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Abstract

In today’s competitive environment, one of the most critical objectives for Home Health Care (HHC)

companies is to meet the demand of patients in a timely fashion. According to the feedback from

HHC companies, caregivers have to deal with some uncertainties when carrying out a given schedule

to visit their patients. However, a majority of the previous work only considers the deterministic

models which ignore the uncertainties, and solutions obtained by these deterministic models are

usually less robust in case of any possible changes in practical situations. Inspired by this point,

in this work, we formulate a model for an HHC Routing and Scheduling Problem with taking into

account uncertain travel and service times, from the perspective of Robust Optimization (RO) .

Specifically, the non-deterministic variables are defined based on the theory of budget uncertainty,

and then the arrival time of each caregiver is rewritten as a complicated recursive function. After

that, Gurobi Solver, Simulated Annealing, Tabu Search, and Variable Neighborhood Search are

adapted to solve the model respectively. Finally, a series of experiments have been performed to

validate the proposed models and algorithms. Experimental results from Monte Carlo simulation

highlight the strength of considering uncertainties when modeling the problem. Additional, the

influences of other characters in instances, like the width of time-window, distributed location have

also been empirically analyzed. Finally, the comparison performed between the solutions obtained

by the stochastic model and the RO model also demonstrates the advantage of the RO model. This

work provides a valuable framework for HHC companies to make a robust schedule when arranging

the caregivers.
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1. Introduction

Home health care (HHC) is a wide range of health care services that can be given in one’s home

for an illness or injury. This service is usually less expensive, more convenient, and just as effective

as one can get in a hospital (Alodhayani, 2017). A lot of common health care services such as

wound-care, injection, and elder-care could be provided by HHC companies (Tyan, 2010). HHC5

service can be viewed as an essential form of supplement for health care in developed countries.

Taking this service can make the patient stay at home for treatment, and relieve the resource

shortage caused by the limited number of hospital beds. In recent years, the health care industry

has become one of the largest sectors of the economy in Europe and North America. With the

increase of the globally aging problem, there is no doubt that the HHC industry will continuously10

develop rapidly.

In today’s competitive environment, the most critical objective for HHC company is to meet

the demand of patients in a timely fashion. According to the feedback from HHC companies, two

major operational issues are often encountered. One is delayed service for patients, and another

one is an enormous operational cost for HHC companies. Notably, the delay of service may not15

only bring the tardiness penalty due to the patient dissatisfaction but may also lead to the im-

proper effects on treatment. When dealing with decreasing the cost, we find that one of the most

significant challenges in HHC domain is how to utilize the limited resources (both labor resources

and equipment) efficiently. Consequently, optimization of HHC Routing and Scheduling Problem

(HHCRSP) Fikar & Hirsch (2017) has become an essential issue for decreasing operational cost, as20

well as improve delayed service.

Based on the considerable works related to the HHCRSP(Fikar & Hirsch, 2017), we can sum-

marize the basic procedures of HHC service into three phases. First, an HHC company collects

information from patients. Secondly, the decision-makers in the HHC company make an appropri-

ate schedule with entirely taking into account the data collected and the limited resources (labor25

resources and equipment). Thirdly, the caregivers perform the schedule by driving a car to visit

the patients on his/her list, however, they have the authority to adjust little change in case of any

changes in practical situations.

Travel and Service Times (TST) are key elements when scheduling the HHC service. According

to the feedback from HHC companies, in the second stage of HHC routing planning, the decision-30

makers tend to consider the TST as deterministic values. In the third stage, however, caregivers
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have to deal with various types of uncertainty involved in TST. Specifically, the common factors,

like varying road conditions, rush hours, weather conditions and driving skills, are always lead to

the uncertainty of the travel time. While, the service time for each patient is not always fixed as we

estimated due to practical reasons, such as diagnosing time, as well as parking situations. In the35

third stage, despite the caregivers have the authority to adjust the strategy for visiting patients in

case the uncertainty encounters, the strategy may not be optimal to the current situation.

Service quality would be quite poor or even risky, if we neglect the uncertain TST in the planning

stage. According to Kuo et al. (2016), the uncertainties may lead to infeasible routes, delayed service

or even risky solutions. On the one hand, excessive delay service will reduce customer satisfaction,40

thus losing the advantage in business competition. On the other hand, some diseases are very time

sensitive and must be serviced within a specified time. If delayed, it will have a negative impact on

the health of the patient. For example, health care services at patients are highly time-sensitive,

e.g., the provision of insulin injections, delays may result in severe consequences for the patients

(Fikar & Hirsch, 2017). Besides, in these situations, TST mostly depend on the practical traffic45

environment and current weather, whose values are difficult to forecast in advance by the common

methods. Therefore, it is of great significance to consider the robustness of the solution when

modeling the vehicle routing scheduling in HHC.

Additionally, in the practice of HHC, different patients often come up with different types of

demand, such as injections and physical therapy, which require different types of medical skills50

and qualifications (Akjiratikarl et al., 2007). As a profit-making organization, it is difficult for

HHC companies to have enough money to provide the training of all the medical skills for each

caregiver. Therefore, to make full use of the limited resources, HHC companies tend to divide

caregivers into different levels according to their skills and qualifications. To guarantee the quality

of service, caregivers with high-level skills can serve the patients who require low-level demands,55

while caregivers with low-level skills cannot provide any services to patients with high-level demand.

The skill requirement constraints were firstly proposed by Yuan et al. (2015).

In an attempt to find an efficient routing and scheduling strategy for real-world application of

HHC, we study the HHCRSP with skill-requirement by taking into account the TST uncertainties.

Several techniques can be used for formulating optimization problems when dealing with uncertain-60

ties, such as stochastic programming with recourse (Li et al., 2010; Shi et al., 2018; Zhang et al.,

2019), robust optimization (Hu et al., 2018), etc.
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The robust optimization method assumes that the uncertain parameters belong to a limited set

of uncertainties. For a very general set of uncertainties, the resulting robust counterpart can have

a complexity that is comparable to the original problem. For example, a linear program (LP) with65

uncertain parameters belongs to a set of polyhedral uncertainties with deterministic issues, which

are LPs of polynomials of the size of the original problem (Ben-Tal & Nemirovski, 1999). Our work

addresses the HHCRSP from the perspective of robust optimization (RO) model, from which, we

attempt to find a robust strategy for an HHC company when arranging the HHC service. To our

best knowledge, there is no research investigated HHCRSP with uncertain travel and service times,70

from the perspective of robust optimization.

The studied problem is quite complicated, due to the reason that it has the attribute of vehicle

routing problem, skill-requirement assignment, and robust optimization. To solve the problem, we

develop a Simulated Annealing (SA), a Variable Neighborhood Search (VNS) and a Tabu Search

(TS) respectively.75

This work contributes to the home health care routing problem with the following aspects. (1)

A Robust optimization model for home health care routing problem with skill requirement and

travel and service uncertainty has been proposed. (2) To solve the problem, we reduced the Robust

model to the deterministic model, then Gurobi, SA, VNS, and TS have been adapted to solve

the deterministic model directly. (3) TS has been used to solve the robust model. (4) Numerical80

experimental results have highlighted the advantage of taking into account the uncertainties.

The remainder of the chapter is organized as follows. Section 2 summarizes the recent work

related to our problems, and section 3 presents the mathematical model. Proposed approaches are

explicitly illustrated in Section 4. After that, a series of experiments are discussed in Section 5.

Finally, the paper terminals with conclusions and perspectives.85

2. Literature review

Di Mascolo et al. (2017) summarized that most of the studies involved in HHC routing and

scheduling problems are closely related to the Vehicle Routing Problem (VRP), which is a funda-

mental issue in transportation planning and logistics. So, in the literature section, we firstly discuss

some of the recent work related to VRP, then we analyze deterministic HHCRSP. Finally, uncertain90

models for HHCRSP are investigated.
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The basic model of VRP is called Capacitated VRP (CVRP), which is an extension of the well-

known traveling salesman problem. CVRP is a classical combinatorial optimization and integer

programming problem. The main objectives of the CVRP is to find the optimal routes with multiple

vehicles visiting a set of locations exactly once. In recent years, CVRP and its variants have caused95

a widespread concern from researchers, because these models have vast applications in many fields,

such as retail industry, parcel delivery and home health care services. On the other side, due to the

nature of these problems are NP-hard, which is very challenging to be solved, many researchers have

developed algorithms for solving them. These algorithms can be divided into heuristic algorithms

and exact algorithms.100

Wang et al. (2018) addressed the cooperation strategy for the green pickup and delivery problem.

In this study, they analyzed the situations in which compensation is needed and develop the lower

bound of the compensation. Further, they proposed an exact method to calculate the actual

compensation and the profit distribution based on cooperative game theory. The proposed exact

method also applied for solving largest scale instance in Li & Lim benchmarks. Yu et al. (2019)105

proposed an improved branch & price algorithm to accurately solve the heterogeneous green fleet

vehicles routing problem with time windows. Sun et al. (2019) designed the first exact algorithm for

solving a variant of the heterogeneous GVRP. This exact algorithm is based on a set partitioning

model and the key characteristics of its optimal solution.

On the other hand, Lai et al. (2016) developed a tabu search heuristic that efficiently handles110

the parallel arcs for solving a time-constrained heterogeneous vehicle routing problem on a multi-

graph. Luo et al. (2016) proposed an adaptive large neighborhood search heuristics for the vehicle

routing problem with stochastic demands and weight-related cost. Li et al. (2018) addressed the

generalized rollon-rolloff vehicle routing problem, which is formulated by a mixed integer linear

programming model. The Benders decomposition algorithm involving Pareto-optimal cuts and115

Benders decomposition-callback implementation, and a two-stage heuristic involving the savings

algorithm followed by a local search phase is provided.

HHC has arisen widespread attention in the last decade, and the majority of the work is per-

formed from the perspective of the medical skills, medical equipment, ethics, and operations man-

agement. This section reviews the HHC from the perspective of operational management (OM),120

specifically, HHCRSP is one of the most essential branches in the study of OM.

