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Turbulence has been recognized as a factor of paramount importance for the survival or extinction
of sinking phytoplankton species. However, dealing with its multiscale nature in models of coupled
fluid and biological dynamics is a formidable challenge. Advection by coherent structures, as those
related to winter convection and Langmuir circulation, is also recognized to play a role in the
survival and localization of phytoplankton. In this work we revisit a theoretically appealing model
for phytoplankton vertical dynamics, and numerically investigate how large-scale fluid motions affect
the survival conditions and the spatial distribution of the biological population. For this purpose,
and to work with realistic parameter values, we adopt a kinematic flow field to account for the
different spatial and temporal scales of turbulent motions. The dynamics of the population density
are described by an advection-reaction-diffusion model with a spatially heterogeneous growth term
proportional to sunlight availability. We explore the role of fluid transport by progressively increasing
the complexity of the flow in terms of spatial and temporal scales. We find that, due to the large-scale
circulation, phytoplankton accumulates in downwelling regions and its growth is reduced, confirming
previous indications in slightly different conditions. We then explain the observed phenomenology
in terms of a plankton filament model. Moreover, by contrasting the results in our different flow
cases, we show that the large-scale coherent structures have an overwhelming importance. Indeed,
we find that smaller-scale motions only quite weakly affect the dynamics, without altering the
general mechanism identified. Such results are relevant for parameterizations in numerical models
of phytoplankton life cycles in realistic oceanic flow conditions.

I. INTRODUCTION

The occurrence of phytoplankton blooms is a topic of
considerable interest to oceanography, given its relation
to primary production and carbon export ﬂ, E] The
understanding of the biological and physical conditions
leading to blooms is, however, still incomplete. This is
due to the variety of intervening processes, as well as to
the lack of detailed information about the vertical struc-
ture of the phytoplankton biomass distribution, and of
the fluid flows that shape it.

Modeling studies in the field have been useful to ratio-
nalize the evidences from experimental observations into
theoretical, predictive, frameworks Bﬂ] Among these
theories, those addressing vertical dynamics in light-
limited environments have a rich history, starting from
the introduction of the concept of critical depth by Gran
and Braarud ﬂ], which lead to Sverdrup’s celebrated crit-
ical depth hypothesis B] The idea is that phytoplankton
blooms would only be possible when the mixed layer, the
weakly stratified upper part of the water column, is shal-
lower than a certain critical depth, defined as the point
where the population depth-integrated gains (due to pho-
tosynthesis) surpass the depth-integrated losses (due to
grazing and respiration). Sverdrup’s reasoning relies on
several assumptions: a well-mixed fluid layer; negligible
nutrient limitations; direct proportionality between the
photosynthetic biomass production and the available en-
ergy from the incoming radiation; a constant light atten-
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uation coefficient throughout the water column. Build-
ing on such ideas, and aiming to improve realism, sub-
sequent studies started to address also the role of algal
self-shading [9] and of turbulence [4] on phytoplankton
life cycles. A unifying framework for different previous
theories invoking the importance of the water-column
depth and of turbulence intensity emerged from the in-
fluential work of Huisman and collaborators on sinking
phytoplankton dynamics [10, [11]. Such previous studies,
however, focused on the one-dimensional (1D) dynamics
along the vertical, assuming that turbulence can be ap-
proximated by a diffusive process. Therefore, they could
not account for the effects due to its complex, multiscale,
character. In addition, persistent and well organized two-
dimensional (2D) fluid motions, as those characterizing
winter convection, were also suggested to play an impor-
tant role on phytoplankton survival ﬂﬁ, ﬁ]

In this work we develop a 2D model that allows us
to include the effects of both large-scale fluid motions
and smaller scale turbulent ones on the survival dynamics
of sinking phytoplankton in light-limited environments,
with the aim of extending the picture drawn from simpler
1D models ﬂE, ] In fact, studies discussing the influ-
ence of turbulence and horizontal advection over plank-
ton cycles, patchiness and survival have already shown
that fluid transport and mixing may considerably im-
pact the evolution of the population distribution (see,
e.g., ﬂﬂ, ]) Our approach shares some similarity with
the numerical investigations reported in Ref. ﬂE , based
on large-eddy simulations (LES), and in Ref. [17], em-
ploying a kinematic model of a stationary flow. In the
latter works, however, it is less evident how to disentangle
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the contributions from large and small flow scales than
in ours, where we proceed incrementally, adding time de-
pendency and smaller scales to the flow separately.

More specifically, we carry out numerical simulations
of an advection-reaction-diffusion model for the phyto-
plankton population density, in which the advecting ve-
locity field is specified by a kinematic cellular flow. The
flow will consist of a single (steady or unsteady) large-
scale mode spanning the whole depth of the system,
and a series of temporally varying modes with smaller
and smaller length scales. Such a choice allows for a
simplified description of the buoyancy and wind-driven
flows ﬂﬁ], such as convective currents and Langmuir cir-
culations, often encountered in the upper layers of oceans
and lakes. A distinguished feature of these flows is, in-
deed, the simultaneous presence of (small-scale) turbu-
lence and (large-scale) coherent structures.

