nothing
status are not colored because we cannot conclude on them. To
analyse the traffic or to establish a travel, a user or an application
will naturally lean on the other status (Emerging, Jumping, . . . ).

6 CONCLUSION
In this paper, we have proposed a new method for predicting the
traffic status in the next future. This method, called SP4TP, lever-
ages closed sequential patterns, emerging patterns and Markov
chains. The experimental results on real-world data sets from Bei-
jing and San Francisco have shown that our proposition based on
sequential patterns (via sequential formal concepts) outperforms
the alternative approaches using itemsets or not using patterns.

In future work, we will perform other experiments with more
data sets and compare with other existing systems. Furthermore, we
will improve and extend our model to encode the relations between
regions (for instance, related to road networks). For this, we can use
the SAN (Stochastic Automata Networks) formalism [19] which are
able to model the system by the composition of a set of sub-system
and it is equivalent to Markov Chains.
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Figure 6: An example of tagged map of Beijing (Blue=Latent,
Green=Emerging, Red=Decreasing).
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