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Multifeature Hyperspectral Unmixing Based on
Tensor Decomposition

Mohamad Jouni, Member, IEEE, Mauro Dalla Mura, Member, IEEE, Lucas Drumetz, Member, IEEE,
and Pierre Comon, Fellow, IEEE

Abstract—Hyperspectral unmixing is an active area of blind
source separation. It refers to the representation of mixed pixels
(samples) as a set of pure materials (sources), weighted by their
abundances. Since spectral features alone are often insufficient,
it is common to rely on other features of the scene as additional
knowledge. In this paper, the hyperspectral image (HSI) is
represented as a high-order tensor with additional features in a
multimodal, multifeature framework, spanning modes of pixels,
spectral features, and additional features, where matrix models
become insufficient. This requires the use of tensor models,
and particularly the Canonical Polyadic Decomposition, which
is blind and straightforward for unmixing, and maintains the
physical properties of the data. So far, this model has been
applied in preliminary and specific applications, and still lacks a
general framework for unmixing including the interpretation of
the results. In this paper, we propose a methodological framework
for multifeature unmixing based on the Alternating Optimization
Alternating Direction Method of Multipliers algorithm and incor-
porating Abundance Sum-to-one Constraint (AO-ADMM-ASC),
with in-depth mathematical, physical and graphical interpreta-
tions and links to the Extended Linear Mixing Model. Moreover,
we propose to incorporate Mathematical Morphology as spatial
features in multifeature unmixing and revise the work of patch
features in order to demonstrate the interest of the proposed
framework. Experiments on real HSI data sets show the efficiency
of AO-ADMM-ASC and allows an in-depth interpretation of the
model based on the quality of the features and the variation of
the imposed rank.

Index Terms—Blind Source Separation, Hyperspectral Unmix-
ing, Tensor Decomposition, Extended Linear Mixing Model.

I. INTRODUCTION

HYPERSPECTRAL IMAGERY refers to the acquisition
of images of a scene over a wide and almost continuous

spectrum. A hyperspectral image (HSI) contains pixels that can
cover areas of pure or mixed materials and amounts to a high
spectral feature diversity [1], [2], thus allowing to perform a
blind source separation (BSS) [3]–[5] on the observed spectral
signatures to blindly extract those of pure materials (sources),
also called endmembers (EM), and their per-pixel (per-sample)
abundances. This case of BSS is known as hyperspectral
unmixing (HU), which is an active research topic with several
applications like remote sensing, chemometrics, biomedical
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imagery, etc [6]–[15], which allows to understand and quantify
the physical components of a scene.

A significant part of BSS and HU research relies on
matrix factorization that is constrained to properly model the
context of the problem. Consequently, an observed data matrix
M∈RI×J (with I samples and J features) is decomposed by
minimizing the generic cost function [16]:

argmin
A,B

‖M −ABT‖2F + r(A) + r(B) (1)

where the columns of B∈RJ×R represent the R estimated
source signals, the rows of A∈RI×R represent their per-pixel
abundances, and r(·) encodes the imposed constraints and/or
regularizations to enforce desirable properties on the solutions.
In the case of HU, a classical approach is Nonnegative Matrix
Factorization (NMF) which relies on a linear mixing model
(usually referred to as LMM) of the observed HSI matrix (see
Fig. 1), such that A and B are element-wise nonnegative,
which applies in most domains of BSS other than HU where
the factor matrices are associated with some physical variables,
and the rows of A are subjected to the Abundance Sum-to-
one Constraint (ASC, i.e.

∑R
r=1 air=1 ∀ i∈{1, . . . , I}), which

applies to domains where the coefficients of the decomposition
are proportions.

When only few materials concur in the mixture for each
pixel, sparsity is imposed on the abundances [17]. Finally, in
order to account to the spectral variability (SV) of the sources
(e.g., variations in the EMs due to illumination changes or
topographic effects) in real data, the Extended Linear Mixing
Model (ELMM) was proposed to extend the LMM to account
to said SVs. ELMM is an active topic that has seen a lot of
progress recently [11]–[14].

In some scenarios, the HSI is treated as a data cube [18]–
[23], and in several others, the HSI does not come alone as
we might have additional modalities such as when we have a
time series [24], when combined with other modalities (e.g.,
multi-sensor analysis, LiDAR fusion) [25]–[28], or when we
extract some spatial features from the image (such as in clas-
sification problems [29]–[32]). Such scenarios have recently
also concerned other areas of BSS such as multi-channel
signal processing [33]–[35] and multidimensional biomedical
signal and image processing [36]–[40]. In these scenarios the
data are represented natively as tensors1 [41], where usually

1A tensor can be represented as a multidimensional array. The order of a
tensor refers to the number of its array’s indices, which is also the number of
its modes. For example, a tensor of dimensions I×J×K is said to have three
modes, and is called a third-order tensor. Data sets with order 3 or above are
described as high-order tensors.
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the challenge is the proper modeling of a joint factorization
of multivariate representations without losing the multimodal
structure, and hence its interpretation in terms of BSS.

Among these scenarios, we focus on the case of HU where
the HSI is augmented into a tensor with different feature
diversities represented as new modes, which we refer to as
multifeature HU, answering questions such as: How can we
jointly perform a constrained factorization in such settings?
and how can we interpret the extracted factors? An analysis
of the literature shows that there are works that perform NMF
with additional constraints [42]–[44], and others that consider
the case of multimodal inputs with coupled NMF [45], [46],
but this is different from considering data as tensors in our
case.

