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Multi-feature Hyperspectral Unmixing Based on
Tensor Decomposition
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and Pierre Comon, Fellow, IEEE

Abstract—Hyperspectral unmixing allows to represent mixed
pixels as a set of pure materials weighted by their abundances.
Spectral features alone are often insufficient, so it is common
to rely on other features of the scene. Matrix models become
insufficient when the hyperspectral image is represented as a
high-order tensor with additional features in a multimodal, multi-
feature framework. Tensor models such as canonical polyadic
decomposition allow for this kind of unmixing, but lack a general
framework and interpretability of the results. In this paper, we
propose a methodological framework for multi-feature unmixing
based on alternating optimization alternating direction method of
multipliers and incorporating abundance sum-to-one constraint
(AO-ADMM-ASC), with in-depth mathematical, physical and
graphical interpretation and connections with the extended linear
mixing model. As additional features, we propose to incorporate
mathematical morphology and reframe a previous work on
neighborhood patches within our framework. Experiments on
real hyperspectral image data show the efficiency of AO-ADMM-
ASC and allows an in-depth interpretation of the model. Python
and MATLAB implementations of AO-ADMM-ASC are made
available at:
https://github.com/mhmdjouni/AoAdmmAsc-python
https://github.com/mhmdjouni/AoAdmmAsc-matlab

Index Terms—Hyperspectral unmixing, Tensor decomposition,
Interpretability, Extended linear mixing model, Blind source
separation.

I. INTRODUCTION

HYPERSPECTRAL IMAGING refers to the acquisition
of images of a scene over a wide and almost continuous

spectrum. A hyperspectral image (HSI) contains pixels that
can cover areas of pure or mixed materials and amounts to
a high spectral feature diversity [1], [2]. These characteristics
allow to perform blind source separation (BSS) [3]–[5] on
the observed spectral signatures to blindly extract those of
pure materials (sources), also called endmembers (EMs), and
their per-pixel (per-sample) abundances. This case of BSS is
known as hyperspectral unmixing (HU), which is an active
research topic with several applications like remote sensing,
chemometrics, biomedical imagery, etc [6]–[15]. HU allows to
understand and quantify the physical components of a scene.
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France under Project Pack Ambition International 2021.

M. Jouni, M. Dalla Mura, and P. Comon are with Univ. Greno-
ble Alpes, CNRS, Inria, Grenoble INP, GIPSA-lab, 38000 Grenoble,
France (e-mail: mohamad.jouni@gipsa-lab.fr; mauro.dalla-mura@gipsa-lab.fr;
pierre.comon@gipsa-lab.fr). M. Dalla Mura is also with the Institut Univer-
sitaire de France (IUF), France.

L. Drumetz is with IMT Atlantique, Lab-STICC, UMR CNRS 6285, F-
29238, Brest, France (e-mail: lucas.drumetz@imt-atlantique.fr).

Manuscript received . . . ; revised . . . .

A significant part of research in BSS and HU relies on
matrix factorization with additional constraints that aim at
modeling the context of the problem. Consequently, an ob-
served data matrix M ∈ RI×J (i.e., with I pixel samples and
J spectral features) is decomposed into two factor matrices
A ∈ RI×R and B ∈ RJ×R such that:

M = ABT =

R∑
r=1

arb
T
r (1)

where R is the number of latent components to be estimated,
and ar and br are the columns of A and B, respectively,
∀ r ∈ {1, . . . , R}. As such, the columns of B represent the
estimated source signals, and the rows of A represent the per-
sample abundances of the sources. The decomposition is often
carried out by minimizing the generic cost function [16]:

argmin
A,B

∥M −ABT∥2F + r(A) + r(B) (2)

where r(·) encodes the imposed constraints and/or regulariza-
tions to enforce desirable properties on the solutions.

In the case of HU, a classical approach is the nonnegative
matrix factorization (NMF), which relies on the linear mixing
model (LMM) of the observed HSI matrix (see Fig. 1). Hence,
A and B are element-wise nonnegative, which applies also in
most domains of BSS (other than HU) where the interpretabil-
ity of the factor matrices is important. Moreover, the rows of
A are subject to the abundance sum-to-one constraint (ASC),
which means that each row sums to 1:

R∑
r=1

air = 1 ∀ i ∈ {1, . . . , I} (3)

which applies to domains where the coefficients of the decom-
position are proportions.

When only few materials concur in the mixture for each
pixel, sparsity is imposed on the abundances [17]. Finally, real
HSIs often contain spectral variabilities (SVs) in the sources,
e.g., variations in the EMs due to local physico-chemical
variations, illumination changes or topographic effects. In
order to account to these SVs, the extended linear mixing
model (ELMM) was proposed to extend the LMM to account
to said SVs, which is an active topic that has seen a lot of
progress recently [11]–[14].

A. Tensor Analysis of HSIs

An HSI can be treated as a data cube [18]–[23] (i.e., a third-
order tensor with one spectral and two spatial dimensions).

https://github.com/mhmdjouni/AoAdmmAsc-python
https://github.com/mhmdjouni/AoAdmmAsc-matlab
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Fig. 1: Classical matrix-based HU using NMF (i.e., LMM)

Fig. 2: Canonical polyadic decomposition of a third-order
tensor. The tensor is formed of K matricized HSIs that are
stacked along the third mode. A frontal slice T :,:,k (in yellow)
represents a matricized HSI and is associated with one row
of C. A horizontal (pixel) slice T i,:,: (in green) represents a
matrix of features and is associated with one row of A.

However, sometimes the HSI does not come alone but is
associated with additional modalities such as:

• A time series or multi-angular data of HSI images [24].
• The HSI is combined with images acquired by different

sensors (e.g., panchromatic, multispectral and LiDAR
fusion) [25]–[28].

• Some spatial features are extracted from the HSI (such
as in spectral-spatial classification problems [29]–[32]).

Such scenarios have recently also concerned other areas of
BSS such as multi-channel signal processing [33]–[35] and
multidimensional biomedical signal and image processing
[36]–[40]. In the aforementioned scenarios, the data are rep-
resented natively as tensors1 [41], and the challenge usually
boils down to the proper modeling of a joint factorization
of multivariate representations without losing the multimodal
structure, and hence its interpretation in terms of BSS.

Among these scenarios, we focus on the case of HU where
the HSI is associated with a set of spatial features extracted
from the image itself that can be considered as new modes,
which we refer to as multi-feature HU. In this scenario, there
are some challenging questions to answer such as: how can
we jointly perform a constrained factorization in such settings?
And how can we interpret the extracted factors? An analysis
of the literature shows that there are works that perform NMF
with additional constraints [42]–[44], and others that consider
the case of multimodal inputs with coupled NMF [45], [46],
but this is different from considering data as tensors in our
case.

1A tensor can be represented as a multidimensional array. The order of a
tensor refers to the number of its array’s indices, which is also the number of
its modes. For example, a tensor of dimensions I×J×K is said to have three
modes, and is called a third-order tensor. Data sets with order 3 or above are
described as high-order tensors.

As the native structure of our data is a tensor, we consider
the problem in terms of tensor decomposition [41], which is
the natural framework for processing multimodal data in the
signal and image processing community [47]–[49]. There are
many types of decomposition, such as tucker decomposition,
block term decomposition (BTD), canonical polyadic decom-
position (CPD), etc [50]. However, we choose to use CPD
since there is an interest for a multi-linear model, which is
also a natural model for source separation and allows for an
easier interpretability of the extracted components, both of
which are core aspects of our work2.

In the third-order case, as illustrated in Fig. 2, CPD de-
composes a data tensor T ∈ RI×J×K into a diagonal core
tensor Λ ∈ RR×R×R and 3 factor matrices {A ∈ RI×R,B ∈
RJ×R,C ∈ RK×R}, each representing one of the 3 modes3

of T respectively, such that:

T = Λ •
1
A •

2
B •

3
C (4)

where •d denotes the mode-d product (product along the d-th
mode), further described in expressions (6), (12b), and (12c).

