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Abstract

In today’s competitive environment, one of the most critical objectives for Home Health Care (HHC)
companies is to meet the demand of patients in a timely fashion. According to the feedback from
HHC companies, caregivers have to deal with some uncertainties when carrying out a given schedule
to visit their patients. However, a majority of the previous work only considers the deterministic
models which ignore the uncertainties, and solutions obtained by these deterministic models are
usually less robust in case of any possible changes in practical situations. Inspired by this point,
in this work, we formulate a model for an HHC Routing and Scheduling Problem with taking into
account uncertain travel and service times, from the perspective of Robust Optimization (RO) .
Specifically, the non-deterministic variables are defined based on the theory of budget uncertainty,
and then the arrival time of each caregiver is rewritten as a complicated recursive function. After
that, Gurobi Solver, Simulated Annealing, Tabu Search, and Variable Neighborhood Search are
adapted to solve the model respectively. Finally, a series of experiments have been performed to
validate the proposed models and algorithms. Experimental results from Monte Carlo simulation
highlight the strength of considering uncertainties when modeling the problem. Additional, the
influences of other characters in instances, like the width of time-window, distributed location have
also been empirically analyzed. Finally, the comparison performed between the solutions obtained
by the stochastic model and the RO model also demonstrates the advantage of the RO model. This
work provides a valuable framework for HHC companies to make a robust schedule when arranging

the caregivers.
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A robust optimization for a home health care routing and scheduling
problem with consideration of uncertain travel and service times

Abstract

In today’s competitive environment, one of the most critical objectives for Home Health Care (HHC)
companies is to meet the demand of patients in a timely fashion. According to the feedback from
HHC companies, caregivers have to deal with some uncertainties when carrying out a given schedule
to visit their patients. However, a majority of the previous work only considers the deterministic
models which ignore the uncertainties, and solutions obtained by these deterministic models are
usually less robust in case of any possible changes in practical situations. Inspired by this point,
in this work, we formulate a model for an HHC Routing and Scheduling Problem with taking into
account uncertain travel and service times, from the perspective of Robust Optimization (RO) .
Specifically, the non-deterministic variables are defined based on the theory of budget uncertainty,
and then the arrival time of each caregiver is rewritten as a complicated recursive function. After
that, Gurobi Solver, Simulated Annealing, Tabu Search, and Variable Neighborhood Search are
adapted to solve the model respectively. Finally, a series of experiments have been performed to
validate the proposed models and algorithms. Experimental results from Monte Carlo simulation
highlight the strength of considering uncertainties when modeling the problem. Additional, the
influences of other characters in instances, like the width of time-window, distributed location have
also been empirically analyzed. Finally, the comparison performed between the solutions obtained
by the stochastic model and the RO model also demonstrates the advantage of the RO model. This
work provides a valuable framework for HHC companies to make a robust schedule when arranging
the caregivers.
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1. Introduction

Home health care (HHC) is a wide range of health care services that can be given in one’s home
for an illness or injury. This service is usually less expensive, more convenient, and just as effective
as one can get in a hospital (Alodhayani, 2017). A lot of common health care services such as
wound-care, injection, and elder-care could be provided by HHC companies (Tyan, 2010). HHC
service can be viewed as an essential form of supplement for health care in developed countries.
Taking this service can make the patient stay at home for treatment, and relieve the resource
shortage caused by the limited number of hospital beds. In recent years, the health care industry
has become one of the largest sectors of the economy in Europe and North America. With the
increase of the globally aging problem, there is no doubt that the HHC industry will continuously
develop rapidly.

In today’s competitive environment, the most critical objective for HHC company is to meet
the demand of patients in a timely fashion. According to the feedback from HHC companies, two
major operational issues are often encountered. One is delayed service for patients, and another
one is an enormous operational cost for HHC companies. Notably, the delay of service may not
only bring the tardiness penalty due to the patient dissatisfaction but may also lead to the im-
proper effects on treatment. When dealing with decreasing the cost, we find that one of the most
significant challenges in HHC domain is how to utilize the limited resources (both labor resources
and equipment) efficiently. Consequently, optimization of HHC Routing and Scheduling Problem
(HHCRSP) Fikar & Hirsch (2017) has become an essential issue for decreasing operational cost, as
well as improve delayed service.

Based on the considerable works related to the HHCRSP(Fikar & Hirsch, 2017), we can sum-
marize the basic procedures of HHC service into three phases. First, an HHC company collects
information from patients. Secondly, the decision-makers in the HHC company make an appropri-
ate schedule with entirely taking into account the data collected and the limited resources (labor
resources and equipment). Thirdly, the caregivers perform the schedule by driving a car to visit
the patients on his/her list, however, they have the authority to adjust little change in case of any
changes in practical situations.

Travel and Service Times (TST) are key elements when scheduling the HHC service. According
to the feedback from HHC companies, in the second stage of HHC routing planning, the decision-

makers tend to consider the TST as deterministic values. In the third stage, however, caregivers
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have to deal with various types of uncertainty involved in TST. Specifically, the common factors,
like varying road conditions, rush hours, weather conditions and driving skills, are always lead to
the uncertainty of the travel time. While, the service time for each patient is not always fixed as we
estimated due to practical reasons, such as diagnosing time, as well as parking situations. In the
third stage, despite the caregivers have the authority to adjust the strategy for visiting patients in
case the uncertainty encounters, the strategy may not be optimal to the current situation.

Service quality would be quite poor or even risky, if we neglect the uncertain TST in the planning
stage. According to Kuo et al. (2016), the uncertainties may lead to infeasible routes, delayed service
or even risky solutions. On the one hand, excessive delay service will reduce customer satisfaction,
thus losing the advantage in business competition. On the other hand, some diseases are very time
sensitive and must be serviced within a specified time. If delayed, it will have a negative impact on
the health of the patient. For example, health care services at patients are highly time-sensitive,
e.g., the provision of insulin injections, delays may result in severe consequences for the patients
(Fikar & Hirsch, 2017). Besides, in these situations, TST mostly depend on the practical traffic
environment and current weather, whose values are difficult to forecast in advance by the common
methods. Therefore, it is of great significance to consider the robustness of the solution when
modeling the vehicle routing scheduling in HHC.

Additionally, in the practice of HHC, different patients often come up with different types of
demand, such as injections and physical therapy, which require different types of medical skills
and qualifications (Akjiratikarl et al., 2007). As a profit-making organization, it is difficult for
HHC companies to have enough money to provide the training of all the medical skills for each
caregiver. Therefore, to make full use of the limited resources, HHC companies tend to divide
caregivers into different levels according to their skills and qualifications. To guarantee the quality
of service, caregivers with high-level skills can serve the patients who require low-level demands,
while caregivers with low-level skills cannot provide any services to patients with high-level demand.
The skill requirement constraints were firstly proposed by Yuan et al. (2015).

In an attempt to find an efficient routing and scheduling strategy for real-world application of
HHC, we study the HHCRSP with skill-requirement by taking into account the TST uncertainties.
Several techniques can be used for formulating optimization problems when dealing with uncertain-
ties, such as stochastic programming with recourse (Li et al., 2010; Shi et al., 2018; Zhang et al.,
2019), robust optimization (Hu et al., 2018), etc.
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The robust optimization method assumes that the uncertain parameters belong to a limited set
of uncertainties. For a very general set of uncertainties, the resulting robust counterpart can have
a complexity that is comparable to the original problem. For example, a linear program (LP) with
uncertain parameters belongs to a set of polyhedral uncertainties with deterministic issues, which
are LPs of polynomials of the size of the original problem (Ben-Tal & Nemirovski, 1999). Our work
addresses the HHCRSP from the perspective of robust optimization (RO) model, from which, we
attempt to find a robust strategy for an HHC company when arranging the HHC service. To our
best knowledge, there is no research investigated HHCRSP with uncertain travel and service times,
from the perspective of robust optimization.

The studied problem is quite complicated, due to the reason that it has the attribute of vehicle
routing problem, skill-requirement assignment, and robust optimization. To solve the problem, we
develop a Simulated Annealing (SA), a Variable Neighborhood Search (VNS) and a Tabu Search
(TS) respectively.

This work contributes to the home health care routing problem with the following aspects. (1)
A Robust optimization model for home health care routing problem with skill requirement and
travel and service uncertainty has been proposed. (2) To solve the problem, we reduced the Robust
model to the deterministic model, then Gurobi, SA, VNS, and TS have been adapted to solve
the deterministic model directly. (3) TS has been used to solve the robust model. (4) Numerical
experimental results have highlighted the advantage of taking into account the uncertainties.

The remainder of the chapter is organized as follows. Section 2 summarizes the recent work
related to our problems, and section 3 presents the mathematical model. Proposed approaches are
explicitly illustrated in Section 4. After that, a series of experiments are discussed in Section 5.

Finally, the paper terminals with conclusions and perspectives.

2. Literature review

Di Mascolo et al. (2017) summarized that most of the studies involved in HHC routing and
scheduling problems are closely related to the Vehicle Routing Problem (VRP), which is a funda-
mental issue in transportation planning and logistics. So, in the literature section, we firstly discuss
some of the recent work related to VRP, then we analyze deterministic HHCRSP. Finally, uncertain

models for HHCRSP are investigated.
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The basic model of VRP is called Capacitated VRP (CVRP), which is an extension of the well-
known traveling salesman problem. CVRP is a classical combinatorial optimization and integer
programming problem. The main objectives of the CVRP is to find the optimal routes with multiple
vehicles visiting a set of locations exactly once. In recent years, CVRP and its variants have caused
a widespread concern from researchers, because these models have vast applications in many fields,
such as retail industry, parcel delivery and home health care services. On the other side, due to the
nature of these problems are NP-hard, which is very challenging to be solved, many researchers have
developed algorithms for solving them. These algorithms can be divided into heuristic algorithms
and exact algorithms.

