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This paper deals with the trajectory tracking of a 2 Degrees of Freedom (DoF) helicopter system. The control strategy is designed by the combination of the robust control strategy (Higher Order-Sliding Mode Control (HO-SMC)) and the optimal control technique (Linear Quadratic Regulator (LQR)). Combining these two methods lies in the fact that the robust controllers tackle the uncertainties when the optimal controller performances are unaffected. As the performances of the Sliding Mode Control (SMC) greatly depends on the choice of the sliding surface, a novel method based on the solution of a Sylvester equation is proposed.

Furthermore, the problem of deciding the optimal configuration of the LQR controller as well as the gain of the discontinuous control is considered as an optimization problem, which can be solved by the application of an efficient metaheuristic. The adequacy of the specific choice of the discontinuous gain is exhibited through general analysis. The main contribution of this paper is to consider a multi-objective optimization problem.

For that, a novel dynamically aggregated objective function is proposed. As a result, a set of non-dominated optimal solutions are provided to the designer and then he selects the most preferable alternative. The proposed control strategy is applied for pitch and yaw axes control of the Quanser helicopter. Experimental results substantiate that the combination of the HO-SMC with the LQR method and metaheuristics results in not only reduced tracking error but also improved tracking response with reduced oscillations.

Introduction

Recently, considerable attention has been attracted to the control of helicopters due to their ability to land and take off in small areas. Helicopters have been adopted for a wide range of services including military applications, air-sea rescue, firefighting and traffic control [1]. The main challenge for the control of such systems stems from their high nonlinearities, inter-axis coupling and model uncertainties. In the last two decades, many works focusing in the area of control design for autonomous flying vehicles have consider the Quanser 2-DoF helicopter as a testbed to analyze the effectiveness of different control strategies. Owing to its simplicity and its high accuracy, increasing attention has been focused on the design of an optimal controller based on the LQR method to ensure the trajectory tracking of the Quanser Aero and many empirical researches have been proposed. For instance, the optimal controller were successfully applied to ensure the stabilization as well the tracking of a desired command input in [2]. Based on a suitably combination of the adaptive control technique and the LQR + Integrator (LQR-I), a new control scheme has been reported in [3]. An adaptive Particle Swarm Optimization (PSO) for optimal LQR tracking control of 2-DoF laboratory helicopter is presented in [4]. However, these studies still have some drawbacks: On the first hand, the LQR controller minimizes a quadratic cost index consisting of two penalty matrices Q and R. It should be noticed that deciding these two matrices, which greatly influence the behavior of the controller, isn t a trivial task.

Every different value of Q and R will eventually end up with a different system response: Stabilizing the helicopter with less energy remains a possible solution through the choice of a large value of R, however, the time response becomes sluggish. Large value of Q reflects the designer s intent to drive the state quickly to the original at the expense of large control action. Thereafter, a trade-off between the response speed and the controller performance must be made. In previous works, to obtain the fair performances, Q and R must be adjusted using the trial and error method, which represents a very tedious and time consuming approach.

In addition, conventional optimization methods such as the gradient search method are restricted to the eigenvalues of the linear system matrix not merely increases the difficulty but also consumes long time to reach a global optimum solution. On the other hand, metaheuristics, such as Particle Swarm Optimization (PSO) [START_REF] Tsai | Variable feedback gain control design based on particle swarm optimizer for automatic fighter tracking problems[END_REF], Ant Colony Optimization (ACO) [START_REF] Rada | A comparative study of Multi-Objective Ant Colony Optimization algorithms for the Time and Space Assembly Line Balancing Problem[END_REF] and Genetic Algorithms (GA) [START_REF] Pedramasla | Enhancement of quality of modal test results of an unmanned aerial vehicle wing by implementing a multi-objective genetic algorithm optimization[END_REF] are applied to determine the optimal weighting matrices of the LQR strategy for improving the control performances. However, it is worth mentioning that the majority of applications considers a Single-Objective Optimization (SOO) while neglecting to mention that the majority of systems requires the task of simultaneously optimizing two or more conflicting objectives with respect to a set of certain constraints. Furthermore, in case of SOO, the designer is limited to obtain just one optimal solution. So, the first motivation of this work is to find the optimal configuration of the LQR method, in other words, the optimal values of these two weighting matrices Q and R, ensuring the best compromise between tracking accuracy and control effort. Motivated by the fact that a perfect multi-objective solution that simultaneously optimizes all the conflicting objectives is almost impossible and the improvement of one objective may result in performance degradation of the other, a Multi-Objective Optimization (MOO) problem is considered. As a result, the designer is provided with a set of Pareto optimal solutions, which lets him to decide the target solution based on some practical preferences [START_REF] Eddaly | Combinatorial Particle Swarm Optimization for solving Blocking Flowshop Scheduling Problem[END_REF].

In spite of its importance, the LQR strategy loses its effectiveness in case of the presence of unmodeled elements and external disturbances. Generally, in such case, the robustness performance is sought through a control technique qualified as a robust control strategy. In this way, since the publication of the survey paper [9], huge enthusiasm on SMC has been produced in the control research. This theory is well known as a powerful control method that provides noticeable robustness towards uncertainties. SMC is extensively adopted due to its computational simplicity and its good transient performances. This approach is achieved in two steps: The first phase is to define a sliding surface, along which the process can slide to find its desired final value. Thus, the second phase is to design the control law in such a way that any state outside the sliding surface is driven to reach the surface in finite time and stay here. Motivated by the widespread use of digital computers and Digital Signal Processing (DSP) in controller design, considerable efforts have been considered in the study of Discrete-Time Optimal Sliding Mode control (DT-OSMC). In [START_REF] Pai | Discrete-time output feedback quasi-sliding mode control for robust tracking and model following of uncertain systems[END_REF], the authors have proposed a novel Optimal Sliding Mode Control (OSMC) strategy to guarantee fast and accurate setpoint tracking for disturbed uncertain discrete linear systems. The authors in [11] have proposed an OSMC to guarantee the stabilization of disturbed uncertain discrete linear systems with unknown time-varying delay input. The Integral Sliding Mode (ISM) based the Composite Nonlinear Feedback (CNF) controllers to track reference command input signal is presented in [12]. All the proposed controllers consist of two parts: an equivalent control, using to achieve the desired response of the system and a discontinuous control using for the elimination of the external disturbances. However, these studies still have some drawbacks: Firstly, in spite of the large number of works on the SMC, only few have been carried out on the design of the sliding surface. Most of the existing literature suggests that the sliding surface is designed so that the closed-loop system is only stable nevertheless the sliding mode controller is optimal or not. In other words, much less research is available for identifying and correlating the desired properties with an appropriate sliding surface.

For instance, previous studies, see for example [11], [13] have detailed a method for optimal sliding surface design based on Linear Matrix Inequalities (LMI) technique. The solution of the sufficient LMI condition derived from the condition existence is used to characterize this surface and to reach the motion control.

