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Abstract—Hyperspectral unmixing allows to represent mixed
pixels as a set of pure materials weighted by their abundances.
Spectral features alone are often insufficient, so it is common
to rely on other features of the scene. Matrix models become
insufficient when the hyperspectral image is represented as a
high-order tensor with additional features in a multimodal, multi-
feature framework. Tensor models such as Canonical polyadic
decomposition allow for this kind of unmixing, but lack a
general framework and interpretability of the results. In this
paper, we propose an interpretable methodological framework for
low-rank Multi-feature hyperspectral unmixing based on tensor
decomposition (MultiHU-TD) which incorporates the abundance
sum-to-one constraint in the Alternating optimization ADMM
algorithm, and provide in-depth mathematical, physical and
graphical interpretation and connections with the extended linear
mixing model. As additional features, we propose to incorpo-
rate mathematical morphology and reframe a previous work
on neighborhood patches within MultiHU-TD. Experiments on
real hyperspectral images showcase the interpretability of the
model and the analysis of the results. Python and MATLAB
implementations are made available on GitHub.

Index Terms—Interpretability, Tensor decomposition, Hyper-
spectral unmixing, Extended linear mixing model, Blind source
separation.

I. INTRODUCTION

HYPERSPECTRAL IMAGING refers to the acquisition
of images of a scene over a wide and almost continuous

spectrum. A hyperspectral image (HSI) contains pixels that
can cover areas of pure or mixed materials and amounts to
a high spectral feature diversity [1], [2]. These characteristics
allow to perform blind source separation (BSS) [3]–[5] on
the observed spectral signatures to blindly extract those of
pure materials (sources), also called endmembers (EMs), and
their per-pixel (per-sample) abundances. This case of BSS is
known as hyperspectral unmixing (HU), which is an active
research topic with several applications like remote sensing,
chemometrics, biomedical imagery, etc [6]–[15]. HU allows to
understand and quantify the physical components of a scene.

A significant part of research in BSS and HU relies on
matrix factorization with additional constraints that aim at
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modeling the context of the problem. Consequently, an ob-
served data matrix M ∈ RI×J (i.e., with I pixel samples and
J spectral features) is decomposed into two factor matrices
A ∈ RI×R and B ∈ RJ×R such that:

M = ABT =

R∑
r=1

arb
T
r (1)

where R is the number of latent components to be estimated,
and ar and br are the columns of A and B, respectively,
∀ r ∈ {1, . . . , R}. As such, the columns of B represent the
estimated source signals, and the rows of A represent the per-
sample abundances of the sources. The decomposition is often
carried out by minimizing the generic cost function [16]:

argmin
A,B

∥M −ABT∥2F + r(A) + r(B) (2)

where r(·) encodes the imposed constraints and/or regulariza-
tions to enforce desirable properties on the solutions.

In the case of HU, a classical approach is the nonnegative
matrix factorization (NMF), which relies on the linear mixing
model (LMM) of the observed HSI matrix (see Fig. 1). Hence,
A and B are element-wise nonnegative, which applies also in
most domains of BSS (other than HU) where the interpretabil-
ity of the factor matrices is important. Moreover, the rows of
A are subject to the abundance sum-to-one constraint (ASC),
which means that each row sums to 1:

R∑
r=1

air = 1 ∀ i ∈ {1, . . . , I} (3)

which applies to domains where the coefficients of the decom-
position are proportions.

When only few materials concur in the mixture for each
pixel, sparsity is imposed on the abundances [17]. Finally, real
HSIs often contain spectral variabilities (SVs) in the sources,
e.g., variations in the EMs due to local physico-chemical
variations, illumination changes or topographic effects. In
order to account to these SVs, the extended linear mixing
model (ELMM) was proposed to extend the LMM to account
to said SVs, which is an active topic that has seen a lot of
progress recently [11]–[14].

A. Tensor Analysis of HSIs

An HSI can be treated as a data cube [18]–[23] (i.e., a third-
order tensor with two spatial and one spectral dimensions).
However, sometimes the HSI does not come alone but is
associated with additional modalities such as:
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Fig. 1: Classical matrix-based HU using NMF (i.e., LMM)

Fig. 2: Canonical polyadic decomposition of a third-order
tensor. The tensor is formed of K matricized HSIs that are
stacked along the third mode. A frontal slice T :,:,k (in yellow)
represents a matricized HSI and is associated with one row
of C. A horizontal (pixel) slice T i,:,: (in green) represents a
matrix of features and is associated with one row of A.

• A time series or multi-angular data of HSI images [24].
• The HSI is combined with images acquired by different

sensors (e.g., panchromatic, multispectral and LiDAR
fusion) [25]–[28].

• Some spatial features are extracted from the HSI (such
as in spectral-spatial classification problems [29]–[32]).

Such scenarios have recently also concerned other areas of
BSS such as multi-channel signal processing [33]–[35] and
multidimensional biomedical signal and image processing
[36]–[40]. In the aforementioned scenarios, the data are rep-
resented natively as tensors1 [41], and the challenge usually
boils down to the proper modeling of a joint factorization
of multivariate representations without losing the multimodal
structure, and hence its interpretation in terms of BSS.

Among these scenarios, we focus on the case of HU where
the HSI is associated with an additional set of features in
the form of a new tensor mode, which we coin as Multi-
feature HU based on Tensor Decomposition (MultiHU-TD).
For example, we consider a set of spatial features extracted
from the image itself that can be considered as new modes.
Moreover, the pixels are rearranged in lexicographic order,
promoting low-rank tensor decomposition2. In this scenario,
there are some challenging questions to answer such as: how
can we jointly perform a constrained factorization in such
settings? And how can we interpret the extracted factors?
An analysis of the literature shows that there are works that

1A tensor can be represented as a multidimensional array. The order of a
tensor refers to the number of its array’s indices, which is also the number of
its modes. For example, a tensor of dimensions I×J×K is said to have three
modes, and is called a third-order tensor. Data sets with order 3 or above are
described as high-order tensors.

2Pixels form only one mode, even if images are often seen as 2D objects.
This suppresses the high-rankness introduced by the complex spatial features
of the whole scene [15], which is an inconvenience for BSS methods [26].

perform NMF with additional constraints [42]–[44], and others
that consider the case of multimodal inputs with coupled NMF
[45], [46], but this is different from considering data as tensors
in our case.

As the native structure of our data is a tensor, we consider
the problem in terms of tensor decomposition [41], which is
the natural framework for processing multimodal data in the
signal and image processing community [47]–[49]. There are
many types of decomposition, such as tucker decomposition,
block term decomposition (BTD), canonical polyadic decom-
position (CPD), etc [50]. However, we choose CPD thanks
to the diagonality of its core tensor which allows the inter-
action only between similarly indexed columns in the factor
matrices, which naturally promotes source separation and a
straightforward interpretability of the extracted components in
unmixing, both of which are core aspects of our work.

In the third-order case, as illustrated in Fig. 2, CPD de-
composes a data tensor T ∈ RI×J×K into a diagonal core
tensor Λ ∈ RR×R×R and 3 factor matrices {A ∈ RI×R,B ∈
RJ×R,C ∈ RK×R}, each representing one of the 3 modes of
T respectively, such that:

T = Λ •
1
A •

2
B •

3
C (4)

where •d denotes the mode-d product (product along the d-th
mode), further described in expressions (6), (13b), and (13c).

CPD extends NMF to high-order data and can adopt all of
its features, especially that of imposing constraints. CPD is
often computed by minimizing the cost function [41]:

argmin
A,B,C

∥T −Λ •
1
A •

2
B •

3
C∥2F + r(A,B,C) (5)

where r(·) encodes the imposed constraints. Note that the
nonnegative constraint ensures the existence of a minimum;
in fact, without an appropriate regularisation term r(·), the
above cost function could admit only an infimum, which may
not be reachable [51]. On the other hand, with an appropriate
regularisation, Problem (5) is well posed.

B. Related Works and Limitations

In the context of MultiHU-TD, CPD has been used with
multitemporal/angular HSIs [24] as well as with HSIs having
an additional diversity of extracted neighborhood patches [14]
(see Fig. 7 for a 5 × 5 patch-HSI tensor). Moreover, some
works [29]–[31] jointly considered HSIs with spatial features
extracted by mathematical morphology (MM) filters [52]–[55]
in the framework of multi-feature scene classification (see Fig.
8). These works show that CPD is a suitable approach for joint
decomposition. However, they present some limitations.

1) Algorithmic perspective: The nonnegative constraint is
implemented in [56] by projection onto the nonnegative or-
thant, which exhibits some computational issues [48]. In [14],
nonnegative alternating least squares (ALS) is used where
ASC is also naively implemented by projecting the abundances
on the unit simplex, contrary to the common practice in the
matrix case [17] where ASC is embedded in the updates. In
[24], the nonnegative CPD is computed using the projected
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compressed ALS (ProCo-ALS) algorithm, which is consider-
ably fast [47] but not so flexible with additional constraints. Fi-
nally, in [29]–[31], an alternative algorithm is proposed based
on alternating optimization alternating direction method of
multipliers (AO-ADMM) [49] with compression and nonnega-
tive constraints, which is flexible and stable with large datasets,
but has not yet addressed MultiHU-TD which requires further
modeling (i.e., sparsity, ASC).