Begur et al. (1997) are among the earliest to investigate the issue of HHCRSP, in their work, a
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decision support system for nurse scheduling in HHC has been presented. Mankowska et al. (2014)

tackled daily planning of HHC service. The plan takes into account the individual service demand

of patients, the personal qualifications of the staff and any interdependencies between the different125

service operations. Nickel et al. (2012) considered the HHCRSP as two parts. Firstly, they consider

the HHCRSP which seeks for a weekly optimal plan. Secondly, in practice, a master schedule is

generated from the incorporate operational changes.

In the past five years, HHCRSP has become one of the hottest research points in the area of

operations management. Liu et al. (2013) considered a vehicle scheduling problem encountered130

in home health care logistics. It concerns the delivery of drugs and medical devices from the

home care company’s pharmacy to patients’ homes, delivery of specific drugs from a hospital to

patients, pickup of biosamples and unused drugs and medical devices from patients. After that, Liu

et al. (2014) further studied a periodic vehicle routing problem encountered in home health care

(HHC) logistics. It extends the classical Periodic Vehicle Routing Problem with Time Windows135

(PVRPTW) to three types of demands of patients at home. A complicated Tabu Search algorithm,

integrated different local search schemes were designed to solve the proposed model. To further

improve the obtained optimal solution, they utilized the strategy with both feasible and infeasible

in the local search.

Decerle et al. (2018) studied the multi-objective HHC problem with the taking in to account140

applicability of the planning. To solve the proposed issue, a memetic algorithm is developed ac-

cording to the constraints of the model. Fathollahi-Fard et al. (2018) addressed the bi-objective

green HHC with consideration of green emission and environmental pollution.

Even though considerable works have been addressed in HHCRSPs, only a few works have con-

sidered the uncertainties in HHC. The recent works on the HHC with consideration of uncertainties145

are summarized in Table 1.

Yuan et al. (2015) addressed a HHCSRP with stochastic service times and skill requirements.

A stochastic programming model with recourse is proposed to formulate the problem in which the

expected penalty for late arrival at patients is considered. Liu et al. (2018) studied the HHCRSP

by considering the caregiver’s travel times and service times for patients are stochastic. A chance150

constraint is introduced to ensure the on-time service probability for the patients. Such stochastic

traveling and service time and the chance constraint further complicate the problem. In their

paper, a route-based mathematical model is introduced. A branch-and-price (B&P) algorithm
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and a discrete approximation method are combined to solve the problem. Herein, effective label

algorithms are designed to generate negative reduced cost routes. The efficiency of the algorithm155

are improved by employing three acceleration strategies. The experiments on test instances validate

the performances of the proposed B&P algorithm and demonstrate the necessity of considering the

stochastic of travel times of home-caregiver and service times to the patients.

Lanzarone & Matta (2014) investigated a robust strategy for home care optimization problem.

Specifically, they studied an analytical structural policy to address the issue of nurse-to-patient160

assignment in home care. This policy explains the randomness of requests from patients already

assigned to nurses and requests from new patients requiring assignments. Finally, this policy was

compared to other previously developed approaches and analyzed empirically. The proposed model

in this study differs with the one proposed by Lanzarone & Matta (2014) in the following aspects. (1)

Our model considers a more general issue in routing and scheduling problem of HHC logistics, which165

covers travel and service times, skill-requirement constraints. However, Lanzarone & Matta (2014)

just considered a nurse-to-patient assignment problem, without considering patients’ time window

and skill-requirement assignment, which are essential factors in HHC services. (2) Lanzarone &

Matta (2014) only gave the policy to enhance the robustness of the operational performance of

home care, instead of formulating a robust optimization model. But, we formulate our problem by170

robust optimization technique.

Agra et al. (2013) are among the earliest researchers to address a robust optimization problem

for VRP with time windows. They proposed two formulations for the robust optimization problem,

which were based on different robust approaches. However, the study of Agra et al. (2013) only

considers the uncertainty of travel time. Hu et al. (2018) addressed a robust optimization model175

of vehicle routing problem with taking into the uncertain demand and travel times. In the VRPs,

demand belongs to the capacity constraints, while travel time involves time-window constraints.

The two constraints are relatively independently to a certain degree. In this study, the robust

home health care problem by considering the uncertain travel and service times simultaneously was

investigated. In the proposed model, travel and service times are two independent variables, which180

show up in the same constraints. So, the problem considered in this study, superposition of the

uncertain travel and service times makes the robust version of time-window more complicated than

the model proposed by Hu et al. (2018). Besides, our model also considered the characteristic of

HHC logistics by describing the skill-requirements constraints.
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Table 1: Recent research on HHCRSP with considering uncertainties

Papers factors Modeling approach Solving Method

Rodriguez et al. (2015) uncertain demand stochastic programming Branch & Cut

Shi et al. (2017) fuzzy demand fuzzy chance constraint programming Hybrid genetic algorithm

Yuan et al. (2015) stochastic service time stochastic programming Branch & Price

Shi et al. (2018) stochastic travel and service times stochastic programming model with recourse Simulated annealing

From Table 1, we can find that researchers often use two-stage stochastic programming or a185

chance-constrained programming model to solve these problems. However, both methods have

two distinct drawbacks. (1) These methods assume that the distribution of known parameters,

however, in real-life, the history data is inferior to estimate the parameter. (2) Neither of these

modeling methods considers the robustness of the solution as a goal. So, these do not guarantee

the anti-interference of the final solution.190

To sum up, our review of the abundant literature reveals the recent research related to HHCRSP.

A majority of work involved HHCRSP only considers the deterministic model without considering

the commonly encountered uncertainties. Consequently, the decision made from these solutions

show less robust in practical situations. Even though a few works have been done on uncertainties

in HHCRSP, they did not consider the problem from the perspective of Robust Optimization. Thus,195

in this paper, we investigate an HHCRSP with taking into account the uncertain travel and service

times simultaneously from the perspective of robustness optimization.

3. Mathematical model

Section 3.1 briefly illustrates the assumptions for the studied problem. In section 3.2, the

deterministic MIP model is proposed to describe the HHCRSP with skill requirements. After that,200

in section 3.3, we develop the constraints of travel and service time uncertainties by utilizing the

theory of budget. Finally, the robust optimization model for HHCRSP with skill requirements and

travel and service time uncertainties is proposed in section 3.4.

3.1. Assumptions

(1) Each caregiver starts a journey from the depot and ends up the trip at the laboratory.205

(2) The caregivers have several different levels in term of their skills and qualifications.

(3) The travel time between every two vertexes is uncertain .
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(4) Each caregiver has a maximum limitation number of the patients in his/her task list.

(5) The service time for each patient is uncertain.

3.2. MIP Model210

Some frequently used notations are introduced before the model construction.

V : set of all vehicles.

K: the number of available vehicles in set V .

C: set of all patients.

i = 0, 1, 2, . . . , n, n+1: the index of patients. Especially, i = 0 represents the index of unique depot,215

and n+ 1 depicts the lab.

N : set of all patients, namely N = C ∪ {0} ∪ {n+ 1}.

[ai, bi]: the time window for patient i. Especially, when i = 0 and i = n+ 1, ai is the opening time

of the depot, while bi is the closing time of the laboratory.

cfk: the fixed cost for kth caregiver.220

σ: the weight to balance the fixed cost of caregivers and the transportation cost.

di: the level of service for the ith patient’s demand.

Dk: the level of skills for the kth caregiver.

Q: the maximum number of patients could be visited by each caregiver.

cij : the transportation cost between patient i and patient j.225

tij : the travel time between patients i and j for a single trip.

ti: the service time for patient i. Here we need to pay more attention to distinguish between ti and

tij .

decision variables:

xijk =

1, if vehicle k travels from node i to node j, in which i 6= j;

0, otherwise.

230

sik: the beginning service time of patient i.

The MIP model can be formulated as:

Deterministic Model: minσ ·
∑
k∈V

cfk
∑
j∈C

x0jk +
∑
k∈V

∑
i∈N

∑
j∈N

cijxijk (1)
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s.t. ∑
k∈V

∑
j∈N

xijk = 1,∀i ∈ C, (2)

∑
i∈N

xihk −
∑
j∈N

xhjk = 0,∀h ∈ C; k ∈ V, (3)

∑
j∈C

x0jk ≤ 1,∀k ∈ V, (4)

∑
j∈C

xj(n+1)k ≤ 1,∀k ∈ V, (5)

∑
i∈N

∑
j∈N

xijk ≤ Q,∀k ∈ V, (6)

di
∑
j∈N

xijk ≤ Dk,∀k ∈ V, i ∈ C, (7)

sik + ti + tij −M(1− xijk) ≤ sjk, i, j ∈ N ; k ∈ V, (8)

ai ≤ sik ≤ bi, i ∈ N ; k ∈ V, (9)

xijk ∈ {0, 1}, yij ≥ 0, zij ≥ 0, i, j ∈ N, k ∈ V, (10)

The objective function (1) aims at minimizing total travel cost and the fixed cost of caregivers.235

Constraints (2) ensure that each patient is visited only once. Constraints (3) guarantee that a

caregiver leave the patient after visiting this patient. Constraints (4)-(5) denote that every caregiver

starts from the HHC depot, visits several patients and ends at the laboratory. Constraints (6)

indicate that the total number of patients served by a caregiver cannot exceed the given constant.

Constraints (7) describe the skill requirements assign strategy. Constraints (8)-(9) illustrate that240

the service cannot exceed the limitations of the time windows. Constraints (10) mean that decision

variables are binary.
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3.3. the travel and service times uncertainty

As discussed in the introduction section, real-world HHC services are often subject to a variety of

uncertainties. Therefore, a deterministic HHCRSP, which ignores the uncertainty in data, may not245

be an appropriate choice; while a robust optimization model, which does consider uncertainty, may

be more suitable and reasonable for decision-making. Under the guidance of Robust optimization

technique originally proposed by Ben-Tal & Nemirovski (1999), in this work, we consider a robust

version of the HHCRSP with both travel and service times uncertainty. To effectively represent the

uncertain parameters, robust optimization requires a practical and clear definition of the uncertainty250

sets.