However, this design method is deduced from the stability condition ensured by conditions on a Lyapunov function, which is chosen in a non-analytic way. In [START_REF] Hernandez | Pole-Placement in Higher-Order Sliding-Mode Control[END_REF], authors attempted to design a novel sliding surface based on the combination of SMC with the pole placement. However, the pole placement requires a priori knowledge of the best locations of the eigenvalues for the closed-loop system, which is not realistic. As a result, the major drawback of the mentioned researches is that the parameters of the sliding surface are designed only to ensure the stable operation but not to decide the dynamic behavior of a system response.

This limitation motivates our study in the present work. Secondly, the discontinuous control generates the undesirable phenomenon of oscillations having finite frequency, which is known as chattering problem. This latter is a harmful phenomenon since it leads to low control accuracy and high wear of moving mechanical parts. In literature, three approaches have been proposed to reduce the chattering effects such as the use of the saturation control [START_REF] Lee | Chattering suppression methods in sliding mode control systems[END_REF], the use of a system observer based approach [START_REF] Veluvolu | Robust observer with sliding mode estimation for nonlinear uncertain systems[END_REF] and the use of HO-SMC [START_REF] Cao | A practical parameter determination strategy based on improved hybrid PSO algorithm for higher-order sliding mode control of air-breathing hypersonic vehicles[END_REF]. In [13], the authors have developed a method for designing an OSMC based on the combination of the Second Order Sliding Mode Control (SOSMC) and the LMI technique. As the continuity of the Super-Twisting Control (STC) reduces chattering, a new robust algorithm, which is a combination of CNF and STC, within the area of ISM has been presented in [START_REF] Sadala | A new continuous sliding mode control approach with actuator saturation for control of 2-DOF helicopter system[END_REF]. However, the choice of the gain of the discontinuous control for both methods can be considered as a good problem to be treated. A second compromise between the response speed and the controller performance must be made. The discontinuous control gain determination is always based on a simple inequality nevertheless this value is optimal or not.

Based on the aforementioned discussions, the aim of this paper is to propose a novel Optimal Second Order Sliding Mode Control (OSOSMC) method based on the combination of the SOSMC with the LQR strategy and metaheuristics. The main objective of this combination lies on the fact that the LQR controller is employed to ensure the stabilization of the closed loop system with less energy while the robust compensator is used for the reject of external disturbances. To deal with the synthesis problems of the LQR parameters as well as the gain of the robust compensator, the recourse to the optimization theory seems to be a promised solution. As far as we know, this idea does not appear in the literature. For that, three different methods GA, ACO and PSO are used in this paper in order to show the effectiveness of such methods for the optimal tuning of controllers.

The major contributions of our paper are as follows:

1. A novel method for the design of the optimal sliding surface is proposed such as the stability of the closed loop-system as well as the control optimality are guaranteed.

2. By cascading the SOSMC with the LQR method, we formulate a novel Optimal Second Order Sliding Mode Controller (OSOSMC), which can be decomposed into two major components namely: optimal control law and optimal disturbance law. Hence, the control law scheme yields improved closed-loop performances even during exogenous disturbances and under aggressive maneuvers.

3. To overcome the problem accompanying the LQR synthesis and the selection of the different parameters of the control law, a multi-objective problem aiming at minimizing the chattering problem as well as the other control objectives is proposed. The solution of this problem is solved by applying three efficient metaheuristics. The problem of trajectory tracking of 2-DoF Quanser is considered as a multi-objective problem to ensure that the designer, once the optimization is achieved, is provided with a set of optimal solutions called Pareto set.

The remainder of this paper is organized as follows: the description and modelling of the 2-DoF laboratory helicopter is given in section 2. Section 3 deals with the presentation of the problem formulation as well as the command generator tracker methodology. Section 4 is structured in two phases: the first part provides the design of the novel optimal sliding surface while the second part includes the development of an hybrid optimal control algorithm incorporating the LQR method and the SOSMC method. The stability analysis is developed. Section 5 is devoted to investigate the concept of multi-objective optimization and the mathematical formulation of metaheuristics. The application of the novel proposed algorithm to a 2-DoF helicopter system to control pitch and yaw position is presented. The experimental results are addressed in section 6. Conclusions are made in section 7.

System Description

The Quanser 2-DoF helicopter given in Figure 1, comprises a helicopter model mounted on a fixed base with two propellers driven by two DC motors [1]. The front propeller controls the elevation of the helicopter nose about the pitch axis and the back propeller controls the side to side motions of the helicopter about the yaw axis. The pitch and yaw angles are measured using high-resolution encoders. Based on the free body diagram of the Quanser Aero, the system has two degrees of freedom: a motion around the yaw axis represented by the angle ψ and the rotation around the pitch axis denoted by θ. The input voltages to the DC motors present the control variables and the objective is to control the pitch and yaw angles so as to make the system to track the reference trajectory. Based on the Euler-Lagrange formula, the equation governing the dynamics of the system is given by [START_REF] Sadala | A new continuous sliding mode control approach with actuator saturation for control of 2-DOF helicopter system[END_REF]:

       (J eq,p + ml 2 ) θ = K pp V mp + K py V my -B p θ + Γ(t) (J eq,y + ml 2 cos 2 (θ))) ψ = K yp V mp + K yy V my -B y ψ + ℵ(t) (1) 
where:

       Γ(t) = -ml 2 sin(θ)cos(θ) ψ2 -mglcos(θ) ℵ(t) = 2ml 2 θsin(θ)cos(θ) ψ (2) 
Where θ(t), θ(t), ψ(t) and ψ(t) are respectively the pitch angle, the pitch velocity, the yaw angle and the yaw velocity. K pp , K py , K yp and K yy are the thrust force constants. V mp and V my are respectively the control input voltages to pitch and yaw motors. In order to design a state feedback controller based on the LQR strategy, the dynamics of the system should be represented in the form of a linear system. Therefore, the nonlinear model of the system given in (1) and ( 2) is linearized around the origin by substituting θ = 0, ψ = 0, θ = 0 and ψ = 0. The resultant linearized differential equation is:

       (J eq,p + ml 2 ) θ = K pp V mp + K py V my -B p θ (J eq,y + ml 2 ) ψ = K yp V mp + K yy V my -B y ψ (3) 
The plant parameters of the helicopter system are given in Table 1. Assuming that the state vector is

x = [x 1 , x 2 , x 3 , x 4 ] T = [θ, ψ, θ, ψ] T
, the input vector is given by u = [V mp , V my ] T and the output vector to be y = [θ, ψ] T . Thereafter, we obtain the following state space model: 

                               ẋ1 = x 3 ẋ2 = x 4 ẋ3 = - B p J eq,p + ml 2 x 3 + K pp J eq,p + ml 2 V mp + K py J eq,p + ml 2 V my ẋ4 = - B y J eq,y + ml 2 x 4 + K yp J eq,y + ml 2 V mp + K yy J eq,y + ml 2 V my (4)

Problem formulation

Consider a class of discrete time uncertain system described by:

       x(k + 1) = Φx(k) + Γu(k) + D p (k) y(k) = Dx(k) (5) 
Where x(k) ∈ R n is the state vector, y(k) ∈ R p is the output vector and u(k) ∈ R m is the control input.

