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Tyrosine Kinase Inhibitors and Immune Checkpoint inhibitors-induced thyroid disorders 

 

Key-words: Thyroiditis, Tyrosine kinase inhibitors, Immunotherapy, Immune checkpoint inhibitors, 

toxicity, thyrotoxicosis, hypothyroidism 

Abstract 

Recently, tyrosine kinase inhibitors (TKI) and immune checkpoint inhibitors (ICPIs) have emerged as 

new classes of anticancer therapies. Although generally considered less toxic than cytotoxic 

chemotherapy, these new drugs can cause significant unanticipated side effects including thyroid 

dysfunction. This review provides a literature assessment of thyroid dysfunctions induced by TKI and 

ICPIs. We intend to define for these two classes the frequency of thyroid involvement, the potential 

mechanisms that result in this toxicity, the clinical-biological impact and the therapeutic management. 

Detection of thyroid dysfunction requires monitoring of TSH, in combination with free T4 if needed 

and, depending on the clinical impact and the kinetics of biological abnormalities, starting 

symptomatic treatment of hyperthyroidism and/or correcting hypothyroidism.  
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I. Introduction:  

The development of molecular biology and cancer immunology has brought drastic changes in 

anticancer therapies in recent years (DiMasi and Grabowski, 2007). In addition to conventional 

cytotoxic chemotherapy, new therapeutic approaches are now available, based 1/ on the molecular 

profile of the tumor - such as tyrosine kinase inhibitors (TKIs) which, according to their action profile, 

block certain self-induced signals from the tumor cell (this is the concept of personalized medicine); 

and 2/ on the lifting of the immune-tolerance barriers to cancer by means of immune checkpoint 

inhibitors (ICPIs).  

TKIs are classified as targeted therapies because of their mode of action. They bind competitively to 

the ATP binding sites of tyrosine kinases, whether they are membrane receptor tyrosine kinases or 

cytosolic protein tyrosine kinases. The kinome defines the set of tyrosine kinase proteins in a cell. 

TKIs thus block some of these proteins that play a key role in cell signaling and whose activity is 

deregulated in cancers. As deregulated pathways tend to promote energy metabolism and cancer cell 

survival, thus TKIs can restore control of cell proliferation. The spectrum of activity of these TKIs is 

extremely variable from one molecule to another (inhibition of one to several tyrosine kinases). Some 

TKIs have also been designed to preferentially inhibit angiogenesis and to limit the metastatic spread 

of cancer cells (Arora and Scholar, 2005; Krause and Van Etten, 2005) (Figure 1). These compounds 

might hence exhibit toxicity against highly vascularized organs like thyroid gland. TKIs are now used 

in metastatic kidney cancers, gastrointestinal stromal tumors (GIST), chronic myeloid leukemias, 

acute lymphoblastic leukemias, some sarcomas, hepatocellular carcinomas, certain bronchial cancers, 

medullary thyroid cancer and differentiated thyroid cancer refractory to iodine-131.  

The principle of immunotherapy against solid cancer is to amplify the adaptive cytotoxic T-cell-

mediated antitumor immune reaction (Figure 1). One effective strategy currently used is blocking 

some immune inhibitory “checkpoints” like PD1 (Programmed Cell Death 1), PDL1 (Programmed 

Cell Death Ligand 1) or CTLA4 (Cytotoxic T lymphocyte antigen-4) preventing them to blunt T-cell 

proliferation and activation against tumor cells (Brahmer et al., 2012; Topalian et al., 2012). Three 

families of ICPIs are currently marketed: anti-CTLA4 (ipilimumab, tremelimumab), anti-PD1 

(nivolumab, pembrolizumab) and anti-PDL1 (avelumab, atezolizumab, durvalumab). These molecules 

have improved the survival of cancer patients but are accompanied by autoimmune side effects, 

manifested by various tissue inflammatory reactions, especially in the thyroid (Arora and Scholar, 

2005; Brahmer et al., 2012; Eggermont et al., 2016; Gharwan and Groninger, 2016; Krause and Van 

Etten, 2005; Topalian et al., 2012). 

The thyroiditis induced by these therapies occurs at varying frequencies and can be manifested by 

biological hyper- or hypothyroidism depending on when the thyroid disorder is recognized or both 

successively. Cooperation between endocrinologist and oncologist generally enables the continuation 

of anti-cancer therapy and the supervision of symptomatic treatment of dysthyroidism. 

This article provides a comprehensive assessment of the literature relating to the thyroid side effects of 

TKIs and ICPIs.  
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Figure 1: Mechanisms of action of TKIs and ICPIs. Adapted from (Orlov et al., 2015). 

TKIs block the activation of proteins involved in the signaling pathways of cell survival and angiogenesis (a,b). 

ICPIs block the action of immune tolerance effectors (1, 2) and induce the recruitment of cytotoxic T 

lymphocytes (3). 

 TKI: Tyrosine Kinase Inhibitor, symbolized by 

 ICPI: Immune Checkpoint Inhibitor (Anti-PD-1, Anti-PDL1, Anti-CTLA-4), symbolized by  

ALK:  Anaplastic lymphoma kinase, ATP: Adenosine triphosphate, B-RAF: B-Rapidly Accelerated Fibrosarcom,  CD: 

Cluster of differentiation, CKIT: C-kit receptor, CTLA-4: Cytotoxic T Lymphocyte-Associated Antigen-4, , EFGR: 

Endothelial Growth Factor Receptor, INFγ: Interferon gamma, MEK: Mitogen-activated Extracellular signal regulated 

Kinase, MHC: Major Histocompatibility Complex, mTOR: mechanistic target of rapamycin , PDGFR: Platelet Derived 

Growth Factor Receptor, PD1: Programmed cell Death-1, PDL1: Programmed Death-Ligand 1, RET: Rearranged during 

Transfection, TCR: T Cell Receptor, TNFα: Tumor Necrosis Factor-alpha, VEGFR: Vascular Endothelial Growth Factor 

Receptor 

 

II. Thyroid dysfunction associated with TKIs and ICPIs is common and benign (Table 1) 

The prevalence of thyroid dysfunction (hypo- or hyperthyroidism) related to a TKI or ICPI varies 

considerably from about 3.1% to 100% depending on the type of molecule, the dose administered, the 

types of thyroid monitoring and the recording accuracy of these events (see Table 1 and Table 2) 

(Abdel-Rahman and Fouad, 2014; Barroso-Sousa et al., 2018b, 2018a; Boutros et al., 2016; de Filette 

et al., 2016; Delivanis et al., 2017; Fallahi et al., 2014; Gharwan and Groninger, 2016; Kim et al., 

2010; Morganstein et al., 2017; Orlov et al., 2015; Pani et al., 2017; Sznol et al., 2017; Torino et al., 

2009). Given the frequency of this iatrogenic dysthyroidism, it should be noted that the prevalence of 

clinical hypothyroidism in the general population is between 0.2% and 5.3% in Europe and between 

0.3% and 3.7% in the United States, while the prevalence of clinical hyperthyroidism is similar in 

Europe and the United States (0.7% versus 0.5%) (Taylor et al., 2018). These figures depend of course 

on the definition used and the population studied (iodine-deficient or not) but illustrate the causality of 

these treatments in the thyroid dysfunctions identified.  