2) Interpretability: The work of [24] faced a certain chal-
lenge in interpreting the third-mode factors, perhaps due to
the naive employment of CPD. In [14], a link was established
between CPD and ELMM but was not deeply investigated as it
was restricted to the case of patches and tested only with syn-
thetic data. Moreover, it faced another challenge in interpreting
the factors, which poses an ambiguity on its performance
and the meaning of the extracted features. Finally, [14] and
[29]–[31] perform tensor decomposition with spatial features.
However, the used spatial features can allow limited flexibility
(e.g., patches), or the interpretation of the factor matrices was
not addressed, noting here that incorporating them with CPD
showed improvement in supervised classification (e.g., MM).

In this paper, we wish to consider such operations in a
BSS framework from the lens of MultiHU-TD with in-depth
interpretability. This presents us with two main challenges:

• Tuning AO-ADMM to incorporate ASC, which is chal-
lenging due to the multilinear structure of CPD, partic-
ularly in modeling the samples as a convex combination
of the spectral sources in a multimodal setting.

• Exploring the meaning of the extracted features in these
conditions.

C. Contributions

To our knowledge, imposing ASC in CPD or AO-ADMM as
a natural extension of NMF in [17] has not been done. Further-
more, we are interested in finding a generalized framework for
MultiHU-TD favouring the interpretation of its results under
any third-mode diversity. More precisely, our contributions to
jointly deal with these limitations are the following:

• We propose a methodological framework for dealing with
MultiHU-TD based on AO-ADMM by Huang [49], and
expand it to incorporate ASC with joint nonnegativity
and sparsity. The proposed AO-ADMM-ASC is a general
algorithm that can be applied in other domains of BSS
where convex combinations of sources apply.

• We establish a unified framework for the interpretability
of MultiHU-TD. In particular, the link between ELMM
and CPD [14] is expanded by providing in-depth physical
and graphical insights for better interpretability of the
CPD model and its factors.

• We propose to include MM as spatial features to perform
a spectral-spatial HU and demonstrate the aforementioned
points. We also revise [14] and provide detailed interpre-
tations on the cases of patches and MM, which has not
been addressed in any of the previous works [14], [29]–
[31]. This analysis also shows that MM is better suited
since it embeds physically meaningful features (scale and
brightness of objects) into HU unlike patches.

That said, note that our main goal is to reason about the inter-
pretability of this factorization and to describe this framework
rather than to propose yet another HU algorithm.

The remainder is organized as follows. In section III, we
introduce some background. In section IV, we detail the
proposed framework. In section V, we present our experiments
and results. Finally, we draw out some conclusions in VI.

II. NOTATIONS AND DEFINITIONS

Table I shows a list of notations for the different types of
objects used throughout the paper: scalars, vectors, matrices,
tensors, and array dimensions and indices. Table II denotes
the types of observed data in the paper, their dimensions and
different ways of indexing.

Type Font style Example
Scalars unformatted lowercase a, b, c, t
Vectors bold lowercase a, b, c, t

Matrices bold uppercase A, B, C, T
Tensors bold calligraphic T

Dimension unformatted uppercase I , J , K, R

Indices lowercase version of
the spanned dimension i, j, k, r

TABLE I: Array notations

Table III denotes the different ways to slice and unfold a
third-order tensor. The mode unfolding (or matricization) of a
tensor means to reshape it into a matrix by fixing the targeted
mode and rearrange the others in lexicographic order.

Table IV denotes the factor matrices of an NMF (matrix
case) or CPD (tensor case). Mode-1, Mode-2 and Mode-3
correspond to the modes of pixels, spectral bands, and set
of extracted spatial features (transforms) respectively.

We use the notation “diag{v}” to refer to the diagonal
matrix whose entries are the elements of any vector v.

The outer product of two vectors a ∈ RI and b ∈ RJ

results in a matrix M ∈ RI×J as follows:

M = a⊗ b = abT ⇐⇒ mi,j = aibj

∀ i ∈ {1, . . . , I}, ∀ j ∈ {1, . . . , J}

The outer product of three vectors a ∈ RI , b ∈ RJ and c ∈
RK results in a third-order tensor T ∈ RI×J×K as follows:

T = a⊗ b⊗ c⇐⇒ ti,j,k = aibjck

∀ i ∈ {1, . . . , I}, ∀ j ∈ {1, . . . , J}, ∀ k ∈ {1, . . . ,K}

The mode-d product •d represents the product of a tensor
by a matrix along the d-th mode. For example, assuming that
we have G ∈ RL×M×N , A ∈ RI×L and B ∈ RJ×M , the
mode-1 and mode-2 product of G by A and B respectively
results in a tensor T ∈ RI×J×N defined as:

T = G •
1
A •

2
B ⇐⇒ tijn =

L∑
l=1

M∑
m=1

Glmn ailbjm (6)

III. BACKGROUND

In this section, we briefly review the existing notions in
the literature upon which we base our algorithm and general-
ized interpretation of the MultiHU-TD framework. First, we
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Type Symbol Dimensions
(pixel × band × transform)

i-th
pixel

j-th
band

k-th
transform

(i, j, k)-th
element

HSI matrix M I × J mi,: m:,j - mi,j

HSI tensor T I × J ×K T i,:,: T :,j,: T :,:,k ti,j,k

TABLE II: The pixels are rearranged in lexicographic order spanning the first mode, so I is the total number of pixels. The
symbol “:” in the index indicates a span of the whole mode. For example, mi,: and m:,j represent the i-th row and j-th
column vectors of M respectively (see Fig. 1), and T :,:,k represents the k-th frontal matrix slice of T (see Fig. 2).

Variable Symbol Dimensions
Horizontal slice T i,:,: J ×K

Lateral slice T :,j,: I ×K
Frontal slice T :,:,k I × J

Mode-1 unfolding T (1) JK × I
Mode-2 unfolding T (2) IK × J
Mode-3 unfolding T (3) IJ ×K

TABLE III: Tensor slicing and mode-unfolding.

Factor Mat. Symbol Dimensions Row
index

Col.
index

Element
index

Mode-1 A I ×R ai,: a:,r ai,r
Mode-2 B J ×R bj,: b:,r bj,r
Mode-3 C K ×R ck,: c:,r ck,r

TABLE IV: The factor matrices, each corresponding to one of the matrix or
tensor modes. R is the number of rank-1 additive terms in the decomposition.

explain how ASC is applied in NMF [17] as the proposed
framework extends this for tensor decomposition. Then, we
give a brief account on ELMM, including graphical and
visual interpretations, which will be the basis for the proposed
interpretation. Finally, we discuss the link between CPD and
ELMM preliminarily presented in [14].

A. NMF with ASC, Nonnegativity, and Sparsity

In the NMF case [17], when sparsity (ℓ1 norm) and ASC
are imposed on the abundances, (1) becomes:

argmin
A,B

1

2
∥M −ABT∥2F + α∥A∥1

s.t. A ⪰ 0, B ⪰ 0,

R∑
r=1

ai,r = 1 |∀i∈{1,...,I}

(7)

where α > 0, and ⪰ denotes element-wise nonnegativity. A
simple strategy to embed ASC goes by stacking a row vector
in B and a column vector in M such that [17]:

M̃ =
[
M | δ1I×1

]
, B̃ =

[
B

δ11×R

]
, (8)

where δ is a constant that is usually set as the mean of M ,
and the last row of B̃ is reset to δ after each iteration. This
operation ensures that ASC is softly embedded in NMF since
∀i ∈ {1, . . . , I} we have:

mi,J+1 =

R∑
r=1

ai,rbJ+1,r =

R∑
r=1

ai,rδ = δ (9)

corresponding to
∑R

r=1 ai,r = 1. Then, (7) becomes:

argmin
A,B̃

1

2
∥M̃ −AB̃T∥2F + α∥A∥1 s.t. A ⪰ 0, B̃ ⪰ 0 (10)

There are many algorithms proposed in the literature that
deal with sparse NMF and ASC, which are out of the scope of
this work [42], [43]. In our case, we extend NMF within the
AO-ADMM framework for CPD. NMF then becomes a special
case for order-2 tensors. This tensor extension, proposed in
Section IV-A is referred to as AO-ADMM-ASC.

B. ELMM

While LMM is seen as a direct approach for HU, it cannot
model SVs represented by nonlinear effects or illumination
conditions. One way to account to said effects is through
ELMM [12], which in general assumes additional degrees
of freedom that account to said SVs at the pixel level by
introducing a pixel-dependent SV function f i : RJ → RJ

∀ i ∈ {1, . . . , I}, which maps each EM b:,r ∀ r ∈ {1, . . . , R}
to a new spectral signature b(i):,r that best reflects the targeted
SVs:

mi =

R∑
r=1

airf i(b:,r) =

R∑
r=1

airb
(i)
:,r . (11)

For example, in the case of different illumination conditions,
this can be represented as a scaling factor for each pixel on
the EMs. In the following, we present the parts that are at the
basis of the interpretability of our proposed framework.

When ASC is imposed in LMM, all the pixels will lie on the
convex hull of the set of estimated EMs (i.e., the columns of
B3), and the fractional abundances in each row of A define
the coordinates of each pixel on the convex hull, which is
illustrated in Fig. 3a. With the introduction of ELMM, the
pixels will not lie on the same simplex anymore as each pixel
is mapped to a new set of EMs, which is illustrated in Fig. 3b

3Here, we note that unless the EMs are not affinely independent, which is
unlikely, and R ≤ J + 1, then the convex hull is a simplex.