As we have mentioned before, our work mainly involves two kinds of uncertainties. Now, we

define two types of uncertainties sets for kth vehicle: namely the patient’s service time uncertainty

set Uk
s and the travel time uncertainty set Uk

t (Hu et al., 2018; Wu et al., 2017).

We assume that the travel time t̃ij on each arc (i, j) belongs to an uncertainty set Uk
t , without255

additional distribution assumptions. Meanwhile, we assume the uncertain service time t̃i on each

patient i is with respect to the uncertainty set Uk
s .

Uk
s = {t̃i ∈ R|N

k||t̃i = ti + αit̂i,
∑
i∈Nk

|αi| ≤ Γk
s , |αi| ≤ 1,Γk

s = [θs|Nk|],∀i ∈ Nk} (11)

Formulation (11) describes the uncertainty set Us = ×k∈KU
k
s , which illustrates the service

time for ith patient in route k. Nk represents the set of patients in a route served by caregiver k

(sometimes we can also call it as route k). t̃i describes the uncertain service time for patient i, and260

ti represents the nominal service time for patient i. αi is an auxiliary variable. Γk
s is a variable

from the budget uncertainty, and its value controls the level of the service uncertainty. θs ∈ [0, 1] is

a coefficient of the service time uncertainty budget. [θs|Nk|] is the least integer value greater than

the real number θs|Nk|.

Uk
t = {t̃ij ∈ R|A

k||t̃ij = tij + βij t̂ij ,
∑

(i,j)∈Ak

|βij | ≤ Γk
t , |βij | ≤ 1,Γk

t = [θt|Ak|],∀(i, j) ∈ Ak} (12)

Similar with equation (11), function 12 reveals the uncertainty set Ut = ×k∈KU
k
t , which illus-265

trates the travel time for ith patient in route k. Ak represents the set of arcs in route k. t̃ij describes

the uncertain travel time for patient i, and tij represents the nominal travel time between vertex
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i and j. βi is an auxiliary variable. Γt
s is a variable from the budget uncertainty, and its value

controls the level of the service uncertainty. θt ∈ [0, 1] is a coefficient of the travel time uncertainty

budget. [θt|Ak|] is the least integer value greater than the real number θt|Sk|.270

3.4. Robust optimization version

Since the uncertainty of the travel and service times affects the feasibility of a solution, our

robust optimization seeks to obtain a solution that can be feasible for any realization. However,

complete protection from adverse realizations comes at the expense of a severe deterioration of the

objective function. Therefore, the uncertain parameter sets over which the worst cases are computed275

should be chosen to achieve a trade-off between performance and protection against uncertainty.

(Chen et al., 2016a).

According to the proposed route-dependent uncertainty sets and the definition of robust opti-

mization, we can extend the deterministic model into the robust optimization model by rewriting

the objective function and constraints of time-window.280

Robust HHC Routing model:

min sup
s∈ext(Us),t∈ext(Ut)

σ ·
∑
k∈V

cfk
∑
j∈C

x0jk(s, t) +
∑
k∈V

∑
i∈N

∑
j∈N

cijxijk(s, t) (13)

s̃ik(s, t) + ti + tij −M(1− xijk) ≤ s̃jk(s, t), i, j ∈ N ; k ∈ V, s ∈ ext(Us), t ∈ ext(Ut) (14)

ai ≤ s̃ik(s, t) ≤ bi, i ∈ N ; k ∈ V, s ∈ ext(Us), t ∈ ext(Ut). (15)

in which, ext(Us) and ext(Ut) are sets that contain all the extreme points of sets Us and Ut ,

respectively. Objective function 13 present that the goal of the model is to minimize the total cost

among the worst cases. Constraints 14 -15 is the time-window constraint with the uncertainties.

13 is a serious formulation which is from the original definition of the Robust Optimization.

4. Calculating the largest possible arrival time285

Infeasible solutions are permitted in the evolution of searching the solutions, because, in tightly

constrained problems is easily trapped into local optimal. Penalties are added to the objective
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function for violated constraints. As known, in a deterministic model, the delayed time, which

is the gap between latest due time and the arrival time of the vehicles, can be used to calculate

the penalty. However, this idea could not be transplanted directly to the RO model, in which the290

arrival time may not a specific value. Thus, the largest possible vehicle arrival time at each patient

on a route can be used to calculate the penalty. If the latest possible vehicle arrival time for any

customer node falls behind the scheduled time window, this route gets a positive value as a penalty;

otherwise, the penalty value is zero.

The arrival time for each caregiver at a patient’s home is a quite significant value in HHCRSP.295

In the deterministic model, the computing of the arrival time is quite simple. However, when it

comes to the robust optimization version, this becomes much complicated. In this section, based

on the theory of budget, we develop a method to calculate the largest possible arrival time, which

is quite complicated.

For a given route k ∈ V , let rk represent the set of nodes in route k, and nk = |rk| be the number300

of nodes in route k. rk can be described as rk = {v0 = depot, v1, . . . , vj , . . . .vnk
, vnk+1 = lab}, in

which vj represents the jth patient in this route. According to the time window constraints (14),

we must have S̃vj+1
= max(S̃vj + t̃vjvj+1

+ t̃vj , avj+1
).

Let Sk(vi,Γ
k
s ,Γ

k
t ) be the largest possible arrival time for vi with the parameters Γk

s and Γk
t .
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Now, the largest possible arrival time can be written as a recursive function (16).

Sk(vi,Γ
k
s ,Γ

k
t ) =



0 i = 0,

max(avi , Svi−1 + tvi−1vi + tvi−1
) 1 ≤ i ≤ n,Γk

t = Γk
s = 0;

max(avi
, Sk(vi−1, 0,Γ

k
t − 1) + tvi−1vi + t̂vi−1vi

+tvi−1 , S
k(vi−1, 0,Γ

k
t ) + tvi−1vi + tvi−1) 1 ≤ i ≤ n,Γk

s = 0,Γk
t > 0;

max(avi , S
k(vi−1,Γ

k
s − 1, 0) + tvi−1vi + t̂vi−1

+tvi−1 , S
k(vi−1,Γ

k
s , 0) + tvi−1vi + tvi−1) 1 ≤ i ≤ n,Γk

t = 0,Γk
s > 0;

max(avi , S
k(vi−1,Γ

k
s − 1,Γk

t − 1) + tvi−1vi + t̂vi−1vi

+tvi−1 + t̂vi−1 , S
k(vi−1,Γ

k
s ,Γ

k
t ) + tvi−1vi + tvi−1 , S

k(vi−1,

Γk
s − 1,Γk

t ) + tvi−1vi + tvi−1
+ t̂vi−1

,

Sk(vi−1,Γ
k
s ,Γ

k
t − 1) + tvi−1vi + t̂vi−1vi + tvi−1

) 1 ≤ i ≤ n,Γk
s > 0&Γk

t > 0;

Sk(vi,Γ
k
s − 1,Γk

t ) Γk
s > i,

Sk(vi,Γ
k
s ,Γ

k
t − 1) Γk

t > i,

−∞ otherwise

(16)

As mentioned in the beginning of this section, the objective function is transfered to the penalty-

based formulation. The objective function f(R) in (17) is utilized to calculate the objective value of305

solution R. In (17), cost(R) is computed by (1), and δt indicates the penalty factor for a violation

of time window.

f(R) = cost(R) + δt
∑
k∈K

|rk|∑
i=1

max(0, Sk(vi,Γ
k
s ,Γ

k
t )− bvi) (17)

14



5. Proposed approaches

According to the previous analysis, we found that the sub-problem of the deterministic model is

a vehicle routing problem. Because the vehicle routing problem is an NP-hard problem, there is no310

doubt that this problem is also an NP-hard problem. When the size of a instance becomes slightly

larger, the exact algorithm and commercial software seem powerless to solve the model. Inspired

from the previous related works (Eshtehadi et al., 2018; Braaten et al., 2017; Solano-Charris et al.,

2015; Adulyasak & Jaillet, 2015), we adopt heuristic methods to solve the proposed deterministic

model and the robust model. To show the efficiency of the heuristics, we design three heuristics315

which are Simulated Annealing, Tabu Search, and Variable Neighborhood Search, to solve the

proposed models.

For each proposed algorithm, we first illustrate the basic operators of the algorithms, and the

detailed pseudo is described to illustrate the specific procedures.

5.1. Simulated Annealing320

Simulating Annealing (SA) is a meta-heuristic which was first proposed by N. Metropolis in

1953. The basic idea for simulated annealing is based on the similarity between the annealing

process of solid matter in physics and the general combinatorial optimization problem. The physical

annealing process consists of three parts: heating process, isotherm process, and cooling process.

Compared with the traditional Hill Climbing algorithm, SA has better ability to get rid of the325

local optimal solutions. So far, SA has been widely used in engineering, such as VLSI, production

scheduling, control engineering, machine learning, neural network, signal processing, and et. al.

In this chapter, SA is adapted to solve the proposed models. The detailed of the operators and

procedures are described in this section.

5.1.1. The representation of the solution330

In the heuristic algorithm, the representation structure of the solution has an important signifi-

cance. In this study, we fully consider the characteristics of the problem. We use a commonly used

integer to encode the routes. ”0” represents the path of segmentation. The other integers corre-

spond to patient’s number. For example, the string “2 4 1 8 9 0 5 6 7 3 0” could be represented in

Fig.1.335
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Figure 1: The representation a solution

5.1.2. Initial solution

The initial solution is obtained from a simple greedy algorithm. Firstly, the patients are simply

divided into different groups according to their types of demand. Then, for each patient group with

the requirement at level i, we employ the PFIH method, proposed by Solomon (1987), to get the

initial route route set i. Finally, the initial solution for the whole problem is obtained just by merely340

combining the routes. The specific procedures for generating the initial solution are described in

Figure 2.