Φ, Γ and D are real known constant matrices of dimensions R n×n , R n×m and R p×n respectively. The vector D p (k) is the external disturbance affecting the system, which is assumed to be unknown, but norm-bounded.

For the convenience of the Proof and without loss of generality, we consider the following assumptions:

Assumption 1. The pair of matrices (Φ, Γ) is controllable and the pair of matrices (Φ, D) is observable.

Assumption 2. The matrices Φ, Γ, and D satisfy:

rank(    Φ -I n Γ D 0   ) = n + m (6) 
Assumption 3. The disturbance affecting the system enters through the input channels, for that, there exists a vector d(k) ∈ R m so that D p (k) ∈ R n satisfies the matching condition [START_REF] Branislava | The invariance conditions in variable structure systems[END_REF]:

D p (k) = Γd(k) (7) 
According to assumption 3, the first equation of the system (5) can be rewritten as:

x(k + 1) = Φx(k) + Γ(u(k) + d(k)) (8) 
The reference model is given by [START_REF] Zhang | Virtual-command-based model reference adaptive control for abrupt structurally damaged aircraft[END_REF]:

       x m (k + 1) = A m x m (k) + B m r(k) y m (k) = D m x m (k) (9) 
Where x m (k) ∈ R nm and y m (k) ∈ R p are respectively the state and the output vectors of the reference

model. A m ∈ R nm×nm , B m ∈ R nm×k and D m ∈ R p×nm are three known matrices and r(k) ∈ R k is the reference input.
The tracking error is defined as follow:

e(k) = y(k) -y m (k) (10) 
The main objective of this paper is to solve the tracking problem in presence of parameter uncertainties.

The convergence to the reference model and the stability of the closed-loop system can be guaranteed if the different parameters of the sliding surface as well as the optimal controller has been appropriately chosen.

Thereafter, in this work, we aim to fulfill the following requirements:

(i) Propose a novel systematic procedure to design the sliding surface. The different parameters must not only ensure the stable operation but also decide the dynamic behavior of a system response.

(ii) Develop an OSOSMC ensuring the trajectory tracking of the reference model ( 9) at the expense of minimum control input.

Optimal Second Order Sliding Mode Control Design

In order to to ensure the tracking of the reference model ( 9), a new auxiliary state vector z(k) is defined as follows:

z(k) = x(k) -Ξx m (k) -Πr(k) (11) 
Where Ξ ∈ R n×nm and Π ∈ R n×nm will be designed latter.

The following new proposed theorem play an important role in the derivation of control law design.

Theorem 1. if there exist Ξ ∈ R n×nm , Π ∈ R n×nm , Υ ∈ R m×nm and Ω ∈ R m×nm satisfying:                        ΦΞ -ΞA m = -ΓΥ (Φ -I n )Π -ΞB m = -ΓΩ DΞ = D m DΠ = 0 (12)
Then, the new dynamics of ( 11) can be expressed as follows:

       z(k + 1) = Φz(k) + Γ(u(k) -Υx m (k) -Ωr(k) + d(k)) e(k) = Dz(k) (13) 
In addition , the different matrices are the solutions of the following equation:

   vec(Ξ) vec(Υ)    =    I nm ⊗ Φ -A T m I n I nm ⊗ Γ I nm ⊗ D 0    +    0 vec(D T m )    ,    Π Ω    =    Φ -I n Γ D 0    -1    ΞB m 0    ( 14 
)
Where ⊗ is the Kronecker product of matrices and vec(x) is the vector obtained by arranging all the columns of x in one vector.

Proof : Firstly, we assume that the reference input is slowly changing with reasonably small sampling time period. In addition , based on ( 8), ( 9), ( 11) and ( 12), we have:

z(k + 1) = x(k + 1) -Ξx m (k + 1) -Πr(k) = Φx(k) + Γu(k) + Γd(k) -ΞA m x m (k) -ΞB m r(k) -Πr(k) = Φx(k) + Γu(k) + Γd(k) -ΞA m x m (k) -ΞB m r(k) -Πr(k) = Φ(x(k) -Ξx m (k) -Πr(k)) + ΦΞx m (k) + ΦΠr(k) + Γ(u(k) + d(k)) -ΞA m x m (k) -ΞB m r(k) -Πr(k) = Φz(k) + (ΦΞ -ΞA m )x m (k) + (ΦΠ -ΞB m -Π)r(k) + Γ(u(k) + d(k)) = Φz(k) + Γ(u(k) -Υx m (k) -Ωr(k) + d(k))
On the other hand, based on [START_REF] Pai | Discrete-time output feedback quasi-sliding mode control for robust tracking and model following of uncertain systems[END_REF] and the last equation of ( 12), we have:

e(k) = y(k) -y m (k) = Dx(k) -DΞx m (k) = D(z(k) + Ξx m (k) + Πr(k)) -DΞx m (k) = Dz(k)
Now, the objective is to determinate the different matrices Ξ , Π , Υ and Ω. For that, rewrite the first and the third equations of (12) as a matrix equation form:

   Φ Γ D 0       Ξ Υ    =    ΞA m D m    (15) 
The matrices Ξ and Υ are the solutions of equation ( 15) as solved in [START_REF] Pai | Discrete-time sliding mode control for robust tracking and model following of systems with state and input delays[END_REF]. In fact, such equation can be rewritten as:

∆Σ = Λ ( 16 
)
where:

∆ =    I nm ⊗ Φ -A T m I n I nm ⊗ Γ I nm ⊗ D 0    , Σ =    vec(Ξ) vec(Υ)    , Λ =    0 vec(D T m )   
The solution of ( 16) exists if and only if rank (∆ Σ) = rank (∆) and given by:

Σ = ∆ + Λ ( 17 
)
Where ∆ + denotes the Moore-Penrose inverse of ∆.