CPD extends NMF to high-order data and can adopt all of
its features, especially that of imposing constraints. CPD is
often computed by minimizing the cost function [41]:

argmin
A,B,C

∥T −Λ •
1
A •

2
B •

3
C∥2F + r(A,B,C) (5)

where r(·) encodes the imposed constraints. Note that the
nonnegative constraint ensures the existence of a minimum;
in fact, without an appropriate regularisation term r(·), the
above cost function could admit only an infimum, which may
not be reachable [51]. On the other hand, with an appropriate
regularisation, Problem (5) is well posed.

B. Related Works and Limitations

In the context of HU, CPD has been used with multitempo-
ral/angular HSIs [24] as well as with HSIs having an additional
diversity of extracted neighborhood patches [14] (see Fig. 7
for a 5 × 5 patch-HSI tensor). Moreover, some works [29]–
[31] jointly considered HSIs with spatial features extracted
by mathematical morphology (MM) filters [52]–[55] in the
framework of multi-feature scene classification (see Fig. 8).
These works show that CPD is a suitable approach for joint
decomposition. However, they present some limitations.

1) Algorithmic perspective: The nonnegative constraint is
implemented in [56] by projection onto the nonnegative or-
thant, which exhibits some computational issues [48]. In [14],
nonnegative alternating least squares (ALS) is used where
ASC is also naively implemented by projecting the abundances
on the unit simplex, contrary to the common practice in the
matrix case [17] where ASC is embedded in the updates. In
[24], the nonnegative CPD is computed using the projected

2Note that these aspects can still be extended to more complex models such
as the different variants of BTD for HU.

3Pixels form only one mode, even if images are often seen as 2D objects,
The reason is to suppress the high-rankness introduced by the complex spatial
features of the whole scene, which is an inconvenience for BSS methods like
NMF and CPD [26].
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compressed ALS (ProCo-ALS) algorithm, which is consider-
ably fast [47] but not so flexible with additional constraints.
Finally, in [29]–[31], an alternative algorithm is proposed
based on alternating optimization alternating direction method
of multipliers (AO-ADMM) [49] with compression and non-
negative constraints, which is flexible and stable with large
datasets, but has not yet addressed multi-feature HU which
requires further modeling (i.e., sparsity, ASC).

2) Interpretability: The work of [24] faced a certain chal-
lenge in interpreting the third-mode factors, perhaps due to
the naive employment of CPD. In [14], a link was established
between CPD and ELMM but was not deeply investigated as it
was restricted to the case of patches and tested only with syn-
thetic data. Moreover, it faced another challenge in interpreting
the factors, which poses an ambiguity on its performance
and the meaning of the extracted features. Finally, [14] and
[29]–[31] perform tensor decomposition with spatial features.
However, the used spatial features can allow limited flexibility
(e.g., patches), or the interpretation of the factor matrices was
not addressed, noting here that incorporating them with CPD
showed improvement in supervised classification (e.g., MM).

In this paper, we wish to consider such operations in a BSS
framework from the lens of multi-feature HU with in-depth
interpretability. This presents us with two main challenges:

• Tuning AO-ADMM to incorporate ASC, which is chal-
lenging due to the multilinear structure of CPD, partic-
ularly in modeling the samples as a convex combination
of the spectral sources in a multimodal setting.

• Exploring the meaning of the extracted features in these
conditions.

C. Contributions

To our knowledge, imposing ASC in CPD or AO-ADMM
as a natural extension of NMF in [17] has not been done. Fur-
thermore, we are interested in finding a general framework for
multimodal HU favouring the interpretation of its results under
any third-mode diversity. More precisely, our contributions to
jointly deal with these limitations are the following:

• We propose a methodological framework for dealing with
multi-feature HU based on AO-ADMM by Huang [49],
and expand it to incorporate ASC with joint nonnegativity
and sparsity. The proposed AO-ADMM-ASC is a general
algorithm that can be applied in other domains of BSS
where convex combinations of sources apply.

• We establish a unified framework for the interpretability
of multi-feature HU. In particular, the link between
ELMM and CPD [14] is expanded by providing in-depth
physical and graphical insights for better interpretability
of the CPD model and its factors.

• We propose to include MM as spatial features to perform
a spectral-spatial HU and demonstrate the aforementioned
points. We also revise [14] and provide detailed interpre-
tations on the cases of patches and MM, which has not
been addressed in any of the previous works [14], [29]–
[31]. This analysis also shows that MM is better suited
since it embeds physically meaningful features (scale and
brightness of objects) into HU unlike patches.

That said, note that our main goal is to reason about the inter-
pretability of this factorization and to describe this framework
rather than to propose yet another HU algorithm.

The remainder is organized as follows. In section III, we
introduce some background. In section IV, we detail the
proposed framework. In section V, we present our experiments
and results. Finally, we draw out some conclusions in VI.

II. NOTATIONS AND DEFINITIONS

Table I shows a list of notations for the different types of
objects used throughout the paper: scalars, vectors, matrices,
tensors, and array dimensions and indices. Table II denotes
the types of observed data in the paper, their dimensions and
different ways of indexing.

Type Font style Example
Scalars unformatted lowercase a, b, c, t
Vectors bold lowercase a, b, c, t

Matrices bold uppercase A, B, C, T
Tensors bold calligraphic T

Dimension unformatted uppercase I , J , K, R

Indices lowercase version of
the spanned dimension i, j, k, r

TABLE I: Array notations

Table III denotes the different ways to slice and unfold a
third-order tensor. The mode unfolding (or matricization) of a
tensor means to reshape it into a matrix by fixing the targeted
mode and rearrange the others in lexicographic order.

Table IV denotes the factor matrices of an NMF (matrix
case) or CPD (tensor case). Mode-1, Mode-2 and Mode-3
correspond to the modes of pixels, spectral bands, and set
of extracted spatial features (transforms) respectively.

We use the notation “diag{v}” to refer to the diagonal
matrix whose entries are the elements of any vector v.

The outer product of two vectors a ∈ RI and b ∈ RJ

results in a matrix M ∈ RI×J as follows:

M = a⊗ b = abT ⇐⇒ mi,j = aibj

∀ i ∈ {1, . . . , I}, ∀ j ∈ {1, . . . , J}

The outer product of three vectors a ∈ RI , b ∈ RJ and c ∈
RK results in a third-order tensor T ∈ RI×J×K as follows:

T = a⊗ b⊗ c⇐⇒ ti,j,k = aibjck

∀ i ∈ {1, . . . , I}, ∀ j ∈ {1, . . . , J}, ∀ k ∈ {1, . . . ,K}

The mode-d product •d represents the product of a tensor
by a matrix along the d-th mode. For example, assuming that
we have G ∈ RL×M×N , A ∈ RI×L and B ∈ RJ×M , the
mode-1 and mode-2 product of G by A and B respectively
results in a tensor T ∈ RI×J×N defined as:

T = G •
1
A •

2
B ⇐⇒ tijn =

L∑
l=1

M∑
m=1

Glmn ailbjm (6)

III. BACKGROUND

In this section, we briefly review the existing notions in
the literature upon which we base our algorithm and general
interpretation of the multimodal HU framework. First, we
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Type Symbol Dimensions
(pixel × band × transform)

i-th
pixel

j-th
band

k-th
transform

(i, j, k)-th
element

HSI matrix M I × J mi,: m:,j - mi,j

HSI tensor T I × J ×K T i,:,: T :,j,: T :,:,k ti,j,k

TABLE II: The pixels are rearranged in lexicographic order spanning the first mode, so I is the total number of pixels. The
symbol “:” in the index indicates a span of the whole mode. For example, mi,: and m:,j represent the i-th row and j-th
column vectors of M respectively (see Fig. 1), and T :,:,k represents the k-th frontal matrix slice of T (see Fig. 2).