Figure 2: The procedure of generating initial solution

5.1.3. Neighborhood structure

The new solutions are generated from the neighborhood of the current solutions. In this work,

six kinds of neighborhood structures are proposed. According to the behaviors of the nodes, we can345

classify the neighborhood into two categories, namely inter-route neighborhoods and intra-route

neighborhoods. This section mainly depicts the procedures.

Three inter-route neighborhoods occur between two randomly selected routes.

inter-route insert: a vertex is randomly removed from a route, and then insert to another
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route.350

inter-route swap: two vertices are randomly picked out from two routes respectively, then swap

the two vertices.

inter-route 2-opt: two routes are broke down simultaneously, then reconnect to the other part

from the breakpoints.

Three intra-route neighborhoods are only involved in one randomly selected singe route.355

intra-route insert: a vertex is removed from the route and then insert to a different position of

this route.

intra-route swap: two vertices are randomly picked out from the route and then exchange their

positions.

intra-route reverse: two vertices are randomly selected as cutting points, then reverse the se-360

quence of vertices between the two cutting points.

5.1.4. Pseudo of SA

In this section, we first introduce some frequently used parameters, and then present detailed

procedures of the algorithm.

T0: the initial temperature.365

k: index of the iteration.

Tk: the temperature in kth iteration.

s0: initial solution.

sbest: the global best solution obtained so far.

ω: the Boltzmann’s Constant value.370

scurrent: the current solution.

snew: the new solution obtained by a local search operator.

r: a random value.

The main procedures for SA are shown in Algorithm 1. It starts from an initial solution s0.

In the process of evolution, the neighborhood N (s) generates a random solution under a given375

temperature (see line 6). After that, in line 7, the gap between the objective values of a new

solution and the current solution. In line 8 - line 12, the new solution replaces the new solution

once the gap is less than 0. Otherwise, in line 13 - line 17, the new solution is accepted in a

probabilistic way. The global best solution is updated once the current solution is better than the

17



current global best solution. The algorithm terminals once it reaches a temperature which is less380

than the given small number ε, finally, the global best solution is output.

Algorithm 1: Hybrid Simulated Annealing Method

1 Obtain the initial solution s0 by using PFIH.

2 Set the parameters for the simulated annealing, T0, EL,ω, ε. Set sbest ← s0.

3 Tk ← T0;

4 while Tk ≥ ε do

5 scurrent ← sbest;

6 snew ← N (scurrent); // Pick a random neighbour from the current solution as

a new solution

7 ∆← f(snew)− f(scurrent); // calculate the gap between the two objective

values

8 if ∆ < 0 then

9 scurrent ← snew; // accept the new solution directly if the new solution

is better than the current solution.

10 if f(scurrent)− f(sbest) < 0 then

11 sbest ← scurrent // update the global best solution.

12 end

13 else

14 Randomly generate r ∈ [0, 1];

15 if r ≤ e
−∆
Tk then

16 scurrent ← snew // accept the new solution in a probability if it is

worse than the current solution.

17 end

18 end

19 k ← k + 1;

20 Tk ← ω ∗ Tk // update the Tk.

21 end

22 output sbest;
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5.2. Tabu Search

Tabu Search algorithm is a meta-heuristic algorithm proposed by Glover in 1986. Starting from

an initial feasible solution, it selects a series of specific moves as a heuristic to improve the quality385

of solution. To avoid falling into the local optimal solution, TS uses a flexible ”memory” technique

to record and select the optimization process to guide the next search direction.

Tabu Search (TS) has been implemented for vast applications of combinatorial optimizations

(Garcia et al., 1994; Taillard et al., 1997; Escobar et al., 2014; Silvestrin & Ritt, 2017). In this

section, we adapt the TS to solve the proposed model.390

Our deterministic HHCRSP with skill-requirement can be viewed as a combination of VRPTW

(Shi et al., 2017) and skill-assign problem. Time windows constraints, skill-assign are quite crucial

constraints. The initial solution is obtained by utilizing the procedure 2 and the representation of

a solution is the same with that used in the SA.

5.2.1. Neighborhood395

As frequently used in many works (Wang et al., 2015; Silvestrin & Ritt, 2017), λ−inter-exchange

is a main local search operator applied in TS. The operator is conducted by interchanging patients

between the routes. Each time, a pair of routes (rp, rq) is selected, and the searching for the

interchanging of patients is conducted sequentially. In this work, we consider the case λ = 2; this

indicates that at most two patients will be interchanged between each pair of routes. Generally400

speaking, the operations of 2-interexchange could be described as: (0,1), (0,2),(1,1),(1,2), (2,1),(2,2).

Let us explain the operator by giving an example. The operator (1,2) on a route pair (rp, rq)

illustrates that, 2 patients will be shifted from rq to rp, and 1 patient will be shifted from rp to rq.

The others are defined similarly. Only feasible solutions are considered in the process of generating

new solutions.405

5.2.2. The structure of tabu list

Let us consider that there are n patients, k vehicles, and the tabu list TL is designed by a n×k

matrix which is shown in Figure 3. The value of TL(i, j) indicates that inserting patient i to vehicle

j is forbidden in the next max(TL(i, j), 0) times. Anyone who is interested in this kinds of tabu

list can refer to Silvestrin & Ritt (2017)410

Now, Let us give an example to explain how the tabu list works in our algorithm. In Figure

3, TL(1, 1) = −5 ≤ 0 indicates that move patient 1 to a route served by caregiver 1 (also can be
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marked as route 1 for short.) is allowed in the following iteration; however, TL(3, 2) = 3 reveals

that the moving patient 3 to a route 2 is impossible unless the aspiration encounters. This type

of tabu list is quite simple, understandable but can represent all the movement of the inter-route.415

Besides, this structure of the tabu list is also convenient for updating the value of the table.

Figure 3: The array of the tabu list

Figure 4: The array of the frequency list

5.2.3. Intensification and Diversification

The traditional simple TS is also easily trapped into the local optimal solutions. To overcome

this issue, Glover (1986) proposed two senior operators which are intensification and diversification,
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to benefit searching better solution. In this TS, we utilize the frequency-based intensification and420

diversification operators to guide the searching. The frequency list is established for recording the

frequency of the used moves. Figure 4 describes a frequency list FL. FL(i, j) = p indicates that

the movement of inserting patient i to vehicle j has occurred for p times.

Intensification strategies are based on the modification of choice rules to encourage the his-

torically good combinations of motion and solution features. They can also initiate a return to425

attractive regions to search for them in more depth. In our research, for each specific iteration, we

try to move to the highest-frequency direction.

Diversification is a primary operator to guide the search into new regions. Frequency-based

diversification is realized by penalizing the high frequency of used moves.

Let s be a solution candidate generated from scurrent. Set P represents the available moves

excluding the forbidden ones. p′ indicates the moves from scurrent to s. g(scurrent, p′) is used to

calculate the frequency of the movement from FL. λ is the value of current iterations. α ∈ [0, 1] is

a random number. Consider that the current solution is a local optimum whose objective value is

f . We choose the best move according to the modified objective function f ′ from equation (18).

f ′(s) = f(s)(1 + α
∑
p′∈P

g(scurrent, p′)/λ), (18)

5.2.4. Route refinement430

The most difference between the our TS and the work of Cordeau et al. (2001) is the way to

utilize intra-route optimization mechanism. During the process of search, in our work an intra-route

step is applied to each route after every 50 iterations.

The Route refinement operator is applied to the intra-route. We use the most common used

2-opt, 3-opt, inverse operators to optimize each route.435

5.2.5. Aspiration criterion and stopping criterion

The aspiration criterion overrides the tabu status of a move (r′, r) if this move yields a solution

s′ such that f(s′) is better than the global best solution found so far. We prefer to accept this

movement no matter whether it should be forbidden because this situation would not like to cause

the cycling of searching. The TS terminates when the best solutions s? has failed to improve the440

global best solution in µ iterations.
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5.2.6. The pseudo code of TS

The detailed description of TS is depicted in Algorithm 2. Our TS starts from the initial solution

s0, which is obtained based on the procedures in the Figure 2. After that, in line 2, we initialize

the best solution and current solution as s0, and we set the tabu list and the frequency list as an445

empty matrix. Line 3-18 gives the detailed procedures for improving the best solution s?. The tabu

list and the frequency list are updated after each iteration. And the TS terminates when it reaches

the stopping criterion. Finally, the algorithm returns to the best solution and the current solution.

Algorithm 2: The pseudo code of TS

1 Input: initial solution s0;

2 Initialize Current best solution s? ← s0, current solution scurrent ← s0. Initialize tabu list

TL, frequency list FL, tabu length L, and the parameter of terminal criterion.

3 while It does not reach the stopping criterion do

4 for ∀snew ∈ N (scurrent, TL1, FL1) do

5 if the solution needs intensification then

6 conduct intensification operator.

7 end

8 if f(snew) < f(s?) then

9 accept the snew by aspiration criterion.

10 else

11 if f ′(snew) < f ′(scurrent)& snew is not forbidden then

12 scurrent ← snew;

13 end

14 end

15 end

16 update the tabu list TL;

17 update the frequency list FL.

18 end

19 Return: s? and scurrent.

5.3. Variable Neighborhood Search (VNS)450

The Variable Neighborhood Research (VNS) is a classical meta-heuristic which is proposed

by Mladenović, Hansen, 1997. It is usually applied to solve a set of combinatorial optimization
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problems (Bortfeldt et al., 2015; Sarasola et al., 2016). The main idea of the variable neighborhood

search algorithm is to apply multiple different neighborhoods for the process of searching. First,

the smallest neighborhood is employed to obtain a better solution. When the solution cannot be455

improved, switch to a slightly larger neighborhood. If it can continue to improve the solution,

return to the smallest neighborhood, otherwise continue to switch to a larger neighborhood.

The detailed procedures of VNS is given in Algorithm 3. Our VNS also starts from the initial

solution s0. In line 2, we initialize the best solution as s0, and set the parameters for the algorithm.

Lines 3-26 give the detailed procedures for improving the best solution s?. The procedure in line 7460

illustrates the switching of neighborhood structure. And, lines 9-17 show the strategy of generating

new solutions. VNS terminates when it reaches the stopping criterion: the best solution has non-
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improvement for certain iterations. Finally, the algorithm returns the best solution.