We investigate the model dynamics, as a function of
the flow intensity and spatiotemporal structure, in a ver-
tical fluid layer of fixed depth. Owur system can then
be thought as representative of a coastal area or a lake,
where the mixed-layer depth undergoes smaller variations
than in the open ocean. Interestingly, some studies moti-
vated by either environmental monitoring ﬂE or the aim
of testing different theoretical hypotheses @] point
to the relevance of such fluid environments. Note, also,
that, as our main goal is to focus on the interplay be-
tween fluid transport and biological growth, for the sake
of simplicity, we neglect the dynamics of nutrients and
we do not explicitly represent those of predators. In our
setup, light availability is thus the only limiting factor
for phytoplankton growth.

This article is organized as follows. We introduce the
model dynamics for the pytoplankton density, and the
kinematic flow field, in Sec. [ The numerical results
are reported in Sec. [[IT, where we separately discuss the
different flow cases considered. Finally, discussions and
conclusions are presented in Sec. [Vl

II. MODEL

We adopt a 2D advection-reaction-diffusion model for
the dynamics of the population density field 6(z, z,t)
(number of individuals per unit volume), whose evolu-
tion equation reads:

%: (I) =1]6 —v -V + DV?. (1)
We consider such dynamics in a vertical fluid layer, in-
tended to represent the mixed layer, of horizontal and
vertical sizes L, and L., respectively, with rigid walls at
the top and bottom boundaries.

Biological growth is controlled by a production rate, p,
and a loss rate, [. Advection is realized by a 2D incom-
pressible flow u = (u,, u.) and phytoplankton is assumed
to sink with a speed vy 2, where 2 is the unitary vec-
tor pointing downward in the vertical direction; the total

velocity appearing in Eq. () is thus v = w+ v 2. The
coefficient D represents an effective diffusivity, due to
both small-scale unresolved turbulent motions and pos-
sible swimming behavior. The production term accounts
for both water background turbidity, with coefficient g,
and population self-shading, with an attenuation factor
k. Its functional form is:

. pma;ﬂI
p(r) = e 2

where pp,q. 18 the maximum specific production rate, H
is a half-saturation constant and the time- and depth-
dependent light-intensity is expressed as follows, accord-
ing to Lambert-Beer’s law:

1(2,) = Liye™ I3 R0 s (3)

with I, the incident light (at the surface, where z = 0).
The biological parameter values adopted in our study,
representative of realistic situations, are reported in Ta-
ble[l They are extracted from @], with growth param-
eters measured for freshwater phytoplankton species and
kpg for clear lakes and coastal areas ﬂl_1|]

We consider advection by a prescribed cellular flow,
which is intended to model the presence of eddying fluid
motion on different scales. The velocity field is then ob-
tained as w = (—90,V,9,¥) from a streamfunction that,
in the general form (see also [23-126]), can be written as:

U(x,z,t) = VUp(x,2,t) + Uy(x, 2, 1), (4)

where

Up(z,z,t) = —Z—ll sin {k1 [z — s1 sin(wyt)]} sin(k12), (5)

and

Nk

U; . .
Uy(x,2,t) = — ; k_z sin {k; [z — s; sin(w;t)]} (6)

x sin{k;[z — B(2)s; sin(w;t)]}.

Here U, represents a large scale persistent structure that
is allowed to oscillate in the horizontal and ¥ represents
smaller-scale vortices that oscillate both in the horizon-
tal and in the vertical. In Eq. (@), ny is the number of
modes selected, L; = Lin'~* is the typical length scale
of mode 4, with n > 1 a scale separation factor and
L, = L, the largest flow scale, k; = 27/L; the corre-
sponding wavenumber, and U; the typical flow intensity
at scale L; [the same notation is used in Eq. (B, where
1 = 1]. We choose to account for a possible explicit time
dependency of the flow field in the form of oscillations
with amplitudes s; and pulsations w;. To respect no-flux
boundary conditions for Eq. ([) in 2 = 0 and z = L.,
[Vsinkt — D829]Z207L2 = 0, we use the function:

B(z) = % {tanh (2_521> — tanh (Z;ZQ)] NG




TABLE I. Parameters of the biological dynamics.

Parameter Value Meaning

Kbg 0.2m™ ! Background turbidity

K 1.5-107" m? cell™? Specific light attenuation of phytoplankton
Pmaz 0.04 h=*! Maximal specific production rate

l 0.01 h™* Specific loss rate

H 30 ymol photons m~2 s~ * Half-saturation constant of light-limited growth

ILin 350 pmol photons m™2 s~ * Incident light intensity
Vsink 0.04 m h™! Phytoplankton sinking velocity

to damp vertical oscillations near the vertical boundaries
and therefore guarantee that u, is negligibly small there.
A similar choice of a damping function was adopted to
study chemical reactions in closed vessels ﬂﬂ] In our
case, the parameter values z; =2 m, zo0 = L, — 21 and
¢ =1 m turned out to be adequate for this purpose. In
the following we will consider velocity fields with increas-
ing degree of complexity, namely a steady one-mode flow
(ITAl), an unsteady one-mode flow (ITB)), and a multi-
scale time-dependent flow ([ILC)) . While our main focus
will be on the interplay between large-scale advection and
small-scale turbulent diffusion, with this choice we aim
at exploring the effect of smaller temporal and spatial
scales on the biological dynamics.