(a) LMM (b) ELMM (scalar factors)

Fig. 3: Graphical comparison between LMM and ELMM
(scalar factors) in the case of three spectral signatures {b:,1,
b:,2, b:,3} and two example pixels {ms,:, mt,:}. The relative
coordinates in the simplices are conserved.
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in the case where the SV is modeled by a scaling factor ψir

that is pixel- and EM-dependent such that b(i)r = ψirb:,r [12].
Accordingly, the new spectral signatures b(i)r are allowed to
move only along the directions of b:,r.

In the case where the SVs are modeled with scaling factors,
we denote by Ψ ∈ RI×R the matrix whose entries are the
scaling factors ψir ∀ i ∈ {1, . . . , I} and ∀ r ∈ {1, . . . , R}.
Then, the following are equivalent:

M = (A⊡Ψ)BT ⇐⇒ (12a)

mi,: =

R∑
r=1

airψirb
T
:,r = ai,: diag{Ψi,:}BT = ai,:Ψ(i)B

T

(12b)

where ⊡ is the Hadamard product. Ψi,: ∈ RR is the i-th
row of Ψ, and Ψ(i) ∈ RR×R represents the diagonal matrix
formed from Ψi,:. These mathematical, graphical, and visual
relationships are the key to elaborate and interpret the case of
CPD in Section IV-B.

C. CPD and ELMM

In the work of [14], a representation of CPD in terms of
ELMM has been presented, which will be reported here. CPD
decomposes a third-order tensor T ∈ RI×J×K such that:

T = Λ •
1
A •

2
B •

3
C ⇔ T =

R∑
r=1

λr,r,r a:,r ⊗ b:,r ⊗ c:,r

(13a)

⇔ T =

R∑
r=1

a:,r ⊗ b:,r ⊗ψ:,r (13b)

⇔ ti,j,k =

R∑
r=1

ai,r bj,r ψk,r (13c)

where ti,j,k is a (scalar) entry of T , R is the number of
estimated sources, and Λ ∈ RR×R×R is a diagonal tensor
that absorbs the ℓ2-norms of the columns of the factor matrices
[41], [48]. In (13b) and (13c), we suppress the expression of
Λ by absorbing its entries in the columns of C, resulting in
Ψ ∈ RK×R whose columns are the scaled version of those of
C such that ψ:,r = λr,r,rc:,r ∀ r.

As shown in [14], given that T :,:,k denotes the k-th frontal
slice of T , ∀ k ∈ {1, . . . ,K}, and assuming that Ψ(k) ∈
RR×R represents the diagonal matrix formed from the row
ψk,: ∈ RR of the factor Ψ, one can write:

T :,:,k = A diag{ψk,:}B
T = AΨ(k)B

T = Af̃k(B)T (14a)

⇐⇒ ti,:,k =

R∑
r=1

ai,r (b:,rψk,r) =

R∑
r=1

ai,rfk(b:,r) (14b)

where ti,:,k is the i-th pixel row of T :,:,k. From the perspective
of each frontal slice, CPD resembles a regularized coupled
NMF of the frontal slices where A is a common factor:

argmin
A,B(k)

∥T :,:,k −AB(k)T∥2F s.t. A ⪰ 0,B(k) ⪰ 0 (15)

where B(k) = f̃k(B)|∀ k∈{1,...,K}, which has an analogous
expression to the case of ELMM. The latter was used in

[14] as a way to impose a spatial smoothing (15) on the
abundances within a patch of neighboring pixels. This link
between CPD and ELMM was preliminary presented and
restricted to an application of patches with only simulated data,
and the meaning of the SVs was not explored.

In Section IV-B, we propose a generalized in-depth inter-
pretation of MultiHU-TD, and in Section IV-C we present how
to incorporate spatial features (e.g., patches and MM) in such
a setting.

IV. PROPOSED MULTIHU-TD FRAMEWORK

In this section, we present the proposed MultiHU-TD frame-
work based on CPD. First, we talk about the implementation
of AO-ADMM-ASC. Then, we provide an interpretation of
MultiHU-TD including the physical meaning of ASC and
the ELMM model in the tensor case. Finally, we propose to
include spatial features as examples of the third modality.

A. AO-ADMM-ASC with Nonnegativity and Sparsity

In CPD, after imposing nonnegativity on the factor matrices,
and sparsity and ASC on the abundances, (5) becomes:

argmin
A,B,C

∥T −Λ •
1
A •

2
B •

3
C∥2F + α∥A∥1

s.t. A ⪰ 0, B ⪰ 0, C ⪰ 0,

R∑
r=1

ai,r = 1 |∀i∈{1,...,I}

(16)

In (16), since A adopts the sum-to-one constraint on its rows,
it is hence enough to normalize only the columns of B and
C. In principle, these ℓ2-norms are absorbed in Λ, but for
the sake of consistency, we use the variable Ψ = ΛC instead
of Λ and C, as explained in Section III-C. In order to solve
(16), we propose an algorithm inspired by AO-ADMM [49],
where the factor matrices are updated in an alternating way
and where each update of a factor matrix is optimized as an
ADMM subproblem.

1) ASC Solution: In order to model the problem as close as
possible to LMM, we need a tensor decomposition algorithm
embedding both the ASC and the non-negativity of factors as
constraints. To this end, the strategy we follow is to extend
the concept from NMF to CPD by stacking:

• a row vector to B (i.e., bJ+1,: ∈ RR)
• a lateral slice to T (i.e., T :,J+1,: ∈ RI×1×K)

such that
∑R

r=1 ai,r = 1|∀i∈{1,...,I} is ensured.
In general, T :,J+1,: can be constructed such that ∀i ∈

{1, . . . , I} and ∀k ∈ {1, . . . ,K}:

ti,J+1,k =

R∑
r=1

ai,rbJ+1,rψk,r (17)

So if we set:

• T :,J+1,K = δ1I , i.e., ti,J+1,K = δ ∀i ∈ {1, . . . , I}
• bJ+1,r = δψ−1

K,r ∀r ∈ {1, . . . , R},
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where δ is the mean of T , by substituting the expressions in
(17) for k = K, we have:

ti,J+1,K =

R∑
r=1

ai,rbJ+1,rψK,r (18a)

=⇒ δ = δ

R∑
r=1

ai,rψ
−1
K,rψK,r = δ

R∑
r=1

ai,r (18b)

which implies that
∑R

r=1 ai,r = 1.
At the end of each AO-ADMM iteration, T and B have to

be updated, which boils down to a matrix and a vector updates
after each iteration. We denote by T̃ and B̃ the extensions
of T and B with the additional lateral slice and row vector
respectively, roughly described as follows:

T̃ =
[
T | T :,J+1,:

]
, B̃ =

[
B

bJ+1,:

]
, (19)

Then, expression (16) becomes:

argmin
A,B̃,Ψ

∥T̃ − I •
1
A •

2
B̃ •

3
Ψ∥2F + α∥A∥1

s.t. A ⪰ 0, B̃ ⪰ 0, Ψ ⪰ 0

(20)

where I is a diagonal tensor of ones.
2) ADMM Updates: At this stage, solving (20) with AO-

ADMM becomes simple. We demonstrate the ADMM sub-
problem updates for each factor matrix starting with A.

Supposing that T̃ (1) represents the mode-1 unfolding of T̃ ,
we can write the sub-problem of A as follows:

A = argmin
A

1

2
∥T̃ (1) − W̃ (A)A

T∥2F + α∥A∥1

s.t. A ⪰ 0

(21)

where W̃ (A) ∈ R(J+1)K×I = B̃ ⊙Ψ represents the Khatri-
Rao product [41]. By introducing the splitting variable Ā =
AT, expression (21) becomes:

argmin
A,Ā

1

2
∥T̃ (1) − W̃ (A)Ā∥2F + α∥A∥1

s.t. Ā = AT and A ⪰ 0

(22)

Adopting ADMM for (22), the updates of Ā and A become:

Ā← (W̃
T

(A)W̃ (A) + ρI)−1(W̃
T

(A)T̃ (1) + ρ(A+U (A))
T)

A← max(0, Ā
T −U (A) −

α

ρ
)

U (A) ← U (A) +A− Ā
T

(23)
where U (A) ∈ RI×R is called the dual variable.

Similarly, the updates of B̃ and Ψ become:

B̄ ← (W̃
T

(B)W̃ (B) + ρI)−1(W̃
T

(B)T̃ (2) + ρ(B +U (B))
T)

B̃ ← max(0, B̄
T −U (B))

U (B) ← U (B) + B̃ − B̄
T

(24)
Ψ̄← (W̃

T

(Ψ)W̃ (Ψ) + ρI)−1(W̃
T

(Ψ)T̃ (3) + ρ(Ψ+U (Ψ))
T)

Ψ← max(0, Ψ̄
T −U (Ψ))

U (Ψ) ← U (Ψ) +Ψ− Ψ̄
T

(25)

where T̃ (2) and T̃ (3) are the mode-2 and mode-3 unfoldings
of T̃ , W̃ (B) = A⊙Ψ and W̃ (Ψ) = A⊙B̃ are the Khatri-Rao
products, and U (B) and U (Ψ) are the dual variables.

Finally, for order-2 tensors, this model becomes equivalent
to solving NMF (10). The implementation of AO-ADMM-
ASC is summarized in Algorithm 1. The code is available on
GitHub in Python4 and MATLAB5.