Variable Symbol Dimensions
Horizontal slice T i,:,: J ×K

Lateral slice T :,j,: I ×K
Frontal slice T :,:,k I × J

Mode-1 unfolding T (1) JK × I
Mode-2 unfolding T (2) IK × J
Mode-3 unfolding T (3) IJ ×K

TABLE III: Tensor slicing and mode-unfolding.

Factor Mat. Symbol Dimensions Row
index

Col.
index

Element
index

Mode-1 A I ×R ai,: a:,r ai,r
Mode-2 B J ×R bj,: b:,r bj,r
Mode-3 C K ×R ck,: c:,r ck,r

TABLE IV: The factor matrices, each corresponding to one of the matrix or
tensor modes. R is the number of rank-1 additive terms in the decomposition.

explain how ASC is applied in NMF [17] as the proposed
framework extends this for tensor decomposition. Then, we
give a brief account on ELMM, including graphical and
visual interpretations, which will be the basis for the proposed
interpretation. Finally, we discuss the link between CPD and
ELMM preliminarily presented in [14].

A. NMF with ASC, Nonnegativity, and Sparsity

In the NMF case [17], when sparsity (ℓ1 norm) and ASC
are imposed on the abundances, (1) becomes:

argmin
A,B

1

2
∥M −ABT∥2F + α∥A∥1

s.t. A ⪰ 0, B ⪰ 0,

R∑
r=1

ai,r = 1 |∀i∈{1,...,I}

(7)

where α > 0, and ⪰ denotes element-wise nonnegativity. A
simple strategy to embed ASC goes by stacking a row vector
in B and a column vector in M such that [17]:

M̃ =
[
M | δ1I×1

]
, B̃ =

[
B

δ11×R

]
,

where δ is a constant that is usually set as the mean of M ,
and the last row of B̃ is reset to δ after each iteration. This
operation ensures that ASC is softly embedded in NMF since
∀i ∈ {1, . . . , I} we have:

mi,J+1 =

R∑
r=1

ai,rbJ+1,r =

R∑
r=1

ai,rδ = δ

corresponding to
∑R

r=1 ai,r = 1. Then, (7) becomes:

argmin
A,B̃

1

2
∥M̃ −AB̃T∥2F + α∥A∥1 s.t. A ⪰ 0, B̃ ⪰ 0 (8)

There are many algorithms proposed in the literature that
deal with sparse NMF and ASC, which are out of the scope of
this work [42], [43]. In our case, we extend NMF within the
AO-ADMM framework for CPD. NMF then becomes a special
case for order-2 tensors. This tensor extension, proposed in
Section IV-A is referred to as AO-ADMM-ASC.

B. ELMM

While LMM is seen as a direct approach for HU, it cannot
model SVs represented by nonlinear effects or illumination
conditions. One way to account to said effects is through
ELMM [12], which in general assumes additional degrees
of freedom that account to said SVs at the pixel level by
introducing a pixel-dependent SV function f i : RJ → RJ

∀ i ∈ {1, . . . , I}, which maps each EM b:,r ∀ r ∈ {1, . . . , R}
to a new spectral signature b(i):,r that best reflects the targeted
SVs:

mi =

R∑
r=1

airf i(b:,r) =

R∑
r=1

airb
(i)
:,r . (9)

For example, in the case of different illumination conditions,
this can be represented as a scaling factor for each pixel on
the EMs. In the following, we present the parts that are at the
basis of the interpretability of our proposed framework.

When ASC is imposed in LMM, all the pixels will lie on the
convex hull of the set of estimated EMs (i.e., the columns of
B4), and the fractional abundances in each row of A define
the coordinates of each pixel on the convex hull, which is
illustrated in Fig. 3a. With the introduction of ELMM, the
pixels will not lie on the same simplex anymore as each pixel
is mapped to a new set of EMs, which is illustrated in Fig. 3b

4Here, we note that unless the EMs are not affinely independent, which is
unlikely, and R ≤ J + 1, then the convex hull is a simplex.

(a) LMM (b) ELMM (scalar factors)

Fig. 3: Graphical comparison between LMM and ELMM
(scalar factors) in the case of three spectral signatures {b:,1,
b:,2, b:,3} and two example pixels {ms,:, mt,:}. The relative
coordinates in the simplices are conserved.
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in the case where the SV is modeled by a scaling factor ψir

that is pixel- and EM-dependent such that b(i)r = ψirb:,r [12].
Accordingly, the new spectral signatures b(i)r are allowed to
move only along the directions of b:,r.

In the case where the SVs are modeled with scaling factors,
we denote by Ψ ∈ RI×R the matrix whose entries are the
scaling factors ψir ∀ i ∈ {1, . . . , I} and ∀ r ∈ {1, . . . , R}.
Then, the following are equivalent:

M = (A⊡Ψ)BT (10)

mi,: =

R∑
r=1

airψirb
T
:,r = ai,: diag{Ψi,:}BT = ai,:Ψ(i)B

T

(11)

where ⊡ is the Hadamard product. Ψi,: ∈ RR is the i-th
row of Ψ, and Ψ(i) ∈ RR×R represents the diagonal matrix
formed from Ψi,:. These mathematical, graphical, and visual
relationships are the key to elaborate and interpret the case of
CPD in Section IV-B.

C. CPD and ELMM

In the work of [14], a representation of CPD in terms of
ELMM has been presented, which will be reported here. CPD
decomposes a third-order tensor T ∈ RI×J×K such that:

T = Λ •
1
A •

2
B •

3
C ⇔ T =

R∑
r=1

λr,r,r a:,r ⊗ b:,r ⊗ c:,r

(12a)

⇔ T =

R∑
r=1

a:,r ⊗ b:,r ⊗ψ:,r (12b)

⇔ ti,j,k =

R∑
r=1

ai,r bj,r ψk,r (12c)

where ti,j,k is a (scalar) entry of T , R is the number of
estimated sources, and Λ ∈ RR×R×R is a diagonal tensor
that absorbs the ℓ2-norms of the columns of the factor matrices
[41], [48]. In (12b) and (12c), we suppress the expression of
Λ by absorbing its entries in the columns of C, resulting in
Ψ ∈ RK×R whose columns are the scaled version of those of
C such that ψ:,r = λr,r,rc:,r ∀ r.

As shown in [14], given that T :,:,k denotes the k-th frontal
slice of T , ∀ k ∈ {1, . . . ,K}, and assuming that Ψ(k) ∈
RR×R represents the diagonal matrix formed from the row
ψk,: ∈ RR of the factor Ψ, one can write:

T :,:,k = A diag{ψk,:}B
T = AΨ(k)B

T = Af̃k(B)T (13)

⇐⇒ ti,:,k =

R∑
r=1

ai,r (b:,rψk,r) =

R∑
r=1

ai,rfk(b:,r) (14)

where ti,:,k is the i-th pixel row of T :,:,k. From the perspective
of each frontal slice, CPD resembles a regularized coupled
NMF of the frontal slices where A is a common factor:

argmin
A,B(k)

∥T :,:,k −AB(k)T∥2F s.t. A ⪰ 0,B(k) ⪰ 0 (15)

where B(k) = f̃k(B)|∀ k∈{1,...,K}, which has an analogous
expression to the case of ELMM. The latter was used in

[14] as a way to impose a spatial smoothing (15) on the
abundances within a patch of neighboring pixels. This link
between CPD and ELMM was preliminary presented and
restricted to an application of patches with only simulated data,
and the meaning of the SVs was not explored.