Algorithm 3: The pseudo code of VNS

1 Input: initial sol.

2 s? ← initial sol

3 while It does not reach the stopping criterion do

4 k ← 1

5 j ← random(operators);

6 while k ≤ kmax do

7 scurrent ← shaking(j, s?, k)

8 improving flag ← true

9 while improving flag do

10 snew ← LocalSearch(scurrent)

11 if f(scurrent) < f(snew) then

12 scurrent ← snew

13 else

14 improving flag ← false

15 end

16 end

17 end

18 if f(scurrent) < f(s?) then

19 s? ← scurrent

20 k ← 1

21 else

22 k ← k + 1

23 end

24 end

25 end

26 end

27 Return: s? and scurrent.

24



6. Experiments465

To validate the proposed models and algorithms, we have performed several series of experi-

ments. In this section, firstly, corresponding instances are introduced in section 6.1, then section

6.2 reports the experimental results of the deterministic model which is solved by Gurobi Solver,

SA, VNS, TS respectively. After that, the detailed experiments and analysis of robust model are

presented in section 6.3. Finally, the comparison between the solutions obtained by the robust470

optimization model and stochastic programming with recourse is performed. All the heuristic al-

gorithms are implemented in Java.

6.1. introduction to the instances

To the best of our knowledge, there is no standard benchmark in the literature for our problem.

We generate instances for our problem based on Solomon’s VRPTW benchmark (Solomon, 1987).475

The Solomon (1987)’s instances are grouped into six data sets, called R1, R2, C1, C2, RC1, and

RC2 respectively. Each category has its own characteristic on location distribution and length of a

time window. Instances R1 and R2 include randomly distributed client locations, instances C1 and

C2 contain clustered client locations, while instances RC1 and RC2 contain a mixture of random

and clustered client locations. However, the time windows of instances R1, C1, and RC1 tend to480

be narrow while in instances R2, C2, and RC2 become large. For each instance, Solomon (1987)

has defined coordinates of the location, demand, service time and time window. The size of the

instances can be divided into 25, 50 and 100 respectively.

In our studied problem, the analogy with Solomon’s instances, each caregiver corresponds to one

vehicle, and every patient is equivalent to a client. We make no changes to the client’s locations,485

time windows, and service time in Solomon’s original instances but have modified the following

changes from the original data to adapt it to our problem.

(1) Each caregiver completes the tour by the stop at the lab, whose position is defined as (30, 50).

This value has also been adopted in our work (Shi et al., 2018).

(2) We have added the required skill level for each patient. Specifically, in our cases, we have490

two different levels, the first level, and the second level. Let η be a percentage value. We assume

the first η of the patients are corresponding to the first level service, while the rest patients are

corresponding to the second level service. For example, when η = 0.6, and the size of the instance is
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50 patients, then we define the first 30 patients with the first level service and the other 20 patients

with second level service.495

(3) The close time of the patient’s time window is regarded as the latest starting service time.

(4) The maximum number of patients which can be serviced by a caregiver is 10.

The six groups of instances have featured by the distribution of the location and length of time

window. The data source are suitable for our problem for two reasons.

(1) In the HHC service, the location of patients has different features. For example, in some500

area, patients come from some communities; consequently, the locations are more likes cluster type

(C1 and C2 instances). While, sometimes, the services are ordered randomly; therefore, the location

of the patients is distributed randomly, so, this scenario corresponds to random type (R1 and R2

instances). More commonly, the distribution of patients’ location is mixed with random and cluster,

which is RC type (RC1 and RC2).505

(2) In the HHC service, a different type of patients may prefer a different length of time windows.

For example, some patients can be serviced in a long period during the day, this situation can be

corresponding to the width time window (R1, C1, RC1), while some patients tend to provide service

just in a short time, which is a narrow time window (R2, C2, RC2).

To sum up, the generated instances almost cover all the possible scenarios of location distribution510

and time window in HHC service.

To distinguish the classic instances of Solomon, we name them RO-XXX. The main parameters

used in the proposed algorithms are listed in Table 2 and explained below. All the values of them

are empirically chosen.
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Table 2: Parameters used in the model algorithms

Model & Algorithms Parameters Values

Model

σ: the weight between employee fees and travel cost. 1

η: the percentage to describe the skill requirement of patients 0.6

fc1: fixed cost for caregiver with skills in level 1 50

fc2: fixed cost for caregiver with skills in level 2 80

δt: the big data to weight penalty and total cost of schedule R 20000

SA

T0: the initial temperature. 100

EL: epoch length for local search in a certain temperature 50

ML: the max iterations for accepting new feasible solutions in a certain temperature. 80

ε: the threshold of temperature for stopping algorithm. 0.1

ω: the Boltzmann’s Constant value. 0.9995

VNS µ: the max iteration for non-improvement (terminal conditions) 100

TS

α : the parameter for adjusting the diversification operator 0.1

tabu length : the length for the tabu list a random integer in [5,10]

the max iteration for non-improvement (terminal conditions) 100

6.2. Results of the deterministic model515

Because the proposed model is entirely new, and there is no researcher has solved these same

instances with us. Consequently, we could not give a comparison with the published works to

validate our proposed methods. In this section, we present the objective values obtained by the

Gurobi Solver, SA, VNS and TS in Table 3 and 4.

6.2.1. Comparison for the small instances520

Table 3 reports the experimental results obtained by Gurobi Solver for the small instances.

As shown in the table, “ID” indicates the name of the instance, “NV level1” and “NV level2”

represent the number of the used caregivers with the skill of level 1 and level 2 respectively. While

“TC upper” and “TC lower” are upper bound and lower bound obtained by Gurobi Solver. Finally,

“gap” indicates the difference between the lower bound and upper bound. Even though Gurobi525

Solver is one of the best Solver in the world, but it still shows powerless to solve the instances even

for the size of patients is 10. We also find that the solutions obtained from the Gurobi Solver is

quite time-consuming. So, meta-heuristic is a better choice to solve this problem.

Table 4 shows the experimental results for solving the small instances with meta-heuristic ap-

proaches. In this table, gap1 indicates the gap between SA and TS, while gap2 represents the gap530

between the VNS and TS. We can conclude that the TS shows an excellent searching ability than

other two methods.
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Table 3: The experimental results for solutions obtained by Gurobi Solver

ID
GUROBI SOLVER

NV level1 NV level2 TC upper TC lower CT(s) gap1%

RO-RCdp0501 1 2 428.82 428.82 0.22 0.00%

RO-RCdp0504 1 1 335.54 278.00 7,200.00 20.70%

RO-RCdp0507 0 2 384.34 258.03 7,200.00 48.95%

RO-RCdp1001 2 2 633.63 633.63 0.02 0.00%

RO-RCdp1004 1 1 346.85 320.84 7,200.00 8.11%

RO-RCdp1007 2 1 476.92 365.55 7,200.00 30.47%

Table 4: Experimental results obtained by TS, VNS and SA for solving small-size instances
TS SA VNS

ID N level1 N level2 TD TC N level1 N level2 TD TC gap1 N level1 N level2 TD TC gap2

RO-Rcdp0501 1 2 218.82 428.82 1 2 218.82 428.82 0.00% 1 2 218.82 428.82 0.00%

RO-Rcdp0504 1 1 205.54 335.54 1 1 205.54 335.54 0.00% 1 1 205.54 335.54 0.00%

RO-Rcdp0507 1 1 224.34 354.34 0 2 224.34 384.34 8.47% 0 2 224.34 384.34 8.47%

RO-Rcdp1001 1 2 375.95 585.95 1 2 383.63 593.63 1.31% 1 2 383.63 593.63 1.31%

RO-Rcdp1004 1 1 216.85 346.85 1 1 222.80 352.80 1.72% 1 1 216.85 346.85 0.00%

RO-Rcdp1007 2 1 266.92 446.92 1 2 266.92 476.92 6.71% 1 2 266.92 476.92 6.71%

RO-Rcdp2501 2 3 617.81 957.81 2 3 679.21 1,019.21 6.41% 3 3 718.04 1,108.04 15.68%

RO-Rcdp2504 3 2 540.99 850.99 3 2 610.45 920.45 8.16% 3 2 598.81 908.81 6.79%

RO-Rcdp2507 2 3 577.61 917.61 2 3 613.62 953.62 3.92% 2 3 582.61 922.61 0.54%

RO-Rcdp5001 5 5 1,064.67 1,714.67 5 6 1,084.38 1,814.38 5.82% 5 5 1,109.20 1,759.20 2.60%

RO-Rcdp5004 5 3 870.75 1,360.75 5 3 940.28 1,430.28 5.11% 5 3 885.54 1,375.54 1.09%

RO-Rcdp5007 5 4 905.84 1,475.84 4 5 1,059.13 1,659.13 12.42% 5 4 1,002.20 1,572.20 6.53%

6.2.2. Comparison between the heuristic methods for 25-patient instances

In this section, the experimental results of the proposed three heuristics (SA, TS, VNS) for

25-patient instances are presented. In table 5, the first column is the ID of the instances, then535

column 2-5, 6-11, and 13-17 illustrate the results of TS, SA, VNS respectively. For each presented

results, we give the number of the assigned caregivers in level 1 (N level1) and level 2 (N level2),

the total transportation distance (TD), and total cost (TC) which is weighted by travel distance

and employee fees of caregivers. Other two heuristics are compared with TS. To analyze the results,

we define four parameters named gap11, gap12, gap 21, and gap22 respectively. Gap1 shows the540

difference of TC between TS and SA. Gap12 computes the gap of the number of used caregivers

between TS and SA. Evidently, gap2 and gap21 have the similar meaning with gap11 and gap12

respectively. As shown in table 5, SA and VNS can get almost the same objective values, but TS

can get better results than the others.
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Table 5: The experimental results obtained by TS, SA, and VNS for solving the deterministic model with 25-patient

instances

ID
TS SA VNS

N level1 N level2 TD TC N level1 N level2 TD TC gap1 gap11 N level1 N level2 TD TC gap2 gap21