Algorithm 1 AO-ADMM-ASC

Require: T , A,B,Ψ, U (A),U (B),U (Ψ), α
Initialize A,B,Ψ;
Initialize U (A),U (B),U (Ψ) to zero;
repeat

Set B̃ and T̃ based on (19);
Set B ← B̃ and T ← T̃ ;
for ∀D ∈ {A,B,Ψ} do
W̃ (D) = ⊙J ̸=DJ ;

ρ = trace(W̃
T

(D)W̃ (D))/R; [49]
Update D with either (23), (24), or (25);

end for
Absorb the column-wise ℓ2-norms of B into Ψ such that
ψ:,r ← ψ:,r ∥b:,r∥2 ∀r ∈ {1, . . . , R}
Normalize the columns of B

until Termination criterion (e.g., number of iterations)
return A,B,Ψ

B. Interpreting Tensor-based unmixing, ASC, and ELMM

Here, we build upon what has been presented in Sections
III-B and III-C as methodological, physical, and graphical
bases for the MultiHU-TD interpretation. For that, we first
draw the analogies between the expressions of Sections III and
IV by starting from the interpretation of the matrix case and
elaborating that of the tensor case. In the process, we break
down the physical meaning of ASC and that of the so-called
SV function of ELMM in MultiHU-TD at the base of the
composition of the frontal slices of the tensor. Then, we visu-
alize the expressions in order to interpret MultiHU-TD through
graphical representations of subspaces while commenting on
the physical role of the extracted factors and the number of
latent components R.

1) Interpretation of ASC: In the matrix case, assuming a
matricized HSI M (that is, after reordering the two pixel
modes into one mode in lexicographic order) such that:

M = ABT (26)

where A and B represent the estimated abundances and
endmembers respectively, the physical meaning of ASC is that
it constrains the columns of B to form a simplex. Then, the
rows of A (which sum to one) represent the position of the
pixels on said simplex. This is visualized in Fig. 3.

In the tensor case, we assume a tensor T whose CPD is
expressed as:

T = I •
1
A •

2
B •

3
Ψ (27)

4https://github.com/mhmdjouni/MultiHU-TD-Python
5https://github.com/mhmdjouni/MultiHU-TD-MATLAB

https://github.com/mhmdjouni/MultiHU-TD-Python
https://github.com/mhmdjouni/MultiHU-TD-MATLAB
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Fig. 4: Our visualization of equations (12a) (Hadamard prod-
uct) and (12b) (matrix product). The color code of the bottom
part follows that of Fig. 3b. We have Ψ(i) = diag{Ψi,:}.

Fig. 5: Our visualization of equation (14a). The color code is
made analogous to that of Fig. 2 and follows that of Fig. 6a.
We have Ψ(k) = diag{ψk,:}.

(a) ELMM-CPD (General) (b) ELMM-CPD (Patches) (c) ELMM-CPD (MM)

Fig. 6: Graphical representations of (a) CPD with R = 3 components in the case of three spectral signatures {b:,1, b:,2, b:,3}
and two frontal slices {T :,:,1,T :,:,K}, and (b) patch-CPD and (c) MM-CPD with R = 4 components in the case of four
spectral signatures {(b:,1,ψ:,1), . . . , (b:,4,ψ:,4)} and two frontal slices {T :,:,1,T :,:,2}. Very correlated vectors can be seen as
“spectral bundles” with different third-modality characteristics. The relative coordinates of the pixels in the convex hulls must
be the same since A is common for all the frontal slices.

where I is a diagonal tensor of ones, A and B represent the
estimated abundances and endmembers respectively, and Ψ
represents the factor matrix of the third modality.

Here, each slice of the tensor T :,:,k ∀k ∈ {1, . . . ,K}
represents a matricized HSI similar to M (e.g., corresponding
to acquisitions at different dates in a time series, at different
angles in multi-angular acquisitions or at different scales in a
multi-scale decomposition), and we have the following linear
relationship:

T :,:,k = A (diag{Ψk,:}BT) = AB(k)T ∀k, (28)

where Ψk,: represents the k-th row of Ψ. First, let us look at
the properties of the aforementioned expression:

• If we look at each slice separately, the physical meaning
of applying ASC is similar to that of the matrix case
where the simplex is formed out of the columns of B(k).
In fact, we have thatB(k) = B diag{Ψk,:}, which means

that the columns ofB(k) are only scaled versions of those
of B such that:

b(k):,r = ψk,rb:,r ∀r ∈ {1, . . . , R} (29)

• If we consider all the slices together, we notice that
the abundance matrix A is common to all of them.
Moreover, we notice that the factor matrix of estimated
endmembers B (obtained through CPD) is at the base
of their estimated endmembers, influenced only by the
corresponding scaling factors in Ψk,:, which encode the
corresponding third-mode features.

• Given that A and B factorize the physical and data
structures along the pixel and spectral mode respectively,
they are indepedent of the third-mode differences in the
hyperspectral scene between the slices. One could even
construct a matrix M (CPD) from the first two factor
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matrices A and B (obtained through CPD) such that:

M (CPD) = ABT (30)

where B is independent of the spectral variabilities
present along the third mode.

• As A and B factorize the pixel and spectral information,
the third-mode factor matrix Ψ encodes the changes
between the slices along the third mode where the k-
th row Ψk,: is associated to the k-th slice. Intuitively
speaking, this allows some degrees of freedom to express
the nonlinearities along the third mode in a linear sense,
which is reflected on the level of each slice by scaling
the columns of B as expressed in (29).

Finally, assuming that we have K slices in the tensor,
imposing ASC is the equivalent of having K simplices whose
edges, defined by the columns of B(k) ∀k ∈ {1, . . . ,K}, can
move only along the directions of the columns of B such that:

• The positions of the edges of each simplex is defined
by the corresponding scaling factor ψk,r, which encodes
the third-mode physical property (whether it is time,
morphological properties such as scale and brightness,
neighborhood pixels, etc) of the r-th estimated endmem-
ber b:,r in the k-th tensor slice T :,:,k.

• For instance, an estimated endmember b:,r can be relevant
in a given slice T :,:,1 due to a high factor ψ1,r, such
that b(1):,r = ψ1,rb:,r, but also have a low contribution
in another slice T :,:,2 due to a low factor ψ2,r, such that
b(2):,r = ψ2,rb:,r. We can see that b:,r remains independent
of the physical entity that the third mode represents, but
also that b(1):,r and b(2):,r move along the direction of b:,r
(due to the scaling factors ψ1,r and ψ2,r) based on the
effect that the the third-mode physical entity applies on
b:,r in the given slice.

• Since A is common to all the slices, the positions of the
pixels are relatively fixed to each of the K simplices.

This is demonstrated in Fig. 5 and 6 in the manuscript.
2) Interpretation of tensor-based ELMM: First, we note

that expressions (14a) and (14b) are analogous to the ELMM
expression (12b). The major difference between the two cases
is that in CPD, the scaling factors are frontal slice-dependent
(ψk,r), while in ELMM, they are pixel-dependent (ψi,r).
Second, we visualize (12a) and (12b) in Fig. 4, and (14a)
and (14b) in Fig. 5. Looking at (14a), the frontal slices T :,:,k

and the physical meaning that they represent have a direct
influence on the SV function fk and the interpretation of the
SVs, which is simply reflected as scaling factors in each row
of Ψ, i.e. ψk,: (or Ψ(k) = diag{ψk,:}).

As a result, since the spatial and spectral information are
factorized and represented by A and B respectively, and since
A and B are shared by all the frontal slices, then each frontal
slice T :,:,k is inherently differentiated through a set of R
scaling factors {ψk,1, . . . , ψk,R}. Consequently, the spectral
information in each frontal slice T :,:,k can be seen as the set
of scaled sources {b(k):,r = ψk,rb:,r}|∀ r∈{1,...,R}, where {b:,r}
are the columns of B (independent of the slices), b(k):,r are
their spectral variations per frontal slice, and ψk,: encodes the
scaling factors of these variations.

This also means that R is a major parameter that represents
the degrees of freedom especially through the scaling factors
of Ψ, which then jointly encodes:

• the mode-3 evolution of the extracted components of A
and B in its columns ψ:,r

• the per-slice modeling of the SVs in its rows ψk,:.
Intuitively, when obtaining an augmented HSI tensor, one
can say that the physical representations of any applied
transformations (e.g., scale, illumination) [31] and any natural
evolution of a scene (e.g., time series) [24], and resulting in
T :,:,k, are reflected and observed through the matrix Ψ of the
decomposition. Moreover, we point out the following:

• In CPD, there are as many SV functions (and simplices)
as the frontal slices of the tensor, which is significantly
lower than the number of pixels (K ≪ I).

• In CPD, one row of R scaling factors in Ψ corresponds to
a full frontal slice and is shared by all the pixel rows ofA,
while in classical ELMM, each row of scaling factors in
Ψ corresponds to one pixel of M and interacts with only
one row of A. This clearly appears when we compare
(11) and (12b) to (14a) and (14b), and Fig. 4 to Fig. 5.

• On a graphical representation, when ASC is imposed,
CPD suggests that each simplex contains I pixels as
illustrated in Fig. 6a, such that the relative coordinates
of the pixels inside each convex hull are the same since
each row of Ψ interacts with all of A.

In summary, having a third mode in HSI produces scaling
factors in ELMM that absorb the SVs based on the physical
meaning of the frontal slices along the third mode (e.g., time,
patches, MM), which balances the extracted factors in A
and B independently of said SVs. Moreover, the imposed
value of R represents the number of extracted sources and
scaling factors and has a major effect on the results and
the SV interpretation. Since the extraction of materials is
also driven by the third mode diversity, it is possible to
expect a few more latent components than the number of pure
“EMs” existing in the scene, with some spectral correlations
as roughly demonstrated in Fig. 6. As R decreases, we tend
towards having fewer degrees of freedom, where CPD tends
towards extracting the EMs while applying a regularization on
the observed pixels influenced by the physical meaning of the
information across the third mode. As R increases, we tend
towards having more degrees of freedom, where CPD tends
towards extracting factors with multi-feature separability of
the sources. We note that R should not be too high in order
to avoid over-fitting6 (given the relative low-rankness of the
data) and to ensure uniqueness of the CPD [41], [51].