Wang et al. (2018) addressed the cooperation strategy for the green pickup and delivery problem.
In this study, they analyzed the situations in which compensation is needed and develop the lower
bound of the compensation. Further, they proposed an exact method to calculate the actual
compensation and the profit distribution based on cooperative game theory. The proposed exact
method also applied for solving largest scale instance in Li & Lim benchmarks. Yu et al. (2019)
proposed an improved branch & price algorithm to accurately solve the heterogeneous green fleet
vehicles routing problem with time windows. Sun et al. (2019) designed the first exact algorithm for
solving a variant of the heterogeneous GVRP. This exact algorithm is based on a set partitioning
model and the key characteristics of its optimal solution.

On the other hand, Lai et al. (2016) developed a tabu search heuristic that efficiently handles
the parallel arcs for solving a time-constrained heterogeneous vehicle routing problem on a multi-
graph. Luo et al. (2016) proposed an adaptive large neighborhood search heuristics for the vehicle
routing problem with stochastic demands and weight-related cost. Li et al. (2018) addressed the
generalized rollon-rolloff vehicle routing problem, which is formulated by a mixed integer linear
programming model. The Benders decomposition algorithm involving Pareto-optimal cuts and
Benders decomposition-callback implementation, and a two-stage heuristic involving the savings
algorithm followed by a local search phase is provided.

HHC has arisen widespread attention in the last decade, and the majority of the work is per-
formed from the perspective of the medical skills, medical equipment, ethics, and operations man-
agement. This section reviews the HHC from the perspective of operational management (OM),
specifically, HHCRSP is one of the most essential branches in the study of OM.

Begur et al. (1997) are among the earliest to investigate the issue of HHCRSP, in their work, a
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decision support system for nurse scheduling in HHC has been presented. Mankowska et al. (2014)
tackled daily planning of HHC service. The plan takes into account the individual service demand
of patients, the personal qualifications of the staff and any interdependencies between the different
service operations. Nickel et al. (2012) considered the HHCRSP as two parts. Firstly, they consider
the HHCRSP which seeks for a weekly optimal plan. Secondly, in practice, a master schedule is
generated from the incorporate operational changes.

In the past five years, HHCRSP has become one of the hottest research points in the area of
operations management. Liu et al. (2013) considered a vehicle scheduling problem encountered
in home health care logistics. It concerns the delivery of drugs and medical devices from the
home care company’s pharmacy to patients’ homes, delivery of specific drugs from a hospital to
patients, pickup of biosamples and unused drugs and medical devices from patients. After that, Liu
et al. (2014) further studied a periodic vehicle routing problem encountered in home health care
(HHC) logistics. It extends the classical Periodic Vehicle Routing Problem with Time Windows
(PVRPTW) to three types of demands of patients at home. A complicated Tabu Search algorithm,
integrated different local search schemes were designed to solve the proposed model. To further
improve the obtained optimal solution, they utilized the strategy with both feasible and infeasible
in the local search.

Decerle et al. (2018) studied the multi-objective HHC problem with the taking in to account
applicability of the planning. To solve the proposed issue, a memetic algorithm is developed ac-
cording to the constraints of the model. Fathollahi-Fard et al. (2018) addressed the bi-objective
green HHC with consideration of green emission and environmental pollution.

Even though considerable works have been addressed in HHCRSPs, only a few works have con-
sidered the uncertainties in HHC. The recent works on the HHC with consideration of uncertainties
are summarized in Table 1.

Yuan et al. (2015) addressed a HHCSRP with stochastic service times and skill requirements.
A stochastic programming model with recourse is proposed to formulate the problem in which the
expected penalty for late arrival at patients is considered. Liu et al. (2018) studied the HHCRSP
by considering the caregiver’s travel times and service times for patients are stochastic. A chance
constraint is introduced to ensure the on-time service probability for the patients. Such stochastic
traveling and service time and the chance constraint further complicate the problem. In their

paper, a route-based mathematical model is introduced. A branch-and-price (B&P) algorithm
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and a discrete approximation method are combined to solve the problem. Herein, effective label
algorithms are designed to generate negative reduced cost routes. The efficiency of the algorithm
are improved by employing three acceleration strategies. The experiments on test instances validate
the performances of the proposed B&P algorithm and demonstrate the necessity of considering the
stochastic of travel times of home-caregiver and service times to the patients.

Lanzarone & Matta (2014) investigated a robust strategy for home care optimization problem.
Specifically, they studied an analytical structural policy to address the issue of nurse-to-patient
assignment in home care. This policy explains the randomness of requests from patients already
assigned to nurses and requests from new patients requiring assignments. Finally, this policy was
compared to other previously developed approaches and analyzed empirically. The proposed model
in this study differs with the one proposed by Lanzarone & Matta (2014) in the following aspects. (1)
Our model considers a more general issue in routing and scheduling problem of HHC logistics, which
covers travel and service times, skill-requirement constraints. However, Lanzarone & Matta (2014)
just considered a nurse-to-patient assignment problem, without considering patients’ time window
and skill-requirement assignment, which are essential factors in HHC services. (2) Lanzarone &
Matta (2014) only gave the policy to enhance the robustness of the operational performance of
home care, instead of formulating a robust optimization model. But, we formulate our problem by
robust optimization technique.

Agra et al. (2013) are among the earliest researchers to address a robust optimization problem
for VRP with time windows. They proposed two formulations for the robust optimization problem,
which were based on different robust approaches. However, the study of Agra et al. (2013) only
considers the uncertainty of travel time. Hu et al. (2018) addressed a robust optimization model
of vehicle routing problem with taking into the uncertain demand and travel times. In the VRPs,
demand belongs to the capacity constraints, while travel time involves time-window constraints.
The two constraints are relatively independently to a certain degree. In this study, the robust
home health care problem by considering the uncertain travel and service times simultaneously was
investigated. In the proposed model, travel and service times are two independent variables, which
show up in the same constraints. So, the problem considered in this study, superposition of the
uncertain travel and service times makes the robust version of time-window more complicated than
the model proposed by Hu et al. (2018). Besides, our model also considered the characteristic of

HHC logistics by describing the skill-requirements constraints.
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Table 1: Recent research on HHCRSP with considering uncertainties

Papers factors Modeling approach Solving Method
Rodriguez et al. (2015) uncertain demand stochastic programming Branch & Cut

Shi et al. (2017) fuzzy demand fuzzy chance constraint programming Hybrid genetic algorithm
Yuan et al. (2015) stochastic service time stochastic programming Branch & Price

Shi et al. (2018) stochastic travel and service times stochastic programming model with recourse Simulated annealing

From Table 1, we can find that researchers often use two-stage stochastic programming or a
chance-constrained programming model to solve these problems. However, both methods have
two distinct drawbacks. (1) These methods assume that the distribution of known parameters,
however, in real-life, the history data is inferior to estimate the parameter. (2) Neither of these
modeling methods considers the robustness of the solution as a goal. So, these do not guarantee
the anti-interference of the final solution.

To sum up, our review of the abundant literature reveals the recent research related to HHCRSP.
A majority of work involved HHCRSP only considers the deterministic model without considering
the commonly encountered uncertainties. Consequently, the decision made from these solutions
show less robust in practical situations. Even though a few works have been done on uncertainties
in HHCRSP, they did not consider the problem from the perspective of Robust Optimization. Thus,
in this paper, we investigate an HHCRSP with taking into account the uncertain travel and service

times simultaneously from the perspective of robustness optimization.

3. Mathematical model

Section 3.1 briefly illustrates the assumptions for the studied problem. In section 3.2, the
deterministic MIP model is proposed to describe the HHCRSP with skill requirements. After that,
in section 3.3, we develop the constraints of travel and service time uncertainties by utilizing the
theory of budget. Finally, the robust optimization model for HHCRSP with skill requirements and

travel and service time uncertainties is proposed in section 3.4.

8.1. Assumptions

(1) Each caregiver starts a journey from the depot and ends up the trip at the laboratory.
(2) The caregivers have several different levels in term of their skills and qualifications.

(3) The travel time between every two vertexes is uncertain .
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(4) Each caregiver has a maximum limitation number of the patients in his/her task list.

(5) The service time for each patient is uncertain.

3.2. MIP Model

Some frequently used notations are introduced before the model construction.
V. set of all vehicles.
K: the number of available vehicles in set V.

C: set of all patients.

1=0,1,2,...,n,n+1: the index of patients. Especially, ¢ = 0 represents the index of unique depot,

and n + 1 depicts the lab.
N: set of all patients, namely N = CU {0} U{n + 1}.

[a;, b;]: the time window for patient i. Especially, when ¢ = 0 and ¢ = n + 1, a; is the opening time

of the depot, while b; is the closing time of the laboratory.

cfy: the fixed cost for kth caregiver.

o: the weight to balance the fixed cost of caregivers and the transportation cost.
d;: the level of service for the ith patient’s demand.

Dy.: the level of skills for the kth caregiver.

@: the maximum number of patients could be visited by each caregiver.

cij: the transportation cost between patient ¢ and patient j.

t;;: the travel time between patients ¢ and j for a single trip.

t;: the service time for patient i. Here we need to pay more attention to distinguish between ¢; and

tij.
decision variables:

1, if vehicle k travels from node i to node j, in which i # j;
Tijk =
0, otherwise.

s;k: the beginning service time of patient 3.

The MIP model can be formulated as:

Deterministic Model: min o - Z cfr Z ZTojk + Z Z Z CijTijk

kev jec keV ieN jeN



s.t.

Z Z Tijk = 1,Vi € C, (2)

kEV jEN
inhk_thjk:QVhEC;kEV, (3)
iEN JEN
> o < LVEEV, (4)
jeC
Z Ttk < L,VE €V, (5)
jec

SN @k <QVkeV, (6)

ieN jEN
d; Z Tijk < Dp,VkeV,ieC, (7)
JjEN
Sig +ti +ti; — M1 — xiji) < sji,i,j € NykeV, (8)
a; < sip < b, it € N;keV, (9)
Tijk € {0,1}, i 2 0,25 2 0,i,j € N,k €V, (10)
235 The objective function (1) aims at minimizing total travel cost and the fixed cost of caregivers.