The quality of report of thyroid toxicity induced by TKIs or ICPIs depends on the rigor of clinical 

trials that were not designed to evaluate the frequency of thyroid side effects. Indeed, these studies list 

sometimes established or incipient hypothyroidism, sometimes variations of thyroid stimulating 
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hormone (TSH) or increase in thyroid hormone therapy, sometimes global endocrine effects. In 

addition, the pattern of monitoring the thyroid biological parameters differed from one trial to another. 

Finally, the studies rarely detail previous or concomitant treatments, such as interferon, amiodarone, 

radiation therapy to the neck and brain, corticosteroid therapy and repeated iodine contrast injection 

for CT scan, which can also modify the thyroid function or thyrotropic hormone regulation. Moreover, 

the gradation of thyroid toxicities according to the Common Terminology Criteria for Adverse Events 

(CTCAE) scale used in oncology describes the outcome of the thyroid disorder but does not make it 

possible to decide on the treatment to be initiated. This specific management will depend on the 

amplitude of variations in the TSH/free T4 levels, the clinical impact, and the transient or permanent 

nature of dysthyroidism. In general, hospitalization is not required (grade 3) and the indication of 

symptomatic treatment of thyrotoxicosis or correction of hypothyroidism (grade 2) is not in itself a 

criterion of severity.  

The probability of developing TKI-induced dysthyroidism depends on the patient’s background (risk 

is higher in female and older patient groups), the existence of associated thyroid disorder, the duration 

of TKI exposure and the molecule  (Beukhof et al., 2017; Funakoshi and Shimada, 2013; Illouz et al., 

2009; Lechner et al., 2018). On the other hand, the type of cancer treated does not seem to be a factor 

modifying the risk of thyroid side effects.  

Thus, TKI-induced thyroid toxicity involves mainly compounds targeting VEGFR1-3 (Vascular 

Endothelial Growth Factor Receptor) or PDGFR (Platelet Derived Growth Factor Receptor) such as 

sunitinib, sorafenib, axitinib and vandetanib unlike other TKI  such as nilotinib, imatinib and dasatinib 

that do not target angiogenic receptors (Table 1) (Abdel-Rahman and Fouad, 2014; Kim et al., 2010). 

But this observation requires a cautious interpretation given the small number of subjects in some 

studies using TKIs. By contrast, thyroid dysfunction has not been reported in vivo, with treatments 

such as monoclonal antibodies directing against VEGF (bevacizumab and aflibercept) though 

reduction of thyroid perfusion may occur (van der Veldt et al., 2013) nor with TKIs targeting EGFR 

(Epidermal Growth Factor Receptor) (cetuximab and panitumumab), ALK (Anaplastic Lymphoma 

Kinase) and MEK (Mitogen-activated Protein Kinase Kinase). 

Iatrogenic thyroid disorder related to TKIs is mainly caused by destructive thyroiditis, probably due to 

vascular damage. A thyrotoxic phase is often reported first after a median treatment duration of 6 

weeks (1-70 weeks), then hypothyroidism occurs after a median duration of 22 weeks (1-135) (Abdel-

Rahman and Fouad, 2014; Kim et al., 2010). Most cases of hyperthyroidism are brief (nearly 80%) 

and almost always of grade 1 or 2 (98 to 100% of patients) (Bianchi et al., 2013; Kim et al., 2010). 

Hyperthyroidism affects an average of 15.8% of patients undergoing TKI therapy (Abdel-Rahman and 

Fouad, 2014; Fallahi et al., 2014; Illouz et al., 2009; Kim et al., 2010; Ohba et al., 2013; Torino et al., 

2009) and corresponds rather to a state of transient thyrotoxicosis, most often subclinical (Table 1). 

The occurrence of hypothyroidism is late and prolonged (Table 1), easy to recognize and therefore 

reported more frequently (18% of cases). In a recent meta-analysis, the relative risk of hypothyroidism 

was 3.59 [95% CI: 2.40-5.38; p<0.0001] (Abdel-Rahman and Fouad, 2014). TKI-induced 

hypothyroidism may persist when treatment is discontinued (Beukhof et al., 2017; Illouz et al., 2009; 

Wolter et al., 2008).  

 

 

Table 1: Frequency and presentation of dysthyroidism during TKI therapy (number of patients with 

thyroid dysfunction/number of patients in the study). 

CCRCC: Clear Cell Renal Cell Carcinoma, CML: Chronic Myeloid Leukemia, FGFR: Fibroblast Growth 

Factor Receptors, GIST: Gastro-Intestinal Stromal Tumor, HCC: Hepatocellular carcinoma, HL: Hodgkin’s 

Lymphoma, HNSCC: Head and Neck Squamous Cell Carcinoma, ND: Non determinated, NET: Neuroendocrine 

Tumor, NSCLC: Non-Small Cell Lung Cancer, PDGFR: Platelet Derived Growth Factor Receptor, TKI: 
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Tyrosine Kinase Inhibitor, UC: Urothelial Carcinoma, VEGFR: Vascular Endothelial Growth Factor Receptors, 

*: Increased doses of levothyroxine after total thyroidectomy.  
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Name of TKI 

Targeted tyrosine kinases 

Indications 

References Thyrotoxicosis Transient 

Hypothyroidism 

Definitive 

Hypothyroidism 

Thyrotoxicosis 

then 

hypothyroidism 

Dysthyroidism  

(within each study) 

minimum/maximum 

frequency 

 

Dysthyroidism 

(all studies) 

main frequency  

  

Axitinib  

(VEGFR 1-3, PDGFR, C-Kit)  

CCRCC 

(Ohba et al., 2013) 

(Ueda et al., 2013) 

(Hutson et al., 2013) 

(Karam et al., 2014) 

(Daimon et al., 2012) 

(Mukohara et al., 2010) 

(Tomita et al., 2011) 

(Motzer et al., 2013a) 

5/6 (83%) 

ND 

ND 

ND 

0/6 

5/12 (41.7%) 

20/64 (31.3%) 

ND 

5/6 (83%) 

69/355 (19.4%) 

39/189 (20.6%) 

17/24 (70.8%)  

6/6 (100%) 

7/12 (58.3%) 

31/64 (48.4%) 

72/359 

ND  

ND 

ND 

ND 

ND 

ND 

ND 

ND 

4/6 (66.6%) 