As the native structure of our data is a tensor, we consider
the problem in terms of tensor decomposition (TD) [41], which
is the natural framework for processing multimodal data in the
signal and image processing community [47]–[49]. There are
many types of TD approaches such as Tucker Decomposition,
Block Term Decomposition, Canonical Polyadic Decomposi-
tion (CPD), etc [50]. However, we choose to use CPD since
it is a natural model for source separation and allows for
interpretability of the extracted components, which are core
aspects of this work. In the third-order case, as illustrated
in Fig. 2, CPD decomposes a data tensor T ∈RI×J×K into
a diagonal core tensor Λ∈RR×R×R and 3 factor matrices
{A∈RI×R,B∈RJ×R,C∈RK×R}, each representing one of
the 3 modes2 of T . It also extends NMF to high-order
structures and can adopt all of its features, especially that
of imposing constraints. Consequently, CPD is computed by
solving the cost function minimization [41]:

argmin
A,B,C

‖T −Λ •
1
A •

2
B •

3
C‖2F + r(A,B,C) (2)

where •d denotes the tensor contraction operator along the
d-th mode, and r(·) represents the imposed constraints and
regularizations.

A. Related Works and Contributions

In the context of HU, CPD has been used with multitempo-
ral/angular HSIs [24] as well as with HSIs having an additional
diversity of extracted neighborhood patches [14]. Moreover,
some works [29]–[31] jointly considered HSIs with spatial
features extracted by Mathematical Morphology (MM) filters
[51]–[54] in the framework of multifeature scene classifica-
tion. These works show that CPD is a suitable approach for
joint decomposition. However, they present some limitations.

From an algorithmic perspective, the nonnegative constraint
is merely implemented in [55] by projection onto the nonneg-
ative orthant, which exhibits some computational issues [48].
In [14], nonnegative ALS is used where ASC is also naively
implemented by projecting the abundances on the unit simplex,
contrary to the common practice in the matrix case [17] where
ASC is embedded in the updates. In [24], the nonnegative
CPD is computed using the ProCo-ALS algorithm, which
is considerably fast [47] but not so flexible with additional

2Pixels form only one mode, even if images are often seen as 2D objects.

constraints. Finally, in [29]–[31], an alternative algorithm is
proposed based on AO-ADMM [49] with compression and
nonnegative constraints, which is flexible and stable with large
datasets, but has not yet addressed multifeature HU which
requires further modeling (i.e., sparsity, ASC).

In terms of interpretability, [24] faced a certain challenge
in interpreting the third-mode factors, perhaps due to the
naive employment of CPD. In [14], a link was established
between CPD and ELMM, but was not deeply investigated
in that it was restricted to the case of patches and tested
only with synthetic data, with yet another important challenge
in interpreting the factors, which poses an ambiguity on its
performance and the meaning of the extracted features. Finally,
[14] and [29]–[31] perform TD with spatial features, however,
the spatial features used can allow limited flexibility (e.g.,
patches), or the interpretation of the factor matrices was not
addressed knowing that incorporating them with CPD showed
improvement in supervised classification (e.g., MM). Here, we
wish to consider such operations in a BSS framework from the
lens of multifeature HU with in-depth interpretability.

This presents us with two main challenges such as (1)
specifically tuning AO-ADMM to incorporate ASC, which is
challenging due to the multilinear structure of CPD, particu-
larly in modeling the samples as a convex combination of the
spectral sources in a multimodal setting, and (2) exploring the
meaning of the extracted features in these conditions. To our
knowledge, imposing ASC in CPD or AO-ADMM as a natural
extension of NMF in [17] has not been done. Furthermore, we
are interested in finding a general framework for multimodal
HU favouring the interpretation of its results under any third-
mode diversity. That said, we mention our contributions to
jointly deal with these limitations in the following.

• We propose a methodological framework for dealing with
multifeature HU based on AO-ADMM by Huang [49],
and expand it to incorporate ASC with joint nonnegativity
and sparsity, such that the case of NMF [17] becomes a
special case. The proposed multifeature HU is a general
algorithm that can be applied in other domains of BSS
where convex combinations of sources apply.

• We establish a unified framework for the interpretabil-
ity of multifeature HU. In particular, the link between
ELMM and CPD [14] is expanded by providing in-depth
physical and graphical insights for better interpetability
of the CPD model and its factors.

• We propose to include MM as spatial features to perform
a spectral-spatial HU and demonstrate the aforementioned
points. We also revise [14] and provide detailed interpre-
tations on the cases of patches and MM, which has not
been addressed in any of the previous works [14], [29]–
[31]. This analysis also shows that MM is better suited
since it embeds physically meaningful features (scale and
brightness of objects) into HU unlike patches.

The remainder is organized as follows. In section II, we
introduce some background. In section III, we detail the pro-
posed framework. In section IV, we present our experiments
and results. Finally, we draw out some conclusions in V.
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Fig. 1: Classical matrix-based HU using NMF (i.e., LMM)

Fig. 2: Third-order CPD. One pixel T i,:,: (horizontal green
slab) represents a matrix of features and is associated with
one row of A. Similarly, one slice T :,:,k (frontal yellow slab)
represents a matricized HSI and is associated with one row
of C.

II. BACKGROUND

In this section, we briefly review the existing notions in
the literature upon which we base our algorithm and general
interpretation of the multimodal HU framework. First, we
explain how ASC is applied in NMF [17] as the proposed
framework extends this for TD. Then, we give a brief account
on ELMM, including graphical and visual interpretations,
which will be the basis for the proposed interpretation. Finally,
we discuss the link between CPD and ELMM preliminarily
presented in [14].