In Section IV-B, we propose a generalized in-depth inter-
pretation of multi-feature HU, and in Section IV-C we present
how to incorporate spatial features (e.g., patches and MM) in
such a setting.

IV. PROPOSED MULTI-FEATURE HU
In this section, we present the proposed multi-feature HU

framework based on CPD. First, we talk about the implementa-
tion of AO-ADMM-ASC. Then, we interpret the tensor-based
ELMM model and propose to include spatial features as the
third-mode.

A. AO-ADMM-ASC with Nonnegativity and Sparsity
In CPD, after imposing nonnegativity on the factor matrices,

and sparsity and ASC on the abundances, (5) becomes:

argmin
A,B,C

∥T −Λ •
1
A •

2
B •

3
C∥2F + α∥A∥1

s.t. A ⪰ 0, B ⪰ 0, C ⪰ 0,

R∑
r=1

ai,r = 1 |∀i∈{1,...,I}

(16)

In (16), since A adopts the sum-to-one constraint on its rows,
it is hence enough to normalize only the columns of B and
C. In principle, these ℓ2-norms are absorbed in Λ, but for
the sake of consistency, we use variable Ψ = ΛC instead
of Λ and C, as explained in Section III-C. In order to solve
(16), we propose an algorithm inspired by AO-ADMM [49],
where the factor matrices are updated in an alternating way
and where each update of a factor matrix is optimized as an
ADMM subproblem.

1) ASC Solution: In order to model the problem as close as
possible to LMM, we need a tensor decomposition algorithm
embedding both the ASC and the non-negativity of factors as
constraints. To this end, the strategy we follow is to extend
the concept from NMF to CPD by stacking:

• a row vector to B (i.e., bJ+1,: ∈ RR)
• a lateral slice to T (i.e., T :,J+1,: ∈ RI×1×K)

such that
∑R

r=1 ai,r = 1|∀i∈{1,...,I} is ensured.
In general, T :,J+1,: can be constructed such that ∀i ∈

{1, . . . , I} and ∀k ∈ {1, . . . ,K}:

ti,J+1,k =

R∑
r=1

ai,rbJ+1,rψk,r (17)

So if we set:
• T :,J+1,K = δ1I , i.e., ti,J+1,K = δ ∀i ∈ {1, . . . , I}
• bJ+1,r = δψ−1

K,r ∀r ∈ {1, . . . , R},
where δ is the mean of T , by substituting the expressions in
(17) for k = K, we have:

ti,J+1,K =

R∑
r=1

ai,rbJ+1,rψK,r

=⇒ δ = δ

R∑
r=1

ai,rψ
−1
K,rψK,r = δ

R∑
r=1

ai,r
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which implies that
∑R

r=1 ai,r = 1.
At the end of each AO-ADMM iteration, T and B have to

be updated, which boils down to a matrix and a vector updates
after each iteration. We denote by T̃ and B̃ the extensions
of T and B with the additional lateral slice and row vector
respectively, roughly described as follows:

T̃ =
[
T | T :,J+1,:

]
, B̃ =

[
B

bJ+1,:

]
, (18)

Then, expression (16) becomes:

argmin
A,B̃,Ψ

∥T̃ − I •
1
A •

2
B̃ •

3
Ψ∥2F + α∥A∥1

s.t. A ⪰ 0, B̃ ⪰ 0, Ψ ⪰ 0

(19)

where I is a diagonal tensor of ones.
2) ADMM Updates: At this stage, solving (19) with AO-

ADMM becomes simple. We demonstrate the ADMM sub-
problem updates for each factor matrix starting with A.

Supposing that T̃ (1) represents the mode-1 unfolding of T̃ ,
we can write the sub-problem of A as follows:

A = argmin
A

1

2
∥T̃ (1) − W̃ (A)A

T∥2F + α∥A∥1

s.t. A ⪰ 0

(20)

where W̃ (A) ∈ R(J+1)K×I = B̃ ⊙Ψ represents the Khatri-
Rao product [41]. By introducing the splitting variable Ā =
AT, expression (20) becomes:

argmin
A,Ā

1

2
∥T̃ (1) − W̃ (A)Ā∥2F + α∥A∥1

s.t. Ā = AT and A ⪰ 0

(21)

Adopting ADMM for (21), the updates of Ā and A become:

Ā← (W̃
T

(A)W̃ (A) + ρI)−1(W̃
T

(A)T̃ (1) + ρ(A+U (A))
T)

A← max(0, Ā
T −U (A) −

α

ρ
)

U (A) ← U (A) +A− Ā
T

(22)
where U (A) ∈ RI×R is called the dual variable.

Similarly, the updates of B̃ and Ψ become:

B̄ ← (W̃
T

(B)W̃ (B) + ρI)−1(W̃
T

(B)T̃ (2) + ρ(B +U (B))
T)

B̃ ← max(0, B̄
T −U (B))

U (B) ← U (B) + B̃ − B̄
T

(23)

Ψ̄← (W̃
T

(Ψ)W̃ (Ψ) + ρI)−1(W̃
T

(Ψ)T̃ (3) + ρ(Ψ+U (Ψ))
T)

Ψ← max(0, Ψ̄
T −U (Ψ))

U (Ψ) ← U (Ψ) +Ψ− Ψ̄
T

(24)
where T̃ (2) and T̃ (3) are the mode-2 and mode-3 unfoldings
of T̃ , W̃ (B) = Ã⊙Ψ and W̃ (Ψ) = Ã⊙B are the Khatri-Rao
products, and U (B) and U (Ψ) are the dual variables.

Finally, for order-2 tensors, this model becomes equivalent
to solving NMF (8). The implementation of AO-ADMM-
ASC is summarized in Algorithm 1. The code is available
on GitHub in Python5 and Matlab6.

Algorithm 1 AO-ADMM-ASC:

Require: T , A,B,Ψ, U (A),U (B),U (Ψ), α
Initialize A,B,Ψ;
Initialize U (A),U (B),U (Ψ) to zero;
repeat

Set B̃ and T̃ based on (18);
Set B ← B̃ and T ← T̃ ;
for ∀D ∈ {A,B,Ψ} do
W (D) = ⊙J ̸=DJ ;
ρ = trace(W T

(D)W (D))/R; [49]
Update D with either (22), (23), or (24);

end for
Absorb the column-wise ℓ2-norms of B into Ψ such that
c:,r ← c:,r ∥b:,r∥2 ∀r ∈ {1, . . . , R}
Normalize the columns of B

until Termination criterion (e.g., number of iterations)
return A,B,Ψ

B. Interpretation of Tensor-based ELMM

Here, we build upon what has been presented in Sections
III-B and III-C as methodological, physical, and graphical
bases for the multimodal HU interpretation. For that, we first
draw the analogies across the aforementioned expressions (in
Sections III and IV) through the links between the frontal
slices of the tensor and the meaning of the SV function in
multimodal HU. This helps to elaborate the interpretation of
the tensor-based model starting from the interpretation of the
matrix-based one. Then we visualize the expressions in order
to interpret the multimodal HU through graphical representa-
tions of subspaces while commenting on the physical role of
the extracted factors and the number of latent components R.

First, we note that expressions (13) and (14) are analo-
gous to the ELMM expression (11). The major difference
between the two cases is that in CPD, the scaling factors are
frontal slice-dependent (ψk,r), while in ELMM, they are pixel-
dependent (ψi,r). Second, we visualize (10) and (11) in Fig. 4,
and (13) and (14) in Fig. 5. Looking at (13), the frontal slices
T :,:,k and the physical meaning that they represent have a
direct influence on the SV function fk and the interpretation
of the SVs, which is simply reflected as scaling factors in each
row of Ψ, i.e. ψk,: (or Ψ(k) = diag{ψk,:}).