ND 

ND 

ND 

ND 

3/12 (25%) 

ND 

ND 

6/6 (100%) 

69/355 (19.4%) 

39/189 (20.6%) 

17/24 (70.8%) 

6/6 (100%) 

9/12 (75%) 

31-51/64 (48.4-79.7%) 

72/359 (20%) 

(19.4-100%) 

137-157/580 

(15.5-23.6%) 

 

Dasatinib  

(BCR-ABL, Src, C-Kit, EPHR)  

Acute lymphoblastic leukemia 

(Kim et al., 2010) 2/10 (20%) 4/ 10 (40%) 1/10 (10%) 1/10 (10%) 

 

6/10 (60%) 

 
6/10  

(60%) 

Imatinib 

 (BCR-ABL, RET, PDGFR, C-

Kit) 

CML, GIST, 

Dermatofibrosarcoma 

protuberans 

(Kim et al., 2010) 

(de Groot et al., 2007) 

(de Groot et al., 2005) 

 1/8 (12.5%) 

ND 

ND  

1/8 (12.5%) 

ND 

7/8* (87.5%) 

0/8 

9/15 (60%) 

ND 

0/8 

ND 

ND 

2/8 (25%) 

9/15 (60%) 

7/8 (87.5%) 

25-87.5%) 

18/31  

(58.1%) 

Nilotinib  

(BCR-ABL, C-Kit, LCK, 

EPHA3,8, DDR1, DDR2, 

PDGFR, MAPK11, ZAK) 

CML 

(Kim et al., 2010) 18/55 (32.7%) 6/55 (10.9%) 

 

ND 5/55 (9.09%) 25/55 (45.4%) 

 
25/55  

(45.4%) 

Pazopanib  

(VEGFR-1-3, PDGFR, C-Kit) 

CCRCC, Sarcoma 

(Motzer et al., 2013b) 

(Matrana et al., 2013) 

ND 

ND 

67/554 (12.1%) 

17/112 (15.2%) 

ND 

ND 

ND 

ND 

67/554 (12.1%) 

17/112 (15.2%) 

(12.1-15.2%) 

84/666 

(12.6%) 

Regorafenib 

(VEGFR 1-3, PDGFR, KIT, 

RET, FGFR 1-2, TIE2, DDR2, 

Trk2A, Eph2A, RAF-1, BRAF, 

SAPK2, PTK5) 

CCRCC, GIST, HCC 

(Pani et al., 2017) 

(Bruix et al., 2013) 

 1/25 (4%) 

ND 

ND 

15/36 (41.7%) 

11/25 (44%) 

ND 

1/25 (4%) 

ND 

11/25 (44%) 

15/36 (41.7%) 

(41.7-44%) 

26/61  

(42%) 

Sorafenib  

(VEGFR 1-2, RET, PDGFR, 

C-KIT, RAF) 

CCRCC, HCC, Follicular 

thyroid Carcinoma refractory to 

(Tamaskar et al., 2008) 

(Clement P et al., 2008) 

(Riesenbeck et al., 2011) 

(Ueda et al., 2013) 

(Hutson et al., 2013) 

1/39 (2.6%) 

1/23 (4.3%) 

ND  

ND 

ND 

7/39 (17.9%) 

7/23 (30.4%) 

8/31 (25.8%)  

29/355 (8.2%) 

7/96 (7.3%) 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

8/39 (20.5%) 

8/23 (34.8%) 

8/31 (25.8%) 

29/355(8.2%) 

7/96 (7.3%) 

149-160/1455 

(10.2-11%) 
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Radioactive iodine  (Miyake et al., 2010) 

(Daimon et al., 2012) 

(Kudo et al., 2018) 

(Motzer et al., 2013a) 

11/69 (15.9%) 

0/12 

ND 

ND 

46/69 (66.7) 

6/12 (50%) 

8/475 (16.8%) 

29/355 (8.2%) 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

46-57/69 (66.7-82.6%) 

6/12 (50%) 

8/475 (16.8%) 

29/355 (8.2%) 

(7.3-82.6%) 

Sunitinib 

 (VEGFR-2, PDGFR, c-KIT, 

RET, CSF-1R, FLT3) 

CCRCC, GIST, pancreatic 

NET 

(Desai et al., 2006) 

(Rini et al., 2007) 

(Schoeffski et al., 2006) 

(Wong et al., 2007) 

(Mannavola et al., 2007) 

(Wolter et al., 2008) 

(Shinohara et al., 2011) 

(Riesenbeck et al., 2011) 

(Daimon et al., 2012) 

(Fallahi et al., 2014) 

(Rini et al., 2008) 

(Motzer et al., 2013b) 

(Motzer et al., 2012) 

(Akaza et al., 2015) 

(Coelho et al., 2016) 

(Gore et al., 2009) 

(Kappers et al., 2011) 

(Sabatier et al., 2012) 

10/42 (23.8%) 

10/66 (15.1%) 

6/33 (18.2%) 

3/40(7.5%) 

ND 

3/59 (5.1%) 

4/17 (23.5%) 

ND 

4/15 (26.7%) 

5/24 (20.8%) 

ND 

ND 

ND 

ND 

ND 

ND 

5/83 (6%) 

3/102 (29.4%) 

7/42 (16.7%) 

46/66 (69.7%) 

15/33 (45.4%) 

21/40 (52.5%) 

17/24 (70.8%) 

16/59 (27.1%) 

9/17 (52.9%) 

8/52 (15.4%) 

7/15 (46.7%) 

8/24 (33.3%) 

18/61 (29.5%) 

133/548 (24.3%) 

30/292 (10.3%) 

593/1671 (35.5%) 

25/58 (43.1%) 

261/4371 (6%) 

35/83 (42.2%) 

51/102 (50%) 

15/42 (35.7%) 

ND 

ND 

ND  

ND 

ND 

ND 

ND 

ND 

3/24 (12.5%) 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

6/42 (14.3%) 

ND 

ND 

ND 

ND 

ND 

4/17 

ND 

2/15 (13.3%) 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

26/42 (61.9%) 

46-56/66 (69.7-84.8%) 

15-21/33 (45.4-63.6%) 

21-24/40 (52.5-60%) 

17/24 (70.8%) 

16-19/59 (27.1-32.2%) 

9-13/17 (52.9-76.4%) 

8/52 (15.4%) 

9/15 (60%) 

12/24 (50%) 

18/61 (29.5%) 

133/548 (24.3%) 

30/292 (10.3%) 

593/1671 (35.5%) 

25/58 (43.1%) 

261/4371 (6%) 

35-40/83 (42.2%) 

51-54/102 (50-53%) 

(6-84.8%) 

 

1318-1349/7532 

(17.5-17.9%) 

Vandetanib   

(VEGFR-2-3, RET, BRK, 

TIE2, EPHR & Src) 