A. NMF with ASC, Nonnegativity, and Sparsity

In the NMF case [17], when sparsity (`1 norm) and ASC
are imposed on the abundances, (1) becomes:

argmin
A,B

1

2
‖M −ABT‖2F + α‖A‖1

s.t. A � 0, B � 0,

R∑
r=1

ai,r = 1 |∀i∈{1,...,I}
(3)

where α > 0, and � denotes element-wise nonnegativity. A
simple strategy to embed ASC goes by stacking a row vector
in B and a column vector in M such that [17]:

M̃ =
[
M | δ1I×1

]
, B̃ =

[
B

δ11×R

]
,

where δ is usually set the mean of M , and the last row of B̃
is reset to δ after each iteration. This operation ensures that
ASC is embedded in NMF since ∀i ∈ {1, . . . , I} we have
mi,J+1 =

∑R
r=1 ai,rbJ+1,r =

∑R
r=1 ai,rδ = δ, corresponding

to
∑R

r=1 ai,r = 1. Then, (3) becomes:

argmin
A,B̃

1

2
‖M̃ −AB̃

T‖2F + α‖A‖1 s.t. A � 0, B̃ � 0 (4)

There are many algorithms proposed in the literature that
deal with sparse NMF and ASC, which are out of the scope
of this work [42], [43]. In our case, we extend it within the
AO-ADMM framework for CPD, in which NMF becomes a
special case for order-2 tensors, which we propose in Section
III-A by extending this simple strategy of embedding ASC to
tensors, which we refer to as AO-ADMM-ASC.

B. ELMM

While LMM is seen as a direct approach for HU, it cannot
model SVs represented by nonlinear effects or illumination
conditions. One way to account to said effects is through
ELMM [12], which in general assumes additional degrees
of freedom that account to said SVs at the pixel level by
introducing a pixel-dependent SV function f i : RJ → RJ ,
which maps each EM br to a new spectral signature b(i)

r that
best reflects the targeted SVs:

mi =

R∑
r=1

airf i(br) =

R∑
r=1

airb
(i)
r . (5)

For example, in the case of different illumination conditions,
this can be represented as a scaling factor for each pixel on
the EMs. In the following, we present the parts that are at the
basis of the interpretability of our proposed framework.

When ASC is imposed in LMM, all the pixels will lie on
the convex hull of the set of estimated EMs (the columns of
B), and the fractional abundances in each row of A define
the coordinates of each pixel in the convex hull, which is
illustrated in Fig. 3a. With the introduction of ELMM, the
pixels will not lie on the same convex hull anymore as each
pixel is mapped to a new set of EMs, which is illustrated in
Fig. 3b in the case where the SV is modeled by a scaling factor
ψir that is pixel- and EM-dependent such that b(i)

r =ψirbr [12].
Accordingly, in the case of scaling factors, the new spectral
signatures b(i)

r are allowed to move only along the directions
of br, then the following are equivalent:

M = (A�Ψ)BT (6)

mi =

R∑
r=1

airψirbr = ai,: diag{Ψi,:}BT = ai,:Ψ(i)B
T (7)

(a) LMM (b) ELMM (scalar factors)

Fig. 3: Graphical comparison between LMM and ELMM
(scalar factors) in the case of three spectral signatures {b1,
b2, b3} and two example pixels {ms, mt}. The relative
coordinates in the simplices are conserved.
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where Ψ ∈ RI×R is the matrix of scaling factors, and � is the
Hadamard product. These mathematical, graphical, and visual
relationships are the key to elaborate and interpret the case of
CPD in Section III-B.

C. CPD and ELMM
In the work of [14], a representation of CPD in terms of

ELMM has been presented, which will be reported here. CPD
decomposes a third-order tensor T such that:

T = Λ •
1
A •

2
B •

3
C ⇐⇒ T =

∑R
r=1 a:,r ⊗ b:,r ⊗ c:,r (8)

⇐⇒ tijk =
∑R

r=1 air bjr ckr (9)

where ⊗ designates the outer product, tijk is a scalar of T ,
R is the number of estimated sources, and Λ ∈ RR×R×R is
a diagonal tensor containing scaling factors (by absorbing the
`2-norms of the columns of the factor matrices) in order to fix
the scaling indeterminacy [41], [48]. In (8) and (9), and for
the convenience of the following expressions, we suppress the
expression of Λ by absorbing its scaling factors in the columns
of C. As shown in [14], assuming that T :,:,k designates the
k-th frontal slice of T , one can write:

T :,:,k = Adiag{ck,:}BT = AΨ(k)B
T = Af̃k(B)T (10)

⇐⇒ ti,:,k =

R∑
r=1

air (brckr) =

R∑
r=1

airfk(br) (11)

where ti,:,k designates one pixel of T :,:,k. From the perspec-
tive of each frontal slice, CPD resembles a regularized coupled
NMF of the frontal slices where A is a common factor:

argmin
A,B(k)

‖T :,:,k −AB(k)T‖2F s.t. A � 0,B(k) � 0 (12)

where B(k)=f̃k(B)|∀k∈{1,...,K}, which is similar to the case
of ELMM. The latter was used in [14] as a way to impose
a spatial smoothing (12) on the abundances within a patch of
pixels. This link between CPD and ELMM was preliminary
presented and restricted to an application of patches with
only simulated data, and the meaning of the SVs was not
explored. In Section III-B, we propose a generalized in-depth
interpretation of multi-feature HU, and in Section III-C we
present how to incorporate spatial features (e.g., patches and
MM) in such a setting.

III. PROPOSED MULTI-FEATURE HU
In this section, we present the proposed multi-feature HU

framework based on CPD. First, we talk about the implemen-
tation of AO-ADMM-ASC. Then, we interpret the ELMM
model based on TD and propose to include spatial features
as third-mode.