As a result, since the spatial and spectral information are
factorized and represented by A and B respectively, and since
A and B are shared by all the frontal slices, then each frontal
slice T :,:,k is inherently differentiated through a set of R
scaling factors {ψk,1, . . . , ψk,R}. Consequently, the spectral
information in each frontal slice T :,:,k can be seen as the set
of scaled sources {b(k):,r = ψk,rb:,r}|∀ r∈{1,...,R}, where {b:,r}

5https://github.com/mhmdjouni/AoAdmmAsc-python
6https://github.com/mhmdjouni/AoAdmmAsc-matlab

https://github.com/mhmdjouni/AoAdmmAsc-python
https://github.com/mhmdjouni/AoAdmmAsc-matlab
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Fig. 4: Our visualization of equations (10) (Hadamard product)
and (11) (matrix product). The color code of the bottom part
follows that of Fig. 3b. We have Ψ(i) = diag{Ψi,:}.

Fig. 5: Our visualization of equation (13). The color code is
made analogous to that of Fig. 2 and follows that of Fig. 6a.
We have Ψ(k) = diag{ψk,:}.

(a) ELMM-CPD (General) (b) ELMM-CPD (Patches) (c) ELMM-CPD (MM)

Fig. 6: Graphical representations of (a) CPD with R = 3 components in the case of three spectral signatures {b:,1, b:,2, b:,3}
and two frontal slices {T :,:,1,T :,:,K}, and (b) patch-CPD and (c) MM-CPD with R = 4 components in the case of four
spectral signatures {(b:,1,ψ:,1), . . . , (b:,4,ψ:,4)} and two frontal slices {T :,:,1,T :,:,2}. The relative coordinates of the pixels
in the convex hulls must be the same since A is common for all the frontal slices.

are the columns of B (independent of the slices), b(k):,r are
their spectral variations per frontal slice, and ψk,: encodes the
scaling factors of these variations.

This also means that R is a major parameter that represents
the degrees of freedom especially through the scaling factors
of Ψ, which then jointly encodes:

• the mode-3 evolution of the extracted components of A
and B in its columns ψ:,r

• the per-slice modeling of the SVs in its rows ψk,:.

Intuitively, when obtaining an augmented HSI tensor, one
can say that the physical representations of any applied
transformations (e.g., scale, illumination) [31] and any natural
evolution of a scene (e.g., time series) [24], and resulting in
T :,:,k, are reflected and observed through the matrix Ψ of the
decomposition. Moreover, we point out the following:

• In CPD, there are as many SV functions (and simplices)
as the frontal slices of the tensor, which is significantly

lower than the number of pixels (K ≪ I).
• In CPD, one row of R scaling factors in Ψ corresponds to

a full frontal slice and is shared by all the pixel rows ofA,
while in classical ELMM, each row of scaling factors in
Ψ corresponds to one pixel of M and interacts with only
one row of A. This clearly appears when we compare (9)
and (11) to (13) and (14), and Fig. 4 to Fig. 5.

• On a graphical representation, when ASC is imposed,
CPD suggests that each simplex contains I pixels as
illustrated in Fig. 6a, such that the relative coordinates
of the pixels inside each convex hull are the same since
each row of Ψ interacts with all of A.

In summary, having a third mode in HSI produces scaling
factors in ELMM that absorb the SVs based on the physical
meaning of the frontal slices along the third mode (e.g., time,
patches, MM), which balances the extracted factors in A and
B independently of said SVs. Moreover, the imposed value
of R represents the number of extracted sources and scaling
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Fig. 7: An illustration of constructing a 5× 5 Patch-HSI tensors based on [14].

Fig. 8: Example of a sequential morphological filtering of a grayscale image (corresponding to one spectral band of the HSI
of Pavia University) with Openings and Closings by Reconstruction using successive sizes of the structuring element, which
is a disk in this case. The stacking of the transformations, with the original image corresponding to 0 size being placed in the
middle, is referred to as the morphological profile of the image. The yellow spots mark the same pixel positioning in each
of the transformations. Then, to create the MM-HSI tensor [31], the pixel positioning modes are reordered into lexicographic
order along the first mode, and the yellow spots are stored along the third mode, in order to create the tensor.

factors and has a major effect on the results and the SV
interpretation. As R decreases, we tend towards having fewer
degrees of freedom, where CPD tends towards extracting the
EMs while applying a regularization on the observed pixels
influenced by the physical meaning of the information across
the third mode. As R increases, we tend towards having
more degrees of freedom, where CPD tends towards extracting
factors with multi-feature separability of the sources. We note
that R should not be too high in order to avoid over-fitting7

and to ensure uniqueness of the CPD [41], [51].

C. Spatial Features (patches / mathematical morphology)

In this section, for the sake of comparison and illustration,
we consider two examples of spatial features that augment
a HSI into a third-order tensor for multi-feature HU: neigh-
borhood patches and MM. We revisit the case of patches
with additional insights, and introduce MM. Consequently, this

7There is no exact value of the tensor rank, and finding a good estimate
is an open challenge (as for matrix factorization problems), which is out of
the scope of this paper. As a rule of thumb, R could be chosen by looking at
the reconstruction error in the factorization aiming for the smallest value of
R providing an acceptable reconstruction, or by observing the elbow of the
plot of singular values of the mode-1 unfolding of the data.

helps demonstrate the interpretability of the model especially
in terms of physical significance and the variation of R. We
often refer to Fig. 5 and 6 for illustration.

1) Patches: We recall that the motivation for adding patches
as features is to perform a spatial regularization by considering
the spatial correlation of neighboring pixels [14]. Constructing
a HSI tensor from neighborhood patches (coined as “Patch-
HSI tensor”) is illustrated in Fig. 7. In short, each pixel tube in
the original HSI cube is taken with a patch of its neighboring
pixels (of predetermined size), then the pixel and its neighbors
are stacked as a horizontal slice T i,:,: in the third-order tensor.
That said, the first frontal slice T :,:,1 of said tensor is usually
the matricized HSI (where the pixels represent one mode).

Here, we add that a Patch-HSI tensor has an inherently
low-rank structure which is equal to that of the NMF of the
matricized HSI, that is, the information contained along the
third mode by each of the frontal slices of the tensor is almost
essentially the same. In fact, the frontal slices are just spatially-
shifted versions of the original image T :,:,1, and the values
of these shifts correspond to a small spatial kernel, usually
around 3×3 or 5×5. However, what is different in the tensor
case is that when this shifting information is stacked along
the third mode and CPD is imposed with such a low value
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of R, the model automatically applies an implicit smoothing
of the pixels that belong to the same patch (i.e., the same
horizontal slice of T ). This is because the frontal slices are
jointly factorized with the degrees of freedom of a single one
of them, while also sharing the information of A and B.

Therefore, a main advantage over NMF is that one expects
to extract the same sources with a patch-local smoothing of
the SVs of the estimated EMs, where the SVs are balanced
out in the form of scaling factors stored in the rows of Ψ. An
important note here is that the scaling factors stored in Ψ may
not have a significant physical meaning.

Now, what happens when R increases? Since the informa-
tion across the frontal slices are essentially the same (implying
redundancy), the sources and abundances are expected to
replicate, and we expect to observe slightly spatially-shifted
versions of the abundance maps (i.e., in the columns of A).
In this case, the scaling factors in Ψ only indicate whether an
estimated EMin B corresponds to a certain spatial shifting or
another. This point is roughly illustrated in Fig. 6b (inspired
by Fig. 10) where we have three spectral sources: Gravel,
Metal Sheets, and Trees, but CPD is carried out with R = 4.
Here, the convex hull of T :,:,1 gives a high scaling factor
at b1 and a low factor at b4, while that of T :,:,2 gives the
opposite with almost the same quantity. This is due to the fact
that the materials are present with almost the same quantity in
both frontal slices. In other words, there may be a problem of
redundancy if some components account for the same material
with patches, which does happen in practice.