The second step is to design the matrices Π and Ω. For that, the second and the third equations of ( 12) can be rewritten as follows:

   Φ -I n Γ D 0       Π Ω    =    ΞB m 0    (18) 
Based on Assumption 2, we have:

   Ψ 11 Ψ 12 Ψ 21 Ψ 22    =    Φ -I n Γ D 0    -1
where

Ψ 11 ∈ R n×n ,Ψ 12 ∈ R n×m ,Ψ 21 ∈ R m×n and Ψ 22 ∈ R m×m . It follows from (18) that:    Π Ω    =    Ψ 11 Ψ 12 Ψ 21 Ψ 22       ΞB m 0   
Finally, we have:

     Π = Ψ 11 ΞB m Ω = Ψ 21 ΞB m End Proof.
Once the associated matrices of the reference model are designed, we proceed now with the design of the robust optimal sliding mode controller. For that, we propose the following control law:

v(k) = u(k) -Υx m (k) -Ωr(k) (19) 
Substituting [START_REF] Branislava | The invariance conditions in variable structure systems[END_REF] into system (13), we obtain:

       z(k + 1) = Φz(k) + Γ(v(k) + d(k)) e(k) = Dz(k) (20) 
Remark 1. if it is possible to design an optimal controller v(k) ensuring the convergence of the auxiliary state vector z(k) to zero, the tracking error e(k) will converge to zero. The convergence of this error to zero leads to the convergence of the output vector y(k) to the desired one. As a result, the tracking problem of the Quanser Aero is transferred into an optimal state regulation problem about linear error system.

Optimal Control for the nominal helicopter

As it is well known, in the presence of external disturbances, the LQR strategy is not well-posed. Hence, in order to design the optimal control, neglecting the uncertain part. (20) becomes:

x(k + 1) = Φx(k) + Γv(k) (21) 
To find the optimal controller v op (k), the performance index J defined as follow should be minimized:

J = ∞ k=0 z T (k)Qz(k) + v T op (k)Rv op (k) (22) 
Where Q ∈ R n×n and R ∈ R m×m are two symmetric positive weighting matrices.

According to [START_REF] Janardhanan | Multirate output feedback based LQ optimal discrete time sliding mode control[END_REF], the optimal control minimizing the quadratic performance index ( 22) is expressed as:

v op (k) = -(R + Γ T P Γ) -1 Γ T P z(k) = -Kz(k) ( 23 
)
Where P is the solution of the Discrete Algebraic Riccati Equation (DARE) given by:

P = Q + Φ T P Φ -ΦP Γ(R + Γ T P Γ) -1 Γ T P Φ ( 24 
)
Remark 2: If the original system is not affected by the external disturbances, the closed-loop system is asymptotically stable. However, in the presence of disturbances, the optimal controller (23) loses its effectiveness. As a result, the system state trajectory will wander from the optimal trajectory. An efficient way to reject uncertainties is to design an hybrid controller based on the integration of the optimal controller with another robust controller.

Optimal second order sliding mode control design

The design procedure of the robust compensator based on HO-SMC consists on two steps. The first one consists to design a sliding surface such that the system response acts during the sliding mode like the desired dynamics performance. In the second step, a sliding mode controller is synthesized to guarantee that the sliding mode is reached and the system states maintain in the sliding mode thereafter.

New form of sliding surface

One of the most known problems of the synthesis of SMC is the design of the sliding surface. This latter requires the determination of a matrix C. A novel sliding surface ensuring not merely the stability of the closed-loop system but also the optimality of the controller is given by the following Theorem.

Theorem 2. The novel second order optimal sliding surface is of the form:

σ(k) =Cz(k) + β Cz(k -1) = C I    z 1 (k) z 2 (k)    + β C I    z 1 (k -1) z 2 (k -1)    (25) 
Where

z(k) = [z T 1 (k) z T 2 (k)] T , C = [C I] is the matrix of the sliding surface, β ∈ [0 1] is a positive constant,
I ∈ R m×m is the identity matrix and C ∈ R m×(n-m) is the solution of the Sylvester equation expressed as follows:

CΦ 12 C + (Φ 22 -Γ 2 K 2 )C -CΦ 11 + (Γ 2 K 1 -Φ 21 ) = 0 ( 26 
)
Where Φ =    Φ 11 Φ 12 Φ 21 Φ 22   , Γ =    0 (n-m)×m Γ 2    and v op = [K 1 K 2 ]
is the optimal controller given by [START_REF] Pai | Discrete-time sliding mode control for robust tracking and model following of systems with state and input delays[END_REF].

Proof :

The first order sliding surface s(k) is given by:

s(k) = Cz(k) = [C I]    z 1 (k) z 2 (k)    (27) 
From ( 21) and ( 27), we get:

s(k + 1) = (CΦ 11 + Φ 21 )z 1 (k) + (CΦ 12 + Φ 22 )z 2 (k) + Γ 2 v(k) (28) 
Based on [START_REF] Clerc | The Particle Swarm Explosion, Stability, and Convergence in a Multidimensional Complex Space[END_REF], the first order equivalent sliding mode controller deduced from s(k + 1) = 0 is given by:

v SM C eq (k) = -Γ -1 2 ((C Φ 11 + Φ 21 )z 1 (k) + (C Φ 12 + Φ 22 )z 2 (k)) (29) 
In order to find the optimal coefficients of the sliding surface, the idea is to equate the proposed optimal control minimizing the quadratic index J and the proposed equivalent control given by ( 29) as follows:

v SM C eq (k) = v op (k) (30) 
Moreover, if the first order sliding surface is reached, this latter should be equal to zero, therefore:

z 2 (k) = -Cz 1 (k) (31) 
As a result, based on ( 29), ( 30) and ( 31), we have:

-(K 1 -K 2 C) = -Γ -1 2 ((CΦ 11 + Φ 21 ) -(CΦ 12 C + Φ 22 C)) (32) 
Based on a simple development of (32), we have:

CΦ 12 C + (Φ 22 -Γ 2 K 2 )C -CΦ 11 + (Γ 2 K 1 -Φ 21 ) = 0 ( 33 
)
The obtained equation is a Non-symmetric Algebraic Riccati Equation (NARE) which is studied in many papers [START_REF] Lu | Newton iterations for a non-symmetric algebraic Riccati equation[END_REF][START_REF] Jungers | Computing (Reverse) Dichotomic Solutions of Non-symmetric Algebraic Riccati Equations via the Matrix Sign Function[END_REF]. Equation ( 33) can be rewritten as follows:

Θ(C) = Ψ 21 + Ψ 22 C -CΨ 11 + CΨ 12 C = 0 ( 34 
)
where:

       Ψ 21 = (Γ 2 K 1 -Φ 21 ), Ψ 22 = (Φ 22 -Γ 2 K 2 ) Ψ 11 = Φ 11 , Ψ 12 = Φ 12
Let E be a perturbation matrix with the same dimension as C. Therefore, we have:

Θ(C + E) =Θ(C) + ((Ψ 21 + CΨ 12 )E -E(Ψ 10 + Ψ 11 C)) + EΨ 11 E =Θ(C + D x (E) + EΨ 11 E (35) 
Here D x (E) is the Freshet derivative of Θ at C in the direction E. A modified Newton s method [START_REF] Higham | Solving a quadratic matrix equation by Newtonss method with exact line searches[END_REF] can be used to solve (35). In Newtons method, the second-order term of E is dropped and the equation is solved

iteratively. E i and C i are defined in each step as the solutions of:

       (Ψ 22 + Ψ 12 C i )E i + E i (Ψ 10 + C i Ψ 11 ) = Θ(C i ) C i+1 = C i + E i (36) 
until || Θ(C i ) || becomes less than a specified tolerance value.