We numerically integrate Eq. () by means of a pseudo-
Lagrangian algorithm m—l&_ﬂ] (see the Appendix . for
more details) in our rectangular domain with L, = 2L,
using periodic and no-flux (as in [10]) boundary condi-
tions along the horizontal () and the vertical (z), respec-
tively. The initial condition is a low uniform population
density [0(t = 0) = 5.5 10° cells m~3], but we checked
in some selected cases that the results do not apprecia-
bly change if the population is initially present only in
a small localized patch. To analyze the blooming con-
ditions we mainly rely on the temporal behavior of the
average biomass density,

L, L.,
<0>(t):Lm1Lz /O /0 O(z, 2, 1) dedz,  (8)

and the per-capita growth rate (see, e.g., [32)),

Tp(t) = o ot 9)

In particular, after an initial transient, the latter quan-
tity is expected to attain a statistically constant value ry,
corresponding to exponential growth (r, > 0) or decay
(rp < 0) in the early regime before the onset of nonlinear
dynamical effects (due to self-shading). We also use 7, to
indicate the time average of r,(t) over the entire simula-
tion. Note that in a simulation of duration 7" such time
average can be expressed as 7, = (1/7) In[(8)(T)/(0)(0)].

III. RESULTS
A. Steady Flow

In the absence of a flow field (¥ = 0), our 2D model
is equivalent to the original 1D one [10] and numerical
simulations reproduce the results of the latter, as ver-
ified by computing vertical population profiles, as well
as the phase diagram summarizing the survival (or ex-
tinction) conditions versus the diffusivity D and water-
column depth (results not shown). A typical snapshot of
the population density field is shown in Fig. [Ii(a), which
clearly shows the independence of the 6 field on the lat-
eral direction x.

A relevant feature of the original model is the exis-
tence of a turbulence window allowing for phytoplankton
bloom, for large enough system depths. Determining an-
alytical expressions for the critical conditions for popula-
tion survival (i.e. blooming) or extinction is not an easy
task, even in such a simple model HE] This difficulty
is due to the heterogeneity of the environment and is
common to different population dynamics’ models (see,
e.g., |3, 83, B4] for other 1D systems). Adopting some
simplifying assumptions, it is possible to obtain an ap-
proximate estimate of the minimum turbulent diffusivity
(the lower bound of the turbulence window) required to
compensate the sinking of phytoplankton, and hence to
let the population survive ﬂQ, @, @, @] Nevertheless,
for the maximum turbulent diffusivity (the upper bound
of the window), beyond which the population cannot out-
grow the turbulent mixing rate to sustain the bloom in
the upper part of the water column, no simple analytical
expression is known [10, [36].

Here, we numerically investigate the effect of a large-
scale steady cellular flow on the dynamics of the phyto-
plankton population and its survival/extinction transi-
tions. The streamfunction corresponding to such a ve-
locity field is

Ut (x, 2) = —% sin(kz) sin(kz) (10)

i.e. Eq. ([B) where no explicit time dependency is included
(with k = k; =7/L, and U = Uy). We consider a depth
for which the turbulence window exists for the no-flow
system (L. > 60 m), as documented in [10], and we fix
the turbulent diffusivity to a value that is intermediate



between the minimum (D ~ 0.1 cm? s7!) and maximum
D =~ 100 cm? s71) critical ones for blooming. Due to the
increased computational times of simulations in larger
spatial domains, we choose a depth value close to the
minimum possible one, namely L, = 60 m. Streamlines
corresponding to the flow from Eq. ([I0) can be seen in
Figs.[@(b,c). From these figures it is also evident that the
flow impacts the spatial distribution of the population,
which is no longer laterally homogeneous. We will discuss
in more detail this point later in this section.

(a)o 3.0

20
E
N

40

FIG. 1. Instantaneous normalized population density field
O(x, z,t%)/(0) at a fixed instant of time ¢t* = 640 h for D =
5 cm? s7! and U = (0,1.24,4.93) m h™" [panels (a), (b) and
(c), respectively], where (f) stands for the spatial average.
The white line is the isoline 8/(f) = 1, and t* is in the regime
of stationary per-capita growth rate (rp(t) = 7, = const).
The solid black lines in (b) and (c) represent flow streamlines,
with arrows indicating the circulation direction.

The flow intensity U is then varied in a broad range
to examine possible changes of behavior due to advection
by the coherent flow. We particularly focus on the upper
bound of the turbulence window (taking 5 em? 571 <
D < 20 cm? sfl)7 for which numerical simulations re-
veal more useful. The effect of increasing U for fixed
D is apparent in Fig. Rla), showing (#) as a function of
time. These results were obtained using a localized initial

condition corresponding to a small patch of population
density located in the central upper part of the domain,
close to (z = L;/2,z = 0), but we verified that the over-
all phenomenology stays unchanged when considering a
uniformly spread initial population. The coherent flow
reduces the growth of (f) and eventually causes an ex-
tinction when its intensity is large enough. The growing
or decaying temporal behavior is already quite well es-
tablished after one large eddy turnover time [see vertical
lines in Fig. P(a)], here estimated as 2w L,/U, approxi-
mating streamlines with perfectly circular orbits of radius
L. At later times, the average biomass density continues
to grow exponentially at a constant rate.

In order to characterize the bloom to no-bloom tran-
sition induced by advection, we measure the per-capita
growth rate 7,(¢t) [see Eq. [@)]. This quantity, normal-
ized by the intrinsic total (birth minus death) growth
rate at the surface r, = I, /(H + Iip)Dmaz — |, versus
time normalized by L, /U, is shown in Fig. RI(b). Here, a
uniform initial population density was chosen. As it can
be seen, at large enough times, for all U, r,(t) approaches
a constant value 7, confirming the exponential character
of growth or decay of (f). Furthermore, the large-time
value 7, decreases from positive values (for low U) to
negative ones (at larger U), therefore allowing a robust
estimate of the critical flow intensity at the transition.