Medullary thyroid cancer *  

(Robinson et al., 2010) 

(Wells et al., 2012) 

(Lodish et al., 2015) 

ND 

ND 

ND 

2/17* (11.8%) 

114/231* (49.3%) 

10/11* (91%) 

ND 

ND 

ND 

ND 

ND 

ND 

2/17* (11.8%) 

114/231* (49.3%) 

10/11* (91%) 

(11.8-91%) 

126/259  

(48.6%) 

Cabozantinib 

(VEGFR-1-3, RET, MET, KIT, 

TRKB, FLT-3, AXL, ROS1, 

TYRO3, MER & TIE-2) 

CCRCC, Medullary thyroid 

cancer*  

(Yavuz et al., 2014) 

(Prisciandaro et al., 2018) 

(Rabinowits et al., 2018) 

(Choueiri et al., 2015) 

(Schlumberger et al., 2017) 

(Choueiri et al., 2018) 

5/29 (17.2%) 

ND 

ND 

ND 

ND 

ND 

21/29 (72.4%) 

4/17 (13.8%) 

4/8 (50%) 

67/331 (20.2%) 

26/214 (12.1%) 

18/78 (23.1%) 

11/29 (37.9%) 

ND 

ND 

ND 

ND 

ND 

3/29 (10.3%) 

ND 

ND 

ND 

ND 

ND 

27/29 (93.1%) 

4/17 (23.5%) 

4/8 (50%) 

67/331 (20.2%) 

26/214 (12.1%) 

18/78 (23.1%) 

(12.1-93.1%) 

 

 

146/677 

 

Lenvatinib 

(VEGFR1-3, FGFR1- 4, 

PDGFRα, KIT & RET) 

Follicular thyroid Carcinoma 

refractory to Radioactive iodine 

*, CCRCC (in association with 

everolimus) 

(Koyama et al., 2018) 

(Kudo et al., 2018) 

(Motzer et al., 2015) 

(Yamada et al., 2011) 

(Schlumberger et al., 2016) 

(Ikeda et al., 2017) 

0/5 

ND 

ND 

ND 

ND 

ND 

4/5 (80%) 

78/476 (16.4%) 

19/52 (36.5%) 

7/27* (25.9%) 

12/59* (20.3%) 

10/46 (21.7%) 

 

ND 

ND 

ND 

ND 

ND 

ND 

 

ND 

ND 

ND 

ND 

ND 

ND 

 

4/5 (80%) 

78/476 (16.4%) 

19/52 (36.5%) 

7/27 (25.9%) 

12/59 (20.3%) 

10/46 (21.7%) 

(16.4-80%) 
 

126/665 

(18.9%) 
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Thyroid dysfunction is also a major side effect of ICPIs. It occurs in 3.1 to 25% of patients treated 

with ICPI as monotherapy, affecting an average 20% of patients receiving multiple ICPI combinations 

(Table 2). The risk of hyperthyroidism and hypothyroidism is higher in patients treated with anti-PD1 

versus anti-PD-L1 and anti-CTLA-4 (Barroso-Sousa et al., 2018a)(Table 2). When a combination of 

immunotherapy is prescribed, the risk of thyroid toxicity is roughly double than in monotherapy. 

Schematically, the dysthyroidism under ICPI occurs between the 2nd and the 4th cycle, but there have 

been cases of dysthyroidism reported up to 3 years after the initiation of treatment (de Filette et al., 

2016) (Table 3). When a combination of ICPI is prescribed, dysthyroidism usually appears in the first 

cycle (de Filette et al., 2016). The risk of developing thyroid disorder depends, as for TKIs, on the 

patient’s background (female predominance and in the elderly), the existence of associated thyroid 

disorder, the exposure time and the combination with another ICPI (Porta et al., 2016). It is not 

formally established that a high titer of anti-thyroperoxidase (TPO-Abs) or anti-thyroglobulin (Tg-

Abs) antibodies, or that TSH levels at the high end of the normal range before the prescription of 

immunotherapy are associated with an increased risk of thyroid toxicity. 

 Some studies have shown a statistical correlation between the occurrence of thyroid dysfunction when 

prescribing TKIs or ICPIs and a better prognosis in progression-free survival and overall survival. 

(Beukhof et al., 2017; Osorio et al., 2017; Pani et al., 2017; Riesenbeck et al., 2011; Schmidinger et 

al., 2011). This can be explained by the anti-angiogenic effect of TKIs or the immune-mediated effects 

of immunotherapy involving both cancer and thyroid. Therefore, the thyroid function could serve as an 

indirect “sensor” for the effect of TKIs or ICPIs (Makita and Iiri, 2013). However, there is an 

analytical bias because surviving patients will have more time to develop treatment-related toxicity 

than those who die early. 

 

Table 2: Thyroid effects of different types of immunotherapy (number of patients with thyroid 

dysfunction/number of patients in the study). 

CCRCC: Clear Cell Renal Cell Carcinoma, HL: Hodgkin Lymphoma, HNSCC: Head and Neck Squamous Cell 

Carcinoma, ICPI: Immune Checkpoint Inhibitor, MSI+: Microsatellite instability, ND: Non determinated.  

NSCLC: Non-Small Cell Lung Cancer, P.I: Prescribing Information, UC: Urothelial Carcinoma.  
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Class of ICPI 

Name of ICPI 

Indications 

References Thyrotoxicosis Transient 

Hypothyroidism 

Definitive 

Hypothyroidism 

Thyrotoxicosis 

then 

Hypothyroidism 

Dysthyroidism 

(within each study) 

 

Dysthyroidism 

(all studies) 

Anti-CTLA4  
Ipilimumab  

Melanoma/NSCLC 

 

(Eggermont et al., 2016) 

(Robert et al., 2015) 

(Larkin et al., 2015) 

(Wolchok et al., 2017) 

(Hodi et al., 2016) 

(McDermott et al., 2013) 

(Postow et al., 2015) 

(Morganstein et al., 2017) 

ND 

6/256 (2.3%) 

3/311 (2.7%) 

3/311 (2.7%) 

0/46 

ND 

0/46 

20/126 (15.8%) 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

48/471 (10.2%) 

2/256 (0.8%) 

13/311 (11.7%) 

14/311 (12.6%) 

6/46 (13%) 

2/131 (15.3%) 

7/46 (15.2%) 

9/126 (7.1%) 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

48/471 (10.2%) 

8/256 (3.1%) 

13/311 (11.7%) 

14/311 (12.6%) 

6/46 (13%) 

2/131 (15.3%) 

7/46 (15.2%) 

29/126 (23%) 

(3.1-23%) 

127/1698 

(7.4%) 

Anti-PD-1 

Nivolumab  

Melanoma/NSCLC/ 

CCRCC/HL/HNSC

C/ UC 

 

 

 

 

 