C. Examples of third-mode features: Spatial Features (patches
/ mathematical morphology)

In this section, for the sake of comparison and illustration,
we consider two examples of spatial features that augment a

6There is no exact value of the tensor rank, and finding a good estimate
is an open challenge (as for matrix factorization problems), which is out of
the scope of this paper. As a rule of thumb, R could be chosen by looking
at the reconstruction error in the factorization, e.g. by choosing the smallest
value of R providing an acceptable reconstruction, or by observing the elbow
of the plot of singular values of the mode-1 unfolding of the data.
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Fig. 7: An illustration of constructing a 5× 5 Patch-HSI tensors based on [14].

Fig. 8: Example of a sequential morphological filtering of a grayscale image (corresponding to one spectral band of the HSI
of Pavia University) with Openings and Closings by Reconstruction using successive sizes of the structuring element, which
is a disk in this case. The stacking of the transformations, with the original image corresponding to 0 size being placed in
the middle, is referred to as the morphological profile of the image. The green spots mark the same pixel positioning in each
of the transformations. Then, to create the MM-HSI tensor [31], the pixel positioning modes are reordered into lexicographic
order along the first mode, and the yellow spots are stored along the third mode, in order to create the tensor.

HSI into a third-order tensor for MultiHU-TD: neighborhood
patches and MM. Having these two types of features allow for
a more comprehensive comparison in terms of the properties
of the MultiHU-TD framework and its links to previous
works on said features. We revisit the case of patches with
additional insights, and introduce MM. Consequently, this
helps demonstrate the interpretability of the model especially
in terms of physical significance and the variation of R. We
often refer to Fig. 5 and 6 for illustration.

1) Patches: We recall that the motivation for adding patches
as features is to perform a spatial regularization by considering
the spatial correlation of neighboring pixels [14]. Constructing
a HSI tensor from neighborhood patches (coined as “Patch-
HSI tensor”) is illustrated in Fig. 7. In short, each pixel tube in
the original HSI cube is taken with a patch of its neighboring
pixels (of predetermined size), then the pixel and its neighbors
are stacked as a horizontal slice T i,:,: in the third-order tensor.
That said, the first frontal slice T :,:,1 of said tensor is usually
the matricized HSI (where the pixels represent one mode).

Here, we add that a Patch-HSI tensor has an inherently
low-rank structure which is equal to that of the NMF of the
matricized HSI, that is, the information contained along the
third mode by each of the frontal slices of the tensor is almost

essentially the same. In fact, the frontal slices are just spatially-
shifted versions of the original image T :,:,1, and the values
of these shifts correspond to a small spatial kernel, usually
around 3×3 or 5×5. However, what is different in the tensor
case is that when this shifting information is stacked along
the third mode and CPD is imposed with such a low value
of R, the model automatically applies an implicit smoothing
of the pixels that belong to the same patch (i.e., the same
horizontal slice of T ). This is because the frontal slices are
jointly factorized with the degrees of freedom of a single one
of them, while also sharing the information of A and B.

Therefore, a main advantage over NMF is that one expects
to extract the same sources with a patch-local smoothing of
the SVs of the estimated EMs, where the SVs are balanced
out in the form of scaling factors stored in the rows of Ψ. An
important note here is that the scaling factors stored in Ψ may
not have a significant physical meaning.

Now, what happens when R increases? Since the informa-
tion across the frontal slices are essentially the same (implying
redundancy), the sources and abundances are expected to
replicate, and we expect to observe slightly spatially-shifted
versions of the abundance maps (i.e., in the columns of A).
In this case, the scaling factors in Ψ only indicate whether an
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estimated EM in B corresponds to a certain spatial shifting or
another. This point is roughly illustrated in Fig. 6b (inspired
by Fig. 11) where we have three spectral sources: Gravel,
Metal Sheets, and Trees, but CPD is carried out with R = 4.
Here, the convex hull of T :,:,1 gives a high scaling factor
at b1 and a low factor at b4, while that of T :,:,2 gives the
opposite with almost the same quantity. This is due to the fact
that the materials are present with almost the same quantity in
both frontal slices. In other words, there may be a problem of
redundancy if some components account for the same material
with patches, which does happen in practice.

This problem does not occur when the third mode represents
a physical meaning such as the case of MM.

2) Mathematical morphology: While using patches is ef-
ficient, it still ignores the physical properties of connected
pixels, and the SVs are regularized indifferently among pixels
belonging to different types of materials. On the other hand,
morphological features [57], [58] take into account physical
properties such as scale and brightness of objects and pro-
mote dealing with SV among pixels sharing these properties.
Constructing a HSI tensor using MM (coined as “MM-HSI
tensor”) is illustrated in Fig. 8. In short, the matricized versions
of the original HSI and the results of its morphological
transformations are stacked as the frontal slices of the tensor7.

Through MM, we emphasize the role of incorporating
spatial diversities that add physical significance to the objects
of the scene. As such, one expects that a MM-HSI tensor
has a more complicated structure than that of a Patch-HSI
tensor since its frontal slices contain additional context on the
materials, such as their sizes and brightness levels. As such,
imposing a low R promotes spectral smoothing of the SVs
based on a morphological regularization of the abundances,
while imposing a sufficiently high R promotes a distinctive
spectral-morphological multi-feature separation of the materi-
als, unlike Patch-HSI tensors.

Since each frontal slice is seen as a characteristic of
spatial scale (i.e., size of objects in the scene) and / or
brightness (which is particularly relevant for ELMM because
scaling factors can be directly linked to brightness), then
the scaling factors represented by Ψ indicate the quantitative
correspondence of an extracted material to the aforementioned
physical properties per frontal slice. This point is roughly
illustrated in Fig. 6c (inspired by Fig. 12) where T :,:,1 and
T :,:,2 characterize small and large objects respectively. Here,
the convex hull of T :,:,1 gives high scaling factors for b1, b2,
and b3 (corresponding to small objects), and a low scaling
factor at b4 (corresponds to large objects), while that of T :,:,2

gives the opposite.

V. EXPERIMENTS AND RESULTS

In this section, we discuss the experiments and results
of MultiHU-TD on real HSIs in terms of AO-ADMM-ASC
(compared to Naive ASC [14]), extracted factors, ELMM
interpretability, and qualitative comparisons between Patch-
HSI and MM-HSI tensors with low and high values of the

7The details of constructing MM-HSI tensors are out of the scope of this
paper, but can be found in Section 3 of [31].

number of latent components. In each experiment, among 30
random initializations of the factor matrices, the result with the
minimum root mean squared error (RMSE) is chosen based
on (31a). The estimated EMs of B are identified based on
their minimum spectral angular distance (SAD), in degrees,
with respect to the reference EMs based on (31b).

RMSE
(
T , T̂

)
=
∥T − T̂ ∥2F
∥T ∥2F

(31a)

SAD(e, b) = arccos

(
e · b

∥e∥2 · ∥b∥2

)
(31b)

The maps and plots shown in the experiments represent the
columns of the factor matrices. Above each abundance map
(AM), we show the material that corresponds to it with its
minimum SAD value. We recall that a set of similarly in-
dexed columns, e.g., {A1, B1, Ψ1}, represent the abundance,
spectral source signal, and third-mode source pattern (e.g.,
morphological print, shifting print) of one extracted material
respectively. Since Ψ plays a crucial role in the interpretability
of ELMM and MultiHU-TD, we also highlight the relevance of
its row components. Each fixed index k in the plot corresponds
to a row of Ψ and thus to a frontal slice in T , and the vertical
grouping of points at said index, as indicated in Fig. 11c, 12c,
13c, and 14c, represents the scalars in that row. This also
means that when projected on Fig. 6, in Patch-CPD, k = 1
contains the SV scaling factors that balance the convex hull
of the original HSI and are responsible for its reconstruction,
while in MM-CPD, the middle index does that. This will
eventually show how MM accounts to physical effects in the
scene, while patches do not.

That said, we note that we carried part of the experi-
ments using sparse NMF with ASC [17] for the sake of
qualitative comparison of the abundance maps and spectral
sources obtained from the original HSI (i.e., the HSI matrix
without additional filtering). Due to the difference in the
type of information contained between the matrix and tensor
cases, and since NMF does not apply in the framework of
MultiHU-TD, these results will serve only as a reference for
the extracted components of CPD as they do not serve the main
aim and message of this work. For that reason, we include
them in Appendix B with further reasoning and explanation
of the NMF case analysis and its relevance to this work.

In each case analysis, we look into the components of
A and B first, which visually and spectrally identify the
materials, then we explain their correspondence to those of
Ψ, where we are interested in the significance of the third-
mode patterns then their relevance to the original HSI. We
note that quantitative validation of the AMs and EMs is usually
not evident, especially in the case of the Urban HSI in Fig.
10b where the spatial ground-truth (GT) is not a real GT but
actually just a reference, and is not usable for quantitative
comparison. Moreover, there is neither a quantitative nor a
qualitative reference for third-mode patterns in the literature,
so highlight an in-depth qualitative analysis.