As first indicated in [37], where horizontal patchiness
was numerically studied adopting an NPZ (for nutrient-
phytoplankton-zooplankton) model in a turbulent flow,
we expect that also in the present case the dynamics are
primarily controlled by the interplay between advection
and reaction mechanisms. To quantify the relative weight
of the latter processes, we consider the ratio of the bio-
logical timescale rgl to the flow timescale L./U, i.e.:

U
TbLz .

v= (11)
Figurelc) reports the (constant) per-capita growth rate
rp as a function of 7. From this plot, one can clearly
see that the survival/extinction transition caused by the
flow occurs for v = O(1), in correspondence with r,, turn-
ing from positive to negative. Essentially, a bloom can
take place (1, > 0) when the biological growth is faster
than the advective transport (y < 1) to the less favorable
deeper part of the domain. The proximity of the data
obtained with different values of D highlights the gener-
ality of this mechanism and confirms the weak effect of
the turbulent diffusivity in this picture. We remark that
we could not detect a transition to a no-bloom regime for
D < 5 cm? s71, even with very large values of U.
Further insight comes from inspection of the spatial
structure of the population density field 6(z,z,t)/(0)
(normalized with (0)) at a given time (Fig. dl). While
in the absence of flow the population is uniformly dis-
tributed along the horizontal and decreases with depth,
nonzero advection causes an increase of € in the down-
welling region (at # = L,/2). This feature gets accen-
tuated by increasing U, with the population accumulat-
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FIG. 2. (a) Average biomass density, on a logarithmic scale,
versus time, for D = 20 cm? s7!, L. = 60 m and different
values of the advection intensity U in the steady-flow case.
Vertical lines indicate ¢t = 2w L. /U, the time of one flow roll
revolution. (b) Population per-capita growth rate r,(t), nor-
malized by the intrinsic net growth rate r,, as a function
of time, normalized by the advective timescale L./U of the
steady-flow case, for various values of U, D = 20 cm? s~*
and L; = 60 m. (c) Per-capita growth rate r, (constant
value attained after a transient), normalized by the intrinsic
net growth rate rp, versus the ratio of reactive to advective
timescales 7, in the steady-flow case, for different values of D.

ing in thinner and thinner filaments outside vortices, and
particularly in the one located at © = L, /2. Such a be-
havior points to the relevance of strain-dominated flow
regions for the spatial organization of the population and
the formation of fine structures. In our flow, as it can also
be easily seen in Figs. [(b,c), the latter regions are close

to the hyperbolic points corresponding to the vertices of
the squares of side L, containing the rolls. Among such
points, clearly, a prominent role is played by the point
(x,z) = (Lz/2,0), where the flow locally compresses the
scalar field € along the x-axis (and stretches it in the z-
direction), in the region of highest growth rate (i.e. at
the surface).

Relying on the above picture, a useful interpretation
of the dynamics observed in our simulations is offered
by an appropriate adaptation of the plankton filament
model @], originally introduced to describe the forma-
tion of fine structures in 2D flows. To apply this reason-
ing, we neglect the sinking speed, which is considerably
smaller than the advecting velocity close to the transi-
tion to extinction, as well as self-shading, as close to an
extinction the population density is low everywhere and
because our main point of interest is at the surface. Un-
der these hypotheses, Eq. () becomes

Ii 7I€bgz _ l

max 9 DV20.
H I, Pmee© N

(12)
Since, as argued above, we are interested in the dynamics
at the surface, close to the hyperbolic point at © = L, /2,
the net growth rate will be r,. Moreover, we can write

the population density as:

3t9+u~V9—<

0(, 2,t) = Opack ™' + 0 (z, 2, 1), (13)
where 6pq.1 is a background population density and 6’
represents the perturbation determined by the flow. Us-
ing this decomposition, it is not difficult to see that the
equation governing the dynamics of ¢ is the same as
Eq. (). Following [38], we can then consider only the
1D dynamics for the population fluctuation in the com-
pressing (or cross-filament) direction, because along the
filament 6" should vary less due to the stretching oper-
ated by the flow. In this region, the flow can be lo-
cally approximated as u = (—A(x — L;/2), Az), where
A = kU = UJ/L, is the strain rate. Therefore, from
Eq. ([I2), for the cross-filament dynamics one has:

040 — \(x — Ly/2) 0,0" = 10" + DO*0'. (14)
The solution of the above equation is (see also [38]):
oLy /2)?
0 (z,t) = 0 e~ 5B (Nt (15)

with 6, a constant. From this expression we can see that,
in the z direction, the population density field keeps the
same (Gaussian) shape at different times. The filament
width 0 = /D/X does not depend on time and is only
determined by the physical parameters associated with
fluid transport. As the flow intensity increases, so does
the strain rate, which explains the thinning of filaments
and the more important localization of the population
for higher values of U. Growth or decay over time, in-
stead, depends on whether 7, is larger or smaller than A,
respectively. This simple model thus provides theoretical



support to the survival/extinction criterion based on the
ratio between the biological and flow timescales, ~.