This problem does not occur when the third mode represents
a physical meaning such as the case of MM.

2) mathematical morphology: While using patches is ef-
ficient, it still ignores the physical properties of connected
pixels, and the SVs are regularized indifferently among pixels
belonging to different types of materials. On the other hand,
morphological features [57], [58] take into account physical
properties such as scale and brightness of objects and pro-
mote dealing with SV among pixels sharing these properties.
Constructing a HSI tensor using MM (coined as “MM-HSI
tensor”) is illustrated in Fig. 8. In short, the matricized versions
of the original HSI and the results of its morphological
transformations are stacked as the frontal slices of the tensor8.

Through MM, we emphasize the role of incorporating
spatial diversities that add physical significance to the objects
of the scene. As such, one expects that a MM-HSI tensor
has a more complicated structure than that of a Patch-HSI
tensor since its frontal slices contain additional context on the
materials, such as their sizes and brightness levels. As such,
imposing a low R promotes spectral smoothing of the SVs
based on a morphological regularization of the abundances,
while imposing a sufficiently high R promotes a distinctive
spectral-morphological multi-feature separation of the materi-
als, unlike Patch-HSI tensors.

Since each frontal slice is seen as a characteristic of
spatial scale (i.e., size of objects in the scene) and / or
brightness (which is particularly relevant for ELMM because

8The details of constructing MM-HSI tensors are out of the scope of this
paper, but can be found in Section 3 of [31].

scaling factors can be directly linked to brightness), then
the scaling factors represented by Ψ indicate the quantitative
correspondence of an extracted material to the aforementioned
physical properties per frontal slice. This point is roughly
illustrated in Fig. 6c (inspired by Fig. 11) where T :,:,1 and
T :,:,2 characterize small and large objects respectively. Here,
the convex hull of T :,:,1 gives high scaling factors for b1, b2,
and b3 (corresponding to small objects), and a low scaling
factor at b4 (corresponds to large objects), while that of T :,:,2

gives the opposite.

V. EXPERIMENTS AND RESULTS

In this section, we discuss the experiments and results of
multi-feature HU on real HSIs in terms of AO-ADMM-ASC
(compared to Naive ASC [14]), extracted factors, ELMM
interpretability, and qualitative comparisons between Patch-
HSI and MM-HSI tensors with low and high values of the
rank. In each experiment, among 30 random initializations of
the factor matrices, the result with the minimum root mean
squared error (RMSE) is chosen. The estimated EMs of B are
identified based on their minimum spectral angular distance
(SAD), in degrees, with respect to the reference.

The maps and plots shown in the experiments represent
the columns of the factor matrices. Above each abundance
map (AM), we show the material that corresponds to it with
its minimum SAD value. We recall that a set of similarly
indexed columns, e.g., {A1, B1, Ψ1}, represent the abun-
dance, spectral source signal, and third-mode source pattern
(e.g., morphological print, shifting print) of one extracted
material respectively. Since Ψ plays a crucial role in the
interpretability of ELMM and multi-feature HU, we also
highlight the relevance of its row components. Each fixed
index k in the plot corresponds to a row of Ψ and thus to a
frontal slice in T , and the vertical grouping of points at said
index, as indicated in Fig. 10c, 11c, 12c, and 13c, represents
the scalars in that row. This also means that when projected
on Fig. 6, in Patch-CPD, k = 1 contains the SV scaling
factors that balance the convex hull of the original HSI and
are responsible for its reconstruction, while in MM-CPD, the
middle index does that. This will eventually show how MM
accounts to physical effects in the scene, while patches do not.

That said, we note that we carried part of the experiments
using sparse NMF with ASC [17] for the sake of qualita-
tive comparison of the abundance maps and spectral sources
obtained from the original HSI (i.e., the HSI matrix without
additional filtering). Due to the difference in the type of
information contained between the matrix and tensor cases,
and since NMF does not apply in the framework of multi-
feature HU, these results will serve only as a reference for the
extracted components of CPD as they do not serve the main
aim and message of this work. For that reason, we include
them in Appendix A with further reasoning and explanation
of the NMF case analysis and its relevance to this work.

In each case analysis, we look into the components of
A and B first, which visually and spectrally identify the
materials, then we explain their correspondence to those of
Ψ, where we are interested in the significance of the third-
mode patterns then their relevance to the original HSI. We
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(a) (b) (c) (d) (e)

Fig. 9: 9a) Pavia in false colors. 9b) Pavia’s spectral reference, which was extracted from the mean spectrum of each class of
its spatial GT. 9c) Urban in false colors. 9d) Urban’s spatial GT. 9e) Urban’s spectral reference.

note that quantitative validation of the AMs and EMs is usually
not evident, especially in the case of the Urban HSI in Fig. 9d
where the spatial ground-truth (GT) is not a real GT and is not
usable for quantitative comparison. Moreover, there is neither a
quantitative nor a qualitative reference for third-mode patterns
in the literature, so here we provide an in-depth qualitative
analysis.

We want to consider HSIs which show objects with spatial
features of different scale and brightness levels, for which
urban areas are good candidates. For that, we choose two
real HSIs9: Pavia University and Urban. Fig. 9 shows the two
HSIs in false colors with their spectral references. It is worth
noting for the sake of interpretation that the MM-HSI tensors
are built following the extended morphological profile (EMP)
technique used in [31] with openings by reconstruction (ObRs)
and closings by reconstruction (CbRs), which correspond to
bright and dark objects respectively, with varying sizes of
the structuring element (SE), which in turns corresponds to
the scales of objects. In the following experiments, 4 sizes
of the SE are used, corresponding to 8 ObR and CbR trans-
formations, then the dimension of the third mode is K = 9
where the original image (corresponding to scale 0) is placed
in the middle as roughly shown in Fig. 8. The Patch-HSI
tensors are built following [14] as shown in Fig. 7 with 3× 3
patches. This means that the dimension of the third mode is
K = 3× 3 = 9 where the original image is placed at k = 1.
We run our experiments with Intel® Core™ i7-1185G7, 32GB
RAM 3200MHz LPDDR4.

A. Results Discussion - Pavia University

In this section, we present the experiments of the HSI of
Pavia. We start by comparing AO-ADMM-ASC and Naive
ASC. After that, we focus on CPD and the ELMM analysis
of the factors while interpreting the cases of patches and MM-
For the MM-HSI tensor, our SEs are disks with the successive
radii: {2, 7, 12, 17} pixels. Both Patch- and MM-HSI tensors
then have K = 9 frontal slices and dimensions 207400 ×
103 × 9. Finally, we find that R = 4 and R = 8 are the
best for low and high values of the rank respectively. In Fig.
9b, some classes have very similar spectral signatures, so, in

9The data sets with detailed information are available on the website:
http://lesun.weebly.com/hyperspectral-data-set.html

the following, sometimes we refer to Trees and Meadows as
vegetation, and to Asphalt, Bitumen, Gravel, and Bricks as
roads or roofs. Bare Soil can belong to either of both groups.

1) AO-ADMM-ASC: Here, we compare the RMSE results
of MM-CPD between AO-ADMM-ASC and Naive ASC [14].
The results are shown in Table V, where we see that with
AO-ADMM-ASC we gain in RMSE, which corresponds to a
better estimation of the factors with respect to the observed
tensor with a small difference in the execution time.

Algorithm R RMSE % Time (s)
Naive ASC [14] 8 7.07 231

AO-ADMM-ASC 8 6.34 384

TABLE V: Pavia. The results of AO-ADMM-ASC and Naive
ASC in terms of RMSE and execution time: R is the rank.
The results of the minimum RMSE are shown.