A. AO-ADMM-ASC with Nonnegativity and Sparsity
In CPD, after imposing nonnegativity on the factor matrices,

and sparsity and ASC on the abundances, (2) becomes:

argmin
A,B,C

‖T −Λ •
1
A •

2
B •

3
C‖2F + α‖A‖1

s.t. A � 0, B � 0, C � 0,

R∑
r=1

ai,r = 1 |∀i∈{1,...,I}
(13)

In (13), since A adopts the sum-to-one constraint on its rows,
it is hence enough to absorb only the norms of the columns of
B and C into Λ, which we suppress again in the following
expressions for the sake of convenience. In order to solve
(13), we adopt AO-ADMM [49], where the factor matrices
are updated in an alternating way and where each update of a
factor matrix is optimized as an ADMM subproblem. In order
to model the problem as close as possible to LMM, we propose
to embed ASC in the model, where the key point becomes
to extend the concept from NMF to CPD by stacking a row
vector in B and a lateral slice in T (i.e., T :,J+1,:∈RI×1×K)
to ensure that

∑R
r=1 air=1|∀i∈{1,...,I}.

First, we introduce a row vector in B such that bJ+1,r =
δc−1

K,r |∀r∈{1,...,R}, which corresponds to constructing the slice
T :,J+1,: where ti,J+1,k = δ

∑R
r=1 airc

−1
K,rck,r |∀k∈{1,...,K}

and t:,J+1,K = δ1I×1. This verifies that ti,J+1,K = δ =∑R
r=1 ai,rbJ+1,rcK,r = δ

∑R
r=1 ai,rc

−1
K,rcK,r, corresponding

to
∑R

r=1 air = 1. Finally, T and B have to be updated at the
end of each full AO-ADMM iteration as follows:

T̃ =
[
T | T :,J+1,:

]
, B̃ =

[
B

bJ+1,:

]
, (14)

where δ is usually assigned the mean of T . Then, (3) becomes:

argmin
A,B̃,C

‖T̃ −Λ •
1
A •

2
B̃ •

3
C‖2F + α‖A‖1

s.t. A � 0, B̃ � 0, C � 0

(15)

At this stage, solving (15) with AO-ADMM becomes sim-
ple. We demonstrate the solution for one ADMM update of A.
As for B̃ and C, they follow the same procedure A but where
α = 0 since sparsity is not imposed on them. Supposing that
T̃ (1) represents the first-mode unfolding of T̃ , we can write
the sub-problem of A as follows:

A = argmin
A

1

2
‖T̃ (1) − W̃AA

T‖2F + α‖A‖1

s.t. A � 0

(16)

where W̃A contains the Khatri-Rao product of B̃ and C. By
introducing the splitting variable Ā = AT, expression (16)
becomes:

argmin
A,Ā

1

2
‖T̃ (1) − W̃AĀ‖2F + α‖A‖1

s.t. Ā = AT and A � 0

(17)

Adopting ADMM for (17), the updates of Ā and A become:

Ā← (W̃
T

AW̃A + ρI)−1(W̃
T

AT̃ (1) + ρ(A + UA)T)

A← max(0, Ā
T −UA −

α

ρ
)

UA ← UA + A− Ā
T

(18)

where UA is called the dual variable. Finally, for order-2
tensors, this model becomes equivalent to solving NMF (4).
The implementation of AO-ADMM-ASC is summarized in
Algorithm 1.
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Fig. 4: Our visualization of equations (6) (Hadamard product)
and (7) (matrix product). The color code of the bottom part
follows that of Fig. 3b. We have Ψ(i)=diag{Ψi,:}.

Fig. 5: Our visualization of equation (10). The color code is
made analogous to that of Fig. 2 and follows that of Fig. 6a.
We have Ψ(k)=diag{ck,:}.

Algorithm 1 AO-ADMM-ASC: The set {H1,H2,H3} re-
places {A,B,C} from Section III-A. In (18), α = 0 for the
updates of B and C since sparsity is not imposed on them.

Require: T , H1,H2,H3, U1,U2,U3, α
Initialize H1,H2,H3;
Initialize U1,U2,U3 to zero;
repeat

Set H̃2 and T̃ based on (14);
Set H2 ← H̃2 and T ← T̃ ;
for ∀d ∈ {1, 2, 3} do

W d = �j 6=dHj ;
ρ = trace(W T

dW d)/R; [49]
Update Hd with (18) as an ADMM sub-problem;

end for
Normalize the columns of H2 and H3 (`2-norm) into Λ
such that λrrr = ‖h(2)

:,r ‖2 ‖h
(3)
:,r ‖2 ∀r ∈ {1, . . . , R}

until Termination criterion (e.g., number of iterations)
return H1,H2,H3, Λ

B. Interpretation of ELMM Based on TD

Here, we build upon what has been presented in Sections
II-B and II-C as methodological, physical, and graphical basis
for the multimodal HU interpretation. For that, we first draw
the analogies across the different expressions in terms of key
points (i.e., links between frontal slices of the tensor and the
meaning of the SV function in this setting), which helps pass
the interpretation of the matrix-based model to the tensor-
based one. Then we visualize the expressions in order to
interpret multimodal HU in terms of graphical representations
as subspaces while commenting on the physical role of the
extracted factors and the input rank.