We want to consider HSIs which show objects with spatial
features of different scale and brightness levels, for which
urban areas are good candidates. For that, we choose two
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(a) (b)

(c)

Fig. 9: 9a) Pavia in false colors. 9b) Pavia’s spatial reference.
9c) Pavia’s spectral reference extracted by averaging each class
of the spatial reference.

real HSIs8: Pavia University and Urban, shown in Fig. 9 and
10 respectively in false colors with their spatial and spectral
references. It is worth noting for the sake of interpretation that
the MM-HSI tensors are built following the extended morpho-
logical profile (EMP) technique used in [31] with openings by
reconstruction (ObRs) and closings by reconstruction (CbRs),
which correspond to bright and dark objects respectively,
with varying sizes of the structuring element (SE), which in
turns corresponds to the scales of objects. In the following
experiments, 4 sizes of the SE are used, corresponding to 8
ObR and CbR transformations, then the dimension of the third
mode is K = 9 where the original image (corresponding to
scale 0) is placed in the middle as roughly shown in Fig. 8.
The Patch-HSI tensors are built following [14] as shown in
Fig. 7 with 3 × 3 patches. This means that the dimension of
the third mode is K = 3× 3 = 9 where the original image is
placed at k = 1. In addition to the real HSIs, we demonstrate
the performance of the proposed framework under different
levels of noise through a synthetic HSI tensor in Appendix
C. We run our experiments with Intel® Core™ i7-1185G7,
32GB RAM 3200MHz LPDDR4.

A. Results Discussion - Pavia University

In this section, we present the experiments of the HSI of
Pavia, but first, we note that the reference for this dataset is

8The data sets with detailed information are available on the website:
http://lesun.weebly.com/hyperspectral-data-set.html

(a) (b)

(c)

Fig. 10: 10a) Urban in false colors. 10b) Urban’s spatial
reference. 10c) Urban’s spectral reference.

originally composed of training and testing sets, where each
pixel is manually associated with one of 9 labeled classes as
seen in Fig. 9b. The spectral reference in Fig. 9c is extracted
by averaging the spectral signatures of each subset of pixels
belonging to one class. In Fig. 9c, some classes have very
similar spectral signatures, so, in the following, sometimes
we refer to Trees and Meadows as vegetation, and to Asphalt,
Bitumen, Gravel, and Bricks as roads or roofs, while Bare Soil
may belong to either of both groups.

We start by comparing AO-ADMM-ASC and Naive ASC.
After that, we focus on CPD and the ELMM analysis of the
factors while interpreting the cases of patches and MM. For the
MM-HSI tensor, our SEs are disks with the successive radii:
{2, 7, 12, 17} pixels. Both Patch- and MM-HSI tensors then
have K = 9 frontal slices and dimensions 207400× 103× 9.
Finally, we find that R = 4 and R = 8 are the best for low and
high values of the number of latent components respectively.

1) AO-ADMM-ASC: Here, we compare the RMSE results
of MM-CPD between AO-ADMM-ASC and Naive ASC [14].
The results are shown in Table V, where we see that with
AO-ADMM-ASC we gain in RMSE, which corresponds to a
better estimation of the factors with respect to the observed
tensor with a small difference in the execution time.

Algorithm R RMSE % Time (s)
Naive ASC [14] 8 7.07 231

AO-ADMM-ASC 8 6.34 384

TABLE V: Pavia. The results of AO-ADMM-ASC and Naive
ASC in terms of RMSE and execution time: R indicates the
number of latent components. The results of the minimum
RMSE are shown.
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(a) Components of A

(b) Components of B (c) Components of Ψ

Fig. 11: Pavia. CPD results of the Patch-tensor for R=4

(a) Components of A

(b) Components of B (c) Components of Ψ

Fig. 12: Pavia. CPD results of the MM-tensor for R=4

(a) Components of A

(b) Components of B (c) Components of Ψ

Fig. 13: Pavia. CPD results of the Patch-tensor for R=8

(a) Components of A

(b) Components of B (c) Components of Ψ

Fig. 14: Pavia. CPD results of the MM-tensor for R=8

2) Few latent components, ELMM and SV: Here, we are
interested in the property of CPD dealing with SV. Since
Patch-HSI tensors have as an inherently low structure as that
of NMF, we start by considering R = 4 for patches and MM.
As explained in Section IV-B, such a low value highlights
the SV and spatial regularization aspects of MultiHU-TD. We
compile the discussion into two stages: (a) Fig. 11 representing
Patch-CPD, and (b) Fig. 12 representing MM-CPD.

2a) In Fig. 11, B1 and B4 are identified as Trees and Metal

Sheets respectively, which reflects the areas highlighted in A1

and A4, while B2 and B3 can be seen as a bundle identified
as Gravel, which reflects the areas highlighted in A2 and A3

and where we already start to see replicated components. In
fact, A2 and A3 are slightly-shifted versions of each other,
which is explained better in the following interpretation of
Ψ2 and Ψ3.

Looking at Fig. 11c, which is the most interesting, one
might intuitively expect to see horizontal curves since, quan-
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titatively, the collective SV is supposedly constant in patches.
However, while Ψ1 and Ψ4 look almost straight, Ψ2 and Ψ3

are not. We notice here that where Ψ2 is high, Ψ3 is low
and vice versa. In part, this means that A2 represents the
shifts where k = {2, 3, 4, 5}, while A3 represents those where
k = {6, 7, 8, 9}. In another part, the two columns fluctuate in
a way that maintains a constant SV and balances out their
quantitative presence across the frontal slices. As for k = 1,
which represents the original HSI, we notice that the scaling
factors are almost equal, which means that the spectral vectors
of the convex hull are equally present in the HSI, all of which
shows that Patch-HSI tensors do not account to physical spatial
effects.

2b) In Fig. 12, B1, B2, and B3 are identified as Bare Soil,
Trees, and Metal Sheets respectively, which reflects the areas
highlighted in A1, A2, and A3, all of which is similar to those
obtained by patches. As for {A4,B4}, while B4 and B1 can
be seen as a spectral bundle, unlike patches, we notice that A4

highlights interesting shadow areas (i.e., dark features), which
clearly reflects the morphological awareness incorporated into
CPD with MM. The latter becomes more interesting with the
following interpretation of Ψ.

Looking at Fig. 12c, we observe three main patterns that can
be associated to the chosen morphological parameters. First,
Ψ4 corresponds to dark features (reflected by the shadows
in A4) as it has higher values when k corresponds to CbR,
then continues decreasing towards ObR. Second, Ψ2 and Ψ3

correspond to small features as they have higher values around
the middle (k = 5) where the SEs are small, which is visually
reflected through the small objects highlighted in A2 (trees)
and A3 (metal sheets and vehicles). Third, Ψ1 is rather steady,
which means that the spatial features shown in A1 are general.

As for k = 5, which represents the original HSI, we notice
that Ψ2 and Ψ3 have the highest scaling factors since they
correspond to relatively bright objects of the scene, Ψ1 has a
slightly lower factor since it corresponds to darker objects like
asphalt roads, building roofs, parking lots, and bare soil areas,
and Ψ4 has the lowest factors since it corresponds to dark
shadows. These relationships show the column- and row-wise
significance of Ψ and how MultiHU-TD can balance out the
SVs and simultaneously reconstruct the original HSI.

3) More latent components, ELMM and multi-feature sep-
arability: Here, we are interested in MultiHU-TD when we
have more degrees of freedom, where we dive deeper into
the factors of patches and MM for R = 8. As explained
in Section IV-B, such a higher value demonstrates the multi-
feature separability of MM and how patches only replicates its
components. We compile the discussion into two stages: (a)
Fig. 13 representing Patch-CPD, and (b) Fig. 14 representing
MM-CPD.

3a) In Fig. 13, we end up with more replicas of the same
A and B components obtained in Fig. 11, the bundles being
associated to the column indices {1, 3, 4} detected as Trees,
and {2, 5, 6, 7} detected as Gravel and Bitumen. As for the
plot of Ψ, the same remarks of Fig. 11c about balancing the
constant SVs in patches apply on Fig. 13c, but since there
are many replicas, the figure becomes hard to read. Finally,
we notice again that for k = 1, the scaling factors are almost

equal.
3b) In Fig. 14, we notice that MultiHU-TD is done based

on spectral and morphological properties, where we observe
three bundles: {1, 3, 6}, {2, 4, 7, 8}, and {5}. B1, B3, and
B6 are identified as vegetation, which respectively reflects
the areas highlighted in A1 (small vegetation areas like trees),
A3 (big vegetation areas like meadow), and A6 (dark shadows
on vegetation areas). Therefore, while B1, B3, and B6 form
a bundle, unlike patches, the corresponding AMs highlight
interesting features accounting to the scale and brightness of
vegetation objects, which we discuss in more depth with the
interpretation of Ψ and which applies to the other components
as well. B2, B4, B7, and B8 are identified as Bitumen and
Gravel, which respectively reflects the areas highlighted in A2

(small or short areas of roads and roofs), A3 (big connected
areas of roads, roofs, and parking lots), A7 (dark shadows
on parking lots and buildings), and A8 (tiny bright vehicles).
Finally, B4 is identified as Metal Sheets, which are small.

