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Abstract: In industry, ergonomists apply heuristic methods to determine workers’ exposure to
ergonomic risks; however, current methods are limited to evaluating postures or measuring the du-
ration and frequency of professional tasks. The work described here aims to deepen ergonomic
analysis by using joint angles computed from inertial sensors to model the dynamics of professional
movements and the collaboration between joints. This work is based on the hypothesis that with these
models, it is possible to forecast workers’ posture and identify the joints contributing to the motion,
which can later be used for ergonomic risk prevention. The modeling was based on the Gesture
Operational Model, which uses autoregressive models to learn the dynamics of the joints by assuming
associations between them. Euler angles were used for training to avoid forecasting errors such as
bone stretching and invalid skeleton configurations, which commonly occur with models trained
with joint positions. The statistical significance of the assumptions of each model was computed to
determine the joints most involved in the movements. The forecasting performance of the models
was evaluated, and the selection of joints was validated, by achieving a high gesture recognition
performance. Finally, a sensitivity analysis was conducted to investigate the response of the system
to disturbances and their effect on the posture.

Keywords: movement modeling; state-space representation; gesture recognition; wearable sensors;
ergonomics

1. Introduction

To fulfill market demands within specific time limits, job specifications and budget
restrictions, the tasks performed by manual laborers in the industrial sector are becom-
ing more challenging and complex. The tasks demanded of them require workers to go
sometimes beyond their natural physical limitations, performing repetitive tasks for long
periods of time. Being subjected to such constant physical strain leads to work-related mus-
culoskeletal disorders (WMSDs) [1]. WMSDs can cause permanent or temporary damage
to tissue, such as muscles, bones, joints or tendons, caused by cumulative microdamage,
where the internal tolerance of the tissues is eventually exceeded. WMSDs are the most
common work-related health issue in Europe [2], entailing consequences for workers and
for the companies that employ them, that have to contend with high levels of sick leave
and drops in productivity.

The ability to record accurate measurements for ergonomic analysis is essential as
it provides ergonomists with quantitative measures of workers’ performance. This rep-
resents an added value in preventing ergonomic risk. Risk factors such as assuming
awkward postures and performing highly repetitive or physically demanding tasks are
often associated with WMSDs [2], mostly when occurring at high levels of repetition or
in some kind of combination. Several rules and methods were established to identify
ergonomic risks that workers might be exposed to during their professional activities.
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Three different measurements were used for these evaluations [3]. The first was self-
assessment, where workers were asked to fill out a questionnaire indicating their level of
exposure to diverse risk factors, including how tired they felt after their shift or if they
had assumed any dangerous postures during their tasks. The second measurement is
through observation by others, where an ergonomist observes the workers during their
shift and completes a heuristic evaluation based on standards that indicate human physical
limitations and abilities (e.g., the ISO 11226:2000 and EN 1005-4). These standards are
mostly based on the deviation of the working posture from the neutral pose. The higher
the deviation, the higher the risk of developing WMSD. Some existing questionnaries that
use this approach are the Rapid Upper Limb Assessment (RULA) [4], Ergonomic Assess-
ment Worksheet (EAWS) [5], and Ovako Working Posture Analysing System (OWAS) [6].
The third technique consists of direct measurement and primarily involves implementing
a biomechanical-based analysis, where the loads and external forces the workers are ex-
posed to are considered in the evaluation. An example of a direct measurement method
is the National Institute of Occupational Safety and Health (NIOSH) lifting equation [7],
which helps assess whether lifting a load is acceptable. Another is the Liberty Mutual
manual materials handling tables [8], which indicate the load range that certain male or
female members of the population may be able to lift, lower, carry, push or pull as part of
their daily work, without the risk of developing WMSDs.

While methods based on self-assessment or visual observation, are quick and straight-
forward ways to evaluate, they are not always accurate and precise. They are quite
subjective, since they are dependant on the worker’s feelings or sensations, or on the pow-
ers of observation of the ergonomist, leading, quite possibly, to low accuracy and high intra-
and inter-observer variability [9]. For methods based on direct measurements, laboratory
equipment is usually required, such as optical motion capture systems and force plates
to measure external forces. This equipment requires a large infrastructure and is thus
rather impractical and difficult to use in the workplace. Moreover, using these technologies
involves bringing workers to the laboratory, causing inaccurate measures since they lack
authenticity and are not real workplace scenarios. Recent research has started to develop
alternative sensor-based automated evaluation methods, using cameras or body-mounted
inertial sensors [10–13]; however, ergonomic evaluation in these studies relies purely on
joint angle thresholds, which can only identify risks related to static postures [4–6].

The work presented in this paper aims to further expand the scope of the analysis
conducted in current ergonomic evaluations by modeling professional movements. The hy-
pothesis formulated here is that by modeling the workers’ dynamics, it is possible to extract
information about the contribution of body joint movements to various ergonomic risks.
Moreover, with the learned models, it is possible to predict the motion trajectory of body
joints and thus detect any possible future exposure to postural ergonomic risk.