First, we note that expressions (10) and (11) are analogous
to the ELMM expression (7) with the major difference that in
CPD, ELMM scaling factors are dependent on frontal slices
instead of pixel dependent. Second, we visualize (6) and (7) in

Fig. 4, and (10) and (11) in Fig. 5. Looking at (10), the frontal
slices T :,:,k and the physical meaning that they represent have
a direct influence on the SV function fk and the interpretation
of the SVs, which is simply reflected as scaling factors in each
row of C, i.e. ck,: (or Ψ(k) = diag{ck,:}). As a result, with A
and B fixed, each frontal slice T :,:,k is inherently factorized
into a set of R scaled EMs {ckrbr}|∀ r∈{1,...,R} where the SVs
are absorbed in ck,: and the EMs {br} are independent of the
frontal slices. This also means that R is a major parameter
that represents the degrees of freedom especially the scaling
factors ckr, which then simultaneously represent the factorized
evolution of sources across the third mode as c:,r and the per-
slice modeling of the SV as ck,:. Intuitively, one can say that
the effects of the transformations (e.g., scale, illumination) [31]
or the natural evolution (e.g., time) [24] of a scene held by
T :,:,k on the sources become observed through the scaling
factors of the TD. Moreover, we point out the following:
• In CPD, there are as many SV functions (and simplices)

as the frontal slices of the tensor, which is significantly
lower than the number of pixels (K≪ I).

• In CPD, one row of R scaling factors in C corresponds to
a full frontal slice and is shared by all the pixel rows of A,
while in classical ELMM, each row of scaling factors in
Ψ corresponds to one pixel of M and interacts with only
one row of A. This clearly appears when we compare (5)
and (7) to (10) and (11), and Fig. 4 to Fig. 5.

• On a graphical representation, when ASC is imposed,
CPD suggests that each simplex contains I pixels as
illustrated in Fig. 6a, such that the relative coordinates
of the pixels inside each convex hull are the same since
each row of C interacts with all of A.

In summary, having a third mode in HSI produces scaling
factors in ELMM that absorb the SVs based on the physical
meaning of the frontal slices along the third mode (e.g., time,
patches, MM, wavelets), which balances the extracted factors
in A and B independently of said SVs. Moreover, the imposed
value of R represents the number of extracted sources and
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(a) ELMM-CPD (General) (b) ELMM-CPD (Patches) (c) ELMM-CPD (MM)

Fig. 6: Graphical representations of (a) CPD in the case of three spectral signatures {b1, b2, b3} and two frontal slices {T 1,TK},
and (b) patch-CPD and (c) MM-CPD in the case of four spectral signatures {b1/c1, . . . , b4/c4} (two of which have different
third-diversity patterns) and two frontal slices {T 1,T 2}. The relative coordinates of the pixels in the convex hulls must be the
same since A is common for all the frontal slices.

scaling factors and has a major effect on the results and the SV
interpretation. As R decreases, we tend towards having fewer
degrees of freedom, where CPD tends towards extracting the
EMs while applying a regularization on the observed pixels
influenced by the physical meaning of the information across
the third mode. As R increases, we tend towards having
more degrees of freedom, where CPD tends towards extracting
factors with multi-feature separability of the sources. We note
that R should not be too high in order to avoid over-fitting.

C. Spatial Features (Patches/MM)

In this section, we consider including spatial features as
a third mode in multifeature HU through two examples,
revisiting patches with additional insights and introducing
MM, which have not been explored yet and consequently
help demonstrate the interpretability of the model especially
in terms of physical significance and the variation of the rank.
We also refer to Fig. 5 and 6 for illustration.

1) Patches: Here, we add that, in fact, a tensor built
with patches has an inherently low-rank structure as that
of the NMF of the original HSI M = T :,:,1 since the
information contained along the third mode of the tensor
is almost essentially the same (that is, the frontal slices in
Fig. 5 are only slightly spatially-shifted versions of T :,:,1).
However, what is different in the tensor case is that when
this shifting information is stacked along the third mode and
CPD is imposed with such a low rank, the model applies an
implicit smoothing of the pixel tubes belonging to the same
patch (which represents a horizontal slice in T ) since the
frontal slices are jointly decomposed (through CPD) sharing
A and B but with the degrees of freedom (the rank) of a
single one of them. Therefore, a main advantage over NMF is
that one expects to extract the same sources with a patch-local
smoothing of the SVs of the estimated EMs, where the SVs
are balanced out in the form of scaling factors stored in the
rows of C. An important note here is that the scaling factors
stored in C do not have a significant physical meaning.

This brings us to another problem, which occurs when R
increases. Then, the sources and abundances are expected to
replicate since the third mode is based on shifting information,
implying redundancy. In this case, the scaling factors in C
only indicate whether an estimated EM in B corresponds
to a certain spatial shifting or another. This point is roughly
illustrated in Fig. 6b (inspired by Fig. 8) where we have three
spectral sources: Gravel, Metal Sheets, and Trees, but CPD is
carried out with R = 4. Here, the convex hull of T :,:,1 gives a
high scaling factor at b1 and a low factor at b4, while that of
T :,:,2 gives the opposite with almost the same quantity. This
is due to the fact that the materials are present with almost
the same quantity in both frontal slices. This problem does not
appear in the case where the third mode represents a physical
meaning of the components such as MM.

2) Mathematical Morphology: While using patches is ef-
ficient, it still ignores the physical properties of connected
pixels, and the SVs are regularized indifferently among pixels
belonging to different types of materials. On the other hand,
morphological features take into account physical properties
such as scale and brightness of objects and promote dealing
with SV among pixels sharing these properties. Through MM,
we also emphasize the role of incorporating spatial diversities
that add physical significance to the objects of the scene. In
this sense, one expects that a MM-tensor has an inherently
more complicated structure than that of a patch-tensor since
the frontal slices in Fig. 5 contain more context on the
materials related to their sizes and brightness levels. As such,
imposing a low rank promotes spectral smoothing of the SVs
based on a morphological regularization of the abundances,
while imposing a sufficiently higher rank promotes having
a more distinctive spectral-morphological separation of the
materials unlike patch-tensors. In this case, since each frontal
slice is seen as a characteristic of brightness and scale, the
scaling factors in C indicate the quantitative correspondence
of an extracted material to said ?? physical properties per
frontal slice. This point is roughly illustrated in Fig. 6c
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(inspired by Fig. 9) where T :,:,1 and T :,:,2 characterize small
and large objects respectively. Here, the convex hull of T :,:,1

gives high scaling factors for b1, b2, and b3 (corresponding
to small objects), and a low scaling factor at b4 (corresponds
to large objects), while that of T :,:,2 gives the opposite.