Pembrolizumab 

Melanoma/NSCLC/ 

CRCC/HL/HNSCC

/UC/MSI+ Cancers 

(Borghaei et al., 2015) 

(Larkin et al., 2015) 

(Weber et al., 2015) 

(Ferris et al., 2016) 

(Wolchok et al., 2017) 

(Brahmer et al., 2015) 

(Antonia et al., 2016) 

 

(Robert et al., 2015) 

(Ribas et al., 2016) 

(Reck et al., 2016) 

(Bellmunt et al., 2017) 

(Garon et al., 2015) 

(Robert et al., 2015) 

(de Filette et al., 2016) 

(Delivanis et al., 2017) 

(Osorio et al., 2017) 

4/287 (1.4%) 

13/313 (4.1%) 

5/268 (1.9%) 

2/236 (0.8%) 

14/313 (4.5%) 

ND 

2/98 (2%) 

 

17/278 (6.1%) 

15/655 (2.3%) 

12/154 (7.8%) 

10/266 (3.8%) 

9/495 (1.8%) 

ND 

12/99 (12.1%) 

7/93 (7.5%) 

8/48 (16.7%) 

ND 

ND 

ND 

ND 

ND 

ND 

ND 

 

ND 

ND  

ND 

ND 

ND 

ND 

0/99 

1/93 (1.1%) 

0/48 

17/287 (5.9%) 

27/313 (8.6%) 

16/268 (6%) 

9/236 (3.8%) 

33/313 (10.5%) 

5/131 (3.8%) 

3/98 (3.1%) 

 

25/278 (9%) 

49/655 (7.5%) 

14/154 (9.1%) 

17/266 (6.4%) 

34/495 (6.9%) 

32/357 (9%) 

15/99 (15.2%) 

8/93(8.6%) 

10/48 (20.8%) 

ND 

2/313 (0.6%) 

ND 

ND 

ND 

ND 

ND 

 

ND 

ND 

ND 

ND 

ND 

ND 

9/99 (9.1%) 

3/93 (3.2%) 

6/48 (12.5%) 

17-21/287 (5.9-7.3%) 

40/313 (12.8%) 

16-21/268 (6-7.8%) 

9-11/236 (3.8-4.7%) 

33-47/313 (10.5-15%) 

5/131 (3.8%) 

3/98 (3.1%) 

(3.1-12.8%) 
42/278 (15.1%) 

49- 64/655 (7.5-9.8%) 

14-26/124 (9.1-21%) 

17-27/266 (6.4-10.2%) 

34-43/495 (6.9-8.7%) 

32/357 (9%) 

17/99 (17.2%) 

13/93(14%) 

12/48 (25%) 

(7.5-25%) 

133-158/1656 

(8-9.5%) 

 

 

 

 

 

 

 

230-283/2415 

(9.5-11.7%) 

 

 

Anti-PDL1 

Atezolizumab 

UC 

 

 

Avelumab  

Merkel Carcinoma 

 

 

(Fehrenbacher et al., 2016) 

(Peters et al., 2017) 

(Balar et al., 2017) 

(Atezolizumab), p.i) 

 

(Gulley et al., 2017) 

(Avelumab), p.i.,2017) 

 

 

ND 

ND 

ND 

42/2616 (1.6%) 

 

ND 

8/1738 (0.5%) 

 

 

ND 

ND 

ND 

ND 

 

ND 

ND 

 

 

9/142 (6.3%) 

33/659 (5%) 

8/119 (6.7%) 

120/2616 (4.6%) 

 

11/184 (6%) 

90/1738 (5.2%) 

 

 

ND 

ND 

ND 

ND 

 

ND 

ND 

 

ND 

9/142 (6.3%) 

33/659 (5%) 

8/119 (6.7%) 

120-162/2616 (4.6-6.2%) 

(4.6-6.7%) 
11/184 (6%) 

98/1738 (5.6%) 

(5.6-6%) 
 

170-212/3536 

(4.8-6%) 

 

 

 

119/2024 

(5.9%) 

 

156-167/1608 
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Durvalumab  

UC ADDIN  

(Antonia et al., 2016) 

(Powles et al., 2017) 

(Durvalumab), p.i, 2017) 

ND 

10/191 (5.2%) 

1/1417 (0.07%) 

ND 

ND 

ND 

10/102 (9.8%) 

10/191 (5.2%) 

136/1417 (9.6%) 

ND 

ND 

10/102 (9.8%) 

10-20/191 (5.2-10.5%) 

136-137/1417 (9.6%) 

(5.2-10.5%) 

(9.1-9.7%) 

Immunotherapy 

combinations 

Nivolumab+ 

Ipilimumab 

Melanoma 

(Larkin et al., 2015) 

(Wolchok et al., 2017) 

(Hodi et al., 2016) 

(Antonia et al., 2016) 

(Postow et al., 2015) 

(Morganstein et al., 2017) 

31/313 (10%) 

35/313 (11.1%) 

4/94 (4.3%) 

10/115 (8.7%) 

4/94 (4.3%) 

4/18 (22.2%) 

ND 

ND 

ND 

ND 

ND 

ND 

47/313 (15%) 

53/313 (16.9%) 

16/94 (17%) 

14/115 (12.2%) 

15/94 (16%) 

5/18 (27.7%) 

12/313 (3.8%) 

ND 

ND 

ND 

ND 

3/18 (16.7%) 

66/313 (21.1%) 

53-88/313 (16.9-28.1%) 

16-20/94 (17-21.3%) 

14-24/115 (12.2-20.9%) 

15-19/94 (20.2%) 

9/18 (50%) 

(12.2-50%) 

 

173-226/947 

(18.3-23.9%) 

 

 

Table 3: Median time in months to occurrence of hyperthyroidism as well as hypothyroidism according to the immunotherapy molecule (Eggermont et al., 2016; 

Jaafar et al., 2018; Morganstein et al., 2017) 

ICPI: Immune Checkpoint Inhibitor, NSCLC: Non-Small Cell Lung Cancer, UC: Urothelial Carcinoma. 

Class of ICPI Anti-CTLA4 Anti-PD1 Anti-PDL1 

Name of ICPI Ipilimumab Nivolumab Pembrolizumab Atezolizumab Avelumab Durvalumab 

Hyperthyroidism 1.64 (1.18-3.64) 0.76-1.48 (0.03-14.2) 1.4 (0.03-22) 3.2 (1.4-5.8) in UC 

4.9 (0.69-31) in NSCLC 

 

2.8 (0.49-13) 

1.41 (0.46-2.33) 

Hypothyroidism  2.13 (0.85-2.96) 

 

2-3 (0.03-22) 3.5 (0.03-19) 5.4 (0.69-11.3) in UC 

4.8 (0.49-31) in NSCLC 

1.38 (0.49-7.85) 
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III. Pathophysiology of thyroid side effects induced by TKIs and ICPIs (Figure 2)  

The cumulative clinical experience of recent years and the basic studies have led to a better 

understanding of the mechanisms of thyroid dysfunction. Schematically, we may consider that the 

iatrogenic thyroiditis of TKIs is linked to vascular damage and the iatrogenic thyroiditis of ICPIs is 

based on an inflammatory mechanism by autoimmune reaction. Additional pathophysiological 

hypotheses have been put forward to explain the worsening hypothyroidism of the thyroidectomized 

subject, involving alteration of the transport and metabolism of thyroid hormones with certain TKIs. 