Constraints (2) ensure that each patient is visited only once. Constraints (3) guarantee that a
caregiver leave the patient after visiting this patient. Constraints (4)-(5) denote that every caregiver
starts from the HHC depot, visits several patients and ends at the laboratory. Constraints (6)
indicate that the total number of patients served by a caregiver cannot exceed the given constant.
20 Constraints (7) describe the skill requirements assign strategy. Constraints (8)-(9) illustrate that
the service cannot exceed the limitations of the time windows. Constraints (10) mean that decision

variables are binary.

10
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3.3. the travel and service times uncertainty

As discussed in the introduction section, real-world HHC services are often subject to a variety of
uncertainties. Therefore, a deterministic HHCRSP, which ignores the uncertainty in data, may not
be an appropriate choice; while a robust optimization model, which does consider uncertainty, may
be more suitable and reasonable for decision-making. Under the guidance of Robust optimization
technique originally proposed by Ben-Tal & Nemirovski (1999), in this work, we consider a robust
version of the HHCRSP with both travel and service times uncertainty. To effectively represent the
uncertain parameters, robust optimization requires a practical and clear definition of the uncertainty
sets.

As we have mentioned before, our work mainly involves two kinds of uncertainties. Now, we
define two types of uncertainties sets for kth vehicle: namely the patient’s service time uncertainty
set U¥ and the travel time uncertainty set UF (Hu et al., 2018; Wu et al., 2017).

We assume that the travel time t:-j on each arc (i, ) belongs to an uncertainty set U, without
additional distribution assumptions. Meanwhile, we assume the uncertain service time ¢; on each

patient 7 is with respect to the uncertainty set UF.

UF = (i e RV, =% + o, Y | <T%,Jag| < 1,T% = [6,|N*]], Vi € N*} (11)
iENk

Formulation (11) describes the uncertainty set Us = xpexUPF, which illustrates the service
time for ith patient in route k. N* represents the set of patients in a route served by caregiver k
(sometimes we can also call it as route k). £; describes the uncertain service time for patient 4, and
1; represents the nominal service time for patient i. «; is an auxiliary variable. T'* is a variable
from the budget uncertainty, and its value controls the level of the service uncertainty. 6, € [0,1] is
a coefficient of the service time uncertainty budget. [0,/N¥|] is the least integer value greater than

the real number 6,|N*|.

~ k g - ~ . .
UF = {ti; € Rt =15 + Bijtis, Z Bij| <TF, 18| < 1,TF = [0,]AM[],V(i, ) € A} (12)
(i,5)€A¥

Similar with equation (11), function 12 reveals the uncertainty set U; = xpcxUF, which illus-

trates the travel time for ith patient in route k. A* represents the set of arcs in route k. t;j describes

the uncertain travel time for patient ¢, and ¢;; represents the nominal travel time between vertex

11
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i and j. B; is an auxiliary variable. T'% is a variable from the budget uncertainty, and its value
controls the level of the service uncertainty. 6; € [0, 1] is a coefficient of the travel time uncertainty

budget. [0;|A¥|] is the least integer value greater than the real number 6;|S¥|.

3.4. Robust optimization version

Since the uncertainty of the travel and service times affects the feasibility of a solution, our
robust optimization seeks to obtain a solution that can be feasible for any realization. However,
complete protection from adverse realizations comes at the expense of a severe deterioration of the
objective function. Therefore, the uncertain parameter sets over which the worst cases are computed
should be chosen to achieve a trade-off between performance and protection against uncertainty.
(Chen et al., 2016a).

According to the proposed route-dependent uncertainty sets and the definition of robust opti-
mization, we can extend the deterministic model into the robust optimization model by rewriting
the objective function and constraints of time-window.

Robust HHC Routing model:

min sup o - Z cf Z Tojk(s,t) + Z Z Z CijTiji(s,t) (13)

scext(Us),t€eatUs) oy jec keV ieN jEN
§ik($,t) +t; + tij — M(l — xijk) < éjk(s,t),i,j c N; ke V, S € e:ct(us),t c ext(l/{t) (14)
a; < §ik(s,t) <bj,i € N;keV,secext(Us),t € ext(Uy). (15)

in which, ext(Us) and ext(U;) are sets that contain all the extreme points of sets Us and U;
respectively. Objective function 13 present that the goal of the model is to minimize the total cost
among the worst cases. Constraints 14 -15 is the time-window constraint with the uncertainties.

13 is a serious formulation which is from the original definition of the Robust Optimization.

4. Calculating the largest possible arrival time

Infeasible solutions are permitted in the evolution of searching the solutions, because, in tightly

constrained problems is easily trapped into local optimal. Penalties are added to the objective

12
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function for violated constraints. As known, in a deterministic model, the delayed time, which
is the gap between latest due time and the arrival time of the vehicles, can be used to calculate
the penalty. However, this idea could not be transplanted directly to the RO model, in which the
arrival time may not a specific value. Thus, the largest possible vehicle arrival time at each patient
on a route can be used to calculate the penalty. If the latest possible vehicle arrival time for any
customer node falls behind the scheduled time window, this route gets a positive value as a penalty;
otherwise, the penalty value is zero.

The arrival time for each caregiver at a patient’s home is a quite significant value in HHCRSP.
In the deterministic model, the computing of the arrival time is quite simple. However, when it
comes to the robust optimization version, this becomes much complicated. In this section, based
on the theory of budget, we develop a method to calculate the largest possible arrival time, which
is quite complicated.

For a given route k € V', let ry, represent the set of nodes in route k, and nj = |rg| be the number
of nodes in route k. ry can be described as r, = {vo = depot,v1,...,v;,....Vn,,Un,+1 = lab}, in
which v; represents the jth patient in this route. According to the time window constraints (14),
we must have §UH1 = max(gvj + %vvjvjﬂ + t/vvj, Ay, i)

Let S*(v;,T%,TF) be the largest possible arrival time for v; with the parameters I'* and T'¥.

13



Now, the largest possible arrival time can be written as a recursive function (16).

max(ay,, Sp;_; + to,_jv; + tv;_q) 1<i<nTF=T%=0;

max(avivsk(viflvovrf - 1) +¥'Ui—1vi + fvi—lvi

oy S* (01, 0,TF) + 40, +T0,_,) 1<i<nTk=0,TF>0;

max(ay,, S¥(v;_1,T% —1,0) + 4, 0, + to, ,

oy S*(0i—1, T*.0) + 0 +T0,_,) 1<i<nTF=0,TF>0;

S*(vi, T%,TF) = max(ay,, S (vi_1,TF — 1L,TF — 1) + 7,0, + o, 0,
+tU1171 + 1?111:71’ Sk(vi—lv Flsca Ff) + Evi—lvi + tUz‘—l’ Sk(vi—lv

FI; - 17]-—‘?) +f”i—1vi +t'Ui—1 +tA7Ji_1a

SE (1, TETF = 1) + Ty, 0, + Loy, + Tor ) 1<i<n,TF>0&IF > 0;
Sk (v;, TF —1,TF) rF >,
Sk (v;, TF TF — 1) IF >,
—00 otherwise
(16)

As mentioned in the beginning of this section, the objective function is transfered to the penalty-
ws  based formulation. The objective function f(R) in (17) is utilized to calculate the objective value of
solution R. In (17), cost(R) is computed by (1), and J; indicates the penalty factor for a violation

of time window.
|7k |

f(R) = cost(R) + 6 Y Y max(0,S*(v;, T¥,TF) — by,) (17)

keK i=1
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5. Proposed approaches

According to the previous analysis, we found that the sub-problem of the deterministic model is
a vehicle routing problem. Because the vehicle routing problem is an NP-hard problem, there is no
doubt that this problem is also an NP-hard problem. When the size of a instance becomes slightly
larger, the exact algorithm and commercial software seem powerless to solve the model. Inspired
from the previous related works (Eshtehadi et al., 2018; Braaten et al., 2017; Solano-Charris et al.,
2015; Adulyasak & Jaillet, 2015), we adopt heuristic methods to solve the proposed deterministic
model and the robust model. To show the efficiency of the heuristics, we design three heuristics
which are Simulated Annealing, Tabu Search, and Variable Neighborhood Search, to solve the
proposed models.

For each proposed algorithm, we first illustrate the basic operators of the algorithms, and the

detailed pseudo is described to illustrate the specific procedures.

5.1. Simulated Annealing

Simulating Annealing (SA) is a meta-heuristic which was first proposed by N. Metropolis in
1953. The basic idea for simulated annealing is based on the similarity between the annealing
process of solid matter in physics and the general combinatorial optimization problem. The physical
annealing process consists of three parts: heating process, isotherm process, and cooling process.
Compared with the traditional Hill Climbing algorithm, SA has better ability to get rid of the
local optimal solutions. So far, SA has been widely used in engineering, such as VLSI, production
scheduling, control engineering, machine learning, neural network, signal processing, and et. al.
In this chapter, SA is adapted to solve the proposed models. The detailed of the operators and

procedures are described in this section.

5.1.1. The representation of the solution

In the heuristic algorithm, the representation structure of the solution has an important signifi-
cance. In this study, we fully consider the characteristics of the problem. We use a commonly used
integer to encode the routes. ”0” represents the path of segmentation. The other integers corre-
spond to patient’s number. For example, the string “24 18905 6 7 3 0” could be represented in
Fig.1.
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depot |—P» 2 |—P 4 —P 1 P 8 —P 9 —P lab

route 1

route 2 depot —P» 5 B 6 | 7 | 3 »‘ lah‘

Figure 1: The representation a solution

5.1.2. Initial solution

The initial solution is obtained from a simple greedy algorithm. Firstly, the patients are simply
divided into different groups according to their types of demand. Then, for each patient group with
the requirement at level i, we employ the PFTH method, proposed by Solomon (1987), to get the
initial route route_set_i. Finally, the initial solution for the whole problem is obtained just by merely
combining the routes. The specific procedures for generating the initial solution are described in

Figure 2.