IV. EXPERIMENTS AND RESULTS

In this section, we discuss the experiments and results of
multimodal HU on real HSIs in terms of AO-ADMM-ASC
(compared to Naive ASC [14]), extracted factors, ELMM
interpretability, and qualitative comparisons between patch-
and MM-tensors with low and high values of the rank. In
each experiment, among 30 random initializations of the factor
matrices, the result with the minimum root mean squared error
(RMSE) is chosen. The estimated EMs of B are identified
based on their minimum spectral angular distance (SAD), in
degrees, with respect to the reference.

The maps and plots shown in the experiments represent
the columns of the factor matrices. Above each abundance
map (AM), we show the material that corresponds to it with
its minimum SAD value. We recall that a set of similarly
indexed columns, e.g., {A1, B1, C1}, represent the abun-
dance, spectral source signal, and third-mode source pattern
(e.g., morphological print, shifting print, temporal evolution)
of one extracted material respectively. Since C plays a crucial
role in the interpretability of ELMM and multifeature HU, we
also highlight the relevance of its row components. Each fixed
index k in the plot corresponds to a row of C and thus to a
frontal slice in T , and the vertical grouping of points at said
index, as indicated in Fig. 8c, 9c, 10c, and 11c, represents the
scalars in that row. This also means that when projected on
Fig. 6, in patch-CPD, k=1 contains the SV scaling factors that
balance the convex hull of the original HSI and are responsible
for its reconstruction, while in MM-CPD, the middle index
does that. This will eventually show how MM accounts to
physical effects in the scene, while patches does not.

In each case analysis, we look into the components of
A and B first, which visually and spectrally identify the
materials, then we explain their correspondence to those of
C, where we are interested in the significance of the third-
mode patterns then their relevance to the original HSI. We note
that quantitative validation of the AMs and EMs is usually not
evident, and that there is neither a quantitative nor a qualitative
reference for third-mode patterns in the literature, so here we
provide an in-depth qualitative analysis.

We want to consider HSIs which show objects with spatial
features of different scale and brightness levels, for which
urban areas are good candidates. For that, we choose two
real HSIs3: Pavia University and Urban. Fig. 7 shows the
two HSIs in false colors with their spectral references. It
is worth noting for the sake of interpretation that the MM-
tensors are built following the Extended Morphological Profile
(EMP) technique used in [31] with Openings and Closings
by Reconstruction (ObR and CbR), which correspond to
bright and dark objects respectively, with varying sizes of

3The data sets with detailed information are available on the website:
http://lesun.weebly.com/hyperspectral-data-set.html

the Structuring Element (SE), which corresponds to the scales
of objects4. The patch-tensors are built following [14] with
3 × 3 patches. We run our experiments with Intel® Core™
i7-1185G7, 32GB RAM 3200MHz LPDDR4.

A. Results Discussion - Pavia University

In this section, we present the experiments of the HSI of
Pavia. We start by comparing AO-ADMM-ASC and Naive
ASC. After that, we focus on CPD and the ELMM analysis
of the factors while interpreting the cases of patches and MM.
For the MM-tensor, our SEs are disks with the successive radii:
{2, 7, 12, 17} pixels. Both patch- and MM-tensors then have
K=9 frontal slices and dimensions 207400× 103× 9. Finally,
we find that R=4 and R=8 are the best for low and high values
of the rank respectively. In Fig. 7b, some classes have very
similar spectral signatures, so, in the following, sometimes
we refer to Trees and Meadows as vegetation, and to Asphalt,
Bitumen, Gravel, and Bricks as roads or roofs. Bare Soil can
belong to either of both groups.

1) AO-ADMM-ASC: Here, we compare the RMSE results
of MM-CPD between AO-ADMM-ASC and Naive ASC [14].
The results are shown in Table I, where we see that with AO-
ADMM-ASC we gain in RMSE, which corresponds to a better
estimation of the factors with respect to the observed tensor
with a small difference in the execution time.

Algorithm R RMSE % Time (s)
Naive ASC [14] 8 7.07 231

AO-ADMM-ASC 8 6.34 384

TABLE I: Pavia. The results of AO-ADMM-ASC and Naive
ASC in terms of RMSE and execution time: R is the rank.
The results of the minimum RMSE are shown.

2) Low rank, ELMM and SV: Here, we are interested in
the property of CPD dealing with SV. Since patch-tensors
have as an inherently low structure as that of NMF, we start
by considering R=4 for patches and MM. As explained in
Section III-B, such a low rank highlights the SV and spatial
regularization aspects of multi-feature HU. We compile the
discussion into two stages: (a) Fig. 8 representing patch-CPD,
and (b) Fig. 9 representing MM-CPD.

2a) In Fig. 8, B1 and B4 are identified as Trees and Metal
Sheets respectively, which reflects the areas highlighted in A1

and A4, while B2 and B3 coincide and are both identified
as Gravel, which reflects the areas highlighted in A2 and A3

and where we already start to see replicated components. In
fact, A2 and A3 are slightly-shifted versions of each other,
which is explained better in the interpretation of C2 and C3.