Sunitinib-induced thyroid toxicity has been the most studied clinical model for 10 years. Desai et al, 

have conducted a prospective study with 42 patients treated by sunitinib. Persistent primary 

hypothyroidism occurred in 15 (36%) patients. Six of 15 (40%) hypothyroid patients had suppressed 

TSH concentrations before developing hypothyroidism suggesting induced thyroiditis through a 

destructive mechanism (Desai et al., 2006). Such biphasic thyroiditis pattern was reported from 13,3 to 

87,5% of cases (Table 1). First, thyrotoxicosis is reported, accompanied by a transient increase in 

thyroglobulin associated with TKI-induced cell lysis, and then hypothyroidism develops secondarily. 

This sequence is repeated at each cycle when an intermittent on/off pattern is prescribed. When several 

cycles of treatment are performed, a decreased vascularization of the thyroid parenchyma is reported 

with thyroid hypotrophy which will eventually be responsible for permanent hypothyroidism if the 

treatment is prolonged. (Desai et al., 2006; Kappers et al., 2011; Makita and Iiri, 2013; Sato et al., 

2010). The thyroiditis reported with anti-angiogenic TKIs is therefore the consequence of 

devascularization of the thyroid vesicles, which represent the functional units of the thyroid. The 

vascularization abnormalities and the resulting cellular hypoxia are related to capillary regression 

mediated by the anti-VEGFR effect (Cao, 2014; Kamba et al., 2006; Kappers et al., 2011; Makita et 

al., 2010; Yang et al., 2013). There is both functional and structural damage. Indeed, VEGF-

A/VEGFR2 signaling is directly involved in all fenestrated capillaries (which allows the introduction 

of iodine and the secretion of thyroid hormones through the endothelial cells) and in the trophic 

development of the thyroid tissue, according to the work conducted in murine models (Jang et al., 

2017). Therefore blocking this signaling pathway also leads to a decreased synthesis of thyroid 

hormones (Cao, 2014; Kamba et al., 2006; Kitajima et al., 2012; Makita et al., 2010; Mannavola et al., 

2007; Yang et al., 2013). Other intra-thyroid mechanisms have been suspected in the occurrence of 

hypothyroidism under TKI, such as the inhibition of iodine uptake by thyrocytes and the inactivation 

of thyroperoxidase (Liwanpo et al., 2014; Mannavola et al., 2007; Salem et al., 2008; Simonides et al., 

2008; Wong et al., 2007). These hypotheses were subsequently invalidated because this functional 

impairment was a logical consequence of the ischemia and tissue damage induced by TKI. Regarding 

the central nervous system, it is also assumed that some TKIs, by decreasing the production of nitric 

oxide, could decrease the secretion of TRH by the paraventricular nucleus of the hypothalamus and 

thus decrease the secretion of TSH by the thyrotrophic pituitary cells (Ohba et al., 2013). TKIs also 

have effects on the peripheral metabolism of thyroid hormones regardless of their own thyroid 

toxicity. In thyroidectomized patients treated with TKIs, there is an increased demand for thyroid 

hormone. Indeed, TKIs such as sunitinib or sorafenib increase the activity of type 3 deiodinase (as 

evidenced by the decrease in T3/T4 and T3/rT3 ratios) resulting in hypothyroidism because of lower 

tissue availability of the active hormone T3, locally inactivated in T2 or rT3 (Abdulrahman et al., 

2010; Beukhof et al., 2017; Kappers et al., 2011). Finally, other TKIs such as imatinib, bosutinib and 

dasatinib, but also sunitinib, can inhibit the transporter of MCT8 thyroid hormones (monocarboxylate 

transporter) across the plasma membrane, reducing the supply of T3 to peripheral tissues but also 

centrally, in the thyrotropic cell (Braun et al., 2012). Thyroid hormones exert their action by binding to 

specific nuclear receptors that are heterodimerized with a retinoic acid receptor. Sunitinib, by binding 
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to retinoic acid receptors, could prevent this heterodimerization and thus inhibit the expression of 

target genes (Shu et al., 2016). Sunitinib also has immunostimulatory properties by inhibiting the 

expression of CTLA4 and PD1 on CD4+ and CD8+ T cells. If this cytotoxic lymphocyte activation is 

beneficial for tumor control, it can be exercised against healthy tissues, affecting organs such as the 

thyroid, on the ICPI toxicity model detailed below (Ozao-Choy et al., 2009).   

 

The pathophysiological conception of dysthyroidism linked to immunotherapy is still likely to evolve 

with the emergence of new research (Angell et al., 2018; Delivanis et al., 2017). A mechanism of 

silent lymphocytic thyroiditis that in its clinical presentation is similar to the postpartum thyroiditis, at 

the time of physiological reactivation of the immune system, is currently assumed (Iwatani et al., 

1988). Similarly, in the patient under ICPI therapy, following the amplification of the adaptive 

immune response, a cell-mediated cytotoxic immune reaction occurs linked to mature NK (Natural 

killers) cells, T helper CD4+ cells and cytotoxic CD8+ T cells (Delivanis et al., 2017). Unlike the 

typical autoimmune diseases for example, ICPI-related iatrogenic autoimmune disorders are 

accompanied by a decrease in some immunosuppressive cells and an increase in HLA-DR expression 

on the surface of CD14+CD16+ monocytes (Delivanis et al., 2017). Some researchers have suggested 

that thyroiditis induced by pembrolizumab may be related to monocytic activation induced by this 

overexpression of HLA-DR. These monocytes would infiltrate the thyroid tissue after recognition of 

antigens similar to the tumor antigens and exert their cytotoxic action, explaining why the first phase 

of thyrotoxicosis is contemporaneous with an increase in thyroid volume, before returning to normal 

or before a possible evolution towards hypothyroidism. The analysis of a thyroid fine needle aspiration 

cytology carried out in a patient with thyroiditis receiving combined treatment with nivolumab and 

ipilimumab, had in fact numerous necrotic cells and plenty of CD163 histiocytes and lymphocytes 

(Angell et al., 2018). Other arguments support the hypothesis of a cytotoxic cell-mediated response 

rather than the induction of humoral immunity: 1/ pembrolizumab - which gives thyroid toxicities - is 

an IgG4 antibody, an immunoglobulin subclass that is not associated with antibody or complement-

mediated cytotoxicity (Davies and Sutton, 2015); 2/ TPO-Abs do not seem to have a pathogenic role 

for the ICPI-induced dysthyroidism (Delivanis et al., 2017); 3/ in classical autoimmune thyroiditis 

(Graves’ disease, Hashimoto’s thyroiditis), the circulating anti-TPO and Tg-Abs levels correlate with 

T-cell infiltration into the thyroid gland (Huber et al., 2002; Yoshida et al., 1978), which does not 

seem the case for the thyroiditis induced by ICPIs.  