Finally, if s(k) = s(k + 1) = 0 then, the second order sliding surface σ(k) given by ( 25) converges to zero.

End Proof.

Global robust optimal sliding mode Controller

The idea of SMC is to build a sliding surface and try to make it equal to zero. This idea can be realized in the continuous-time case. However, in the discrete one, this equality is rarely reached. For that, the concept of Quasi-Sliding Mode (QSM) is introduced. This concept means that the trajectory system moves in the neighborhood around the sliding surface. By ensuring a smaller width of the QSM, not only the accuracy of the system can be improved but also the high frequency chattering can be reduced. Let us specify how the QSM and the reaching condition are detailed in this paper.

Lemma 1. System ( 20) is said to be in a QSM in the vicinity of the sliding surface (25) if the following conditions hold:

               -η ≤ σ(k + 1) < σ(k) if σ(k) > η σ(k) < σ(k + 1) ≤ η if σ(k) < -η | σ(k + 1) |<| σ(k) | if | σ(k) |≤ η (37)
To ensure the reachability of the specified sliding surface (25), the OSOSMC is expressed as follows:

v(k) = v eq (k) + v w (k) (38) 
the discontinuous controller used for the rejection of disturbances.

a. Design of the equivalent control: The equivalent control v eq (k) is deduced from σ(k + 1) = 0 when the perturbation part is neglected. So, we get:

v eq (k) = -(CΓ) -1 (CΦz(k) + βs(k)) (39) 
Based on ( 20) and (39), the dynamics of the closed-loop system on the sliding surface is expressed as follows:

z(k + 1) = [Φ -Γ(CΓ) -1 CΦ -βΓ(CΓ) -1 C]z(k) + Γd(k) = Φ eq z(k) + Γd(k) (40) 
where:

Φ eq = [Φ -Γ(CΓ) -1 CΦ -βΓ(CΓ) -1 C]
Remark 3. By using the novel sliding surface given by (25), the system given by ( 40) is asymptotically stable in spite of the presence of time varying unmatched uncertainties and we have: The matrix N is a transformation matrix such that Φ eq = N JN -1 and:

J =           λ 1 0 ... 0 0 λ 2 ... 0 . . . . . . . . . 0 0 0 ... λ n           (42) 
The solution of the equation ( 40) is given by [START_REF] Pai | Discrete-time output feedback quasi-sliding mode control for robust tracking and model following of uncertain systems[END_REF]:

z(k) = N J k N -1 z(0) + N k-1 i=0 J i N -1 Γd(k) (43) 
then:

lim k→+∞ || z(k) || ≤ lim k→+∞ || N || k-1 i=0 || J i || N -1 || Γd(k) || ≤ lim k→+∞ || N || k-1 i=0 λ i m || N -1 || µ ≤ lim k→+∞ || N |||| N -1 || µ k-1 i=0 λ i m ≤|| N |||| N -1 || µ 1 -λ m (44)
Since || N |||| N -1 ||= 1 and let assume that = η 1-λm , so that, we have:

lim k→+∞ || z(k) ||< End Proof.
b. Design of the discontinuous control: In order to ensure the robustness of the controller, v w (k) is given by:

v w (k) = v w (k -1) -(CΓ) -1 T e ρ sign(σ(k)) (45) 
Where T e is the sample time and ρ = diag(ρ 1 , ρ 2 , ...., ρ n ) is the gain of the discontinuous controller v w (k) satisfying the following theorem.

Theorem 3. To ensure the control robustness, the discontinuous gain ρ must satisfy the following condition such that:

ρ > δ 0 T e (46)
Where δ 0 is given by:

|| CΓ(d(k) -d(k -1)) ||< δ 0 (47)
By applying the discrete-time reaching law given by (38), the system starting from any initial state can move monotonically toward the QSM plane with the width of η = [η 1 η 2 ...η m ] T in finite time , which satisfies:

η i = ρ ii + δ 0 (48) 
Proof: From equations ( 20), ( 27) and (38) the classical sliding surface is expressed as follows:

s(k + 1) = CΓv w (k) -βs(k) + CΓd(k) (49) 
Based on (49), the difference between s(k + 1) and s(k) is given by:

s(k + 1) -s(k) =CΓv w (k) -βs(k) + CΓd(k) -CΓv w (k -1) + βs(k -1) -CΓd(k -1) (50) 
As a result, based on (25), ( 45) and (50), the second order sliding function σ(k) is rewritten as follows:

σ(k + 1) = σ(k) + CΓ(d(k) -d(k -1)) -T e ρsign(σ(k)) (51) Case 1. if σ(k) > η:
Based on (51), the sliding surface can be rewritten as follows:

σ(k + 1) = σ(k) + CΓ(d(k) -d(k -1)) -T e ρ (52) 
Taking into account the inequalities (46), (47) and (52), the difference between σ(k) and σ(k +1) is expressed as follows:

σ(k + 1) -σ(k) = CΓ(d(k) -d(k -1)) -T e ρ < 0 ⇒ σ(k + 1) < σ(k) (53) 
Using the inequalities given by ( 56) and (57), we have:

-δ 0 -T e ρ < CΓ(d(k) -d(k -1)) -T e ρ (60) 
Based on (51) and (60), we have:

-η < σ(k + 1) < η (61) 
if -η < σ(k) < 0: we have:

-T e ρ -δ 0 < σ(k) < 0 (62)

Adding CΓ(d(k) -d(k -1)) + T e ρ to (62):

CΓ(d(k) -d(k -1)) -δ 0 < σ(k) + CΓ(d(k) -d(k -1)) + T e ρ <T e ρ + CΓ(d(k) -d(k -1)
)

<T e ρ + δ 0 (63) 
Using the inequalities given by ( 46) and (47), we have:

-δ 0 -T e ρ < CΓ(d(k) -d(k -1)) -T e ρ < CΓ(d(k) -d(k -1)) -δ 0 ( 64 
)
Based on (46), ( 47) and (64), we have:

-η < σ(k + 1) < η (65)
Finally, by using ( 61) and (65), we get:

| σ(k + 1) |< η (66)
End Proof

It will be noted that both sliding surface s(k) and control law depend on the choice of weighting matrices Q and R which need to be chosen suitably to ensure the desired performances. Furthermore, in order to obtain good results in terms of reduction of the chattering phenomenon and rejection of external disturbances, we must choose an optimal value of the discontinuous term amplitude. Therefore, selection of the design parameters Q, R and ρ should be judicious. The next section is devoted to research of optimal parameters using the metaheuristics methods.