PFIH

| |
Patients (level 1) E— routes_set 1

| |
Decomposition = Patients (level 2) ——p»  routes_set_2

Patients with different > ‘ I nion
levels of skill requirements

initial_sol={route_setl,route_set2,

| .
route_set i, route_set L}

| |
Patients (level L) ‘4> routes_set_L
| | |

Figure 2: The procedure of generating initial solution

5.1.3.  Neighborhood structure

The new solutions are generated from the neighborhood of the current solutions. In this work,
six kinds of neighborhood structures are proposed. According to the behaviors of the nodes, we can
classify the neighborhood into two categories, namely inter-route neighborhoods and intra-route
neighborhoods. This section mainly depicts the procedures.

Three inter-route neighborhoods occur between two randomly selected routes.

inter-route insert: a vertex is randomly removed from a route, and then insert to another
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route.

inter-route swap: two vertices are randomly picked out from two routes respectively, then swap
the two vertices.

inter-route 2-opt: two routes are broke down simultaneously, then reconnect to the other part
from the breakpoints.

Three intra-route neighborhoods are only involved in one randomly selected singe route.
intra-route insert: a vertex is removed from the route and then insert to a different position of
this route.
intra-route swap: two vertices are randomly picked out from the route and then exchange their
positions.
intra-route reverse: two vertices are randomly selected as cutting points, then reverse the se-

quence of vertices between the two cutting points.

5.1.4. Pseudo of SA

In this section, we first introduce some frequently used parameters, and then present detailed
procedures of the algorithm.
Ty: the initial temperature.
k: index of the iteration.
Ty: the temperature in kth iteration.
Sg: initial solution.
sbest: the global best solution obtained so far.
w: the Boltzmann’s Constant value.
seurrent: the current solution.
s™¢": the new solution obtained by a local search operator.
r: a random value.

The main procedures for SA are shown in Algorithm 1. It starts from an initial solution sg.
In the process of evolution, the neighborhood A/ (s) generates a random solution under a given
temperature (see line 6). After that, in line 7, the gap between the objective values of a new
solution and the current solution. In line 8 - line 12, the new solution replaces the new solution
once the gap is less than 0. Otherwise, in line 13 - line 17, the new solution is accepted in a

probabilistic way. The global best solution is updated once the current solution is better than the
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0 current global best solution. The algorithm terminals once it reaches a temperature which is less

than the given small number ¢, finally, the global best solution is output.

Algorithm 1: Hybrid Simulated Annealing Method

1 Obtain the initial solution sy by using PFIH.

2 Set the parameters for the simulated annealing, Ty, EL.w, €. Set s%°5t « 5.

3 Tk (—TO;

4 while T, > ¢ do

5

6

10

11

12

13

14

15

16

17

18

19

20

21

22

output s

current best.
s < ghest,

s"eW < N(scurrent). // Pick a random neighbour from the current solution as

a new solution

A« f(s"ev) — f(scvrrent). // calculate the gap between the two objective
values

if A <0 then

seurrent ¢ gnew. // accept the new solution directly if the new solution
is better than the current solution.
if f(scurrent) _ f(sbest) < 0 then

gbest « geurrent // ypdate the global best solution.

end
else
Randomly generate r € [0, 1];
if » < eTv then
geurrent  gnew // accept the new solution in a probability if it is
worse than the current solution.

end

end
k< Ek+1;
Ty < wx*xTy // update the Tj.

end

best.
9
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5.2. Tabu Search

Tabu Search algorithm is a meta-heuristic algorithm proposed by Glover in 1986. Starting from
an initial feasible solution, it selects a series of specific moves as a heuristic to improve the quality
of solution. To avoid falling into the local optimal solution, TS uses a flexible ”memory” technique
to record and select the optimization process to guide the next search direction.

Tabu Search (TS) has been implemented for vast applications of combinatorial optimizations
(Garcia et al., 1994; Taillard et al., 1997; Escobar et al., 2014; Silvestrin & Ritt, 2017). In this
section, we adapt the TS to solve the proposed model.

Our deterministic HHCRSP with skill-requirement can be viewed as a combination of VRPTW
(Shi et al., 2017) and skill-assign problem. Time windows constraints, skill-assign are quite crucial
constraints. The initial solution is obtained by utilizing the procedure 2 and the representation of

a solution is the same with that used in the SA.

5.2.1. Neighborhood

As frequently used in many works (Wang et al., 2015; Silvestrin & Ritt, 2017), A—inter-exchange
is a main local search operator applied in TS. The operator is conducted by interchanging patients
between the routes. Each time, a pair of routes (rp,r,) is selected, and the searching for the
interchanging of patients is conducted sequentially. In this work, we consider the case A = 2; this
indicates that at most two patients will be interchanged between each pair of routes. Generally
speaking, the operations of 2-interexchange could be described as: (0,1), (0,2),(1,1),(1,2), (2,1),(2,2).
Let us explain the operator by giving an example. The operator (1,2) on a route pair (rp,rg)
illustrates that, 2 patients will be shifted from r, to r,, and 1 patient will be shifted from r, to rq.
The others are defined similarly. Only feasible solutions are considered in the process of generating

new solutions.

5.2.2. The structure of tabu list

Let us consider that there are n patients, k vehicles, and the tabu list T'L is designed by a n x k
matrix which is shown in Figure 3. The value of T'L(i, 7) indicates that inserting patient ¢ to vehicle
j is forbidden in the next max(TL(i,7),0) times. Anyone who is interested in this kinds of tabu
list can refer to Silvestrin & Ritt (2017)

Now, Let us give an example to explain how the tabu list works in our algorithm. In Figure

3, TL(1,1) = —5 < 0 indicates that move patient 1 to a route served by caregiver 1 (also can be
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marked as route 1 for short.) is allowed in the following iteration; however, TL(3,2) = 3 reveals

that the moving patient 3 to a route 2 is impossible unless the aspiration encounters. This type

of tabu list is quite simple, understandable but can represent all the movement of the inter-route.

Besides, this structure of the tabu list is also convenient for updating the value of the table.
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The array of the tabu list
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Figure 4: The array of the frequency list

5.2.3. Intensification and Diversification

The traditional simple TS is also easily trapped into the local optimal solutions. To overcome

this issue, Glover (1986) proposed two senior operators which are intensification and diversification,
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to benefit searching better solution. In this TS, we utilize the frequency-based intensification and
diversification operators to guide the searching. The frequency list is established for recording the
frequency of the used moves. Figure 4 describes a frequency list F'L. FL(i,j) = p indicates that
the movement of inserting patient 7 to vehicle j has occurred for p times.

Intensification strategies are based on the modification of choice rules to encourage the his-
torically good combinations of motion and solution features. They can also initiate a return to
attractive regions to search for them in more depth. In our research, for each specific iteration, we
try to move to the highest-frequency direction.

Diversification is a primary operator to guide the search into new regions. Frequency-based
diversification is realized by penalizing the high frequency of used moves.

current — Get P represents the available moves

Let s be a solution candidate generated from s
excluding the forbidden ones. p’ indicates the moves from s "t to s. g(s“ "t p’) is used to
calculate the frequency of the movement from FL. A is the value of current iterations. «a € [0, 1] is
a random number. Consider that the current solution is a local optimum whose objective value is

f. We choose the best move according to the modified objective function f’ from equation (18).

fl(s) = f)(L+a Y g(s™mem,p)/N), (18)

p'epr
5.2.4. Route refinement
The most difference between the our TS and the work of Cordeau et al. (2001) is the way to
utilize intra-route optimization mechanism. During the process of search, in our work an intra-route
step is applied to each route after every 50 iterations.
The Route refinement operator is applied to the intra-route. We use the most common used

2-opt, 3-opt, inverse operators to optimize each route.

5.2.5. Aspiration criterion and stopping criterion

The aspiration criterion overrides the tabu status of a move (r/, r) if this move yields a solution
s’ such that f(s’) is better than the global best solution found so far. We prefer to accept this
movement no matter whether it should be forbidden because this situation would not like to cause
the cycling of searching. The TS terminates when the best solutions s* has failed to improve the

global best solution in p iterations.
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5.2.6. The pseudo code of TS

The detailed description of TS is depicted in Algorithm 2. Our TS starts from the initial solution
89, which is obtained based on the procedures in the Figure 2. After that, in line 2, we initialize
the best solution and current solution as sg, and we set the tabu list and the frequency list as an
empty matrix. Line 3-18 gives the detailed procedures for improving the best solution s*. The tabu
list and the frequency list are updated after each iteration. And the TS terminates when it reaches

the stopping criterion. Finally, the algorithm returns to the best solution and the current solution.
Algorithm 2: The pseudo code of TS

1 Input: initial solution sg;

2 Initialize Current best solution s* < sy, current solution s ¢ < s,. Initialize tabu list
TL, frequency list F'L, tabu length L, and the parameter of terminal criterion.

3 while It does not reach the stopping criterion do

4 | for Vs"w e N(s®wrent TL,,FLy) do

5 if the solution needs intensification then
6 conduct intensification operator.

7 end

8 if f(s"") < f(s*) then

9 accept the s™¢" by aspiration criterion.
10 else

11 if f/(smew) < f/(seurment)& s™€V is not forbidden then
12 Scurrent «— snew;

13 end

14 end
15 end

16 update the tabu list T'L;

17 update the frequency list F'L.

18 end

19 Return: sx and s®%ment,

5.3. Variable Neighborhood Search (VNS)

The Variable Neighborhood Research (VNS) is a classical meta-heuristic which is proposed

by Mladenovi¢, Hansen, 1997. It is usually applied to solve a set of combinatorial optimization
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problems (Bortfeldt et al., 2015; Sarasola et al., 2016). The main idea of the variable neighborhood
search algorithm is to apply multiple different neighborhoods for the process of searching. First,
the smallest neighborhood is employed to obtain a better solution. When the solution cannot be
improved, switch to a slightly larger neighborhood. If it can continue to improve the solution,
return to the smallest neighborhood, otherwise continue to switch to a larger neighborhood.