The above model accounts for the dynamics at the sur-
face and, strictly speaking, it is only there that its pre-
dictions should apply. If the population cannot survive
at the surface, however, it should not deeper below ei-
ther, due to the reduced growth rate, which makes the
conclusion appear more general. Considering that, dif-
ferently from the 1D filament case, in our fully 2D model
both the strain rate and the growth rate vary with depth,
and that sinking and self-shading might also play a mi-
nor role, the comparison between our previous estimate
of the control parameter, v = U/(L. rp), and that from
Eq. (@), A/rp, seems to us reasonable also from a quan-
titative point of view. Regarding the dependence on the
vertical coordinate, we further note that the biological
growth rate monotonously decays with z, and that the
strain rate, in absolute value, decreases until half the to-
tal depth, before growing again in the lower half of the
domain, but now acting in the opposite way (stretching
instead of compressing the scalar in the a-direction). The
combination of these effects, impacting both the width
and the intensity of the filament, can then explain, in
a qualitative way, the tendency, particularly visible in
Fig. [0(b), of this localized downwelling structure to fade
around z = L, /2.

To test the validity of the above argument for our sys-
tem, we examined the horizontal profiles of population
density at z = 0 from simulations with different values of
D and U, once 7,(t) reached the constant value r,. We
found that such profiles are to good extent time indepen-
dent and that their shape is well described by a Gaussian
function. FigureBlshows an example of the latter profiles
0(z,0,t), at different instants of time (for given values
of U and D), normalized by the corresponding average
values (6(x,0,t)),. By means of a fit in a subregion cen-
tered around & = L, /2, where the phytoplankton patch
is mainly localized, we then estimated the standard devi-
ation of the Gaussian curves, o, ymerical, Which provides
a measure of the filament width o. The results are com-
pared to the theoretical prediction in Fig. [ which in-
dicates a strong correlation between the numerical and
theoretical estimations of . As one can observe in the
figure, we actually detect a tendency of the numerically
estimated o to grow slightly faster than the theoretical
one. However, such a small difference seems quite reason-
able, taking into account the assumptions made for the
theoretical prediction with respect to the details of our
numerical setup. Note, too, that while the linear propor-
tionality between g, umerical and o is quite robust, partic-
ularly for large values of D, the quality of the agreement
(between the numerical and theoretical values) depends
on the width of the central region chosen for the estima-
tion of Onumerical -

It is worth remarking that at the bottom, due to the
similar structure of the deep and surface flow, the spatial
organization of the reactive scalar parallels that found
at the surface. An analogue reasoning in the straining

1.4{ -6~ tUL;'=10.0
<3 tUL;1=13.3

7~ tUL;1=16.6
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FIG. 3. Horizontal profiles of surface population density at
different times (in units of the advective timescale L. /U), nor-
malized by their average values, 6(z,0,t)/(0(z,0,t)), for the
steady-flow case (¥ = ¥$') with U = 1.001 m h™! and D =
20 cm? s™!. The dashed black line represents the Gaussian
solution of Eq. (m)v O+ 8; exp [(:L’ - L1/2)2/(20721umerical):|7
with © = Opaer exp (1pt) and 0; = 60 exp [(r, — A)t] [see also
Eqgs. ([3IT4)]. The constants ©, 0; and onumerical are fitting
parameters.
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FIG. 4. Filament width, estimated from a fit (in the in-
terval 50 m < z < 70 m) with a Gaussian function of hor-
izontal profiles of population density from simulations with
different values of D and U, versus its theoretical prediction

o =+/D/(kU), with k = w/L.. The dashed black line corre-
sponds to onumerical = 0.085 + 1.2760.

regions close to x = 0 or = L, would always give ex-
tinction locally, however, as the prefactor in the exponent



of the exponential involving time would be —l — X < 0, as
the growth rate is negligibly small there. Hence, the rel-
atively high values of population density at the bottom
appear to be due to fluid transport (including sinking)
only and the zero-flux boundary conditions.

Finally, according to Eq. (IT), in the limit of very small
diffusivity, the filament width approaches zero while its
density amplitude grows exponentially. Consequently, it
becomes more and more difficult to observe an advection-
driven extinction. From a practical point of view, this
is essentially impossible in numerical simulations, as it
would require an infinite spatial resolution, in order to
resolve the cross-filament structure. These are likely the
reasons why we could not detect the transition to no-
bloom at sufficiently small values of D.

B. Unsteady flow

We now consider a time-dependent large-scale flow,
by allowing for lateral oscillations of the flow pattern
adopted in the previous section, which is enough to
produce chaotic Lagrangian trajectories of fluid parti-
cles @, ] More explicitly, the flow field will now be
specified by Eq. (), i.e. Eq. @) with ¥, = 0. The ampli-
tude and pulsation of the roll oscillation are respectively
set to s = L,/5 and w = 7U/L,, corresponding to a
fraction of the roll size and a period comparable to the
advective timescale L, /U, a choice that has been shown
to be optimal to enhance chaotic diffusion ﬂﬁ, @, @7 @]
Note that we do not allow for vertical oscillations, in or-
der to keep the top and bottom boundaries of our do-
main at fixed vertical positions. Figure [B shows two
snapshots of the population field at different times in
the constant per-capita growth-rate regime. These vi-
sualizations suggest that the dynamics are fairly similar
to those in the stationary-flow case, although horizontal
symmetry is now broken due to the lateral oscillations of
the flow.