For the purposes of this research, human motion modeling and trajectory predictions
were made using a Gesture Operational Model (GOM) [14], which consists of a system of
equations based on different assumptions about the dynamic relationship of body parts.
The methodology was validated by evaluating the forecasting performance of the system
and by improving the recognition performance of professional movements, using four
datasets. The first and second datasets were taken from professional movements executed
in factories concerned with television production and airplane manufacturing, respectively.
The third dataset was composed of gestures performed in a glassblowing workshop, while
the fourth dataset of motion primitives, with different ergonomic risk levels, according to
EAWS [5], was recorded in a laboratory.

In Section 2, which follows, the present state-of-the-art related to motion analysis for
modeling, prediction, and pattern recognition, will be presented, while the methodology
and evaluation procedures we used are described in Section 3. Section 4 presents the results
of the experiments conducted on the four datasets, Section 5 discusses our findings and
results, followed by the presentation of our conclusions in Section 6.
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2. State-of-the-Art
2.1. Motion Analysis Based on Body Structure

In the past, biomechanical, stochastic, and hybrid models have been used to represent
human motion and these models were then used to study the coordinated mechanical
interaction between bones, muscles, and joints within the musculoskeletal system. The mod-
eling of human movements, and their changes, caused by internal and external action
forces has generally been addressed with biomechanical models. These models represent
the human body as a set of articulated links in a kinetic chain where joint torques and
forces are calculated using anthropometric, postural, and hand load data [15]. Inertial data,
such as accelerations and velocities, and information about external forces like ground
reaction forces from force plates, are used as input for biomechanical models [16]. When
dealing with inverse dynamics, quantitative information about the mechanics of the mus-
culoskeletal system, while performing a motor task, is extracted. Most previous studies
have used biomechanical modeling to extract the kinematic and kinetic contributions of
the joints, in diverse motor tasks, then investigate the mechanical loading of the joints and
their response to ergonomic interventions. To analyze the ergonomic impact of different
postures on human joints, Menychtas et al. [17] applied the Newton–Euler algorithm for
the computation of upper body joint torques. The normalized integral of joint angles and
joint torques was then calculated to describe the kinematic and kinetic contribution of
the body joints when awkward poses are assumed. The method identified which joints
moved the most during the tasks and were under the most strain while performing er-
gonomically dangerous gestures. Faber [18] used a spanned inverse dynamics model to
estimate 3D L5/S1 moments and ground forces, then compared symmetric, asymmetric,
and fast trunk bending movements through ergonomic analysis. Similarly, Shojaei [19]
estimated the reaction forces and moments of the lower back, in manual material han-
dling (MMH) tasks, to assess age-related differences in trunk kinematics and mechanical
demands on the lower back.

In previous research, statistical modeling has been used to learn the stochastic be-
havior of human motion. These models capture the variance information of body motion
trajectories and have been used both to estimate human intentions and label human activi-
ties. In order to infer intentions from observed human movements in real-time, Wang [20]
presented the Intention-Driven Dynamics Model (IDDM), based on Gaussian processes.
The dynamics model assumes that the goal directs human action, meaning that the dy-
namics change when the actions are based on different intentions. The study proved that
including human dynamics in the modeling benefits the prediction of human intentions.
In order to capture the motion patterns that emerge in typical human activities (e.g., walk-
ing and running), Argwal [21] trained a mixture of Gaussian auto-regressive processes
with joint angles and position trajectories. The dynamic models take advantage of local
correlations between joints motion to track complicated movements successfully (turns
in different directions) using only 2D body measures (joint positions and joint angles).
To segment and analyze human behaviours, Devanne [22] applied a Dynamic Naive Bayes
model to capture the dynamics of elementary motions and to segment continuously in long
sequences diverse human behaviors.

Hybrid methodologies that take into consideration human biomechanical structure
and the stochastics of motion have been developed to improve the analysis of the random
outcomes of movement. A hybrid model, designed to predict the probability of injury and
identify factors contributing to the risk of non-contact anterior cruciate ligament (ACL)
injuries, has been proposed by Lin [23]. A biomechanical model of the ACL estimated
the lower leg kinematics and kinetics. In turn, the means and standard deviations of
the number of simulated non-contact ACL injuries, injury rate, and female-to-male injury
rate were calculated in Monte Carlo simulations of non-contact ACL injury and non-injury
trials. T-tests revealed the biomechanical characteristics of the simulated injury trials.
Donnell [24] used a two-state Markov chain model to represent the survival of surgical
repair from rotator cuff. The load applied to the shoulder and the structural capacity of
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tissue were the random variables. The analysis was based on the application of struc-
tural reliability modeling. By introducing this new modeling paradigm for explaining
clinical retear data, the model successfully predicted the probability of rotator cuff repair
retears and contributed to understanding their causes. To describe the cooperation of body
parts in the execution of professional movements, Manitsaris [14] proposed the Gesture
Operational Model (GOM), based on state-space modeling. GOM offered insights into
the dynamic relationship between body parts, within the execution of a movement, ac-
cording to the statistical significance of its various assumptions and their dependencies on
the motion of other body parts.