Looking at Fig. 8c, which is the most interesting, one might
intuitively expect to see horizontal curves since, quantitatively,
the collective SV is supposedly constant in patches. However,
while C1 and C4 look almost straight, C2 and C3 are not.
We notice here that where C2 is high, C3 is low and vice
versa. In part, this means that A2 represents the shifts where
k={2, 3, 4, 5}, while A3 represents those where k={6, 7, 8, 9}.
In another part, the two columns fluctuate in a way that

4More information are provided in supplementary materials.
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(a) (b) (c) (d) (e)

Fig. 7: 7a) Pavia in false colors. 7b) Pavia’s spectral reference, which was extracted from the mean spectrum of each class of
its spatial GT. 7c) Urban in false colors. 7d) Urban’s spatial GT. 7e) Urban’s spectral reference.

maintains a constant SV and balances out their quantitative
presence across the frontal slices. As for k=1, which represents
the original HSI, we notice that the scaling factors are almost
equal, which means that the spectral vectors of the convex
hull are equally present in the HSI, all of which shows that
patch-tensors do not account to physical spatial effects.

2b) In Fig. 9, B1, B2, and B3 are identified as Bare
Soil, Trees, and Metal Sheets respectively, which reflects the
areas highlighted in A1, A2, and A3, all of which is similar
to those obtained by patches. As for {A4,B4}, while B4

looks very similar to B1, unlike patches, we notice that
A4 highlights interesting shadow areas (dark features), which
clearly reflects the morphological awareness incorporated into
CPD with MM. The latter becomes more interesting with the
interpretation of C.

Looking at Fig. 9c, we observe three main patterns that can
be associated to the chosen morphological parameters. First,
C4 corresponds to dark features (reflected by the shadows
in A4) as it has higher values when k corresponds to CbR,
then continues decreasing towards ObR. Second, C2 and C3

correspond to small features as they have higher values around
the middle (k=5) where the SEs are small, which is visually
reflected through the small objects highlighted in A2 (trees)
and A3 (metal sheets and vehicles). Third, C1 is rather steady,
which means that the spatial features shown in A1 are general.

As for k=5, which represents the original HSI, we notice
that C2 and C3 have the highest scaling factors since they
correspond to relatively bright objects of the scene, C1 has a
slightly lower factor since it corresponds to darker objects like
asphalt roads, building roofs, parking lots, and bare soil areas,
and C4 has the lowest factors since it corresponds to dark
shadows. These relationships show the column- and row-wise
significance of C and how multi-feature HU can balance out
the SVs and the same time reconstruct the original HSI.

3) High rank, ELMM and multi-feature separability: Here,
we are interested in multi-feature HU when we have more de-
grees of freedom, where we go more in-depth into the factors
of patches and MM for R=8. As explained in Section III-B,
such a higher rank demonstrates the multi-feature separability
of MM and how patches only replicates its components. We
compile the discussion into two stages: (a) Fig. 10 representing
patch-CPD, and (b) Fig. 11 representing MM-CPD.

3a) In Fig. 10, we end up with more replicas of the same A

and B components obtained in Fig. 8, the sets of replicas being
columns {1, 3, 4} detected as Trees, and {2, 5, 6, 7} detected as
Gravel and Bitumen. As for the plot of C, the same remarks of
Fig. 8c about balancing the constant SVs in patches apply on
Fig. 10c, but since there are many replicas, the figure becomes
hard to read. Finally, we notice again that for k=1, the scaling
factors are almost equal.

3b) In Fig. 11, we notice that multi-feature HU is done
based on spectral and morphological properties, where we
observe three column sets: {1, 2, 6}, {3, 5, 7, 8}, and {4}. B1,
B2, and B6 are identified as vegetation, which respectively
reflects the areas highlighted in A1 (big vegetation areas like
meadow), A2 (small vegetation areas like trees), and A6

(dark shadows on vegetation areas). Therefore, while B1, B2,
and B6 are collinear, unlike, patches, their AMs highlight
interesting features accounting to the scale and brightness of
vegetation objects, which we discuss more in-depth with the
interpretation of C and which applies to the other components
as well. B3, B5, B7, and B8 are identified as Bitumen and
Gravel, which respectively reflects the areas highlighted in A3

(small or short areas of roads and roofs), A5 (big connected
areas of roads, roofs, and parking lots), A7 (dark shadows
on parking lots and buildings), and A8 (tiny bright vehicles).
Finally, B4 is identified as Metal Sheets, which are small.

Looking at Fig. 11c, we observe four main patterns that can
be associated to the chosen morphological parameters: First,
C6 and C7 correspond to dark features (as observed in A6 and
A7) as they have higher values when k corresponds to CbR,
then continue decreasing towards ObR. Second, C2, C3, and
C4 correspond to small features (as observed in A2, A3, and
A4) as they have higher values around k=5 where the SEs
are small. Third, C1 and C5 correspond to big features (as
observed in A1 and A5) as they have higher values when k
corresponds to big SEs with ObR. Fourth, C8 corresponds to
the tiny vehicles as it is the highest when k corresponds to
the smallest SE. Finally, we talk about the original HSI.

As for k=5, we notice that C2, C3, C4, and C8 have
the highest scaling factors (relatively bright objects including
the vehicles), C1 and C5 have lower factors (darker objects
like asphalt roads, building roofs, parking lots, bare soil, and
meadow areas), and C6 and C7 have the lowest factors
(dark shadowy features). These relationships showcase the
separability of multi-feature HU when the third-mode has a
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(a) Components of A

(b) Components of B (c) Components of C

Fig. 8: Pavia. CPD results of the Patch-tensor for R=4

(a) Components of A

(b) Components of B (c) Components of C

Fig. 9: Pavia. CPD results of the MM-tensor for R=4

(a) Components of A

(b) Components of B (c) Components of C

Fig. 10: Pavia. CPD results of the Patch-tensor for R=8

(a) Components of A

(b) Components of B (c) Components of C

Fig. 11: Pavia. CPD results of the MM-tensor for R=8

significant physical meaning and when the rank is set to be
sufficiently high, which can also be interpreted in terms of
ELMM and balancing the SV factors.