Multi-objective design of GROSMC based on metaheuristics

Multi-Objective Optimization problem (MOO) represents one of the most common process in engineering applications which aims at optimizing simultaneously many competing objective functions. Compared with Single-Objective Optimization problem (SOO), in which one optimal solution can be obtained, the multiobjective problems ensure the obtaining of a whole set of optimal trade-offs . Without any loss of generality, MOO can be summarized as follows:

       min F (x) = min(f 1 , f 2 ....f s ) g i (x) ≤ 0, i = 1...m (67) 
where x = [x 1 , x 2 , ..., x n ] T is the vector of decision variables, F is the objective function and g is the constraint condition.

Based on the fact that it is impossible to find an acceptable solution ensuring the minimization of all conflicting objectives, the concept of Pareto-based MOO is proposed. Various definitions are defined as [START_REF] Hassani | Multi-objective design of state feedback controllers using reinforced quantum-behaved particle swarm optimization[END_REF]:

Definitions:
1. Pareto dominance : X and Y represent two decision vectors: if f t (X) ≤ f t (Y ) ∀t = [1...s] and f r (X) < f r (Y ) for at least one objective function, we say that the vector X dominates the vector Y , expressed by

X < Y .
2. Non-dominated: The vector X is non-dominated by another vector Y , if there isn't any relationship either X < Y or Y < X.

3. Pareto optimal : The vector X * is said Pareto optimal solution (respectively non dominated solution) if there isn't any vector X 0 such that X 0 < X * 4. Pareto optimal set: P * is said to be a Pareto optimal set if P * = {X \ X is P areto optimal} 5. Pareto front: P F * is the Pareto front defined by P F * = {f (X) \ X ∈ P * }

Ant Colony Optimization

Ant Colony Optimization (ACO) is considered as a powerful algorithm applied on many combinatorial problems [START_REF] Marco | The ant system: optimization by a colony of cooperating agents[END_REF]. The objective of this method was firstly to solve the traveling salesman problem, who seeks to find the shortest path to link a number of cities. The main design of the ACO can be summarized as follows: for each iteration, each ant keeps to add components in order to build its personal solution. The next component to be added to the path of each ant is performed with respect of the probability depending on two factors operators: the pheromone quantity τ ij as well as a heuristic factor denoted by η ij . Each ant makes its probabilistic choice of the next component according to:

j =        J if q ≤ q 0 argmax j∈T A ([τ ij (t)][n ij ] β ) if q ≥ q 0 , J : p A ij (t) = [τ ij (t)][n ij ] β i,j∈T A [τ ij (t)][n ij ] β (68) 
Where T A is the set of sites not selected yet by the ant A at each iteration, q is a randomly generated number distributed in [0 1], and the parameter q 0 is a positive constant.

After each ant has built its solution, the pheromone trails must be updated. If the ant selects a node, the amount of pheromone is decreased. The local pheromone updating rule, allowing the algorithm to forget the bad decisions previously taken, can be stated as follows:

τ ij = (1 -ρ)τ ij + ρτ 0 (69)
Where τ 0 is the initial amount of pheromone and ρ ∈ [0, 1] simulates the evaporation of pheromone.

The ant that has constructed the optimal solution of the trial is allowed to update its pheromone trail. This rule acts as positive feedback and makes the search for the real best solution more directed. This rule is:

       τ ij = (1 -γ)τ ij + γ∆τ ∆τ = 1 f best (70)
Where f best is the best objective function.

The ACO algorithm is listed in Table 2.

Quantum behaved Particle Swarm Optimization

Quantum-behaved Particle Swarm Optimization (QPSO) is a new variant of PSO used to improve the global search ability of the original PSO [START_REF] Eberhart | A new optimizer using particle swarm theory[END_REF]. A population of particles randomly generated evolve in a dynamical way and freely fly through the search space. This algorithm is guided by the best personal position of each particle denoted by -→ X i,pbest (k), the best global position of the whole swarm denoted by -→ X gbest (k) and the position of the particle in the search space. Without loss of generality, the best personal and global positions, for a minimization problem, are given by:

- → X i,pbest (k + 1) =        - → X i,pbest (k) if f i ( - → X i (k + 1)) ≥ f i ( - → X i (k)) - → X i+1 (k) else (71) 
- → X gbest (k + 1) = argmin f ( - → X i (k + 1)) ( 72 
)
where f is the objective function.

Trajectory analysis in [START_REF] Clerc | The Particle Swarm Explosion, Stability, and Convergence in a Multidimensional Complex Space[END_REF] reveals that the global convergence of PSO algorithm requires the convergence of each particle to its local attractor computed as:

- → P i (k) = c 1 × - → X i,pbest (k) + c g × - → X gbest (k) c 1 + c g (73) 
Where c 1 is the cognitive learning rate and c g is the social learning rate.

Finally, the next position vector is given by:

- → X i (k + 1) = - → P i (k) ± | - → X i (k) - - → P i (k) | ⊗ln( 1 - → u ) g (74) 
Where -→ P i (k) denotes the local attractor of the particle, -→ u (k) is a D-dimensional vector with uniformly distributed random values in [0, 1] and g is a control parameter greater than ln( √ 2) . 1 -→ u (k) denotes a D-dimensional vector, the component of which are the inverse of the -→ u (k) component. The QPSO algorithm is summarized in Table 3. 

Genetic Algorithm

Genetic Algorithm (GA) was a robust optimization method, introduced by Holland and his student [START_REF] Holland | Adaptation in natural and artificial systems An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence[END_REF].

This method was inspired from biological systems whereby a population of individuals, evolves through successive generations by including three main operations: selection, crossover, mutation.

(i) Selection: This operator is applied in order to select the individuals, called parents, for mating based on their fitness. Some of the popular selection schemes are roulette-wheel tournament selection and ranking selection. The best individuals are used to build the next generation.

(ii) Crossover: The selected parents are crossbred to produce a new generation denoted by offspring. This operation involves the swap of a sequence of bits in the string between two individuals.

(iii) Mutation: Mutation alters the solutions with a small probability. This operator is applied in order to bring the diversity of the population.

The basic algorithm of GA is given in Table 4.

For more detailed information about metaheuristics, readers may consult reference [START_REF] Dro | Metaheuristics for hard optimization: methods and case studies[END_REF].