2.2. Motion Trajectory Prediction

The problem of human motion trajectory prediction has been researched extensively
in the past. There is a growing interest, in the industrial sector, in implementing systems
that allow prediction of how workers’ motion descriptors will unfold over time, and to
incorporate this knowledge in a pro-active manner e.g., to facilitate human-robot collabora-
tion or risk prevention. There are three prediction approaches, which are based on how
human motion is represented and how the behavior pattern is formulated. Physics-based
models are explicitly defined dynamic models explicitly defined and follow Newton’s Law
of Motion. Pattern-based models, on the other hand, learn statistical behavioral patterns
that emerge, based on the observed motion trajectories. Plan-based models are concerned
with reasoning about the intention behind the movement and the goal of the performer.

2.2.1. Physics-Based Models

Physics-based models predict future human motions according to a defined dynamic
model ( f ). This model follows the form of a state-space representation:

s(t + 1) = f (s(t), u(t), t) + w(t) (1)

where s(t + 1) is the prediction, s(t) is the current motion state of the system, u(t) is
the input, and w(t) the process noise. The motion is predicted by forward simulating
the dynamic equations that follow the physics-based model. Physics-based models have
tended to use kinematic models for prediction and these represented the motion states as
position, orientation, velocity, or acceleration and linked the observations to the state’s evo-
lution. Some examples of kinematic models used are constant velocity (CV) [25], constant
acceleration (CA) [26], and coordinated turn (CT) [27]. These models describe the agent’s
motion based on the mathematical relationship between the movement parameters (e.g., po-
sition, velocity, acceleration) without considering the external forces that affect the motion.
Kinematic models are frequently used for prediction due to their simplicity and acceptable
performance, under the conditions of little motion uncertainty, or short-term prediction.

For the prediction of pedestrians’ position trajectories, previous studies have applied
Kalman Filters (KFs), with kinematic models such as CV and CA [26,28]. The main
application of KF is for tracking the pedestrian position according to the estimated velocity
or acceleration. Zernetsch [29] applied a kinematic model for trajectory prediction of
cyclists that consisted of a CV model for the computation of all significant forces, such as
the driving force and resisting force, composed of acceleration resistance, rolling resistance,
and air resistance. In order to determine the kinematic model parameters, a curve-fitting
approach was used, with motion profiles of cyclists that were recorded with a video camera
and laser scanners at a public intersection.

For the prediction of movements with a high level of uncertainty, previous studies
have used multi-model (MM) methods. These methods fuse different motion modes
(e.g., sudden accelerations, linear movements, maneuvers) to describe complex motions
(e.g., pedestrians or vehicles in public areas), where a dynamic model represents each
mode. Pool [30] applied an MM approach to predict cyclists’ motion based on their
motion strategies (go straight, turn left or right 45◦ or 90◦). Whenever a strategy does
not comply with the road topology, the probability of the strategy is set to zero, in place
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of prediction. A multi-model approach for pedestrian trajectory prediction has been
presented by Kooij [31], which uses Switching Linear Dynamical Systems (SLDS) to model
maneuvering pedestrians that shift between motion models (e.g., walking, stopping).
Then, a Dynamic Bayesian Network (DBN) predicts the pedestrian movements based on
the SLDS model. The latent variables consisted of the pedestrian location, curb location
and head orientation (indicating awareness of oncoming vehicles). The results proved that
including context cues in the analysis improves overall prediction accuracy. Manitsaris [14]
adequately addressed the forecasting trajectories of a 3D skeleton’s joint positions by using
state-space modeling. The state variables corresponded with the dynamic association of
body parts, their synergies, their serial and non-serial mediations, and the two previous
positions of the body part represented. This study, by including information about other
body parts in the representation of each body part, boosted the forecasting performance of
the system due to the strong dynamic relationship between them.

Physics-based approaches are appropriate, where an explicit transition function can be
defined for modeling the agent’s motion dynamics, as well as the influence of other agents
and of their surroundings on it. The main drawback of using physics-based approaches is
that they do not perform well for very complex situations (e.g., public areas with multiple
agents). Moreover, their use is commonly limited to short-term predictions and obstacle-
free environments.