For the issue of thyroid disorder 2 to 5 times more common with anti-PD1/PDL1 compared to anti-

CTLA4, two explanations are proposed. This difference could be related to the strong expression of 

PDL1 and PDL2 in healthy thyroid tissue, making it a preferred target for cytotoxic T cells and, in 

addition, to the weak CTLA4 expression in circulating lymphocytes and intra-thyroid lymphocytes 

(Delivanis et al., 2017; Yamauchi et al., 2017). On the other hand, particular genetic backgrounds 

could increase the susceptibility to autoimmune toxicities related to ICPI. An HLA typing 

predisposing to autoimmune thyroid disorders also seems to promote the occurrence of thyroiditis 

under ICPI therapy (Jacobson et al., 2008; Menconi et al., 2008; Nada and Hammouda, 2014). The 

role of certain polymorphisms of CTLA4 and PD1 has also been mentioned, but this hypothesis is not 

confirmed (Han et al., 2006; Orlov et al., 2015; Tomer, 2010).  
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Figure 2 The pathophysiological mechanisms of dysthyroidism under TKIs and ICPI therapy. 

 

Immune Checkpoint Inhibitor                  Tyrosine Kinase Inhibitor                                                              

CD: Cluster of differentiation, CTLA-4: Cytotoxic T Lymphocyte-Associated Antigen-4, I-: Iodine, NIS: Sodium-iodide 

symporter, MCT8: Monocarboxylate transporter 8, PDL1-2: Programmed death-ligand 1-2, TPO: Thyroperoxidase, RAR: 

Retinoic acid receptor, TR: Thyroid hormone receptor. 

 

IV. Description of thyroid disorders 

A. Clinical presentation  

The clinical presentation of the thyroid disorder is varied. Two situations are encountered. Indeed, 

these disorders can occur in a healthy thyroid (strictly normal thyroid function and morphology) or in 

a patient with a preexisting known or unknown thyroid disease: nodular thyroid disease, nodular 

goiter, autoimmune thyroiditis with or without thyroid dysfunction. It will be necessary to discern the 

toxicity inherent to the anti-cancer treatment from the potential baseline thyroid condition. The classic 

presentation of dysthyroidism associated with TKIs or ICPIs is silent thyroiditis. This thyroiditis 

begins with a phase of thyrotoxicosis secondary to thyroid vesicles destruction releasing the stock of 

available thyroid hormones and thyroglobulin into the bloodstream. Clinical manifestations may be 

absent or minor and go unnoticed, or may cause palpitations, tachycardia, heat intolerance, weight 

loss, irritability, sleep disorders, or asthenia. Thyrotoxicosis may also be reported in hypothyroid 

patients prior to the initiation of ICPIs or TKIs (Villa et al., 2018). Genuine thyrotoxicosis storms have 

rarely been described; they are often secondary to a combination between several ICPIs (McMillen et 

al., 2016). In the phase of thyrotoxicosis, there is a return to euthyroidism preceded or not by a 

transition to hypothyroidism that is sometimes not reversible. As for conventional thyroiditis, it is 

considered that 50% of these patients will progress to permanent hypothyroidism secondary to the 

destruction of thyroid follicles. In the hypothyroid phase, patients also have few symptoms, 

inconsistently complaining of weight gain, chills, constipation, and fatigability or reporting these 
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symptoms to their neoplastic disease. The transition between the thyrotoxicosis and hypothyroidism 

phases seems much faster and earlier with ICPIs (shorter form of thyrotoxicosis) than with TKIs.  

In patients treated with sunitinib using a discontinuous schedule, TSH increases at the end of the 4 

weeks of the ON phase (treatment intake) and returns to normal at the end of the 2 weeks of the OFF 

phase (treatment discontinuation). After several treatment cycles, the rate of TSH increases in stages at 

the end of the OFF phase: the initially intermittent hypothyroidism becomes permanent (Illouz et al., 

2009). Sometimes hypothyroidism is the initial mode of revelation without previous thyrotoxicosis. 

Hypothyroidism can sometimes be severe if diagnosed late as reported under treatment with 

nivolumab (Khan et al., 2017). The risk of permanent hypothyroidism seems greater under TKI 

therapy especially as accompanied by thyroid atrophy.  

Finally, rare cases of Graves’ disease without expression of anti-RTSH antibodies (TRAbs) or 

orbitopathies without hyperthyroidism have been described (imatinib, sorafenib, ipilimumab, 

tremelimumab and pembrolizumab) (Azmat et al., 2016; Borodic et al., 2011; de Filette et al., 2016; 

Eroukhmanoff et al., 2016; Gan et al., 2017; Konca Degertekin et al., 2012). 

B. What biological and morphological assessments should be made?  

The symptoms and physical signs of dysthyroidism under TKI and ICPI therapy are often discrete. 

Paraclinical evaluation is essential to establish the diagnosis of iatrogenic thyroiditis and eliminate a 

differential diagnosis by listing the patient’s co-morbidities and confounding factors (nutritional status, 

treatments, injections of iodinated contrast agents). During the thyrotoxicosis phase, TSH is low and 

free T4 increased (or normal in cases of subclinical hyperthyroidism). During this phase, TRAbs are 

often absent - they are measured only when there is diagnostic doubt with Graves’ disease. During the 

hypothyroid phase, TSH is high and free T4 is low (or normal in cases of subclinical hypothyroidism). 

The measurement of TPO-Abs will only be performed if the TSH level rises moderately, between 5 

and 10 mIU/L to argue the benefit of a levothyroxine supplementation from the outset. During this 

phase, TPO-Abs and/or Tg-Abs are present, but generally low (25% of patients under TKI therapy and 

in 50 to 67% of cases under immunotherapy). They usually occur after the prescription of these anti-

cancer drugs and their presence is associated with thyroid dysfunction in 80% of cases (de Filette et 

al., 2016; Kobayashi et al., 2018; Osorio et al., 2017). As a reminder, in the case of lowered TSH 

associated with a low or normal free T4 in a patient treated with immunotherapy and especially with 

anti-CTLA4, a complete assessment of the pituitary function is recommended to rule out hypophysitis 

with corticotropin deficiency (measure the cortisol levels every 8 hours and ACTH if cortisol levels 

are low) or combined thyrotropic deficiency. 