The detailed procedures of VNS is given in Algorithm 3. Our VNS also starts from the initial
solution sg. In line 2, we initialize the best solution as sg, and set the parameters for the algorithm.
Lines 3-26 give the detailed procedures for improving the best solution s*. The procedure in line 7
illustrates the switching of neighborhood structure. And, lines 9-17 show the strategy of generating

new solutions. VNS terminates when it reaches the stopping criterion: the best solution has non-
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improvement for certain iterations. Finally, the algorithm returns the best solution.

Algorithm 3: The pseudo code of VNS

1 Input: initial_sol.
2 s* < initial _sol

3 while It does not reach the stopping criterion do

4 k+1
5 j < random(operators);
6 while k < k.« do
7 Scurrent < shaking(j, s*, k)
8 improving_flag < true
9 while improving_flag do
10 Snew  LocalSearch(scyrrent)
11 if f(scurrent) < f(Snew) then
12 Scurrent < Snew
13 else
14 improving_flag < false
15 end
16 end
17 end
18 if f(Scurrent) < f(s*) then
19 8% < Scurrent
20 k+1
21 else
22 k+—k+1
23 end
24 end
25 end
26 end

27 Return: sx and s¢%ment,
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6. Experiments

To validate the proposed models and algorithms, we have performed several series of experi-
ments. In this section, firstly, corresponding instances are introduced in section 6.1, then section
6.2 reports the experimental results of the deterministic model which is solved by Gurobi Solver,
SA, VNS, TS respectively. After that, the detailed experiments and analysis of robust model are
presented in section 6.3. Finally, the comparison between the solutions obtained by the robust
optimization model and stochastic programming with recourse is performed. All the heuristic al-

gorithms are implemented in Java.

6.1. introduction to the instances

To the best of our knowledge, there is no standard benchmark in the literature for our problem.
We generate instances for our problem based on Solomon’s VRPTW benchmark (Solomon, 1987).

The Solomon (1987)’s instances are grouped into six data sets, called R1, R2, C1, C2, RC1, and
RC2 respectively. Each category has its own characteristic on location distribution and length of a
time window. Instances R1 and R2 include randomly distributed client locations, instances C1 and
C2 contain clustered client locations, while instances RC1 and RC2 contain a mixture of random
and clustered client locations. However, the time windows of instances R1, C1, and RC1 tend to
be narrow while in instances R2, C2, and RC2 become large. For each instance, Solomon (1987)
has defined coordinates of the location, demand, service time and time window. The size of the
instances can be divided into 25, 50 and 100 respectively.

In our studied problem, the analogy with Solomon’s instances, each caregiver corresponds to one
vehicle, and every patient is equivalent to a client. We make no changes to the client’s locations,
time windows, and service time in Solomon’s original instances but have modified the following
changes from the original data to adapt it to our problem.

(1) Each caregiver completes the tour by the stop at the lab, whose position is defined as (30, 50).
This value has also been adopted in our work (Shi et al., 2018).

(2) We have added the required skill level for each patient. Specifically, in our cases, we have
two different levels, the first level, and the second level. Let 1 be a percentage value. We assume
the first 1 of the patients are corresponding to the first level service, while the rest patients are

corresponding to the second level service. For example, when 17 = 0.6, and the size of the instance is
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50 patients, then we define the first 30 patients with the first level service and the other 20 patients
with second level service.

(3) The close time of the patient’s time window is regarded as the latest starting service time.

(4) The maximum number of patients which can be serviced by a caregiver is 10.

The six groups of instances have featured by the distribution of the location and length of time
window. The data source are suitable for our problem for two reasons.

(1) In the HHC service, the location of patients has different features. For example, in some
area, patients come from some communities; consequently, the locations are more likes cluster type
(C1 and C2 instances). While, sometimes, the services are ordered randomly; therefore, the location
of the patients is distributed randomly, so, this scenario corresponds to random type (R1 and R2
instances). More commonly, the distribution of patients’ location is mixed with random and cluster,
which is RC type (RC1 and RC2).

(2) In the HHC service, a different type of patients may prefer a different length of time windows.
For example, some patients can be serviced in a long period during the day, this situation can be
corresponding to the width time window (R1, C1, RC1), while some patients tend to provide service
just in a short time, which is a narrow time window (R2, C2, RC2).

To sum up, the generated instances almost cover all the possible scenarios of location distribution
and time window in HHC service.

To distinguish the classic instances of Solomon, we name them RO-XXX. The main parameters
used in the proposed algorithms are listed in Table 2 and explained below. All the values of them

are empirically chosen.
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Table 2: Parameters used in the model algorithms

Model & Algorithms | Parameters Values
o: the weight between employee fees and travel cost. 1
7n: the percentage to describe the skill requirement of patients 0.6
Model fer: fixed cost for caregiver with skills in level 1 50
fea: fixed cost for caregiver with skills in level 2 80
d¢: the big data to weight penalty and total cost of schedule R 20000
To: the initial temperature. 100
EL: epoch length for local search in a certain temperature 50
SA ML: the max iterations for accepting new feasible solutions in a certain temperature. 80
e: the threshold of temperature for stopping algorithm. 0.1
w: the Boltzmann’s Constant value. 0.9995
VNS p: the max iteration for non-improvement (terminal conditions) 100
« : the parameter for adjusting the diversification operator 0.1
TS tabu_length : the length for the tabu list a random integer in [5,10]
the max iteration for non-improvement (terminal conditions) 100

6.2. Results of the deterministic model
Because the proposed model is entirely new, and there is no researcher has solved these same
instances with us. Consequently, we could not give a comparison with the published works to

validate our proposed methods. In this section, we present the objective values obtained by the

Gurobi Solver, SA, VNS and TS in Table 3 and 4.

6.2.1. Comparison for the small instances

Table 3 reports the experimental results obtained by Gurobi Solver for the small instances.
As shown in the table, “ID” indicates the name of the instance, “NV_levell” and “NV_level2”
represent the number of the used caregivers with the skill of level 1 and level 2 respectively. While
“TC_upper” and “TC_lower” are upper bound and lower bound obtained by Gurobi Solver. Finally,
“gap” indicates the difference between the lower bound and upper bound. Even though Gurobi
Solver is one of the best Solver in the world, but it still shows powerless to solve the instances even
for the size of patients is 10. We also find that the solutions obtained from the Gurobi Solver is
quite time-consuming. So, meta-heuristic is a better choice to solve this problem.

Table 4 shows the experimental results for solving the small instances with meta-heuristic ap-
proaches. In this table, gapl indicates the gap between SA and TS, while gap2 represents the gap
between the VNS and TS. We can conclude that the TS shows an excellent searching ability than

other two methods.
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Table 3: The experimental results for solutions obtained by Gurobi Solver
GUROBI SOLVER

NV.evell NVlevel2 TC_upper TClower CT(s) gapl%

RO-RCdp0501 1 2 428.82 428.82 0.22  0.00%

D

RO-RCdp0504 1 1 335.54 278.00 7,200.00  20.70%
RO-RCdp0507 0 2 384.34 258.03 7,200.00 48.95%
RO-RCdp1001 2 2 633.63 633.63 0.02 0.00%
RO-RCdp1004 1 1 346.85 320.84 7,200.00 8.11%
RO-RCdp1007 2 1 476.92 365.55 7,200.00 30.47%

Table 4: Experimental results obtained by TS, VNS and SA for solving small-size instances
TS SA VNS

D Nevell N level2 TD TC Nevell N level2 TD TC gapl | Nlevell Nlevel2 TD TC gap2

RO-Redp0501 218.82 428.82 218.82 42882 0.00% 218.82 42882 0.00%
RO-Redp0504 205.54 335.54  0.00% 205.54 335.54  0.00%
RO-Redp0507 224.34 384.34  8.4T% 224.34 384.34  8.4T%
RO-Redp1001 383.63 593.63 1.31% 383.63 593.63 1.31%
RO-Rcdp1004 222.80 352.80 1.72% 216.85 346.85  0.00%
RO-Redpl1007 266.92 476.92  6.71%
RO-Redp2501 718.04  1,108.04 15.68%
RO-Redp2504 598.81 908.81 6.79%
RO-Redp2507 582.61 922.61 0.54%
RO-Redp5001 1,109.20  1,759.20  2.60%
RO-Redp5004 885.54  1,375.54  1.09%
RO-Redp5007 1,002.20 1,572.20  6.53%

2

1 205.54 335.54
1 224.34 354.34
2 375.95 585.95
1 216.85 346.85
1 266.92 446.92 266.92 476.92  6.71%
3 617.81 957.81 679.21  1,019.21  6.41%
2 610.45 92045  8.16%
3 613.62 953.62  3.92%
5 1,084.38 1,814.38  5.82%
3 940.28  1,430.28  5.11%
4 1,059.13  1,659.13  12.42%