2.2.2. Pattern-Based Models

Pattern-based approaches, unlike physics-based approaches, learn human motion
behaviors by fitting models to data. For the prediction of pedestrian trajectories, Quin-
tero [32] presented the Gaussian process dynamical models (B-GPDMs). The system can
reduce the 3-D time-related information extracted from key positions on the pedestrians’
bodies into only two observations, used for the prediction. The most similar model to
the multiple models of four activity types (e.g., walking, stopping, starting and standing)
is then selected to estimate future pedestrian states. For the motion prediction of multiple
people, Kucner [33] used Gaussian Processes and their mixtures to model multimodal
distributions, representing speed and orientation in joint space, for the purpose of modeling
the motion of people and mapping their flow in the area analyzed.

Neural Networks have achieved promising performances for time-series predic-
tion [34–36]. Among the most popular are the Long Short-Term Memory (LSTM) networks
to predict human [34,35] and vehicle motion [36]. For the trajectory prediction of pedes-
trians’ 2D position and orientation, Sun [34] incorporated spatial and temporal context
information into an LSTM to learn the human activity patterns generated in different
environments at different times of the day. Xue [35] proposed the Social-Scene-LSTM
(SS-LSTM), which uses three LSTMs to capture person, social and scene scale information.
In turn, the output of the three networks is used by an LSTM decoder for the prediction
of pedestrian trajectory coordinates. Srikanth [36] has proposed a robust model for future
trajectory prediction of vehicles, where a simple Encoder-Decoder model connected by
a convolutional LSTM was used to learn vehicle temporal dynamics, including semantic
images, depth information and other vehicles’ positions. In this study, the use of scene
semantics improved the prediction performance over models that only use information
such as raw pixel intensities or depth information.

For the capturing of more complex unknown dynamics, it has to be admitted that
pattern-based approaches have outperformed physics-based approaches; however, they
require a large amount of data to train the model to avoid generalization issues. To improve
the prediction performance, pattern-based and physics-based approaches have benefited
from integrating context information into their observations. The studies that included
information about the shape and structure of the environment, together with the external
forces that the person or object is exposed to, or information about their interaction with
other agents (e.g., people, vehicles or robots) produce more precise predictions in numer-
ous cases [37].
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2.2.3. Planning-Based Models

The third prediction approach employs Planning-based models. Unlike the previous
approaches, these assume rationality, in the case of tracked human movements and their
long-term motion goals. This approach computes path hypotheses that allow the agent to
reach their motion goals by considering the impact of current actions on future motions.
The prediction is made using a predefined cost function, based on intended motion goals
or inferred cost function, according to the observed trajectories. Best and Fitch [38] have
proposed a Bayesian framework to estimate pedestrians’ intended goal destination and
future trajectory. The framework is based on multimodal hypotheses of the intended
goal, and the long-term trajectory that decreases the distance to the intended goal is
selected. By seeing the trajectory prediction as an optimization problem, Lee [39] suggests
a deep stochastic Recurrent Neural Network (RNN) Encoder-Decoder framework for
trajectory prediction of multiple vehicles in complex scenes. The model obtains a diverse
set of hypothetical trajectories which takes into consideration the agent interactions, scene
semantics, and expected reward function. The single end-to-end RNN encoder-decoder
network captures the past trajectories and incorporates the information into the inference
process to improve prediction accuracy.

In order to use planning-based approaches, the goals that the agents under analysis
are trying to achieve must first be explicitly defined, and the context information about
the environment surrounding the agent must be provided for the model. Planning-based
approaches usually perform better for long-term predictions than do physics-based ap-
proaches and also tend to have less generalization issues than Pattern-based approaches.
The downside of these approaches is that as the complexity of the prediction problem
increases (e.g., long-term predictions, multiple agents and size of the environment), so does
the running time for training the models.

2.3. Human Gesture Recognition

Ergonomic evaluations have been conducted by identifying the risks involved in work-
related motions, using gesture recognition (GR) techniques to recognize professional mo-
tions and estimate their frequency and duration on the workers’ shift. Peppoloni [40]
developed a monitoring system by training State machines to classify manual handling
activities with data from a wearable sensor network. Likewise, Ryu [41] trained a Support
Vector Machine (SVM) classifier, with data from an accelerometer placed on the wrist, to
classify a mason’s actions (e.g., laying and adjusting bricks). With deep learning architec-
tures, Slaton [42] trained a hybrid network, containing convolutional and recurrent Long
Short-Term Memory (LSTM) layers, to recognize construction-related activities. Parsa [43]
applied Temporal Convolutional Networks (TCNs) to segment videos and recognize man-
ual handling tasks with different ergonomic risk levels.