B. Results - Urban

In this section, we present the experiments of the Urban HSI
following the same order of Pavia. Since we have the same
observations, and in order to avoid repetition, we briefly go
over the results. For the MM-tensor, our SEs are disks with

the successive radii: {1, 4, 7, 10} pixels. Both patch- and MM-
tensors then have K=9 frontal slices and dimensions 94249×
162× 9. Finally, we also choose R=4 and R=8 for the rank.

1) AO-ADMM-ASC: Table II shows the RMSE results of
MM-CPD between AO-ADMM-ASC and Naive ASC [14],
where again with AO-ADMM-ASC we gain in RMSE with a
small difference in the execution time.

2) Low rank, ELMM and SV: Here, we discuss the results
for R=4, where (a) Fig. 12 represents patch-CPD (b) Fig. 13
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(a) Components of A

(b) Components of B (c) Components of C

Fig. 12: Urban. CPD results of the Patch-tensor for R=4

(a) Components of A

(b) Components of B (c) Components of C

Fig. 13: Urban. CPD results of the MM-tensor for R=4

Algorithm R RMSE % Time (s)
Naive ASC [14] 8 7.88 124

AO-ADMM-ASC 8 6.87 251

TABLE II: Urban. The results of AO-ADMM-ASC and Naive
ASC in terms of RMSE and execution time: R is the rank.
The results of the minimum RMSE are shown.

represents MM-CPD. A fast look at the figures shows that we
have the same observations as those of Pavia:

2a) In Fig. 12, B2 and B3 coincide, A2 and A3 are repli-
cas, and they represent Asphalt+Grass. Moreover, in Fig. 12c,
we see the same patterns and fluctuations that were observed in
Fig. 8c related to the constant SV and its quantitative balance
in patches, and the scaling factors are equal for k=1. On the
other hand, {A1,B1} and {A4,B4} represent Tree+Grass and
Roof respectively with steady C1 and C4 patterns.

2b) In Fig. 13, while B4 looks similar to B1, we notice
that C4 has the same pattern observed in Fig. 9c, which
corresponds to dark shadows and is reflected in A4, which
highlights shadows of buildings and trees that fall on grass
areas. As for the other components, they can be interpreted
similarly to those in the case of Pavia (including for k=5),
where {A1,B1,C1}, {A2,B2,C2}, and {A3,B3,C3} repre-
sent Asphalt+Grass, Tree+Grass, and Roof respectively.

3) High rank, ELMM and multi-feature separability: Here,
we discuss the results for R=8, where Fig. 14 represents
MM-CPD. We skip the case of patch-CPD in order to avoid
repetition, where we simply end up with more replicas of
the components of figures 12a and 12b. In Fig. 14, we are
interested in the features of the AMs that do not appear in
patch-CPD as the comments on the spectral and morphological
patterns are the same as those of Pavia; where the plots reflect
the qualitative features that appear in the respective AMs.

We observe three column sets: {1,2,6}, {3,5,7,8}, and {4}.
First, A1, A2, A4, and A6 were identified as Vegetation: A1

highlights grass fields, which is close to the Grass reference
and does not appear in patch-CPD. A2 and A4 highlight
small and big areas, and together they correspond to the Tree

(a) Components of A

(b) Components of B (c) Components of C

Fig. 14: Urban. CPD results of the MM-tensor for R=8

reference. A6 highlights dark shadows (which is reflected in
C6). Second, A3, A5, and A8 are identified as Asphalt Road:
A8 seems to correspond to dark features (looking at C8). A3

highlights small roads such as dirt and narrow streets, while
A5 highlights large roads like the main and connected roads,
which are clearly highlighted unlike the case of patches. Third,
A7 is identified as Roof and highlights both small and large
building roofs.

V. CONCLUSION

In this paper, we proposed a methodological framework
for multifeature HU based on CPD and the AO-ADMM-
ASC algorithm, where the samples (pixels) represent a convex
combination of the sources. We also established a unified
framework for the interpretability of multifeature HU into
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“multilinear” subspaces which involved mathematical, phys-
ical, and graphical representations of the CPD model with
ELMM and SV. Finally, we proposed to include MM as spatial
features in a spectral-spatial HU and provided in-depth insights
on how patches and MM behave within the aforementioned
framework in terms of the interpretability of the factors and the
variation of the input rank, where MM incorporates physically
meaningful features into the data tensor.

In the future, we plan to explore the tensor Block Term
Decomposition which allows some flexibility with the tensor
structure and can be seen as an extension to Spectral Bundles
for SV [11], but also comes with many challenges such as the
rank and the interpretation of the subspaces. Moreover, areas
of BSS other than HU may be explored. Finally, it is worth
mentioning that some Deep Learning (DL) approaches are
being considered for HU (which still suffer from the increasing
and flexible dimensionality of HSIs and the difficulty of
finding data sets for training especially in a blind framework).
However, by developing our methodological study of tensor-
based unmixing and understanding its subspace structure and
the interpretation of its results, we can pave the way towards
implementing interpretable DL models based on tensor struc-
tures and tensor subspace learning [22], [56], [57], which can
be very helpful in blind settings such as BSS and HU. For
example, in [20], some relationships between TD and Neural
Networks are drawn for supervised scene classification, and
in [58], an open question is posed whether Tensor Networks
can work as Machine Learning models.
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