540.99 850.99
577.61 917.61
1,064.67 1,714.67
870.75  1,360.75

S N e
e R RS
LS R T CHECRNN CRN S CR C R}
LS CHNN - R
S O R = O S

905.84  1,475.84

6.2.2. Comparison between the heuristic methods for 25-patient instances

In this section, the experimental results of the proposed three heuristics (SA, TS, VNS) for
25-patient instances are presented. In table 5, the first column is the ID of the instances, then
column 2-5, 6-11, and 13-17 illustrate the results of TS, SA, VNS respectively. For each presented
results, we give the number of the assigned caregivers in level 1 (N_levell) and level 2 (N_level2),
the total transportation distance (TD), and total cost (TC) which is weighted by travel distance
and employee fees of caregivers. Other two heuristics are compared with TS. To analyze the results,
we define four parameters named gapll, gapl2, gap 21, and gap22 respectively. Gapl shows the
difference of TC between TS and SA. Gapl2 computes the gap of the number of used caregivers
between TS and SA. Evidently, gap2 and gap2l have the similar meaning with gapll and gapl2
respectively. As shown in table 5, SA and VNS can get almost the same objective values, but TS

can get better results than the others.
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Table 5: The experimental results obtained by TS, SA, and VNS for solving the deterministic model with 25-patient

instances
TS SA VNS

P Nlevell Nlevel2 — TD TC | Nlevell Nlevel2 — TD TC gapl  gapll | Nlevell Nlevel2 — TD TC gap2  gap2l
RO-C101 1 2 2573114 4673114 1 2 2718507 481.8507 311% 0 1 2 250.811  469.811  053% 0
RO-C102 1 2 270773 480.1773 1 2 2580508 468.0508 -253% 0 1 2 254.938  464.938  -3.17% 0
RO-C103 2 1 2714741 451.4741 1 2 2801854 490.1854  857% 0 2 2 325.8606  585.8666 20.77% 1
RO-C104 2 1 2754850 455.4859 1 2 2885523 4985523 9.46% 0 2 1 3026885 482.6885  597% 0
RO-C105 1 2 2573114 467.3114 1 2 273.0785 483.0785  3.37% 0 1 2 250.216  469.216  0.41% 0
RO-C106 1 2 2573114 4673114 1 2 2718507 481.8507  3.11% 0 1 2 259.216 469.216  0.41% 0
RO-C107 1 2 250.811  469.811 1 2 2853323 495.3323  5.43% 0 1 2 250216 469.216  -0.13% 0
RO-C108 1 2 2704514 480.4514 1 2 2745631 4845631 0.86% 0 1 2 THTIT  AGTSTIT  -268% 0
RO-C109 1 2 2516258 461.6258 1 2 2804307 4904307  624% 0 1 2 2568845 466.8845  114% 0
RO-R101 3 5 6466733 11966733 | 2 6 6584145 12384145 3.49% 0 3 5 684.2169 12342169 3.14% 0
RO-R102 4 3 5919535 10319535 | 3 4 623.0014 1093.0914  5.92% 0 3 4 61674 108674  531% 0
RO-R103 2 3 459.9161  799.9161 1 4 5438293 9138293 1424% 0 1 4 4916077 8616077 TT% 0
RO-R104 1 3 4301738 7201738 1 3 507.3581 797.3581  10.72% 0 2 3 4983211 8383211 16.41% 1
RO-R105 3 3 537.2049  927.2049 2 4 9957211 7.39% 0 2 4 sTRT21L 9957211 7.39% 0
RO-R106 2 3 496.0873  $36.0873 1 4 6164634 9864634 17.99% 0 1 4 5182423 $88.2423  6.24% 0
RO-R107 2 2 4337158 693.7158 2 2 484757 TAATST  T.36% 0 3 2 544.8037 S54.8037  23.23% 1
RO-R108 2 2 414153 674153 1 3 4761161 766.1161  13.64% 0 2 2 490.0817  T50.0817 11.26% 0
RO-R109 3 2 4646926 774.6926 1 4 527.0552  897.0552  15.79% 0 2 4 530386 950.386  22.68% 1
RO-R110 2 3 4527869 792.7869 1 4 48249032 8524932 753% 0 2 3 485.8331 8258331  417% 0
RO-R111 3 2 465224 775.224 1 4 5040017 8740917 1275% 0 2 3 5102525 850.2525  9.68% 0
RO-R112 2 2 4217127 6817127 0 4 453.2384  773.2384  13.43% 0 1 3 5153154 8053154 1813% 0
RO-RC101 2 3 4271824 767.1824 2 3 441,003 781093 181% 0 2 3 4271824 7671824 0.00% 0
RO-RC102 1 2 3427479 552.7479 1 3 4813234 7713234 39.54% 1 2 3 4087155 TASTISE  35.45% 2
RO-RC103 | 2 2 3522787 612.2787 1 2 358.6876  568.6876  -7.12% -1 1 2 3207717 5307717 -1331% -1
RO-RC104 | 2 2 3229515 582.2515 1 2 3546025 564.6025  -3.08% -1 2 2 3258324 5858324 0.62% 0
RO-RC105 3 2 4545723 T64.5723 2 2 4178423 67T.8423  -1134% -1 2 2 3766754 6366754 -1673% -1
RO-RC106 1 2 3347958  544.7958 2 2 3753318 635.3318  16.62% 1 1 2 3347958 5447958 0.00% 0
RO-RC107 | 2 1 200.2782  470.2782 1 2 339.9725 549.9725  16.95% 0 1 2 2805183 4995183 6.22% 0
RO-RC108 1 2 2835855  493.5855 1 2 3384584 5484584 1112% 0 1 2 279722 489722 0.78% 0
RO-C201 2 1 337.6001  517.6001 1 2 3328250 542.8254  AST% 0 2 1 3578473 5378473 3.91% 0
RO-C202 2 1 3280293 508.0293 1 2 3417611 5517611 861% 0 2 1 3546819 5346819  5.25% 0
Avg. 7.93%  -0.03 6.07% 013

sis 0.3. Robust analysis for the instances

In the last section, the deterministic model is solved by the proposed three heuristics. Further-
more, in this section, the robust model is dealt with the proposed heuristics. What’s more, after
obtaining the solutions, we also analysis that how the location distribution of patients, the length
of time-windows, the uncertainty of time-windows, and the uncertainty of service times affect the

ss0  robust solutions.

As we have emphasized, a perfect schedule for an HHC company should not only have less
operational cost but also robust for the service. To evaluate the obtained solutions from the
perspective of robustness, we introduce some indicators to measure the character of each schedule.

Firstly, Vo, V1, Vo, V3 are proposed to measure the number of delayed services.

sss Vp: the probability of serving all patients timely.
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V1: the probability of not serving one patient timely at most

V5: the probability of not serving two patients timely at most

V3: the probability of not serving three patients timely at most.

To further describe the service level, M ET, DPS, and M DT are introduced to get the statistic

seo  results from Monte Carlo Simulation.

MET: mean extra working times for each caregiver.

DPS: the percentage of the delayed service for patients.

M DT': mean delayed time for each patient.

To measure the robustness of each solution, we perform a Monte Carlo simulation to calculate

ses  the value of the proposed indicators. In the simulation, we assume that the travel and service times

are uncertain but subject to a limited range. The maximum travel time gap for ¢;; is 0.2 x ¢;;, and

the gap of maximum service time t; for each patient 7 is 0.2x¢; . The uncertainty budget coefficient

6; € [0,1] determines the uncertainty budget of T'¥. The simulating procedures can be viewed in

Figure 5.

Assume that the solution is
in an uncertain environment

Monte Carlo Simulation

Average values of the

simulated output indicators

Vo

MET

vY VY ov oy

DPS

v

MDT

Figure 5: Simulating procedure for evaluating each solution

so 6.3.1. The effect of the location distribution
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Figure 6: Solutions obtained by deterministic model for instances RO-C1, RO-R1, and RO-RC1 with 25 patients
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Figure 7: Solutions obtained by robust model for instances RO-C1, RO-R1, and RO-RC1 with 25 patients

As discussed in section 6.1, instances in different datasets have different types of patients’
locations. To show the effect of different types of locations, we present the details of deterministic
and robust solutions for all instances of datasets RO-R1, RO-RC1 and RO-C1 together in Table 6.
In these tables, the columns under “Deterministic” display the details of each deterministic solution.
The columns under “Robust” show the details of each robust solution. The columns named ”gap”
show the increase in the number of vehicles used and the percentage increase in the total distance

traveled by the robust solution compared to the deterministic solution in each case. Note that only
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the results of the simulation tests taking into account both the uncertainty of the travel and service
time were included. A detailed analysis of the effect of patient location models leads to conclusions
similar to those above.

As shown in Figure 6 and 7, the deterministic solutions for the instances in the three data sets
are very fragile, in particular, the solutions for the instances R1 and RC1. For example, the average
probability of serving each client was only 7.03% with deterministic solutions for R1 instances and
4.45% with deterministic solutions for RC1 instances, while this value becomes 51.76% with the
RO-C1.

However, in robust solutions, the average number of vehicles used for RO-R1 instances increased
by 0.38, and the average total distance traveled increased by 7.44% over deterministic solutions.

Thus, even if the robust solution significantly reduces the risk of non-compliance with the client
period, decision makers still have to evaluate the trade-off between total distance traveled and the

robustness of the road in situations with clustered location models.

6.3.2. The Effect of the length of time window
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Figure 8: Solutions obtained by deterministic model for instances RO-C2, RO-R2, and RO-RC2 with 25 patients
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Figure 9: Solutions obtained by robust model for instances RO-C2, RO-R2, and RO-RC2 with 25 patients

Unlike the instances of RO-R1, RO-C1, and RO-RC1, the instances of RO-R2, RO-RC2, and

RO-C2 have a long planning horizon for each patient. These features serve many patients along

the same route. To show the effect of wide time windows on planned routes, we present the details

ss  of deterministic and robust solutions for RO- R2, RO-RC2 and RO-C2 instances in Table 7.

Based on the results in Figures 8 and 9, it is clear that the deterministic solutions for the RO-

R2, RO-RC2 and RO-C2 instances are more robust than the deterministic solutions for the RO-R1,
RO-RC1, and RO-C1 instances.
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For example, the average probability of serving each patient with deterministic solutions for RO-
C2 instances was 88.25%, indicating that these deterministic solutions are not very fragile. In robust
solutions for RO-R2, RO-RC2 and RO-C2 instances, the total travel distance increased slightly, and
the number of vehicles used remained the same in most cases. However, the robustness of the routes
with these solutions has improved considerably. For example, the average probability of serving all
patients was 96.83%, 98.31%, and 98.45% for RO-R2, RO-RC2, and RO-C2, respectively. These
results indicate that the solutions are very robust given travel time and uncertainty of service time.