To confirm this observation we performed the same
analysis as in Sec. [IT'Al The results indicate that the
overall phenomenology remains unchanged, with only lit-
tle quantitative differences. The temporal behaviors of
both the average biomass density (0)(t) and the per-
capita growth rate 7,(t) are similar to those observed
with the steady flow [Figs.[2l(a,b), respectively], but they
now present small oscillations with a frequency corre-
sponding to that of the roll lateral displacement (not
shown). As for the critical advection intensity U, de-
termining the bloom/no-bloom transition, it is found to
be slightly higher in the present time-dependent case.
The increase with respect to the previous, steady, case
depends on the value of the small-scale diffusivity (about
6% for D = 20 cm? s™! and 18% for D = 10 cm? s~ 1),
but the dependency of U, on D remains weak. Consider-
ing that the explicit time dependency of ¥ in Eq. (Bl now
gives rise to chaotic diffusion of Lagrangian particles, and
hence to an effective diffusivity larger than D, such an
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FIG. 5. Instantaneous population density field, normalized
by its spatial average, 0(z, z,t)/(0), in the unsteady-flow case,
for U =14mh ' and D =5 cm? s7'. The two panels
correspond to two different times. The white line is the isoline
0/(0) = 1 and the black lines are the streamlines of the flow
field at the considered instants of time, with arrows indicating
the circulation direction.

increase of U, seems to us reasonable, from a qualitative
point of view. A more quantitative assessment of the
comparison between the unsteady and steady flow cases
is illustrated in Fig. [6(a). Here we show 7,/r, of the
steady flow case as a function of 7,/r; in the unsteady
case, for several values of U and D. As it can be seen,
over the range of values of D and U explored, the two
quantities are almost perfectly correlated, corroborating
the idea that the lateral oscillations do not produce any
major modifications.

C. DMultiscale flow

We now extend our analysis to a multiscale flow, mim-
icking a turbulent one, specified by the full streamfunc-
tion in Eq. {@). Again, the flow is explicitly time depen-
dent and performs oscillations, now on different scales,
with amplitudes s; = L;/10 and pulsations w; = 7U;/L;
(a choice that is analogous to that of Sec. [IIB] consid-
ering that Ly = L,). The first, and largest-scale, mode
only oscillates laterally (as in the previous section) while
smaller-scale flow components are allowed to move also
in the vertical direction. Close to the vertical bound-
aries, however, their oscillations are damped according
to Eq. (@), in order to respect no-flux boundary condi-
tions for the reactive scalar. We choose a number of
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FIG. 6. (a) Time averaged normalized per-capita growth rate
7p/rs of the steady-flow case vs the corresponding quantity
from the unsteady-flow case. (b) Same as in (a) but for 7, /7
from the multiscale flow case vs 7p/rp from the unsteady-flow
case. In both (a) and (b), several values of the large-scale
flow intensity (0.79 m h™" < U1 < 3.69 m h™') and of D are
considered. Fitting the data corresponding to a given value
of D [(5,10,15,20) cm? s7] with a linear function, we obtain
slopes that are always quite close to 1, particularly in (a)
(slopes between 0.84 and 0.93); the data in (b) display a little
more variability (with fitted slopes between 0.86 and 1.21).
The black dashed lines have unitary slope.

modes that allows spanning the scale range going from
the domain size L; = 120 m to the smallest length scale
L,, = 1 m, corresponding to ~ 1/(5kpg), where Iib_gl
is related to the growth dynamics, as it is the typical
length over which light is absorbed by the medium. Such
small length scale also roughly corresponds to the scale
that can be estimated from Richardson scaling of dif-
fusivity with length, ¢ ~ (2/3)3/4e=1/4D(£)3/4 |25, 41],
using the values of diffusivity explored in the previous
sections, 5 cm? s7! < D < 20 cm? s7!, and values of the
kinetic energy dissipation rate ¢ ~ (1078 —107%) m? s=3
that appear reasonable for oceanic turbulence ,, ]
We then set the scale separation factor to n = 2 and the

number of modes to ny = 7. Finally, we assume a Kol-
mogorov scaling of velocity, U; = Uy (L;/L1)"/3.

Figure[l presents the population density field at a given
time (¢* = 520 h), normalized by its spatial average. As
in previous visualizations, we select the time ¢t* such that
the dynamics have already reached the constant growth-
rate regime characterized by 7,(t) = const. The iso-
contours of the streamfunction at the same time (black
lines in the figure), allow to appreciate the presence of
eddies of different sizes and the more disordered spa-
tial structure of the velocity field. Although the latter
small-scale features reflect in the spatial distribution of
the population, which is now irregular, the signature of
the largest-scale flow is still apparent, particularly in the
6 patch at the center of the domain (x ~ L, /2 = 60 m)
and close to the surface.
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FIG. 7. Instantaneous population density field, normal-
ized by its spatial average, 6(z, z,t)/(6), in the multiscale-flow
case, for U =1.021 m h™! and D =5 cm? s7?, in the regime
7p(t) = const. The white line is the isoline 8/(f) = 1 and the
black lines are the streamlines of the flow field at the consid-
ered instant of time, with arrows indicating the circulation
direction.

It is interesting to compare the growth rate 7, /r, mea-
sured in this multiscale setting and in the previous ones,
e.g. in the one-mode unsteady-flow case. As it can be
seen in Fig. [B(b), the estimates from the two cases are
still quite correlated, and diffusivity plays a rather weak
role [similarly to the previous comparison, reported in
Fig. [Bl(a)]. Still, we notice that in Fig. [B(b), for small
enough D, it is possible to observe that the multiscale
estimate of the growth rate 7, tends to be slightly larger
than its counterpart in the absence of small eddies. We
then argue that the latter flow features provide an ef-
fect that partially compensates the deadly action of the
large-scale coherent flow, but that is only measurable for
D <10 ecm? s~ L.