Hidden Markov Models (HMMs) have been widely used for the modeling and recog-
nition of human gestures. HMMs model the dynamic behavior of gestural time series
based on a probabilistic interpretation of the gesture samples. The HMMs assume that
a hidden state sequence causes the observed sequence (gesture samples). HMMs cap-
ture the motion patterns presented in the training set’s gestures, meaning that they will
not recognize other variations from these patterns that could emerge during the move-
ment performance, after the training. To address this issue, Caramiaux [44] proposed
the Gesture Variation Follower (GVF), representing pre-recorded template gestures with
continuous state-space models. Particle Filtering was used to update the models’ parame-
ters to estimate the likeliest template of a new observation, considering its varying gesture
characteristics. The gesture’s speed, size, scaling and rotation angles were considered
the varying gesture characteristics and state variables.

Despite the fact that ergonomic evaluation based on GR adds factors such as the fre-
quency and duration of activities into the analysis, basing the ergonomic evaluation on
only these two factors could lead to the oversight of other risk factors in the motions that
could cause the development of WMSDs.
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3. Methodology

Due to the nature of the hypothesis defined for this study, a physics-based approach
was selected to model the dynamics of professional movements. Physics-based approaches
have proved to be capable of handling joint predictions efficiently and because of the use of
a transition function, they perform well with observations obtained from different environ-
ments and subjects, without extensive training datasets. This generalization capability is
essential if workers from various industrial sectors are to be monitored. Moreover, by using
a physics-based model, information could be extracted regarding the human dynamics and
their response to risk factors, by examining the resulting trained models.

In this study, human motion was represented as a sequence of human poses, where
each pose was described through 3D-joint angles. The modeling of each gesture was done
using the Gesture Operational Model methodology [14], which was extended by integrating
more assumptions into the representation of the motion of joints. The models were used to
predict the trajectory of joint angles, instead of joint positions, to avoid forecasting errors
such as bone stretching and invalid skeleton configurations, errors that commonly occur
in models trained with joint positions [45–47]. The proposed methodology is illustrated
in Figure 1.

The statistical significance of the assumptions of each model was computed to deter-
mine the body joints contributing the most to the professional movements. The selected
joint angles were validated by comparing their gesture recognition performance with
another two sensor configurations, the first using all joint angles for training, and the
second using only a small set of two hand-picked sensors. Finally, the forecasting ability of
the models was evaluated, and a sensitivity analysis was conducted to analyze the stability
and behavior of the system when external forces affect system response, meaning a change
in the posture and ergonomic risk level of the motion.

Figure 1. Methodology pipeline.

3.1. Data Collection and Gesture Vocabularies
3.1.1. Inertial Motion Capture Technology

Due to the advantages of using motion capture (MoCap) technologies, based on inertial
sensors for the MoCap of industrial workers and the subjects’ movements, the BioMed bun-
dle motion capture system from Nansense Inc. (Baranger Studios, Los Angeles, CA, USA)
was used. This system consisted of a full-body suit composed of 52 IMUs placed through-
out the body and hands. The sensors allowed the orientation and acceleration of body
segments on the articulated spine chain, shoulders, limbs and fingertips to be measured
at a rate of 90 frames per second. Those 52 rotations were combined to create a kine-
matic skeleton that included the body segments measured. The Euler local joint angles on
three axes X, Y, and Z were computed through the inverse kinematics solver provided by
Nansense Studio (suit software). The joint angles per time frame were then exported to
Biovision Hierarchy (BVH) files. Before the analysis, an offline pre-processing procedure of
the data was followed. The motion data was low pass filtered to mitigate noise, and the
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common zero velocity update algorithm was applied to remove the drifting caused by
electromagnetic interference.

3.1.2. Recording and Gesture Vocabularies

Industrial workers from television (TV) production, airplane manufacturing, and glass-
blowing sectors were recorded under real conditions in their respective factories. Figures 2–5
illustrate the four gestures vocabularies, and a detailed description of each gesture is pro-
vided in the Appendix A.

(a) (b) (c)

Figure 2. Gesture vocabulary with gestures for TV assembly (G1). (a) G1,1: Grab the electronic card
from a container; (b) G1,2: Take a wire from a container; (c) G1,3: Connect the electronic card and wire
and place them on the TV chassis.

(a) (b) (c)

Figure 3. Gesture vocabulary with gestures for airplane assembly (G2). (a) G2,1: Rivet with the pneu-
matic hammer; (b) G2,2: Prepare the pneumatic hammer and grab rivets; (c) G2,3: Place the bucking
bar to counteract the incoming rivet.

(a) (b) (c) (d) (e)

Figure 4. Gesture vocabulary with gestures for glassblowing (G3). (a) G3,1: Grab glass melt from
the oven; (b) G3,2: Shape the carafe’s curves; (c) G3,3: Blow through the blowpipe; (d) G3,4: Shape
the carafe’s neck with pliers; (e) G3,5: Heat the glass of the carafe.
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(a) (b) (c)

Figure 5. Gesture vocabulary with motion primitives based on EAWS (G4). (a) G4,1: Standing while
bending forward and rotating the torso; (b) G4,2: Sitting while raising arms above shoulder level;
(c) G4,3: Kneeling while bending forward.