We can, therefore, conclude that a high level of route robustness can be achieved in cases where
large windows use robust solutions at almost zero cost. However, not serving all patients is more
prevalent in deterministic solutions, in cases where time windows are narrow, and ensuring a high

level of robustness of roads is much more expensive, as shown in Tables 6.

6.4. Comparison with other models

To highlight the proposed RO model, we perform three series of comparison. First, we make
a comparison between the RO with the deterministic model, which does not take into account
uncertainties. Then, the comparison among the following four models: the deterministic model,
RO model with considering travel and service times uncertainties, RO model with only consider
travel time uncertainty, and RO model with only consider service time uncertainty. Finally, we give
a comparison between the solutions obtained by the RO model and stochastic programming with

recourse.

6.4.1. comparison between deterministic model and RO

Furthermore, we have also solved the generated instances with 50 and 100 patients, respectively.
This section mainly evaluates and analyzes these solutions by comparing them with the deterministic
model. For convenience, we call the deterministic model as Deter. model for short. The detailed
experimental results are illustrated in Appendix Table B.13, B.14, B.15, and B.16. In order to
explain the simulation results, we draw Figure 10 to 13.

Figure 10, which is composed of four sub-figures, describes the simulation results of the indicators
of Vs. Let us explain by giving an example of sub-figure 1. The x-axis is the identification number
of instances, and in this figure, we have 56 instances totally. Meanwhile, the y-axis denotes the
value of VO. We can notice that, in almost all cases, the solutions obtained by RO shows a higher

value than the solution obtained by the Deter. model. This scenario explains that the solutions
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generated by RO have less delayed service than that produced by Deter. model.

0 also show the same tendency as sub-figure 1.

Other indicators
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Figure 10: The indicators of V; obtained by RO model and deterministic model instances with 50 patients

Figure 11 depicts the other three meaningful indicators, MET, DPS, and MDT, which represent

the overall delay service. For example, in the first sub-figure, the X-axis also illustrates the ID of

56 instances, while Y-axis indicates the MET (Mean Extra Time). We find that, in almost all the

cases, the solutions obtained by RO tend to have less mean extra time than that achieved by Deter.

es  model. Therefore, we also summarize that the solutions obtained by RO show more advantage

in Percentage of Delayed Service (DPS) and Mean Delayed Time (MDT) than that generated by

deterministic model..
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Figure 11: The indicators of MET, DPS, and MDT obtained by RO model and deterministic model for instances

with 50 patients
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Figure 12: The indicators of V; obtained by RO model and deterministic model instances with 100 patients
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Figure 13: The indicators of MET, DPS, and MDT obtained by RO model and deterministic model for instances
with 100 patients

The simulation indicators for the 100-patient instances are shown in Figure 13 and 12. We can

find that the figures also show the same tendency as that of 11 and 10 respectively.

a0 0.4.2. comparison between deterministic model, US, UT, and USUT
To show the influence of the uncertain travel and service times individually, we define four
models DM, US, UT, USUT as follows.
Deter. model: the model with deterministic travel and service times (namely the deterministic

model).
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US model: the model with only consideration of uncertain service time.

UT model: the model with only consideration of uncertain travel time.

USUT model: the model with taking into account uncertain service and travel time.

As shown in Table 8, the average simulation results of the solutions obtained by the four models
are presented. For RO-C1, the percentage of being able to service all patients timely is 51.76%,
and this value becomes 63.36% and 72.07% respectively once considering either uncertain travel
or service times. However, the percentage increases to 78.51% if we consider both the uncertain
travel and service times simultaneously. Other types of instances have the similar trends. This
trend reveals that the solutions obtained by USUT have strong robustness than that achieved by
US, and UT, while the solutions obtained by DM shows the worst robustness.
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Table 8: Comparison among the solutions obtained by the four models for the instances with 25 patients
Model Vo Vi1 V2 V3 MET DPS MDT

Deter. Model | Avg. RO-C1 51.76% 76.07%  82.76%  87.13%  9.91 = 5.24% 1.19
Avg. RO-R1 7.03%  25.23%  53.17%  75.73% 629 10.21% 1.22
Avg. RO-RC1  4.45%  20.25%  50.80%  67.48% 11.63 12.59% 1.71
Avg. RO-C2 93.60%  99.68%  100.00% 100.00% 0.55 0.27%  0.07
Avg. RO-R2 88.25%  99.98%  100.00% 100.00% 0.15  0.47%  0.02
Avg. RO-RC2  98.65% 100.00% 100.00% 100.00% 0.02  0.05% 0

US model Avg. RO-C1 63.36% 80.49%  86.76%  90.76%  6.58  3.84%  0.81
Avg. RO-R1 13.33% 32.83%  58.15%  79.18% 443  9.10% 091
Avg. RO-RC1  12.73%  39.10%  56.33%  68.55% 11.92 11.68% 1.84
Avg. RO-C2 97.80% 99.83%  99.93%  100.00% 0.16  0.10%  0.02
Avg. RO-R2 91.95%  99.98%  100.00% 100.00% 0.11  0.32%  0.01
Avg. RO-RC2 98.80% 100.00% 100.00% 100.00% 0.02  0.05%  0.00
UT model Avg. RO-C1 72.07% 84.38%  91.58%  95.07%  3.75  2.53%  0.48
Avg. RO-R1 16.18%  39.42%  66.70%  84.28%  3.94  8.05%  0.83
Avg. RO-RC1  6.08%  21.83%  39.70%  58.75% 15.81 13.35%  2.42
Avg. RO-C2 99.20%  99.88%  100.00% 100.00% 0.03  0.04%  0.00
Avg. RO-R2 94.13%  99.13%  99.98%  100.00% 0.11  0.27%  0.01
Avg. RO-RC2  98.45% 100.00% 100.00% 100.00% 0.03  0.06%  0.00
UusuT Avg. RO-C1 78.51% 90.51%  94.60%  96.93%  2.02 1.69%  0.26
Avg. RO-R1 25.18%  58.85%  80.45%  91.00%  3.00 5.98%  0.67
Avg. RO-RC1  9.78%  32.10%  57.83%  71.00% 11.71 11.46% 1.84
Avg. RO-C2 96.83%  99.90%  100.00% 100.00% 0.19  0.13%  0.02
Avg. RO-R2 98.31% 100.00% 100.00% 100.00% 0.01  0.07% 0

Avg. RO-RC2  98.45% 100.00% 100.00% 100.00% 0.02  0.06% 0

es  0.5. Comparison with stochastic programming with recourse

As mentioned in the literature part, Stochastic Programming with Recourse (SPR) is another
critical framework for modeling optimization problem when dealing with uncertainties. In this
section, we attempt to make a comparison between the solutions obtained by the RO model and
SPR model. Notably, we refer to the SPR models investigated by Shi et al. (2018); Li et al. (2010).

0 Shi et al. (2018) investigated an HHC routing and scheduling problem with considering uncertain
travel and service times, while, Li et al. (2010) deal with the stochastic travel and service time
in VRPTW. The detailed formulations of SPR model for HHCRSP can be found in Appendix A.

Meanwhile, the solution and simulation results are listed in Tables B.11 and B.12, which are located
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in the Appendix B.

As analyzed before, the instances RO-C2, RO-R2, RO-RC2 characterized with long time-
windows, show strong robustness regardless of considering uncertain travel and service times or
not. According to Table B.12, these instances also illustrate strong robustness, which is quite
reasonable. Therefore, we care more about the instances with RO-C1, RO-R1 and RO-RC1, who
characterized narrow time-window. Because, these instances always meet with challenges of robust-
ness when ignoring uncertainties. The detailed analysis of the experimental results in Table B.11
will be performed in this section.

To depict the experimental results in Table B.11 more clear, we obtain Figure 14 and 15 from

tables in Appendix B.
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Figure 14: The indicators of V; obtained by RO model and SPR model for RO-R1, RO-C1, RO-RC1 type instances
with 25 patients.

As shown in Figure 14, there are totally four sub-figures, each of which describes the simulation
results of the indicators of Vs. For example, in sub-figure 1, the x-axis is the identification number
of instances. Meanwhile, the y-axis represents the value of V0. As we find that, in almost all the

cases, the solutions obtained by RO (the blue line with a start on it) shows a higher value than the
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solution obtained by SPR (orange line with a circle on it). This situation reveals that the solutions
generated by RO show less delayed service than that produced by SPR. If we analogize to subgraph

1, we can get a similar conclusion.
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Figure 15: The indicators of MET, DPS, and MDT obtained by RO model and SPR model for RO-R1, RO-C1,
RO-RC1 type instances with 25 patients.

Figure 15 shows another three significant indicators, MET, DPS, and MDT, which describe
the overall delay service situation. For example, in the first sub-figure, the X-axis also illustrates
the ID of instances, while Y-axis indicates the MET (Mean Extra Time). We find that, in almost
all the cases, the solutions obtained by RO tend to have less mean extra time than that achieved
by SPR. Therefore, we also summarize that the solutions obtained by RO show more advantage
in Percentage of Delayed Service (DPS) and Mean Delayed Time (MDT) than that generated by
SPR.

To further demonstrate the comparison between the solutions obtained by RO model and SPR
model from the statistic perspective, we have performed a Friedman-test, which is a non-parametric
statistical test, initially proposed by Friedman (1940). This statistic test intends to detect differ-
ences in treatments across multiple test attempts. A lot of researchers, such as Derrac et al. (2011);
Zafra et al. (2011); Osaba et al. (2016, 2019); Shi et al. (2018) has successfully applied Friedman-
test to effectively identify different approaches or models. Here, we target to identify two different

methods, which, of course, are RO model and SPR model.
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As a paradigm, hypothesis are always designed before carrying out statistic test. Here, two
hypothesis are described as follows.

Hy: The difference between the results obtained by the two models follows a symmetric distri-
bution around zero.

H;: the difference between the results achieved by the two models does not follow a symmetric
distribution around zero.