To further investigate the impact of small-scale fluid
motions, we also analyze vertical profiles (6),(z) of the
phytoplankton distribution (similarly to what is done
in [d, [11, [16)), obtained by averaging 6(z, z,t) over the
horizontal coordinate = at fixed instants of time. Such
profiles, normalized by the corresponding global spa-
tial averages (6), are shown in Fig. [ for all the flow
cases studied (one-mode steady-flow, one-mode oscilla-



tory flow, multiscale time-dependent flow) at common
given times. Independently of the considered flow or
value of D, their shape is always characterized by a max-
imum at small, but finite, depth and a decrease deeper
below the surface, plus a second inflection point close
to the bottom boundary. These features are typical for
sinking phytoplankton species HE], whereas non-sinking
ones would display a maximum at the surface B]
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FIG. 8. Vertical population density profiles ()., nor-

malized by the global spatial average (), for the differ-
ent streamfunctions ¥ considered, U; = 1.001 m h~' and
D = (5,20) cm? s™'. Different line types correspond to dif-
ferent choices of W, with black and gray curves indicating
the different values of D. Panels (a-d) correspond to dif-
ferent instants of time, in the constant growth-rate regime
Tp(t) = const, as specified in the plot titles (in units of the
advective timescale L. /Uy).

The similarity of the profiles obtained in different con-
figurations (Fig. §) points to the dominance of advection
by the large-scale coherent flow, as including its time
dependence or smaller scales does not alter the general
picture substantially. Note, however, that for sufficiently
low D, the addition of small scales favors, to small but
measurable extent, a localization of the population close
to the surface, akin to the vertically nonhomogeneous dis-
tribution typical of the no-flow case [see Fig. [[[a)] and
increased possibility of survival.

The importance of the large-scale flow can be even bet-
ter appreciated by inspecting Fig. Here, again for
a common fixed time (tU;L;' = 10) in the (statisti-
cally) constant growth-rate regime, we show the normal-
ized vertical profiles (), /(0), for the smallest and largest
value of diffusivity used [D =5 cm? s~! and 20 cm? s™1

in panels (a) and (b), respectively], for different flow
types. Specifically, we examine the following different
combinations: ¥ = 0 (no flow), ¥ = ¥ (large-scale
steady flow), ¥ = U, (large-scale time-dependent flow),
U = U + U, (multiscale time-dependent flow), ¥ = U,
(time-dependent flow without the large-scale contribu-
tion provided by ¥y,). The last case was explicitly added
to test the relevance of the large-scale advection. It is ap-
parent that whenever Wy is present the population gets
homogenized in the vertical direction, with respect to
the no-flow case. The addition of time dependency and
small scales to the flow turns out to play only a minor
role, as the corresponding profiles are essentially indis-
tinguishable from the one obtained with ¥y only. When
the latter contribution is removed and the flow only pos-
sesses smaller scales, instead, the population distribu-
tion retrieves the vertically nonhomogeneous character
typical of the ¥ = 0 case. In such a case, in fact, the
vertical profile (6), approaches the one obtained with-
out flow, as it is particularly evident in Fig. [Q(b) (where
D = 20 cm? s71). Finally, it seems to us that Fig.
summarizes in an effective way the main outcome of this
work, meaning the outstanding relevance of advection by
the large-scale coherent flow, as the dominant mecha-
nism controlling phytoplankton dynamics in the present
setting.
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FIG. 9. Normalized vertical population density profiles

(0)2/{0) for ¥ = 0 (no flow), ¥ = U} (large-scale steady
flow), ¥ = ¥ (large-scale time-dependent flow), ¥ = ¥ +
W, (multiscale time-dependent flow), ¥ = W, (small-scale
time-dependent flow, without ¥;) and U; = 1.001 m h—t.
Panels (a) and (b) respectively refer to D = 5 cm? s~ and
D =20 cm? s7!. Note the different value ranges on the hori-
zontal axes in (a) and (b). All the profiles here reported are
computed at a common fixed time tU;L; ' = 10, for which

Tp(t) = const.

IV. CONCLUSIONS

We numerically investigated the dynamics of sinking
phytoplankton in a stirred 2D fluid layer where the verti-



cally decreasing light availability is the only limiting fac-
tor for biological growth. For this purpose we extended
a previous theoretical 1D model B, , @], where tur-
bulent motions were only described in terms of an effec-
tive diffusivity, by taking into account in an explicit way
the transport operated by a structured fluid flow. The
choice to neglect possible heterogeneities in the nutrient
distribution was motivated by our goal to focus on the
role of transport mechanisms. While clearly this poses
some limitations in relation to real natural environments,
where nutrients can also affect biological growth, such a
configuration still appears reasonable for, nutrient-rich,
eutrophic habitats, namely shallow warm lakes or high-
latitude oceans.