Fitness function

The objective is to determine the gain of the discontinuous control input ρ and the elements of state weighting matrix Q, which is a 4 × 4 positive semi definite matrix and the input weighting matrix R , which is a 2 × 2 positive definite matrix. To simplify the optimization problem and to make the cost function to a quadratic term, the weighting matrices Q and R are chosen as diagonal matrices. Therefore, the resultant index J given by ( 22) is expressed as follow:

J = ∞ k=0 q 1 z 2 1 + q 2 z 2 2 + q 3 z 2 3 + q 4 z 2 4 + r 1 v 2 op1 + r 2 v 2 op2 (75) 
In the above cost function, q 1 , q 2 , q 3 , q 4 , r given by (43). In order to find both matrices, the first step is to define an objective function which must be minimized, for that, we define the novel following function:

f = w 1 (t)log 10 (T v ) + w 2 (t)ISE ( 76 
)
Where f is the cost function, log 10 (T v ) is the total variance of control input given by:

T v = n k=0 | v(k + 1) -v(k) | (77) 
It should be noted that minimizing the total variation of control amounts to minimize the chattering phenomenon.

ISE is the integral of the square error and w i (t) are the corresponding weights satisfying [START_REF] Hassani | Multi-objective design of state feedback controllers using reinforced quantum-behaved particle swarm optimization[END_REF]:

w 1 (t) =| sin( 2πt F ) |, w 2 (t) = 1 -w 1 (t) (78) 
As shown in (78), we use only two coefficients w 1 and w 2 in order to obtain two groups and thereafter, the dynamically aggregated objective function shown in (76) lets the designer to decide the priority between minimizing the control effort and steady state response and optimizing the transient response, while it automatically satisfies the hard constraint of the system. In other words, it provides the designer with a set of Pareto optimal solutions and lets him to choose the target solution based on practical preferences.

The three metaheuristics techniques will be used in the following to select the optimal parameters Q, R and ρ. For clarity, the combination between the SOSMC with the ACO can be summarized in Table 5.

Table 5: Proposed ACO algorithm for optimal tuning of sliding surface and sliding mode controller SOSMC+QPSO, SOSMC+GA) using MATLAB are carried out in order to show the effectiveness of the combination between the SOSMC , the LQR and metaheuristics.

By substituting the plant parameters of the Quanser Aero in (4) , the state space matrices of the system are obtained as:

          ẋ1 (t) ẋ2 (t) ẋ3 (t) ẋ4 (t)           =           0 0 1 0 0 0 0 1 0 0 -9.3303 0 0 0 0 -3.2988                     x 1 (t)
x 2 (t)

x 3 (t)

x 4 (t)

          +           0 0 0 0 2.3792 0.0793 0.2408 0.7917              V mp (t) V my (t)    (79) 
Based on [START_REF] Qu | Dynamics of Discrete-Time Sliding-Mode-Control Uncertain Systems With a Disturbance Compensator[END_REF], the system is sampled with a sampling time T e = 5 10 -2 s. The discretized model of the above plant can then be expressed as:

          x 1 (k + 1)
x 2 (k + 1)

x 3 (k + 1)

x 4 (k + 1)           =           1 0 0.04 0 0 1 0 0.0461 0 0 0.6272 0 0 0 0 0.8479                     x 1 (k)
x 2 (k)

x 3 (k) x 4 (k)           +           0 0 0 0 0.1190 0.0040 0.0120 0.0396              V mp (k) V my (k)    (80) 
Two cases are presented in this paper. Firstly, simulations results are given. Then, to illustrate the effectiveness and feasibility of the proposed controller, experimental results are addressed.

Maneuvering

The reference model is given as follow:

                       x m (k + 1) =     0.8607 0 0 0.8607     x m (k) +     0.05 0 0 0.05     r(k) y m (k) =     1 0 0 1     x m (k) (81) 
of the combination of GA with SOSMC, the pitch angle reaches the desired signal within 3.74 s while it requires 4.84 s and 4.974 s respectively for the ACO and QPSO algorithms. Figure 3 illustrate the evolution of the yaw angle, which converge quickly to its desired signal. For both angles, the disturbances have been rejected completely by the three proposed methods and the trajectories stays within a certain bounded motion. Figures 4 and5 depict the control input. It is clear that the proposed method can eliminate the chattering phenomenon. Hence, the combination of the sliding mode control strategy with both LQR method and metaheuristics, seems to be a good choice for the control design of the Qaunser Aero with matched uncertainties. Detailed comparison of these controllers as regards to the transient performance is summarized in Table 7.

The different values of ISE and the total variation of control are given. According to this table, all variables corresponding to the proposed algorithm were observed to converge faster and they have small amplitude oscillations. Thus, this table definitely asserts not merely the efficiency of this method but also the quality of the designed controller. 

Experimental results

In this section, experimental results are presented in order to examine the effectiveness of the proposed method. The system consists of Quanser 2 DoF helicopter module, Q8 USB data acquisition board, two power amplifiers and two brushless DC motors with ±24V and ±15V . The control algorithm implemented in MATLAB 2015a communicates with the hardware using QUARC, which is similar to C like programming language.

To assess the performance of the proposed controller framework, the proposed controller is compared with the First Order Sliding Mode Controller (FOSMC) proposed in [START_REF] Wafa | Multi-objective design of optimal sliding mode control for trajectory tracking of SCARA robot based on genetic algorithm[END_REF].

The reference model is given by:

                       x m (k + 1) =     1 0 0 1     r(k) y m (k) =     1 0 0 1     x m (k) , r(k) = π 22 sin(2πf 1 t) π 18 cos(2πf 2 t) T (84) 
In order to design the optimal matrices Q, R and the discontinuous gain ρ based on metaheuristics, we consider that the population size and the number of generations are chosen respectively as 75 and 50. For the LQR design, the variables constituting the search space are q 1 , q 2 , q 3 , q 4 , r 1 and r 2 . We suppose that the interval of the search space for the matrix Q is [0, 10 7 ], [10 -2 , 1.5] for the matrix R and the discontinuous gain must satisfy Theorem 3.

It should be important to notice that a local minima solution can be encounter. For that, in order to overcome this problem and motivated by the search of a true global optimum , our algorithm is run for multiples times and the most non-dominated Pareto solutions are kept. The MOO algorithm evolves over iterations in order to find the most better solutions by minimizing simultaneously both objectives. The strategy ends with the determination of the Pareto front. All the obtained solutions ensure not merely the stability of the helicopter but also represent the best possible trade-off between T v and ISE.

Figure 6 shows the Pareto front obtained by the application of GA. To ensure the best compromise between the minimization of the chattering phenomenon and the ISE, the solution A situated on the middle of the Pareto front is chosen for the construction of the proposed controller.

Figures 7, 8 illustrate the pitch and yaw responses, using each one of controller. It is observed that both methods ensure the tracking of the Quanser aero in spite of the presence of perturbations. However, it can be deduced that the SOSMC not only results in high accuracy but also improved tracking response.