We have performed Friedman-tests on indicators achieved by two models respectively. The p-
values are reported in Table 6.5. In the table, the average ranking located in the third row shows
the numerical value rankings between the solutions obtained by a model (either RO or SPR) for
each indicator. Here we should emphasize that VO, V1, V2, V3 are positive indicators to show
robustness. These indicators have the meaning that the higher the ranking, the stronger robustness
will be. On the contrary, MET, DPS, and MDT are negative values, which indicates that the lower
the ranking, the stronger robustness will have. For each solution, the ranking will be either 1 or 2,

in which, rank 1 is senior to rank 2 just from the numerical value.

Table 9: The results of the Friedman-tests for the solutions obtained by the RO model and SPR model

indicators VO vl v2 v3 MET DPS MDT
models RO SPR| RO SPR| RO SPR| RO SPR| RO SPR | RO SPR | RO SPR
Avg. ranking | 1.11 1.89 | 1.18 1.82 | 1.18 1.82 | 1.25 1.75 | 1.71 1.29 | 1.75 1.25 | 1.75 1.25
P-values 0.0002 0.0019 0.0010 0.0151 0.0019 0.0056 0.0038

As shown in Table 6.5, all the p-values illustrate significant scenarios (less than 0.5%, reject
Hy). We obtain two conclusions from the above results. (1) Each p—value reveals that there is a
significant differences between the results obtained by RO model and SPR model. (2) Given the
Avg. ranking values, we find the advantage of the indicators. So the solutions obtained by the RO
model have more strength in robustness than the solutions obtained by the SPR model.

To sum up, the HHCRSP formulated by RO model shows advantage in robustness than that
modeled by SPR.

7. conclusion

Even though a large amount of work has been done for the HHCRSPs, the majority of them

belongs to the deterministic models, which can only make the final decision on the schedule satisfy
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the deterministic scenarios. According to the feedback from HHC companies, caregivers have to
deal with some uncertainties when carrying out a given schedule to visit their patients. This work
formulates a robust optimization model for an HHC Routing and Scheduling Problem with taking
into account uncertain travel and service times. Specifically, the non-deterministic variables are
defined based on the theory of budget uncertainty, and then the arrival time of each caregiver is
rewritten as a complicated recursive function. After that, Gurobi Solver, Simulated Annealing,
Tabu Search, and Variable Neighborhood Search are adapted to solve the model respectively. Fi-
nally, a series of experiments have been performed to validate the proposed models and algorithms.
Experimental results from Monte Carlo simulation highlight the strength of considering uncertain-
ties when modeling the problem. Additional, the influences of other characters in instances, like
the width of time-window, distributed location have also been empirically analyzed.

Finally, the comparison between the solutions obtained by the robust optimization model and
stochastic programming with recourse is performed.

The results show that the proposed tabu search is able to produce effective solutions for the
generated instances. We conducted a comprehensive analysis of the results, and several insight
observations are summarized as follows.

(1) The solution of the scheduling and routing, which obtained by ignoring uncertainty of travel
time gives very weak scheduling strategies that often lead to delayed services.

(2) Incorporating more vehicles into a routing program and reorganizing the sequence of cus-
tomer visits in each vehicle route can sometimes increase the robustness of a given routing strategy.

(3) Extremely robust routing strategies can be generated for parameters characterized by wide
time windows for customers and high capacity vehicles at low additional cost.

(4) The instances with patients characterized by narrow time-windows show poor robustness in
the deterministic model, and achieving a high level of robustness is much more expensive, it takes
more vehicles and much longer distances.

(5) In the model of robust optimizations, the solutions with considering both travel and service
time uncertainty show more robustness than those solutions obtained only one uncertainty. How-
ever, the solutions considering just one uncertainty, still show advantage than without taking into
account any uncertainties.

(6) Even if we consider the uncertainties, the model formulated from robust optimization shows

strength in robustness than that modeled by the stochastic model with recourse.
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However, like most of the studies involved robust optimization technique, for example, Hu et al.
(2018); Wu et al. (2017), we have also assumed that the uncertainty set is characterized by the
theory of budget uncertainty. The parameters related to the uncertainty set were set the same
as the published work (Hu et al., 2018; Wu et al., 2017). Our model could be more close to the
practice if the parameters are designed from big data (Zhang et al., 2017; Choi et al., 2018) of the
HHC industry. So, the integration of robust optimization techniques with big data is one of our
future work.

There are also many other interesting extensions to this work worthy of further consideration.
On the one hand, it is interesting to extend the problem with considering other practical constraints
like lunch-break time of caregivers, and flexible time-window of patients. On the other side, from the
perspective of improving solving methods, we can consider the incorporation of machine learning
techniques with meta-heuristic to obtain more efficiency solutions (Schindl & Zufferey, 2015; Chen
et al., 2016b). Furthermore, sharing economic (Choi & He, 2019) also provides a promising way

to improve the efficiency of the operational management of HHC service.

Appendix A. Stochastic Programming model with Recourse

SPR is a common used technique for modeling the optimization problems when considering
uncertainties. Anyone who is interested in the modeling of SPR can refer to the published work
(Li et al., 2010; Shi et al., 2018; Zhang et al., 2019). The main idea of SPR can be viewed as a
two-stage programming problem. Generally, in the first stage, planned routes and scheduling are
designed according to the current information; while in the second stage, travel time and service
time are realized, the expected penalty caused by delayed service is considered. This appendix

mainly introduces the detailed formulations of the SPR model for our HHCRSP.

Appendiz A.0.1. Mathematical model
Before presenting the SPR model, we would like to describe some new notations. Meanwhile,
some other notations, which have already been introduced in the RO model part, will be omitted

here.
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Table A.10: new notations in the SPR model

notation meaning
Iij average driving time between node i and j
Oij standard deviation value of the driving time between node i and j.

tij ~ N(P’i]x”%})

Hi

fl ~ N(Hiﬂo';z)

O

O

B

U(E) = [uy(E),ua(E), ... uns 1 ()T isa (n4+1) x 1
W(E) = [w1(E),wa2(E),...,wnps1(E)T isa (n+1) x 1
E()

Sik

stochastic variable of the travel time between patients ¢ and j for a single trip.
the average service time for patient 4

standard deviation of the service time for patient i

stochastic variable of the service time for patient .

extra working time for the caregiver of route k.

unit caregiver remuneration for the extra working time.

the total delayed time for all the patients in route k.

unit penalty cost for driving time after the due time b;.

coefficient of recourse.

the value of a constraint violation.

the recourse value caused by delayed service and extra working time.

the beginning service time of patient 7, who receives service from caregiver k .

The SPR model can be formulated as:

mine - Y cfi > xoj+ P DY ciymijn + EminU(E)TW(E)] (A.1)

kev  jeC kEV iEN jEN

S.T.

SN wp=1Vied, (A.2)

keV jeN

Z Tink — Z Thik = 0,Vh e C;k €V, (A.3)

ieN jEN

> o <LVEEV, (A.4)
jec

> Tjmine S LVEEV, (A.5)

jec

YD @ <QVkeV, (A.6)

iEN jEN
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di Y wije < Dy, V€ V,i€C, (A7)

JEN
Sik + 1 +ti; — M1 —x45%) < sjg, Vi, j € Nyk €V, (A.8)
a; < s, Vi€ N}k eV, (A.9)
sik —wi(E) < b;,Yi € N,k €V, (A.10)
2k € {0,1}, 455 > 0,25 > 0,w;(E) > 0,Vi,j € N,k €V, (A.11)

The objective function (A.1) is to minimize the total cost, which includes the salary of caregivers,
transportation cost, and the expected value of recourse value caused by delayed service (the detailed
description is shown in Appendix A.1). Constraints (A.2)-(A.7) has already been explained in the
RO model, therefore, we omit the explanation. Constraints (A.8)-(A.10) are the time window
constraints. Finally, constraints (A.11) define the nature of the decision variables.

Remark As a special scenario, if U(E) = [u1(E),uz2(E), ..., uny1(E)] is a (n + 1) x 1 becomes a
deterministic value, the model is called a Stochastic Programming with Fixed Recourse. In this
paper, we assume that, if i = n + l,ui(E') = B, otherwise, uZ(EV) = &. This assumptions has also

been adopted by Li et al. (2010); Shi et al. (2018)

Appendiz A.1. Recourse of the model

The recourse part in stochastic programming is generally formulated by altering the hard con-
straints to the corresponding soft ones. According to the characteristic of our problem (Li et al.,
2010; Shi et al., 2018), the constraints related to travel and service times should be relaxed to soft
ones.

Furthermore, constraints (A.10) reveal that a recourse will be produced once a time window
constraint is violated. The recourse formulation includes two aspects as follows.

(1) When ¢ = 1,...,n, min w;(F) indicates that the delayed service has been provided for patient

1.
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(2) When i = n 4 1, minw;(E) reveals that the caregiver finishes his/her task later than the due
closing time b,,41. In this scenario, caregivers have to deal with a extra working time for finishing
so  task.

For a given route k € V', let 7, represent the set of nodes in route k, and ny = |ri| be the number
of nodes in route k. 7 can be written as 7, = {vo = depot,vq,...,vj,....Upn,,Vn,+1 = lab}, in
which v; represents the jth patient in this route. According to the time window constraint, it must
hold Suj+1 = maX(Svj +fvjvj+1 +t;j - ). The total delayed time for the route & can be computed

as:

0 = Z maX(S;j —br;,0) (A.12)

JETK

Now, the extra working time for each caregiver can be computed by the following formulation.

Ok = S, o1 — bnt1 (A.13)
Finally, the recourse part of the stochastic programming is calculated as follows.

minU(E)"W(E) =Y "[a- 0 + 3 - 0] (A.14)

keV

The recourse formulation (A.14) is estimated by the Monte Carlo Simulation, which is shown in
Figure 5. To solve the problem, we adopt the T'S-based heuristic algorithm. The detailed procedures
can refer to Li et al. (2010).

Appendix B. Experimental results

805 The tables of results are shown in landscape style of the next pages.
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