2) Low rank, ELMM and SV: Here, we are interested in the
property of CPD dealing with SV. Since Patch-HSI tensors
have as an inherently low structure as that of NMF, we start
by considering R = 4 for patches and MM- As explained in
Section IV-B, such a low rank highlights the SV and spatial
regularization aspects of multi-feature HU. We compile the
discussion into two stages: (a) Fig. 10 representing Patch-CPD,
and (b) Fig. 11 representing MM-CPD.

2a) In Fig. 10, B1 and B4 are identified as Trees and Metal
Sheets respectively, which reflects the areas highlighted in A1

and A4, while B2 and B3 coincide and are both identified
as Gravel, which reflects the areas highlighted in A2 and A3

and where we already start to see replicated components. In
fact, A2 and A3 are slightly-shifted versions of each other,
which is explained better in the interpretation of Ψ2 and Ψ3.

Looking at Fig. 10c, which is the most interesting, one
might intuitively expect to see horizontal curves since, quan-
titatively, the collective SV is supposedly constant in patches.
However, while Ψ1 and Ψ4 look almost straight, Ψ2 and Ψ3

are not. We notice here that where Ψ2 is high, Ψ3 is low
and vice versa. In part, this means that A2 represents the
shifts where k = {2, 3, 4, 5}, while A3 represents those where
k = {6, 7, 8, 9}. In another part, the two columns fluctuate in
a way that maintains a constant SV and balances out their
quantitative presence across the frontal slices. As for k = 1,
which represents the original HSI, we notice that the scaling
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(a) Components of A

(b) Components of B (c) Components of Ψ

Fig. 10: Pavia. CPD results of the Patch-tensor for R=4

(a) Components of A

(b) Components of B (c) Components of Ψ

Fig. 11: Pavia. CPD results of the MM-tensor for R=4

(a) Components of A

(b) Components of B (c) Components of Ψ

Fig. 12: Pavia. CPD results of the Patch-tensor for R=8

(a) Components of A

(b) Components of B (c) Components of Ψ

Fig. 13: Pavia. CPD results of the MM-tensor for R=8

factors are almost equal, which means that the spectral vectors
of the convex hull are equally present in the HSI, all of which
shows that Patch-HSI tensors do not account to physical spatial
effects.

2b) In Fig. 11, B1, B2, and B3 are identified as Bare
Soil, Trees, and Metal Sheets respectively, which reflects the
areas highlighted in A1, A2, and A3, all of which is similar
to those obtained by patches. As for {A4,B4}, while B4

looks very similar to B1, unlike patches, we notice that

A4 highlights interesting shadow areas (dark features), which
clearly reflects the morphological awareness incorporated into
CPD with MM- The latter becomes more interesting with the
interpretation of Ψ.

Looking at Fig. 11c, we observe three main patterns that can
be associated to the chosen morphological parameters. First,
Ψ4 corresponds to dark features (reflected by the shadows
in A4) as it has higher values when k corresponds to CbR,
then continues decreasing towards ObR. Second, Ψ2 and Ψ3
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correspond to small features as they have higher values around
the middle (k = 5) where the SEs are small, which is visually
reflected through the small objects highlighted in A2 (trees)
and A3 (metal sheets and vehicles). Third, Ψ1 is rather steady,
which means that the spatial features shown in A1 are general.

As for k = 5, which represents the original HSI, we notice
that Ψ2 and Ψ3 have the highest scaling factors since they
correspond to relatively bright objects of the scene, Ψ1 has a
slightly lower factor since it corresponds to darker objects like
asphalt roads, building roofs, parking lots, and bare soil areas,
and Ψ4 has the lowest factors since it corresponds to dark
shadows. These relationships show the column- and row-wise
significance of Ψ and how multi-feature HU can balance out
the SVs and the same time reconstruct the original HSI.

3) High rank, ELMM and multi-feature separability: Here,
we are interested in multi-feature HU when we have more
degrees of freedom, where we go more in-depth into the
factors of patches and MM for R = 8. As explained in
Section IV-B, such a higher rank demonstrates the multi-
feature separability of MM and how patches only replicates its
components. We compile the discussion into two stages: (a)
Fig. 12 representing Patch-CPD, and (b) Fig. 13 representing
MM-CPD.

3a) In Fig. 12, we end up with more replicas of the same
A and B components obtained in Fig. 10, the sets of replicas
being columns {1, 3, 4} detected as Trees, and {2, 5, 6, 7}
detected as Gravel and Bitumen. As for the plot of Ψ, the
same remarks of Fig. 10c about balancing the constant SVs in
patches apply on Fig. 12c, but since there are many replicas,
the figure becomes hard to read. Finally, we notice again that
for k = 1, the scaling factors are almost equal.

3b) In Fig. 13, we notice that multi-feature HU is done
based on spectral and morphological properties, where we
observe three column sets: {1, 2, 6}, {3, 5, 7, 8}, and {4}. B1,
B2, and B6 are identified as vegetation, which respectively
reflects the areas highlighted in A1 (big vegetation areas like
meadow), A2 (small vegetation areas like trees), and A6

(dark shadows on vegetation areas). Therefore, while B1, B2,
and B6 are collinear, unlike, patches, their AMs highlight
interesting features accounting to the scale and brightness of
vegetation objects, which we discuss more in-depth with the
interpretation of Ψ and which applies to the other components
as well. B3, B5, B7, and B8 are identified as Bitumen and
Gravel, which respectively reflects the areas highlighted in A3

(small or short areas of roads and roofs), A5 (big connected
areas of roads, roofs, and parking lots), A7 (dark shadows
on parking lots and buildings), and A8 (tiny bright vehicles).
Finally, B4 is identified as Metal Sheets, which are small.

Looking at Fig. 13c, we observe four main patterns that can
be associated to the chosen morphological parameters: First,
Ψ6 and Ψ7 correspond to dark features (as observed inA6 and
A7) as they have higher values when k corresponds to CbR,
then continue decreasing towards ObR. Second, Ψ2, Ψ3, and
Ψ4 correspond to small features (as observed in A2, A3, and
A4) as they have higher values around k = 5 where the SEs
are small. Third, Ψ1 and Ψ5 correspond to big features (as
observed in A1 and A5) as they have higher values when k
corresponds to big SEs with ObR. Fourth, Ψ8 corresponds to

the tiny vehicles as it is the highest when k corresponds to
the smallest SE. Finally, we talk about the original HSI.

As for k = 5, we notice that Ψ2, Ψ3, Ψ4, and Ψ8 have
the highest scaling factors (relatively bright objects including
the vehicles), Ψ1 and Ψ5 have lower factors (darker objects
like asphalt roads, building roofs, parking lots, bare soil, and
meadow areas), and Ψ6 and Ψ7 have the lowest factors
(dark shadowy features). These relationships showcase the
separability of multi-feature HU when the third-mode has a
significant physical meaning and when the rank is set to be
sufficiently high, which can also be interpreted in terms of
ELMM and balancing the SV factors.

B. Results - Urban

In this section, we present the experiments of the Urban HSI
following the same order of Pavia. Since we have the same
observations, and in order to avoid repetition, we briefly go
over the results. For the MM-HSI tensor, our SEs are disks
with the successive radii: {1, 4, 7, 10} pixels. Both Patch-HSI
and MM-HSI tensors then have K = 9 frontal slices and
dimensions 94249× 162× 9. Finally, we also choose R = 4
and R = 8 for the rank.

1) AO-ADMM-ASC: Table VI shows the RMSE results of
MM-CPD between AO-ADMM-ASC and Naive ASC [14],
where again with AO-ADMM-ASC we gain in RMSE with a
small difference in the execution time.

Algorithm R RMSE % Time (s)
Naive ASC [14] 8 7.88 124

AO-ADMM-ASC 8 6.87 251

TABLE VI: Urban. The results of AO-ADMM-ASC and Naive
ASC in terms of RMSE and execution time: R is the rank.
The results of the minimum RMSE are shown.