The thyroid gland has a different ultrasound appearance in thyroiditis under TKI and ICPI therapy. 

Indeed, under ICPI therapy we can see first a transient hyperechoic thyroid hypertrophy and 

sometimes hypervascular hypertrophy, and then a hypoechoic appearance (Angell et al., 2018; 

Kobayashi et al., 2018). Under TKI therapy, a hypoechoic, heterogeneous appearance and decreased 

vascularization are initially observed by Doppler, then a progression to thyroid atrophy (this is the case 

for 89% of patients treated with sunitinib with hypothyroidism) (Pani et al., 2015).  

In the phase of biological hyperthyroidism, in case of diagnostic doubt with Graves’ disease or 

functional nodular dystrophy, a thyroid scintigraphy may be performed on endocrinology 

recommendations (checking for the absence of recent injection of iodinated contrast products which 

would give false negative results). This examination does not show a tracer uptake in the case of 

iatrogenic thyroiditis at the stage of lesion damage. 
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If an 18FDGPET/CT scan is performed for cancer monitoring, patients developing thyroiditis under 

immunotherapy will show an increased thyroid uptake of 18 FDG, in a diffuse manner, as described in 

common autoimmune thyroiditis (Hashimoto’s thyroiditis, Graves’ disease) (de Filette et al., 2016; 

Delivanis et al., 2017; Karantanis et al., 2007).  

V. Therapeutic aspect (Figure 3)  

No predictor of the occurrence of dysthyroidism has been clearly identified to date for TKIs and for 

ICPIs. Thus, in order to better detect the occurrence of thyroid dysfunction, it is essential to teach the 

patient to recognize the symptoms of hypothyroidism and thyrotoxicosis, to provide this case history 

routinely during the oncology consultations. However, given the paucisymptomatic nature of these 

thyroid dysfunctions and their early onset after the initiation of TKIs or ICPIs, we suggest, as recently 

recommended by the French Society of Endocrinology, to measure the TSH/free T4 levels before 

starting treatment, and every 3 to 4 weeks during the first 6 months as changes in free T4 levels 

precede the changes in TSH by 3 to 6 weeks (Drui et al., 2018; Illouz et al., 2018). After this period, 

the laboratory tests may be conducted every 2-3 months, and simplified by the TSH measurement 

alone. 

Screening for anti-thyroid autoimmunity (TPO-Abs, Tg-Abs, TRAbs) before initiation of TKIs or 

ICPIs is not recommended. A history of thyroid disorder does not contraindicate initiation of TKI or 

ICPI therapy. In hypothyroid patients in these classes of anti-cancer drugs, adjustment of the 

replacement therapy may be necessary; it will be performed in connection with the patient’s 

endocrinologist.  

The occurrence of thyroid dysfunction, usually grade 1 or 2, does not contraindicate the continuation 

of TKI or ICPI therapy. 

During the thyrotoxicosis phase, a symptomatic treatment will be initiated including low-dose non-

cardioselective β-blockers such as propranolol, in the absence of contraindication, in order to control 

cardiothyrosis and tremors (Drui et al., 2018; Illouz et al., 2018). Severe thyrotoxicosis may justify the 

addition of cholestyramine treatment for its chelation effect of thyroid hormones in the enterohepatic 

circulation. Based on current literature data, there is no evidence to support routine use of 

corticosteroids except in the case of Graves’ orbitopathy (Bartalena et al., 2016). Treatment with 

synthetic antithyroid drugs will be initiated only in cases of Graves’ disease, toxic nodular goiter or 

solitary toxic nodules detected during this monitoring.  

Given the risk of progression to hypothyroidism in the weeks following thyrotoxicosis, regular 

monitoring of TSH and free T4 is required. Hyperthyroidism is almost always resolving, followed or 

not by a hypothyroidism phase. In the hypothyroid phase, the β-blocker treatment is of course 

discontinued and a supportive treatment with levothyroxine may be started. This treatment will only 

be prescribed if the TSH is greater than 10 mIU/L or between 5 and 10 mIU/L in symptomatic patients 

or those with elevated TPO-Abs (Drui et al., 2018; Illouz et al., 2018). In asymptomatic patients with 

TSH between 5 and 10 mIU/L, a second TSH+free T4 test may be performed every 2-4 weeks in order 

to avoid treating transient hypothyroidism or conversely, not to overlook worsening hypothyroidism 

that may deserve further hormone replacement. Classically, levothyroxine may be initiated at a dose of 

1 to 1.6 μg/kg/day, except in elderly patients or patients with cardiovascular co-morbidities who will 

start with lower intakes (25-50 μg/day) to be increased by levels of 12.5 μg. A follow-up TSH test will 

be performed 6 weeks after the prescription of Levothyroxine.  
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Patients with already substituted hypothyroidism should have the TSH levels carefully monitored in 

order to adjust the levothyroxine doses if necessary.  

  VI. Conclusion  

In patients treated with TKIs or ICPIs, the thyroid toxicities are common and pauci-symptomatic at the 

beginning of their evolution but can lead to prolonged hypothyroidism that should not be ignored. 

Endocrinologists and oncologists must systematize the laboratory follow-up of the thyroid based on 

the logistical or monitoring constraints already imposed on the patient. At least the TSH+free T4 

measurement should be proposed monthly for 6 months, and then have this monitoring expanded and 

simplified if there is no event or following the episode of thyroiditis, after the euthyroidism is restored 

with or without treatment. In both cases, even if the pathophysiological mechanisms involved are 

singular, giving in particular a clinical expression of different chronology depending on the nature of 

the immune or vascular damage, the resultant is destructive thyroiditis. It is typically manifested by a 

thyrotoxicosis phase (by definition insensitive to synthetic antithyroid drugs) whose transient 

symptoms can be treated with non-cardioselective β-blockers or even with cholestyramine. Then the 

patient may develop hypothyroidism, which is reversible in half of the cases, to be supplemented by 

Levothyroxine, depending on the intensity of the signs of hypometabolism and the elevation of TSH 

levels. The occurrence of thyroid dysfunction does not contraindicate the continuation of TKI or ICPI 

therapy. 

 Collaboration between oncologists and endocrinologists for diagnosis, treatment and therapeutic 

education will be essential to good management of these thyroid side effects. 

 

 

Figure 3 : Treatment of dysthyroidism.             

ATD: Synthetic antithyroid drug, GD: Grave’s disease, ICPI: Immune checkpoint inhibitor STN: Solitary Toxic Nodule, TKI: 

Tyrosine Kinase Inhibitor, TNG: Toxic Nodular Goiter, TPO-Abs: anti-thyroid peroxidase antibodies, TRAbs: anti-

thyrotropin receptor antibodies, we: weeks. 
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