RO-C101 1 2 257.3114 467.3114 1 2 271.8507 481.8507 3.11% 0 1 2 259.811 469.811 0.53% 0

RO-C102 1 2 270.1773 480.1773 1 2 258.0508 468.0508 -2.53% 0 1 2 254.938 464.938 -3.17% 0

RO-C103 2 1 271.4741 451.4741 1 2 280.1854 490.1854 8.57% 0 2 2 325.8666 585.8666 29.77% 1

RO-C104 2 1 275.4859 455.4859 1 2 288.5523 498.5523 9.46% 0 2 1 302.6885 482.6885 5.97% 0

RO-C105 1 2 257.3114 467.3114 1 2 273.0785 483.0785 3.37% 0 1 2 259.216 469.216 0.41% 0

RO-C106 1 2 257.3114 467.3114 1 2 271.8507 481.8507 3.11% 0 1 2 259.216 469.216 0.41% 0

RO-C107 1 2 259.811 469.811 1 2 285.3323 495.3323 5.43% 0 1 2 259.216 469.216 -0.13% 0

RO-C108 1 2 270.4514 480.4514 1 2 274.5631 484.5631 0.86% 0 1 2 257.5717 467.5717 -2.68% 0

RO-C109 1 2 251.6258 461.6258 1 2 280.4307 490.4307 6.24% 0 1 2 256.8845 466.8845 1.14% 0

RO-R101 3 5 646.6733 1196.6733 2 6 658.4145 1238.4145 3.49% 0 3 5 684.2169 1234.2169 3.14% 0

RO-R102 4 3 591.9535 1031.9535 3 4 623.0914 1093.0914 5.92% 0 3 4 616.74 1086.74 5.31% 0

RO-R103 2 3 459.9161 799.9161 1 4 543.8293 913.8293 14.24% 0 1 4 491.6077 861.6077 7.71% 0

RO-R104 1 3 430.1738 720.1738 1 3 507.3581 797.3581 10.72% 0 2 3 498.3211 838.3211 16.41% 1

RO-R105 3 3 537.2049 927.2049 2 4 575.7211 995.7211 7.39% 0 2 4 575.7211 995.7211 7.39% 0

RO-R106 2 3 496.0873 836.0873 1 4 616.4634 986.4634 17.99% 0 1 4 518.2423 888.2423 6.24% 0

RO-R107 2 2 433.7158 693.7158 2 2 484.757 744.757 7.36% 0 3 2 544.8937 854.8937 23.23% 1

RO-R108 2 2 414.153 674.153 1 3 476.1161 766.1161 13.64% 0 2 2 490.0817 750.0817 11.26% 0

RO-R109 3 2 464.6926 774.6926 1 4 527.0552 897.0552 15.79% 0 2 4 530.386 950.386 22.68% 1

RO-R110 2 3 452.7869 792.7869 1 4 482.4932 852.4932 7.53% 0 2 3 485.8331 825.8331 4.17% 0

RO-R111 3 2 465.224 775.224 1 4 504.0917 874.0917 12.75% 0 2 3 510.2525 850.2525 9.68% 0

RO-R112 2 2 421.7127 681.7127 0 4 453.2384 773.2384 13.43% 0 1 3 515.3154 805.3154 18.13% 0

RO-RC101 2 3 427.1824 767.1824 2 3 441.093 781.093 1.81% 0 2 3 427.1824 767.1824 0.00% 0

RO-RC102 1 2 342.7479 552.7479 1 3 481.3234 771.3234 39.54% 1 2 3 408.7155 748.7155 35.45% 2

RO-RC103 2 2 352.2787 612.2787 1 2 358.6876 568.6876 -7.12% -1 1 2 320.7717 530.7717 -13.31% -1

RO-RC104 2 2 322.2515 582.2515 1 2 354.6025 564.6025 -3.03% -1 2 2 325.8324 585.8324 0.62% 0

RO-RC105 3 2 454.5723 764.5723 2 2 417.8423 677.8423 -11.34% -1 2 2 376.6754 636.6754 -16.73% -1

RO-RC106 1 2 334.7958 544.7958 2 2 375.3318 635.3318 16.62% 1 1 2 334.7958 544.7958 0.00% 0

RO-RC107 2 1 290.2782 470.2782 1 2 339.9725 549.9725 16.95% 0 1 2 289.5183 499.5183 6.22% 0

RO-RC108 1 2 283.5855 493.5855 1 2 338.4584 548.4584 11.12% 0 1 2 279.722 489.722 -0.78% 0

RO-C201 2 1 337.6001 517.6001 1 2 332.8254 542.8254 4.87% 0 2 1 357.8473 537.8473 3.91% 0

RO-C202 2 1 328.0293 508.0293 1 2 341.7611 551.7611 8.61% 0 2 1 354.6819 534.6819 5.25% 0

Avg. 7.93% -0.03 6.07% 0.13

6.3. Robust analysis for the instances545

In the last section, the deterministic model is solved by the proposed three heuristics. Further-

more, in this section, the robust model is dealt with the proposed heuristics. What’s more, after

obtaining the solutions, we also analysis that how the location distribution of patients, the length

of time-windows, the uncertainty of time-windows, and the uncertainty of service times affect the

robust solutions.550

As we have emphasized, a perfect schedule for an HHC company should not only have less

operational cost but also robust for the service. To evaluate the obtained solutions from the

perspective of robustness, we introduce some indicators to measure the character of each schedule.

Firstly, V0, V1, V2, V3 are proposed to measure the number of delayed services.

V0: the probability of serving all patients timely.555
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V1: the probability of not serving one patient timely at most

V2: the probability of not serving two patients timely at most

V3: the probability of not serving three patients timely at most.

To further describe the service level, MET , DPS, and MDT are introduced to get the statistic

results from Monte Carlo Simulation.560

MET : mean extra working times for each caregiver.

DPS: the percentage of the delayed service for patients.

MDT : mean delayed time for each patient.

To measure the robustness of each solution, we perform a Monte Carlo simulation to calculate

the value of the proposed indicators. In the simulation, we assume that the travel and service times565

are uncertain but subject to a limited range. The maximum travel time gap for tij is 0.2 ∗ tij , and

the gap of maximum service time ti for each patient i is 0.2∗ ti . The uncertainty budget coefficient

θt ∈ [0, 1] determines the uncertainty budget of Γk
t . The simulating procedures can be viewed in

Figure 5.

Figure 5: Simulating procedure for evaluating each solution

6.3.1. The effect of the location distribution570
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Figure 6: Solutions obtained by deterministic model for instances RO-C1, RO-R1, and RO-RC1 with 25 patients

Figure 7: Solutions obtained by robust model for instances RO-C1, RO-R1, and RO-RC1 with 25 patients

As discussed in section 6.1, instances in different datasets have different types of patients’

locations. To show the effect of different types of locations, we present the details of deterministic

and robust solutions for all instances of datasets RO-R1, RO-RC1 and RO-C1 together in Table 6.

In these tables, the columns under “Deterministic” display the details of each deterministic solution.

The columns under “Robust” show the details of each robust solution. The columns named ”gap”575

show the increase in the number of vehicles used and the percentage increase in the total distance

traveled by the robust solution compared to the deterministic solution in each case. Note that only

32



the results of the simulation tests taking into account both the uncertainty of the travel and service

time were included. A detailed analysis of the effect of patient location models leads to conclusions

similar to those above.580

As shown in Figure 6 and 7, the deterministic solutions for the instances in the three data sets

are very fragile, in particular, the solutions for the instances R1 and RC1. For example, the average

probability of serving each client was only 7.03% with deterministic solutions for R1 instances and

4.45% with deterministic solutions for RC1 instances, while this value becomes 51.76% with the

RO-C1.585

However, in robust solutions, the average number of vehicles used for RO-R1 instances increased

by 0.38, and the average total distance traveled increased by 7.44% over deterministic solutions.

Thus, even if the robust solution significantly reduces the risk of non-compliance with the client

period, decision makers still have to evaluate the trade-off between total distance traveled and the

robustness of the road in situations with clustered location models.590

6.3.2. The Effect of the length of time window
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Figure 8: Solutions obtained by deterministic model for instances RO-C2, RO-R2, and RO-RC2 with 25 patients

Figure 9: Solutions obtained by robust model for instances RO-C2, RO-R2, and RO-RC2 with 25 patients

Unlike the instances of RO-R1, RO-C1, and RO-RC1, the instances of RO-R2, RO-RC2, and

RO-C2 have a long planning horizon for each patient. These features serve many patients along

the same route. To show the effect of wide time windows on planned routes, we present the details

of deterministic and robust solutions for RO- R2, RO-RC2 and RO-C2 instances in Table 7.595

Based on the results in Figures 8 and 9, it is clear that the deterministic solutions for the RO-

R2, RO-RC2 and RO-C2 instances are more robust than the deterministic solutions for the RO-R1,

RO-RC1, and RO-C1 instances.
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For example, the average probability of serving each patient with deterministic solutions for RO-

C2 instances was 88.25%, indicating that these deterministic solutions are not very fragile. In robust600

solutions for RO-R2, RO-RC2 and RO-C2 instances, the total travel distance increased slightly, and

the number of vehicles used remained the same in most cases. However, the robustness of the routes

with these solutions has improved considerably. For example, the average probability of serving all

patients was 96.83%, 98.31%, and 98.45% for RO-R2, RO-RC2, and RO-C2, respectively. These

results indicate that the solutions are very robust given travel time and uncertainty of service time.605

We can, therefore, conclude that a high level of route robustness can be achieved in cases where

large windows use robust solutions at almost zero cost. However, not serving all patients is more

prevalent in deterministic solutions, in cases where time windows are narrow, and ensuring a high

level of robustness of roads is much more expensive, as shown in Tables 6.

6.4. Comparison with other models610

To highlight the proposed RO model, we perform three series of comparison. First, we make

a comparison between the RO with the deterministic model, which does not take into account

uncertainties. Then, the comparison among the following four models: the deterministic model,

RO model with considering travel and service times uncertainties, RO model with only consider

travel time uncertainty, and RO model with only consider service time uncertainty. Finally, we give615

a comparison between the solutions obtained by the RO model and stochastic programming with

recourse.