The professional gestures from each gesture vocabulary presented essential differences
in their execution due to the different contexts in which they were recorded. For instance,
G1,1, G1,2, or G2,2 were mostly manipulating tools or objects, where the subject grabbed
an object or prepared it for later use. The iterations for these gestures had a high intra-class
variance since their motion was not restricted, nor was high precision or dexterity required.
On the contrary, for the gesture vocabulary G3 and gestures G1,3, G2,1, and G2,3, the subjects
needed to be more precise since they placed the objects in a specific position. It has to be
considered that human factors such as level of experience, fatigue, or mental stress affected
how the subjects’ bodies performed the gestures. Although this did not apply for the G3,
high dexterity and technicity were required to execute the gestures effectively. The gestures
from G3 were recorded from a glassblowing expert, who performed the gestures with
high repeatability and low spatial and temporal variations between iterations, to produce
a carafe four times with the same specifications. Regarding G4, there was a low intra-class
variation in this dataset since the performance of each movement was controlled. Feedback
was provided to subjects in order to perform the gesture demanded correctly. On the
other hand, the inter-class variation was intended to be low, where there were only a few
variations in the postures assumed in each gesture. The end in using this last dataset
was to test whether the proposed methodology was able to identify the small variations
between motions and provide an accurate estimate of the joints that most contributed to
the execution of the 28 motions.

From an ergonomic point of view, these four datasets could assist in the evaluation
of human motions in industrial settings. The modeling of these motions could help
in evaluating the subjects’ manual dexterity in relation to the gesture’s ergonomic risk.
For example, as mentioned, the glassblower had a high level of dexterity for glassblowing
gestures, but some observational methods could recognize that the gestures executed
were ergonomically risky (e.g., G3,3 and G3,4). An ergonomic analysis of these gesture
vocabularies could therefore aid in improving ergonomically how the professional gestures
were executed without affecting manual dexterity.

3.2. Movement Representation with GOM

The Gesture Operational Model was composed of auto-regressive models that learn
the dynamics of each body part. Each representation had different assumptions of the dy-
namic association between body parts. These assumptions consisedt of the intra-joint
association (H1), inter-limb synergies (H2), serial (H3.1) and non-serial intra-limb me-
diations (H3.2), and transitioning over time (H4), [14]. For the intra-joint association,
a bidirectional relationship was assumed between variables where the motion is decom-
posed e.g., joint angles on the X-axis, Y-axis, and Z-axis. The transitioning assumption was
that current values depend on their previous values. The inter-limb synergies assumed
a relationship between body parts that worked together to achieve a motion trajectory
e.g., using both hands to execute a specific gesture. Finally, the serial and non-serial intra-
limb mediations included the relationship between joints, whether directly and not directly
connected e.g., the wrist was directly connected with the elbow (serial mediation) and
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indirectly connected with the shoulder (non-serial mediation). These assumptions are
represented in Figure 6.

Figure 6. Upper-body assumptions that constitute a Gesture Operational Model. The intra-joint
association is indicated by green arrows, transitioning over time with dashed arrows, inter-limb
synergies with blue arrows, intra-limb serial mediation with black arrows, and intra-limb non-serial
mediation with red arrows.

The number of representations was equal to the number of associated dimensions
for a given body part, multiplied by the number of body parts defined in the GOM.
The representation of each body part had different assumptions depending on its location
within the body:

• Intra-joint association: All body parts included it in their representation.
• Inter-limb synergies: Only the body parts representing joint angles from arm and leg

parts included this assumption.
• Intra-limb serial and non-serial mediation: The assumptions included in each rep-

resentation depended on the body part location within the body. The joint angles
related to the spine only included in their equation joint angles of other spine parts
with which it had serial or non-serial mediation. The serial and non-serial mediations
from angles related to the spine are illustrated in Figure 7a. The angles related to
the arms only included in their equation joint angles of other arm parts with which it
had serial or non-serial mediation (Figure 7b). Equally, the angles related to the legs
only included in their equation joint angles of other leg parts (Figure 7c).

The transitioning assumptions corresponded to the lagged endogenous variables,
where lag depended on the order given to the model. For this work, second-order au-
toregressive models were selected. The order was selected according to the correlation
between lag values in the time series (auto-correlation). If the observations had positive
auto-correlations with a certain number of lags, then it was better to have a higher or-
der of differencing until the auto-correlation was negative and more than −0.5, to avoid
overdifferencing [48].
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(a) (b)
(c)

Figure 7. Location of the sensors that provide the XYZ joint angles included in GOM’s state-space
equations. (a) Spine parts; (b) Arm parts; (c) Leg parts.

An example of a mathematical representation of the assumptions is shown in Equation (2),
for a motion on the X-axis (Xax) of a body part P, with only two dimensions Xax and Yax,
and assumptions that includes an association with only a second body part (P2,Xax (t− 1)).