A major outcome of the simplified theoretical
model |10] mentioned above was to provide evidence of
two transitions between extinction and survival of the
population, depending on the turbulent intensity (for
deep enough fluid layers). Our aim, here, was to ex-
plore the impact of a more realistic representation of
the advecting velocity field on the survival-to-extinction
transition, for which no analytical prediction is avail-
able, occurring at large turbulent intensity when biolog-
ical production cannot compensate turbulent mixing to
sustain the bloom in the well-lit region close to the sur-
face. Using realistic parameter values for the biological
dynamics ﬂ%], we then considered a domain with a fixed
depth representative of the mixed layer, in the presence
of flows of progressively increasing complexity, relying
on a kinematic-flow approach [25]. We first examined
a velocity field possessing a single large-scale stationary
mode, in the form of two recirculating cells spanning the
horizontal extent of the system [23, @] Such a spatial
structure was intended to mimic the large-scale features
observed in realistic flows, as those arising from buoyancy
driven convection ﬂﬁ, ] or wind-driven Langmuir cir-
culation M, 44, @] We then added time dependency in
the form of lateral oscillations of such a flow pattern, and
finally included spatially and temporally varying smaller
scales.

Our results indicate that advection plays a relevant
role on the biological dynamics. Indeed, persistent large-
scale motions reduce the per-capita growth rate and can
eventually lead to the suppression of the bloom, when
the flow is intense enough. This effect is found to be
controlled by the ratio between the characteristic bio-
logical and flow timescales, similarly to what occurs for
plankton horizontal dynamics stirred by mesoscale ocean
eddies ﬂﬂ] From a general perspective, a similar harm-
ful role of the advecting flow was also put in evidence
in previous LES of turbulent thermal convection [16],
and in a study considering a steady cellular flow and a
matrix-based approach to compute the biological growth
rate ﬂﬂ] However, those studies neglected the phyto-
plankton self-shading [17] and also sinking [16]. More-
over, in both of them it is less straightforward than in our
work to disentangle contributions from large and small
flow scales, either because the latter are essentially ab-
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sent ﬂﬂ], or because they dynamically interact with the
large-scale ones [16].

The main finding of the present study is that the large-
scale flow dominates the dynamics, which are only weakly
affected by (temporally and/or spatially) smaller-scale
fluid motions. This is revealed by both the strong corre-
lation found for the critical flow intensities (for the tran-
sition), and the similar vertical population profiles, in the
different flow cases. Even in the presence of a multiscale
flow, the velocity field at the largest scale has a strong
signature on the dynamics, as it drives the localization
of the population in a patch at the center (with respect
to the horizontal coordinate) of the domain. This is a
region of phytoplankton downwelling (similarly to what
is observed in Ref. ﬂﬂ]), corresponding to the location of
the straining point associated with the largest-scale flow
mode (i.e. the separatrix between the two largest rolls).

In the (large-scale) one-mode, steady, flow case, we
have been able to rationalize the picture by adapting
the plankton filament model originally introduced in
Ref. @] This allowed us to provide a quantitative
justification for the control exerted by the biological-to-
flow timescale ratio on the transition to extinction. As
shown by our analysis of the multiscale-flow case, the
presence of smaller-scale fluid motions tends to partially
disrupt the regular spatial distribution of the population
due to the flow at large scale, and the associated central
downwelling filament. This was further confirmed by the
comparison of phytoplankton density vertical profiles in
two multiscale flows, one of which does not possess the
largest-scale mode. Indeed, in the strain region between
the largest eddies, the combined action of the flow and of
small-scale diffusivity vertically homogenizes the popula-
tion, thus hindering survival. When only smaller eddies
are present, however, the planktonic population localizes
closer to the surface, and spreads more over the hori-
zontal, giving rise to a situation resembling that of the
no-flow case, which is less prone to extinction.

We hope that the analysis reported here can contribute
to the understanding of the basic mechanisms controlling
the interplay between fluid transport and phytoplank-
ton growth dynamics. The favorable comparison of some
of our results with those obtained in the framework of
more realistic fluid models HE] seems to us interesting in
light of parameterizations of plankton cycles in numer-
ical models. Several extensions can be envisaged, in a
rather natural way. On one side, it would be interesting
to consider a three-dimensional setup for our kinematic
flow , ], to explore possible links between the vertical
organization of phytoplankton and its horizontal patchi-
ness. On the other, we believe that accounting for verti-
cal variations of the turbulent intensity could provide a
more realistic representation of real aquatic environments
under stirring.



Appendix: Numerical method

The dynamics specified by Eq. () are numerically inte-
rated by means of a pseudo-Lagrangian algorithm m
@], based on the splitting of the advection, reaction and
diffusion terms. Advection by the full velocity v (includ-
ing both the fluid flow and phytoplankton sinking) is in-
tegrated backwards in time, for each grid point on which
the population density field 6(x, z,t) is defined. This al-
lows to determine the origin of the Lagrangian trajectory
ending at the considered grid point after a time step dt.
The value of # at such Lagrangian origin, which is gen-
erally not on the numerical grid, is then determined by
bilinear interpolation using the values of the field on the
nearest grid points. Once known, the latter value of 6 is
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used as the initial condition for the forward integration of
the reaction dynamics over a time step. Finally, the inte-
gration of the diffusion term is carried out by means of a
finite-difference implementation @, @], using a smaller
time step dtp = dt/10, meaning that 10 diffusive steps
are performed after each advection and reaction integra-
tion over dt. The choice of the value of dtp results from
the two conditions required by the method. On one side,
the physical diffusion coefficient D has to be larger than
the numerical one, D,,  dx?/dt, with dx being the mesh
size. On the other side, the stability condition for the Eu-
lerian diffusive step is Ddtp/dz? < 1. In our case, this
leads to the choices dt = 0.01 h for the time step, and
dx = O(0.1) m for the grid size, allowing to resolve the
typical length scales of reaction, advection and diffusion
processes, for the values of U and D adopted.
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