6.4.1. comparison between deterministic model and RO

Furthermore, we have also solved the generated instances with 50 and 100 patients, respectively.

This section mainly evaluates and analyzes these solutions by comparing them with the deterministic620

model. For convenience, we call the deterministic model as Deter. model for short. The detailed

experimental results are illustrated in Appendix Table B.13, B.14, B.15, and B.16. In order to

explain the simulation results, we draw Figure 10 to 13.

Figure 10, which is composed of four sub-figures, describes the simulation results of the indicators

of Vs. Let us explain by giving an example of sub-figure 1. The x-axis is the identification number625

of instances, and in this figure, we have 56 instances totally. Meanwhile, the y-axis denotes the

value of V0. We can notice that, in almost all cases, the solutions obtained by RO shows a higher

value than the solution obtained by the Deter. model. This scenario explains that the solutions
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generated by RO have less delayed service than that produced by Deter. model. Other indicators

also show the same tendency as sub-figure 1.630
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Figure 10: The indicators of Vi obtained by RO model and deterministic model instances with 50 patients

Figure 11 depicts the other three meaningful indicators, MET, DPS, and MDT, which represent

the overall delay service. For example, in the first sub-figure, the X-axis also illustrates the ID of

56 instances, while Y-axis indicates the MET (Mean Extra Time). We find that, in almost all the

cases, the solutions obtained by RO tend to have less mean extra time than that achieved by Deter.

model. Therefore, we also summarize that the solutions obtained by RO show more advantage635

in Percentage of Delayed Service (DPS) and Mean Delayed Time (MDT) than that generated by

deterministic model..
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Figure 11: The indicators of MET, DPS, and MDT obtained by RO model and deterministic model for instances

with 50 patients
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Figure 12: The indicators of Vi obtained by RO model and deterministic model instances with 100 patients
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Figure 13: The indicators of MET, DPS, and MDT obtained by RO model and deterministic model for instances

with 100 patients

The simulation indicators for the 100-patient instances are shown in Figure 13 and 12. We can

find that the figures also show the same tendency as that of 11 and 10 respectively.

6.4.2. comparison between deterministic model, US, UT, and USUT640

To show the influence of the uncertain travel and service times individually, we define four

models DM, US, UT, USUT as follows.

Deter. model: the model with deterministic travel and service times (namely the deterministic

model).

38



US model: the model with only consideration of uncertain service time.645

UT model: the model with only consideration of uncertain travel time.

USUT model: the model with taking into account uncertain service and travel time.

As shown in Table 8, the average simulation results of the solutions obtained by the four models

are presented. For RO-C1, the percentage of being able to service all patients timely is 51.76%,

and this value becomes 63.36% and 72.07% respectively once considering either uncertain travel650

or service times. However, the percentage increases to 78.51% if we consider both the uncertain

travel and service times simultaneously. Other types of instances have the similar trends. This

trend reveals that the solutions obtained by USUT have strong robustness than that achieved by

US, and UT, while the solutions obtained by DM shows the worst robustness.
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Table 8: Comparison among the solutions obtained by the four models for the instances with 25 patients

Model V0 V1 V2 V3 MET DPS MDT

Deter. Model Avg. RO-C1 51.76% 76.07% 82.76% 87.13% 9.91 5.24% 1.19

Avg. RO-R1 7.03% 25.23% 53.17% 75.73% 6.29 10.21% 1.22

Avg. RO-RC1 4.45% 20.25% 50.80% 67.48% 11.63 12.59% 1.71

Avg. RO-C2 93.60% 99.68% 100.00% 100.00% 0.55 0.27% 0.07

Avg. RO-R2 88.25% 99.98% 100.00% 100.00% 0.15 0.47% 0.02

Avg. RO-RC2 98.65% 100.00% 100.00% 100.00% 0.02 0.05% 0

US model Avg. RO-C1 63.36% 80.49% 86.76% 90.76% 6.58 3.84% 0.81

Avg. RO-R1 13.33% 32.83% 58.15% 79.18% 4.43 9.10% 0.91

Avg. RO-RC1 12.73% 39.10% 56.33% 68.55% 11.92 11.68% 1.84

Avg. RO-C2 97.80% 99.83% 99.93% 100.00% 0.16 0.10% 0.02

Avg. RO-R2 91.95% 99.98% 100.00% 100.00% 0.11 0.32% 0.01

Avg. RO-RC2 98.80% 100.00% 100.00% 100.00% 0.02 0.05% 0.00

UT model Avg. RO-C1 72.07% 84.38% 91.58% 95.07% 3.75 2.53% 0.48

Avg. RO-R1 16.18% 39.42% 66.70% 84.28% 3.94 8.05% 0.83

Avg. RO-RC1 6.08% 21.83% 39.70% 58.75% 15.81 13.35% 2.42

Avg. RO-C2 99.20% 99.88% 100.00% 100.00% 0.03 0.04% 0.00

Avg. RO-R2 94.13% 99.13% 99.98% 100.00% 0.11 0.27% 0.01

Avg. RO-RC2 98.45% 100.00% 100.00% 100.00% 0.03 0.06% 0.00

USUT Avg. RO-C1 78.51% 90.51% 94.60% 96.93% 2.02 1.69% 0.26

Avg. RO-R1 25.18% 58.85% 80.45% 91.00% 3.00 5.98% 0.67

Avg. RO-RC1 9.78% 32.10% 57.83% 71.00% 11.71 11.46% 1.84

Avg. RO-C2 96.83% 99.90% 100.00% 100.00% 0.19 0.13% 0.02

Avg. RO-R2 98.31% 100.00% 100.00% 100.00% 0.01 0.07% 0

Avg. RO-RC2 98.45% 100.00% 100.00% 100.00% 0.02 0.06% 0

6.5. Comparison with stochastic programming with recourse655

As mentioned in the literature part, Stochastic Programming with Recourse (SPR) is another

critical framework for modeling optimization problem when dealing with uncertainties. In this

section, we attempt to make a comparison between the solutions obtained by the RO model and

SPR model. Notably, we refer to the SPR models investigated by Shi et al. (2018); Li et al. (2010).

Shi et al. (2018) investigated an HHC routing and scheduling problem with considering uncertain660

travel and service times, while, Li et al. (2010) deal with the stochastic travel and service time

in VRPTW. The detailed formulations of SPR model for HHCRSP can be found in Appendix A.

Meanwhile, the solution and simulation results are listed in Tables B.11 and B.12, which are located
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in the Appendix B.

As analyzed before, the instances RO-C2, RO-R2, RO-RC2 characterized with long time-665

windows, show strong robustness regardless of considering uncertain travel and service times or

not. According to Table B.12, these instances also illustrate strong robustness, which is quite

reasonable. Therefore, we care more about the instances with RO-C1, RO-R1 and RO-RC1, who

characterized narrow time-window. Because, these instances always meet with challenges of robust-

ness when ignoring uncertainties. The detailed analysis of the experimental results in Table B.11670

will be performed in this section.

To depict the experimental results in Table B.11 more clear, we obtain Figure 14 and 15 from

tables in Appendix B.
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Figure 14: The indicators of Vi obtained by RO model and SPR model for RO-R1, RO-C1, RO-RC1 type instances

with 25 patients.

As shown in Figure 14, there are totally four sub-figures, each of which describes the simulation

results of the indicators of Vs. For example, in sub-figure 1, the x-axis is the identification number675

of instances. Meanwhile, the y-axis represents the value of V0. As we find that, in almost all the

cases, the solutions obtained by RO (the blue line with a start on it) shows a higher value than the
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solution obtained by SPR (orange line with a circle on it). This situation reveals that the solutions

generated by RO show less delayed service than that produced by SPR. If we analogize to subgraph

1, we can get a similar conclusion.680
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Figure 15: The indicators of MET, DPS, and MDT obtained by RO model and SPR model for RO-R1, RO-C1,

RO-RC1 type instances with 25 patients.

Figure 15 shows another three significant indicators, MET, DPS, and MDT, which describe

the overall delay service situation. For example, in the first sub-figure, the X-axis also illustrates

the ID of instances, while Y-axis indicates the MET (Mean Extra Time). We find that, in almost

all the cases, the solutions obtained by RO tend to have less mean extra time than that achieved

by SPR. Therefore, we also summarize that the solutions obtained by RO show more advantage685

in Percentage of Delayed Service (DPS) and Mean Delayed Time (MDT) than that generated by

SPR.

To further demonstrate the comparison between the solutions obtained by RO model and SPR

model from the statistic perspective, we have performed a Friedman-test, which is a non-parametric

statistical test, initially proposed by Friedman (1940). This statistic test intends to detect differ-690

ences in treatments across multiple test attempts. A lot of researchers, such as Derrac et al. (2011);

Zafra et al. (2011); Osaba et al. (2016, 2019); Shi et al. (2018) has successfully applied Friedman-

test to effectively identify different approaches or models. Here, we target to identify two different

methods, which, of course, are RO model and SPR model.
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As a paradigm, hypothesis are always designed before carrying out statistic test. Here, two695

hypothesis are described as follows.

H0: The difference between the results obtained by the two models follows a symmetric distri-

bution around zero.

H1: the difference between the results achieved by the two models does not follow a symmetric

distribution around zero.700

We have performed Friedman-tests on indicators achieved by two models respectively. The p-

values are reported in Table 6.5. In the table, the average ranking located in the third row shows

the numerical value rankings between the solutions obtained by a model (either RO or SPR) for

each indicator. Here we should emphasize that V0, V1, V2, V3 are positive indicators to show

robustness. These indicators have the meaning that the higher the ranking, the stronger robustness705

will be. On the contrary, MET, DPS, and MDT are negative values, which indicates that the lower

the ranking, the stronger robustness will have. For each solution, the ranking will be either 1 or 2,

in which, rank 1 is senior to rank 2 just from the numerical value.