P1,Xax (t) = P1,Yax (t− 1)︸ ︷︷ ︸
H1

+ P2,Xax (t− 1)︸ ︷︷ ︸
H2

+ P1,Xax (t− 1)︸ ︷︷ ︸
H4

+ P1,Xax (t− 2)︸ ︷︷ ︸
H4

(2)

These representations were then translated into simultaneous equations by using
state-space modeling. State-space equations allowed estimation of the state of the system
according to the input-output data [49]. Thus, given the input and the current state of
the system, state-space gave the hidden states that resulted in the observable variables.
A state-space representation is shown in Equations (3) and (4). Equation (3) is the state-
space equation, a first-order Markov process where A is the transition matrix. Equation (4)
is the measurement equation, where the time derivative of the state vector s(t) is taken into
account for the computation of the output y(t) along with the input vector u(t), where C is
the output matrix and D the feed-through matrix.

s(t) = ASs(t− 1) + w(t) (3)

y(t) = Cs(t) + Du(t) (4)

To model the GOM representation of the Equation (2) using second-order state-space
modeling, first, the state-space variable is substituted with the subtraction of two previous
values of the body part to model, each multiplied by one coefficient of the transition matrix:

s(t) = ASs(t− 1) =
[

α1 0
0 α2

][
P1,Xax (t− 1)
−P1,Xax (t− 2)

]
=

[
α1P1,Xax (t− 1)
−α2P1,Xax (t− 2)

]
(5)

For the measurement equation, the input vector u(t) corresponds to the endogenous
variables, for the case of Equation (2), it consists of the intra-joint association and inter-
limb synergy:

P1,Xax (t) =
[

1 1
]
s(t) + α3P1,Yax (t− 1) + α4P2,Xax (t− 1) (6)

Finally, by merging Equations (5) and (6), the state-space representation is obtained:

P1,Xax (t) = α1P1,Xax (t− 1)− α2P1,Xax (t− 2)+

α3P1,Yax (t− 1) + α4P2,Xax (t− 1) (7)

The full body modeling consisted of three sets of equations for each body part, one
for each dimension X, Y, and Z. Hence, by discarding the body parts from the fingers,
the GOM consisted of 84 equations per gesture. The coefficients of the equation system
were estimated using the Maximum Likelihood Estimation (MLE) via Kalman filtering [50].
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For the coefficient estimation, first, the probability of obtaining the observation vectors O0:k
was defined:

P(O0:k) =
k

∏
t=0

P(Ot|O0:t−1) (8)

which consisted of the products of probabilities of the observation at time t, given previous
observations. This probability distribution is considered Gaussian, as shown in the follow-
ing equation:

P(O0:k|ψ) = ∏k
t=1 exp

−
(

ot − õt−1
t

)2

2Ft−1
t


(

2π
∣∣∣Ft−1

t

∣∣∣)− 1
2 d′ (9)

where Ft−1
t is the covariance and õt−1

t is the mean. From Equation (9), the log-likelihood
was computed, where the Kalman filter could optimally estimate the mean and covariance
that gave the maximum likelihood:

log L(ψ|O0:t−1) = −
k
2

log 2π − 1
2 ∑k

t=1 log
∣∣∣Ft−1

t

∣∣∣− 1
2 ∑k

t=1

(
ot − õt−1

t

)2

Ft−1
t

(10)

The Kalman filtering consisted of two steps which were repeated until obtaining
the maximum likelihood. These are known as the prediction and update steps. Initial values
were set, then the log-likelihood was computed for the evaluation in the prediction step.
Next, in the update step, the variance and mean were updated according to the Kalman
gain (Kt), until, in the prediction step, the maximum likelihood was achieved:

Kt =
Ft−1

t(
Ft−1

t + R
) (11)

õt−1
t = õt−1

t + Kt

(
ot − õt−1

t

)
Ft−1

t = Ft−1
t − KtFt−1

t (12)

In the end, the computation of the coefficients of the state space models was derived
through Equation (10).

3.3. Applications of the GOM
3.3.1. Selection of Significant Joint Angles

Statistical analysis was done to investigate the significance of the model assump-
tions in relation to the body part associations defined within the GOM. By estimating
the statistical significance of each assumption, it was possible to determine which joint
descriptors contributed the most to the execution of all the gestures of each gesture vocabu-
lary. The number of times a joint descriptor was statistically significant in all the equations
that constitute the GOM was counted in order to select the most important joint angles for
each gesture vocabulary.