2) Low rank, ELMM and SV: Here, we discuss the results
for R = 4, where (a) Fig. 14 represents Patch-CPD (b) Fig.
15 represents MM-CPD. A fast look at the figures shows that
we have the same observations as those of Pavia:

2a) In Fig. 14, B2 and B3 coincide, A2 and A3 are
replicas, and they represent Asphalt+Grass. Moreover, in Fig.
14c, we see the same patterns and fluctuations that were
observed in Fig. 10c related to the constant SV and its
quantitative balance in patches, and the scaling factors are
equal for k = 1. On the other hand, {A1,B1} and {A4,B4}
represent Tree+Grass and Roof respectively with steady Ψ1

and Ψ4 patterns.
2b) In Fig. 15, while B4 looks similar to B1, we notice

that Ψ4 has the same pattern observed in Fig. 11c, which
corresponds to dark shadows and is reflected in A4, which
highlights shadows of buildings and trees that fall on grass
areas. As for the other components, they can be interpreted
similarly to those in the case of Pavia (including for k =
5), where {A1,B1,Ψ1}, {A2,B2,Ψ2}, and {A3,B3,Ψ3}
represent Asphalt+Grass, Tree+Grass, and Roof respectively.

3) High rank, ELMM and multi-feature separability: Here,
we discuss the results for R = 8, where Fig. 16 represents
MM-CPD. We skip the case of Patch-CPD in order to avoid
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(a) Components of A

(b) Components of B (c) Components of Ψ

Fig. 14: Urban. CPD results of the Patch-tensor for R=4

(a) Components of A

(b) Components of B (c) Components of Ψ

Fig. 15: Urban. CPD results of the MM-tensor for R=4

repetition, where we simply end up with more replicas of
the components of figures 14a and 14b. In Fig. 16, we are
interested in the features of the AMs that do not appear in
Patch-CPD as the comments on the spectral and morphological
patterns are the same as those of Pavia; where the plots reflect
the qualitative features that appear in the respective AMs.

We observe three column sets: {1, 2, 6}, {3, 5, 7, 8}, and
{4}. First, A1, A2, A4, and A6 were identified as Vegetation:
A1 highlights grass fields, which is close to the Grass refer-
ence and does not appear in Patch-CPD. A2 and A4 highlight
small and big areas, and together they correspond to the Tree
reference. A6 highlights dark shadows (which is reflected in
Ψ6). Second, A3, A5, and A8 are identified as Asphalt Road:
A8 seems to correspond to dark features (looking at Ψ8). A3

highlights small roads such as dirt and narrow streets, while
A5 highlights large roads like the main and connected roads,
which are clearly highlighted unlike the case of patches. Third,
A7 is identified as Roof and highlights both small and large
building roofs.

VI. CONCLUSION

In this paper, we proposed a methodological framework
for multi-feature HU based on CPD and the AO-ADMM-
ASC algorithm, where the samples (pixels) represent a convex
combination of the sources. We also established a unified
framework for the interpretability of multi-feature HU into
“multilinear” subspaces which involved mathematical, phys-
ical, and graphical representations of the CPD model with
ELMM and SV. Finally, we proposed to include MM as spatial
features in a spectral-spatial HU and provided in-depth insights
on how patches and MM behave within the aforementioned
framework in terms of the interpretability of the factors and the
variation of the input rank, where MM incorporates physically
meaningful features into the data tensor.

In the future, we plan to explore BTD which allows some
flexibility with the tensor structure and can be seen as an
extension to Spectral Bundles for SV [11], but also comes
with many challenges such as the rank and the interpretation
of the subspaces. Moreover, areas of BSS other than HU

(a) Components of A

(b) Components of B (c) Components of Ψ

Fig. 16: Urban. CPD results of the MM-tensor for R=8

may be explored. Finally, it is worth mentioning that some
deep learning approaches are being considered for HU (which
still suffer from the increasing and flexible dimensionality
of HSIs and the difficulty of finding data sets for training
especially in a blind framework). However, by developing our
methodological study of tensor-based unmixing and pushing
for interpretability, we pave the way towards tensor-based
interpretable and hybrid deep learning models as well as tensor
subspace learning [21], [59], [60], which can be very helpful
in blind settings such as BSS and HU.

APPENDIX A
NMF RESULTS ON THE MATRICIZED HSI

In this appendix, we include the results obtained by applying
sparse NMF (with ASC) [17], which partly inspired this work.
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We note that these results cannot be compared with those of
tensor decomposition in terms of RMSE and execution time
due to the following reasons:

• In terms of RMSE, on the one hand, we reconstruct
a multi-feature HSI tensor, while on the other hand,
we reconstruct a HSI matrix which does not apply in
multi-feature analysis, so the reconstructed data represent
different types of information.

• In terms of execution time, NMF typically has shorter
execution times than tensor-based methods due to the
added complexity. However, both tools are fundamentally
different and can not be used for the same multi-linear
application.

With that said, the obtained results serve only as a qualitative
baseline or reference for the abundance maps and spectral
components of decomposing the two HSI datasets, which can
indeed be compared with those obtained in the case of MM-
HSI and Patch-HSI tensors.

A. Pavia dataset

Fig. 17 shows the results obtained for the dataset of Pavia
University. Each abundance map is shown with the class that
is assigned to it based on the minimum SAD value, which is
reported as well.

First, we look at the first three components, Trees, Bare Soil,
and Metal Sheets. Their spectral signatures {B1,B2,B3}
shown in Fig. 17b look very similar to those of the reference,
but the corresponding SAD values are relatively bad (high)
compared to those obtained using tensor decomposition in Fig.
10 and 11.

The abundance maps {A1,A2,A3} of Fig. 17a show
highlighted elements belonging to Trees, Bare Soil, and Metal
Sheets respectively. However, we notice that other areas of
the scene belonging to these categories are barely or faintly
highlighted (e.g., asphalt road, brick parking lots, other soil
areas), which is due to the insufficiency of LMM to model
their variabilities.

Regarding the Shadow component, the spectral signature
B4 looks slightly similar to the reference, but the shadows
in the map are barely visible due to their relatively very low
brightness A4.

B. Urban dataset

Fig. 18 shows the abundance maps and spectral signatures
of A and B respectively. We obtain four components with
relatively low (good) SAD values and good abundance maps
similarity with respect to the reference. Finally, we also note
that some dark areas like asphalt roads are not highlighted.

MATRIX / TENSOR DECOMPOSITION ACRONYMS
ADMM alternating direction method of mul-

tipliers

(a) Components of A

(b) Components of B

Fig. 17: Pavia. NMF results of the HSI matrix for R = 4

(a) Components of A

(b) Components of B

Fig. 18: Urban. NMF results of the HSI matrix for R = 4

ALS alternating least squares
AO alternating optimization
AO-ADMM alternating optimization ADMM
AO-ADMM-ASC AO-ADMM incorporating ASC
ASC abundance sum-to-one constraint
BSS blind source separation
BTD block term decomposition
CPD canonical polyadic decomposition
NMF nonnegative matrix factorization
ProCo-ALS projected compressed ALS

HYPERSPECTRAL IMAGING ACRONYMS
AM abundance map
ELMM extended linear mixing model
EM endmember
GT ground-truth
HSI hyperspectral image
HU hyperspectral unmixing
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LiDAR light detection and ranging
LMM linear mixing model
RMSE root mean squared error
SAD spectral angular distance
SV spectral variability

MATHEMATICAL MORPHOLOGY ACRONYMS
CbR closing by reconstruction
EMP extended morphological profile
MM mathematical morphology
MP morphological profile
ObR opening by reconstruction
SE structuring element
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