Table 9: The results of the Friedman-tests for the solutions obtained by the RO model and SPR model

indicators V0 v1 v2 v3 MET DPS MDT

models RO SPR RO SPR RO SPR RO SPR RO SPR RO SPR RO SPR

Avg. ranking 1.11 1.89 1.18 1.82 1.18 1.82 1.25 1.75 1.71 1.29 1.75 1.25 1.75 1.25

P-values 0.0002 0.0019 0.0010 0.0151 0.0019 0.0056 0.0038

As shown in Table 6.5, all the p-values illustrate significant scenarios (less than 0.5%, reject

H0). We obtain two conclusions from the above results. (1) Each p−value reveals that there is a710

significant differences between the results obtained by RO model and SPR model. (2) Given the

Avg. ranking values, we find the advantage of the indicators. So the solutions obtained by the RO

model have more strength in robustness than the solutions obtained by the SPR model.

To sum up, the HHCRSP formulated by RO model shows advantage in robustness than that

modeled by SPR.715

7. conclusion

Even though a large amount of work has been done for the HHCRSPs, the majority of them

belongs to the deterministic models, which can only make the final decision on the schedule satisfy
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the deterministic scenarios. According to the feedback from HHC companies, caregivers have to

deal with some uncertainties when carrying out a given schedule to visit their patients. This work720

formulates a robust optimization model for an HHC Routing and Scheduling Problem with taking

into account uncertain travel and service times. Specifically, the non-deterministic variables are

defined based on the theory of budget uncertainty, and then the arrival time of each caregiver is

rewritten as a complicated recursive function. After that, Gurobi Solver, Simulated Annealing,

Tabu Search, and Variable Neighborhood Search are adapted to solve the model respectively. Fi-725

nally, a series of experiments have been performed to validate the proposed models and algorithms.

Experimental results from Monte Carlo simulation highlight the strength of considering uncertain-

ties when modeling the problem. Additional, the influences of other characters in instances, like

the width of time-window, distributed location have also been empirically analyzed.

Finally, the comparison between the solutions obtained by the robust optimization model and730

stochastic programming with recourse is performed.

The results show that the proposed tabu search is able to produce effective solutions for the

generated instances. We conducted a comprehensive analysis of the results, and several insight

observations are summarized as follows.

(1) The solution of the scheduling and routing, which obtained by ignoring uncertainty of travel735

time gives very weak scheduling strategies that often lead to delayed services.

(2) Incorporating more vehicles into a routing program and reorganizing the sequence of cus-

tomer visits in each vehicle route can sometimes increase the robustness of a given routing strategy.

(3) Extremely robust routing strategies can be generated for parameters characterized by wide

time windows for customers and high capacity vehicles at low additional cost.740

(4) The instances with patients characterized by narrow time-windows show poor robustness in

the deterministic model, and achieving a high level of robustness is much more expensive, it takes

more vehicles and much longer distances.

(5) In the model of robust optimizations, the solutions with considering both travel and service

time uncertainty show more robustness than those solutions obtained only one uncertainty. How-745

ever, the solutions considering just one uncertainty, still show advantage than without taking into

account any uncertainties.

(6) Even if we consider the uncertainties, the model formulated from robust optimization shows

strength in robustness than that modeled by the stochastic model with recourse.
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However, like most of the studies involved robust optimization technique, for example, Hu et al.750

(2018); Wu et al. (2017), we have also assumed that the uncertainty set is characterized by the

theory of budget uncertainty. The parameters related to the uncertainty set were set the same

as the published work (Hu et al., 2018; Wu et al., 2017). Our model could be more close to the

practice if the parameters are designed from big data (Zhang et al., 2017; Choi et al., 2018) of the

HHC industry. So, the integration of robust optimization techniques with big data is one of our755

future work.

There are also many other interesting extensions to this work worthy of further consideration.

On the one hand, it is interesting to extend the problem with considering other practical constraints

like lunch-break time of caregivers, and flexible time-window of patients. On the other side, from the

perspective of improving solving methods, we can consider the incorporation of machine learning760

techniques with meta-heuristic to obtain more efficiency solutions (Schindl & Zufferey, 2015; Chen

et al., 2016b). Furthermore, sharing economic (Choi & He, 2019) also provides a promising way

to improve the efficiency of the operational management of HHC service.

Appendix A. Stochastic Programming model with Recourse

SPR is a common used technique for modeling the optimization problems when considering765

uncertainties. Anyone who is interested in the modeling of SPR can refer to the published work

(Li et al., 2010; Shi et al., 2018; Zhang et al., 2019). The main idea of SPR can be viewed as a

two-stage programming problem. Generally, in the first stage, planned routes and scheduling are

designed according to the current information; while in the second stage, travel time and service

time are realized, the expected penalty caused by delayed service is considered. This appendix770

mainly introduces the detailed formulations of the SPR model for our HHCRSP.

Appendix A.0.1. Mathematical model

Before presenting the SPR model, we would like to describe some new notations. Meanwhile,

some other notations, which have already been introduced in the RO model part, will be omitted

here.775
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Table A.10: new notations in the SPR model

notation meaning

µij average driving time between node i and j

σij standard deviation value of the driving time between node i and j.

ťij ∼ N(µij , σ
2
ij) stochastic variable of the travel time between patients i and j for a single trip.

µi the average service time for patient i

σi standard deviation of the service time for patient i

ťi ∼ N(µi, σ
2
i ) stochastic variable of the service time for patient i.

θ̌k extra working time for the caregiver of route k.

α̌ unit caregiver remuneration for the extra working time.

δ̌k: the total delayed time for all the patients in route k.

β̌ unit penalty cost for driving time after the due time bi.

U(Ě) = [u1(Ě), u2(Ě), . . . , un+1(Ě)]T is a (n+ 1)× 1 coefficient of recourse.

W (Ě) = [w1(Ě), w2(Ě), . . . , wn+1(Ě)]T is a (n+ 1)× 1 the value of a constraint violation.

E(· ) the recourse value caused by delayed service and extra working time.

Šik the beginning service time of patient i, who receives service from caregiver k .

The SPR model can be formulated as:

minσ ·
∑
k∈V

cfk
∑
j∈C

x0jk +
∑
k∈V

∑
i∈N

∑
j∈N

cijxijk + E[minU(Ě)TW (Ě)] (A.1)

S.T.

∑
k∈V

∑
j∈N

xijk = 1,∀i ∈ C, (A.2)

∑
i∈N

xihk −
∑
j∈N

xhjk = 0,∀h ∈ C; k ∈ V, (A.3)

∑
j∈C

x0jk ≤ 1,∀k ∈ V, (A.4)

∑
j∈C

xj(n+1)k ≤ 1,∀k ∈ V, (A.5)

∑
i∈N

∑
j∈N

xijk ≤ Q,∀k ∈ V, (A.6)
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di
∑
j∈N

xijk ≤ Dk,∀k ∈ V, i ∈ C, (A.7)

šik + ťi + ťij −M(1− xijk) ≤ ˇsjk,∀i, j ∈ N ; k ∈ V, (A.8)

ai ≤ šik,∀i ∈ N ; k ∈ V, (A.9)

šik − wi(Ě) ≤ bi,∀i ∈ N, k ∈ V, (A.10)

xijk ∈ {0, 1}, yij ≥ 0, zij ≥ 0, wi(Ě) ≥ 0,∀i, j ∈ N, k ∈ V, (A.11)

The objective function (A.1) is to minimize the total cost, which includes the salary of caregivers,780

transportation cost, and the expected value of recourse value caused by delayed service (the detailed

description is shown in Appendix A.1). Constraints (A.2)-(A.7) has already been explained in the

RO model, therefore, we omit the explanation. Constraints (A.8)-(A.10) are the time window

constraints. Finally, constraints (A.11) define the nature of the decision variables.

Remark As a special scenario, if U(Ě) = [u1(Ě), u2(Ě), . . . , un+1(Ě)] is a (n + 1) × 1 becomes a785

deterministic value, the model is called a Stochastic Programming with Fixed Recourse. In this

paper, we assume that, if i = n + 1, ui(Ě) = β̌, otherwise, ui(Ě) = α̌. This assumptions has also

been adopted by Li et al. (2010); Shi et al. (2018)

Appendix A.1. Recourse of the model

The recourse part in stochastic programming is generally formulated by altering the hard con-790

straints to the corresponding soft ones. According to the characteristic of our problem (Li et al.,

2010; Shi et al., 2018), the constraints related to travel and service times should be relaxed to soft

ones.

Furthermore, constraints (A.10) reveal that a recourse will be produced once a time window

constraint is violated. The recourse formulation includes two aspects as follows.795

(1) When i = 1, . . . , n, minwi(Ě) indicates that the delayed service has been provided for patient

i.
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(2) When i = n + 1, minwi(Ě) reveals that the caregiver finishes his/her task later than the due

closing time bn+1. In this scenario, caregivers have to deal with a extra working time for finishing

task.800

For a given route k ∈ V , let rk represent the set of nodes in route k, and nk = |rk| be the number

of nodes in route k. rk can be written as rk = {v0 = depot, v1, . . . , vj , . . . .vnk
, vnk+1 = lab}, in

which vj represents the jth patient in this route. According to the time window constraint, it must

hold Švj+1
= max(Švj + ťvjvj+1

+ ˇtvj
, avj+1

). The total delayed time for the route k can be computed

as:

δ̌k =
∑
j∈rk

max(Švj − brj , 0) (A.12)

Now, the extra working time for each caregiver can be computed by the following formulation.

θ̌k = Švnk+1
− bn+1 (A.13)

Finally, the recourse part of the stochastic programming is calculated as follows.

minU(Ě)TW (Ě) =
∑
k∈V

[α̌ · θ̌k + β̌ · δ̌k] (A.14)

The recourse formulation (A.14) is estimated by the Monte Carlo Simulation, which is shown in

Figure 5. To solve the problem, we adopt the TS-based heuristic algorithm. The detailed procedures

can refer to Li et al. (2010).

Appendix B. Experimental results

The tables of results are shown in landscape style of the next pages.805
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