Looking at Fig. 14c, we observe four main patterns that can
be associated to the chosen morphological parameters: First,
Ψ6 and Ψ7 correspond to dark features (as observed inA6 and
A7) as they have higher values when k corresponds to CbR,
then continue decreasing towards ObR. Second, Ψ1, Ψ2, and
Ψ5 correspond to small features (as observed in A1, A2, and
A4) as they have higher values around k = 5 where the SEs
are small. Third, Ψ3 and Ψ4 correspond to big features (as
observed in A3 and A4) as they have higher values when k
corresponds to big SEs with ObR. Fourth, Ψ8 corresponds to
the tiny vehicles as it is the highest when k corresponds to
the smallest SE. Finally, we talk about the original HSI in the
following (i.e., T :,:,5).

As for k = 5, we notice that Ψ1, Ψ2, Ψ5, and Ψ8 have
the highest scaling factors (relatively bright objects including
the vehicles), Ψ3 and Ψ4 have lower factors (darker objects
like asphalt roads, building roofs, parking lots, bare soil, and
meadow areas), and Ψ6 and Ψ7 have the lowest factors (dark
shadowy features). These relationships showcase the separa-
bility of MultiHU-TD when the third-mode has a significant
physical meaning and when the number of latent components
is set to be sufficiently high, which can also be interpreted in
terms of ELMM and balancing the SV factors.

B. Results - Urban

In this section, we present the experiments of the Urban
HSI following the same order of Pavia. Since we have the
same observations, and in order to avoid repetition, we briefly
go over the results. But first, we note that the spatial and
spectral references already come with the downloaded dataset,
consisting of four endmembers, which we use as a spectral
reference (shown in figure 10c) in the experiments, and four
abundance maps (shown in figure 10b). For the MM-HSI
tensor, our SEs are disks with the successive radii: {1, 4, 7, 10}
pixels. Both Patch-HSI and MM-HSI tensors then have K = 9
frontal slices and dimensions 94249×162×9. Finally, we also
choose R = 4 and R = 8 for the number of latent components.

1) AO-ADMM-ASC: Table VI shows the RMSE results of
MM-CPD between AO-ADMM-ASC and Naive ASC [14],
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(a) Components of A

(b) Components of B (c) Components of Ψ

Fig. 15: Urban. CPD results of the Patch-tensor for R=4

(a) Components of A

(b) Components of B (c) Components of Ψ

Fig. 16: Urban. CPD results of the MM-tensor for R=4

where again with AO-ADMM-ASC we gain in RMSE with a
small difference in the execution time.

Algorithm R RMSE % Time (s)
Naive ASC [14] 8 7.88 124

AO-ADMM-ASC 8 6.87 251

TABLE VI: Urban. The results of AO-ADMM-ASC and Naive
ASC in terms of RMSE and execution time: R is the number
of latent components. The results of the minimum RMSE are
shown.

2) Few latent components, ELMM and SV: Here, we dis-
cuss the results for R = 4, where (a) Fig. 15 represents Patch-
CPD (b) Fig. 16 represents MM-CPD. A fast look at the figures
shows that we have the same observations as those of Pavia:

2a) In Fig. 15, B2 and B3 form a bundle, and A2 and
A3 are replicas and represent Asphalt+Grass. Moreover, in
Fig. 15c, we see the same patterns and fluctuations that
were observed in Fig. 11c related to the constant SV and
its quantitative balance in patches, and the scaling factors are
equal for k = 1. On the other hand, {A1,B1} and {A4,B4}
represent Tree+Grass and Roof respectively with steady Ψ1

and Ψ4 patterns.
2b) In Fig. 16, while B4 and B1 form a bundle, we notice

that Ψ4 has the same pattern observed in Fig. 12c, which
corresponds to dark shadows and is reflected in A4, which
highlights shadows of buildings and trees that fall on grass
areas. As for the other components, they can be interpreted
similarly to those in the case of Pavia (including for k =
5), where {A1,B1,Ψ1}, {A2,B2,Ψ2}, and {A3,B3,Ψ3}
represent Asphalt+Grass, Tree+Grass, and Roof respectively.

3) More latent components, ELMM and multi-feature sepa-
rability: Here, we discuss the results for R = 8, where Fig. 17
represents MM-CPD. We skip the case of Patch-CPD in order
to avoid repetition, where we simply end up with more replicas
of the components of figures 15a and 15b. In Fig. 17, we are
interested in the features of the AMs that do not appear in
Patch-CPD as the comments on the spectral and morphological

(a) Components of A

(b) Components of B (c) Components of Ψ

Fig. 17: Urban. CPD results of the MM-tensor for R=8

patterns are the same as those of Pavia; where the plots reflect
the qualitative features that appear in the respective AMs.

We observe three column sets forming three spectral bun-
dles: {1, 2, 6}, {3, 5, 7, 8}, and {4}. First, A1, A2, A4, and
A6 were identified as Vegetation: A1 highlights grass fields,
which is close to the Grass reference and does not appear in
Patch-CPD. A2 and A4 highlight small and big areas, and
together they correspond to the Tree reference. A6 highlights
dark shadows (which is reflected in Ψ6). Second, A3, A5, and
A8 are identified as Asphalt Road: A8 seems to correspond to
dark features (refer to Ψ8). A3 highlights small roads such as
dirt and narrow streets, while A5 highlights large roads like
the main and connected roads, which are clearly highlighted
unlike the case of patches. Third, A7 is identified as Roof and
highlights both small and large building roofs.
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VI. CONCLUSION

In this paper, we proposed a methodological framework
for MultiHU-TD based on CPD and the AO-ADMM-ASC
algorithm, where the samples (pixels) represent a convex
combination of the sources. We also established a unified
framework for the interpretability of MultiHU-TD into “mul-
tilinear” subspaces which involved mathematical, physical,
and graphical representations of the CPD model with ASC,
ELMM and SV. Finally, we proposed to include MM as
spatial features in a spectral-spatial HU and dived further into
the case of neighborhood patches, where MM incorporates
physically meaningful features into the data tensor. Through
the comparison between the two third-mode examples, we
provided in-depth insights on the interpretability of MultiHU-
TD including the physical significance of the factor matrices
and the input rank. To conclude, we summarize some key
properties of MultiHU-TD as follows:

• Multi-feature hyperspectral data is useful for low-rank
latent variable analysis, such as unmixing.

• Having multiple modalities of features allows to exploit
more information on the scene, relaxing the dependency
on the high-rank spatial structures while conserving
enough context of the scene.

• Having multiple modalities of features with CPD acts
as an implicit prior on the scene. The MultiHU-TD
framework is then equivalent to performing a coupled
matrix decomposition on each of the tensor slices where
the abundances matrix A is the common factor.

• Multi-feature unmixing through low-rank tensor decom-
position factorizes the pixel and spectral information and
implicitly models the spectral variabilities of the scene.

In the future, we plan to explore BTD which allows some
flexibility with the tensor structure and can be seen as an
extension to Spectral Bundles for SV [11], but also comes
with many challenges such as the rank and the interpretation
of the subspaces. Moreover, areas of BSS other than HU
may be explored. Finally, it is worth mentioning that some
deep learning approaches are being considered for HU (which
still suffer from the increasing and flexible dimensionality
of HSIs and the difficulty of finding data sets for training
especially in a blind framework). However, by developing our
methodological study of tensor-based unmixing and pushing
for interpretability, this framework can help interpretability in
data driven methods based on tensor decomposition [21], [59],
[60].
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APPENDIX A
ACRONYMS

MATRIX & TENSOR DECOMPOSITION

ADMM alternating direction method of multipliers
ALS alternating least squares
AO alternating optimization
AO-ADMM alternating optimization ADMM
ASC abundance sum-to-one constraint
BSS blind source separation
BTD block term decomposition
CPD canonical polyadic decomposition
NMF nonnegative matrix factorization
ProCo-ALS projected compressed ALS

HYPERSPECTRAL IMAGING

AM abundance map
ELMM extended linear mixing model
EM endmember
GT ground-truth
HSI hyperspectral image
HU hyperspectral unmixing
LiDAR light detection and ranging
LMM linear mixing model
MultiHU-TD multi-feature hyperspectral unmixing based

on tensor decomposition
RMSE root mean squared error
SAD spectral angular distance
SNR signal-to-noise ratio
SV spectral variability

MATHEMATICAL MORPHOLOGY

CbR closing by reconstruction
EMP extended morphological profile
MM mathematical morphology
MP morphological profile
ObR opening by reconstruction
SE structuring element

APPENDIX B
SPARSE-NMF RESULTS ON THE MATRICIZED HSI

In this appendix, we include the results obtained by applying
sparse NMF (with ASC) [17], which partly inspired this work.
We note that these results cannot be compared with those of
tensor decomposition in terms of RMSE and execution time
due to the following reasons:

• In terms of RMSE, on the one hand, we reconstruct
a multi-feature HSI tensor, while on the other hand,
we reconstruct a HSI matrix which does not apply in
multi-feature analysis, so the reconstructed data represent
different types of information.

• In terms of execution time, NMF typically has shorter
execution times than tensor-based methods due to the
added complexity. However, both tools are fundamentally
different and can not be used for the same multi-linear
application.

With that said, the obtained results serve only as a qualitative
baseline or reference for the abundance maps and spectral
components of decomposing the two HSI datasets, which can
indeed be compared with those obtained in the case of MM-
HSI and Patch-HSI tensors.
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(a) Components of A

(b) Components of B

Fig. 18: Pavia. NMF results of the HSI matrix for R = 4

(a) Components of A

(b) Components of B

Fig. 19: Urban. NMF results of the HSI matrix for R = 4

A. Pavia dataset

Fig. 18 shows the results obtained for the dataset of Pavia
University. Each abundance map is shown with the class that
is assigned to it based on the minimum SAD value, which is
reported as well.