Thereafter, we conclude that the combination of Higher Order Sliding Mode Control SMC with both LQR method and metaheuristics seems to be a good choice for the control of the Quanser Aero. According to these figures, the steady-state error for whole variables obtained when both methods are applied shows clearly that the suggested algorithm is more precise and offers faster convergence and better robustness than in [START_REF] Wafa | Multi-objective design of optimal sliding mode control for trajectory tracking of SCARA robot based on genetic algorithm[END_REF]. Furthermore, it can be seen that the optimization of two matrices Q, R and ρ engender the minimization of the total variation of control and thereafter, the elimination of the chattering phenomena. Thus, this table definitely asserts not merely the efficiency as well as the quality of the designed controller but also its supremacy compared with the control algorithm developed in [START_REF] Wafa | Multi-objective design of optimal sliding mode control for trajectory tracking of SCARA robot based on genetic algorithm[END_REF].

Conclusion

In this paper, a new design method for a robust controller based on the combination of the second order sliding mode control and the LQR method is proposed. There are three main contributions introduced in this paper. The first consists in a procedure for designing an optimal sliding surface ensuring the stability of the closed-loop system as well as the optimality of the control law. The second interest consists on the design of a global robust optimal controller, which consists of a nominal controller and a robust compensator. Finally, in order to reduce the chattering effect, metaheuristics are utilized for deciding the optimal configuration of the LQR controller as well as the discontinuous gain for a given problem considering a set of competing objectives. The novel method has successfully solved the robust tracking of the pitch and yaw angles for a 2-DoF Quanser helicopter. The tracking responses of the system under external disturbances have been assessed. The different results emphasize that the new proposed method can significantly improve the closed loop performance of the system.
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Figure 2 :Figure 3 :

 23 Figure 2: Tracking response of pitch angle under aggressive maneuvering .

Figure 4 :Figure 5 :

 45 Figure 4: The control input Vmp.

Figure 6 :

 6 Figure 6: Evolution of the pitch angle for both cases.

Figure 7 :Figure 8 :

 78 Figure 7: Evolution of the pitch angle for both cases.
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 8910 Figures 8, 9 illustrate the control input V mp and V my given to pitch and yaw propellers. The different figures indicate that the pitch and yaw motor voltages do not reach the saturation value while generating a required control signal to accelerate the pitch and yaw propellers. Moreover, as compared to the FOSMC, an improvement of the stability is ensured in case of combination of HO-SMC with metaheuristics. The total variation (TV) minimization approach has been proved experimentally. It is clear that our proposed method can eliminate the chattering phenomenon.

Table 1 :

 1 The main parameters of the helicopter.

	Symbol	Description	Value	Unit
	Jeq,p	Total moment of inertia about pitch axis	0.0384 Kg.m 2
	Jeq,y	Total moment of inertia about yaw axis	0.0432 Kg.m 2
	Bp	Equivalent viscous damping about pitch axis	0.800	N/V
	By	Equivalent viscous damping about yaw axis	0.318	N/V
	Kpp	Thrust force constant of yaw motor	0.204	N.m/V
	Kyy	Thrust torque constant of yaw axis from yaw motor	0.072	N.m/V
	Kpy	Thrust torque constant acting on pitch axis from yaw motor	0.0068 N.m/V
	Kyp	Thrust torque constant acting on yaw axis from pitch motor	0.0219 N.m/V
	m	Total moving mass of the helicopter	1.3872	Kg
	l	Center of mass length along helicopter body from pitch axis	0.186	m
	g	Gravitational acceleration	9.81	m/s 2

Table 2 :

 2 ACO algorithm 

Table 3 :

 3 QPSO algorithm .

	Option	
	1. Initialize the current positions and the best positions.
	2. For i = 1 : itermax Do	
	3. For k = 1 : N particles Do	
	4. Calculate the fitness function f
	5. Update personal best position using equation (72).
	6. Update global best position using equation (71).
	7. c1, cg ∈ [0, 1] 8. Compute the local attractor 9. Compute -→ X i(k + 1) using (74) -→ P i(k) using (73)
	10. End	
	11. End 12. Report the best solution	-→ X gbest (k)

Table 4 :

 4 Genetic algorithm

	Option
	1. Function GA
	2. Initialize all GA Parameters.
	3. Generate randomly N chromosomes to form initial
	population.
	4. For i = 1 : itermax Do
	5. For k = 1 : N Do
	6. Calculate the fitness function f
	7. Selection operator to choose the parents according to their fitness.
	8. Crossover of the parents to generate offspring with a crossover probability ρc
	9. Mutation of offspring to produce new population with a predefined mutation probability ρm
	10. Acceptance: place new child in a new population
	11. End
	12. End
	12. Report the best solution

Table 7 :

 7 Comparison of performance indices.

	Criterion	Variables	Method	
			QPSO	ACO	GA
	The integral of the square error	θ	265.5	256.75	240.58
		ψ	516.3429 367.7552 249.0184
	Total Variation of control	Vmp	3357.7	3581.4	3793.2
		Vmy	2390.2	2538.8	2674.6

Furthermore, given that σ(k) > η and by adding (CΓ(d(k) -d(k -1)) -T e ρ), we have:

Based on (53) and (54), the first equation of (37) is verified.

Case 2. if σ(k) < -η:

Based on (51), the sliding surface is given by:

By using equation ( 46), ( 47) and ( 55), the difference between σ(k + 1) and σ(k) is expressed as follows:

Given that σ(k) < -η and by adding CΓ(d(k) -d(k -1)) + T e ρ, we have:

Based on (56) and (57), the second equation of (37) is satisfied.

By adding CΓ(d(k) -d(k -1) -T e ρ to (58) and based on Theorem 3, we get:

)

Validation

The Quanser helicopter is composed of two power amplifiers and two DC motors used respectively for the drive and the control of the pitch and yaw angles. Both propellers consist of optical encoders to measure the angular positions with a resolution of 4096 counts/revolution for pitch and 8192 counts/revolution for yaw angle. Simulations of the corresponding workstation with the three different controllers (SOSMC+ACO,

Where the signal r(k) is expressed as follows:

To ensure a fair comparison in terms of perturbation rejection between the controllers, disturbances are injected into the pitch and the yaw channel to perturb the system from the initial time:

Motivated by the search of a GROSMC, each algorithm (ACO, QPSO and GA) is running for different sets of (Q, R) and ρ until we reach the minimum value of f and that occurs for different optimal sets. Here, the designer is able to choose his target solution based on practical preferences. In this paper, we choose an optimal solution which makes a compromise between the minimization of the chattering phenomena and the amelioration of the transient response. The three chosen optimal solutions feedback gains and sliding matrices are summarized in table 6. Now , we compare the performances of the proposed controller for the three cases. It can be seen from Figures 2 and 3 that in spite of the presence of disturbances and under aggressive maneuvering, the trajectory tracking of the Quanser Aero is ensured for the three cases of optimization. Figure 2 indicated that, in case