First, we look at the first three components, Trees, Bare Soil,
and Metal Sheets. Their spectral signatures {B1,B2,B3}
shown in Fig. 18b look very similar to those of the reference,
but the corresponding SAD values are relatively bad (high)
compared to those obtained using tensor decomposition in Fig.
11 and 12.

The abundance maps {A1,A2,A3} of Fig. 18a show
highlighted elements belonging to Trees, Bare Soil, and Metal
Sheets respectively. However, we notice that other areas of
the scene belonging to these categories are barely or faintly
highlighted (e.g., asphalt road, brick parking lots, other soil
areas), which is due to the insufficiency of LMM to model
their variabilities.

Regarding the Shadow component, the spectral signature

B4 looks slightly similar to the reference, but the shadows
in the map are barely visible due to their relatively very low
brightness A4.

B. Urban dataset

Fig. 19 shows the abundance maps and spectral signatures
of A and B respectively. We obtain four components with
relatively low (good) SAD values and good abundance maps
similarity with respect to the reference. Finally, we also note
that some dark areas like asphalt roads are not highlighted.

APPENDIX C
SYNTHETIC HSI EXAMPLE

In the following, we simulate a time-series HSI tensor
through a synthetic example. The noiseless tensor is recon-
structed from its building blocks, i.e., the factor matrices,
which are considered here as the noiseless ground-truths.
This simplified example serves as a demonstration of the
performance of MultiHU-TD as we increase the signal-to-
noise ratio (SNR).

A. Description of the synthetic dataset

The synthetic HSI cube M of a signle time-stamp has
dimensions 128 × 128 × 26, whose matricized version is
denoted by M of dimensions 16384× 26. In particular:

• The spatial scene is composed of six objects that vary in
size, as shown in Fig. 20, denoted by “Object 1” through
“Object 6”. The scene is shown in Fig. 22a in false colors.

• Three independent spectral signatures are simulated from
the HSI of Pavia University, corresponding to Street,
Vegetation, and Metal Sheets which are shown
in Fig. 21b.

• The objects are assigned linear mixtures of the three
simulated spectra as shown in TABLE VII. This means
that the ground-truth of the abundances satisfies the ASC.

That said, M has rank 3 where M = ABT, such that A ∈
R16384×3 and B ∈ R26×3 are two factor matrices. The spatial
and spectral ground-truths, ofA andB respectively, are shown
in Fig. 21a and 21b.

Object number 1 2 3 4 5 6

Street (%) 10 0 0 80 20 100
Vegetation (%) 70 100 0 10 20 0

Metal Sheets (%) 20 0 100 10 60 0

Total (%) 100 100 100 100 100 100

TABLE VII: Spectral mixture of each object based on the end-
members, Street, Vegetation, and Metal Sheets.

As for the full time-series HSI tensor, it is composed of three
stamps where the objects of the scene change in color or dis-
appear in time. In principle, this corresponds to a time-series
tensor D of dimensions 128× 128× 26× 3. After reordering
the pixel modalities in lexicographic order, we would obtain
a tensor T of dimensions 16384× 26× 3. We synthesize the
time-series HSI tensor T of dimensions R16384×26×3 from the
product with an additional matrix C ∈ R3×3 such that:

T = I •
1
A •

2
B •

3
C (32)
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Fig. 20: The simulated spatial objects of the synthetic HSI,
denoted as Objects “1” through “6”.
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Fig. 21: Ground-truth components of the synthetic tensor T .

(a) Noiseless (b) σ2 = 10−4 (c) σ2 = 10−3

(d) σ2 = 10−2 (e) σ2 = 10−1

Fig. 22: The synthetic HSI scene at a single time stamp k = 1
in False colors, with Gaussian noise of variance σ2 ranging
from 0 (being noiseless) to 10−1 (being very noisy).

where I ∈ R3×3×3 is a diagonal tensor of ones, and C is
described as follows:

C =

1 1 1
1 1 0
1 0 0

 <=>

k = 1
k = 2
k = 3

 (33)

where k is the index spanning the third modality, which is
that of time stamps. C is considered the ground-truth of the
temporal signatures, and its columns are plotted in Fig. 21c.

In order to assess the performance of the proposed frame-
work in the presence of noise, Gaussian noise was added on
the tensor D with varying levels of noise, where the variance
σ2 ∈ {0, 10−4, 10−3, 10−2, 10−1}, as described in Fig. 22.
After adding noise, the tensor is reshaped back to T .
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Fig. 23: Synthetic HSI. Results of decomposing the HSI tensor
T without noise, where we also have RMSE = 0.
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Fig. 24: Synthetic HSI. Results of decomposing the HSI tensor
T with Gaussian noise of variance 10−4.

B. Results of unmixing without adding noise

Fig. 23 shows the components of the factor matrices after
decomposing the synthetic time-series HSI tensor described
using CP decomposition. The components of the factor matri-
ces are perfectly recovered thanks to the CP uniqueness of the
data tensor [61]. Moreover, it is worth noting that the RMSE
between the original data tensor and the reconstructed one is
0, which means perfect reconstruction.

C. Results of unmixing with varying levels of noise

In this case, we discard the reconstructability of the tensor
itself and focus on the factor matrices, of which we have the
abundance matrix A. Fig. 24, Fig. 25, Fig. 26, and Fig. 27
show the results of decomposing the tensor under varying
levels of Gaussian noise, with variances of 10−4, 10−3, 10−2,
and 10−1 respectively. Moreover, Fig. 28 shows the evolution
of the SAD index of the estimated endmembers as the noise
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Fig. 25: Synthetic HSI. Results of decomposing the HSI tensor
T with Gaussian noise of variance 10−3.
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Fig. 26: Synthetic HSI. Results of decomposing the HSI tensor
T with Gaussian noise of variance 10−2.

level increases. We note that the experiments are done without
applying any spatial denoising.

The components of the factor matrices, including the abun-
dance matrix A whose rows sum to one, are quite recoverable
up to a level of noise of variance σ2 = 10−3. In the case
of σ2 = 10−2, the components are still recoverable even
though the tensor looks quite noisy in Fig. 22d. In the case of
σ2 = 10−1, which is very noisy that some of the objects are
indistinguishable in Fig. 22e, the reconstructed spectra are still
fairly close to their ground-truths and the spatial structures in
the factors of the abundance matrix can still be recognized. In
Fig. 28, we can see that the SAD index generally increases
with the level of noise. However, the values remain quite small,
i.e., less than 5◦, indicating the recoverability of the estimated
endmembers even under such high levels of noise. The only
exception in this case is that of Metal Sheets under a variance
of 10−1 which results in a SAD index of about 16◦; this can
be due to the small size of Metal Sheets objects, which makes
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Fig. 27: Synthetic HSI. Results of decomposing the HSI tensor
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Fig. 28: Synthetic HSI. Evolution of SAD index of the
estimated spectra compared to the spectral ground-truth.

them more susceptible to noise.
Moreover, we note that with the addition of noise, the tensor

T which was synthesized to be of rank R = 3 becomes
full rank. Decomposing the noisy tensor with a low rank can
be roughly seen as a denoising procedure since it forces the
projection of the data onto a lower-rank multi-linear latent
subspace of rank R = 3. However, spatial denoising is still
needed in order to recover a better representation of the spatial
components, but said application is out of the scope of this
paper.

Finally, this is a simple, controlled, and minimalistic ex-
ample that serves as an intuition for more complex structures
where the situation is completely blind, such as in real HSI
tensors.

APPENDIX D
COMPUTATIONAL COMPLEXITY OF AO-ADMM-ASC
First, we refer to paper [49] for the detailed explanations

concerning the CPD by using AO-ADMM. Let us consider
a third-order tensor T ∈ RI1×I2×I3 (where I1 >>> I2I3)
with a low rank R, and we consider the complexity as per
ADMM iterations. Also, it is important to note that matrices
W̃ and T are independent from the inner-ADMM updates, so
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they can be used only once to compute the products W̃
T
W̃

and W̃
T
T , whose values can be cached before the ADMM

update allowing to save a lot of repetitive computations. Now,
we split the problem into three steps:

1) Unconstrained CPD: In this case, the complexity of
the algorithm is dominated only by the updates of
the factor matrices. Hence, the complexity is O(IdR

2)
∀d ∈ {1, 2, 3}.

2) Nonnegative CPD, which is relevant for the updates
of each of the factor matrices: Nonnegativity requires
only element-wise projection, i.e., a complexity of
O(IdR) ∀d ∈ {1, 2, 3}, which is negligible compared
to O(IdR

2). Hence, the complexity is still dominated
by O(IdR

2).
3) Nonnegative CPD with sparsity and ASC, which is only

relevant for the update of A: Sparsity is like nonneg-
ativity as it boils down to an element-wise subtraction
with complexity O(I1R), which is negligible compared
to O(I1R

2). As for ASC, it requires two updates:
• bJ+1,r = δψ−1

K,r ∀r ∈ {1, . . . , R}, i.e., a complexity
of O(R), which is negligible.

• ti,J+1,k =
∑R

r=1 ai,rbJ+1,rψk,r ∀i ∈ {1, . . . , I}
and ∀k ∈ {1, . . . ,K − 1}, i.e., a complexity of
O(I1I3R).

Considering that MultiHU-TD admits a low-rank CP decom-
position, R is usually small, and in most of the cases we
would have R < I3 (or at least very close). In which case,
the complexity is dominated by O(I1I3R), which changes
linearly with either the number of pixels I1, the third-mode
features I3, or the latent components R.
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