In order to evaluate the selection of the most meaningful joint angles, different combi-
nations from the selected joint angles were used to train Hidden Markov Models (HMM)
for gesture recognition using an “all-shots” approach. The motion data of sensors that
provided at least one of the top three joint angles contributing the most in the response
for the spine, arms, and legs parts motion was used for gesture recognition. Since one
sensor provided three angles of one joint, all the joint angles of the sensor were used
for training. The first combination to test for gesture recognition consisted of a minimal
sensor configuration: the best sensor to measure the spine, another which was the best
to measure the arms, and a third for the legs. If the recognition performance was low,
an extra sensor was added to the configuration to improve the performance, or it was
replaced by another of the top three sensors selected to measure its corresponding body
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location (spine, arms, or legs). The configuration that achieved the best performance was
compared with the recognition performance obtained using all the joint angles of the sen-
sors. The recognition performance, by using only a minimal set of two sensors, was also
computed for comparison. This minimal set consisted of two hand-picked sensors, which
provided the Euler joint angles of the right forearm (RFA) and hips (H). The sensor placed
on the right forearm was chosen since most of the subjects in all datasets were right-handed,
and the hips sensor was chosen because the origin of all movement of the spine starts from
the hips.

To determine the best HMM setting for each gesture vocabulary, both ergodic and
left-right topologies were tested, in addition to a different number of hidden states. The per-
formance metric used consisted of the F-score. In the training phase of HMM, each profes-
sional gesture Gv,c, where v ∈ [1, 4] indicates the gesture vocabulary and c ∈ N the gesture
of the Gv, is associated to an HMM. The set of models for all gestures for every gesture
vocabulary is Gv∈[1,4] = {HMMc}c∈N.

3.3.2. Prediction of Joint Angles Trajectories

For evaluating the forecasting performance of the GOM models, the joint angle se-
quences of each gesture were simulated by solving the simultaneous equation system of
the GOM. The models forecasted one time frame per iteration, then, after forecasting all
the time frames of the gesture, the simulated gesture was compared with the original for
evaluation. Consequently, their forecasting ability was evaluated by computing Theil’s
inequality coefficient (U) along with its decompositions: bias proportion (UB), variance
proportion (UV), and covariance proportion (UC).

A sensitivity analysis was conducted to investigate the reaction of the models after
a shock occurred in one of their variables. For this analysis, a disturbance of 80% was
applied only in the first two frames of the gesture, then the whole gesture was forecasted.
This analysis aimed to simulate the situation where subjects were exposed to external
forces that affected their performance or made the workers assume awkward postures that
increased the risk of injury.

4. Experimental Results
4.1. Statistical Significance of Motion Descriptors

Here, an example of a joint angle motion equation for one gesture from each vocabu-
lary will be provided. These examples are offered to enable visualization of the coefficients
and p-values of the different assumptions that compose the equation, where some vari-
ables need to remain dynamic and others static. The first example is for the equation of
the gesture G1,1 (grab an electronic card from a container) for the joint angle RAY, which is
the joint angle of the right arm on the Y-axis:

RAY(t) = (−86.76)LSH1Y(t− 1)︸ ︷︷ ︸
p=0.01

+ (−169.03)LSH1Z(t− 1)︸ ︷︷ ︸
p=0.001

+

(88.48)LSH2X(t− 1)︸ ︷︷ ︸
p=0.008

+ (−67.38)RSH1Y(t− 1)︸ ︷︷ ︸
p=0.001

+

(−142.13)RSH1Z(t− 1)︸ ︷︷ ︸
p=0.002

+ · · ·+ (−2.18)RAX(t− 1)︸ ︷︷ ︸
p=0.508

(13)

By doing a statistical analysis of Equation (13), the p-values show intra-limb serial
mediations with the joint angles on the Y and Z-axis of the left shoulder (LSH1) and
intra-limb non-serial mediation with the right shoulder (RSH1). In the last equation, it
should be noted that there is no intra-joint association shown by the p-value of the RAX,
and although it is not illustrated in the equation, there is no inter-limb synergy either.
These results make sense since most of this motion is highly dependent on movements of
the shoulders. Consequently, it is the reason that shoulders are statistically significant for
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the equation of RAY. The second example is the equation for G2,3 (Hold the bucking bar)
for the joint angle of the neck on the X-axis (NX):

NX(t) = (−1.2)NY(t− 1)︸ ︷︷ ︸
p=0.001

+ (−0.47)NZ(t− 1)︸ ︷︷ ︸
p=0.001

+

(−0.01)S2X(t− 1)︸ ︷︷ ︸
p=0.002

+ (−0.02)S2Y(t− 1)︸ ︷︷ ︸
p=0.001

+

(−0.01)S3X(t− 1)︸ ︷︷ ︸
p=0.001

+ · · ·+ (0.01)HX(t− 1)︸ ︷︷ ︸
p=0.84

(14)

Equation (14) indicates that there is an intra-joint association with NY and NZ, and an
intra-limb serial mediation with the S3. There is an intra-limb non-serial mediation with S2,
but not with H. For the gesture of holding a bucking bar to counteract a rivet, it is necessary
to bend forward on the X-axis and Y-axis, which corresponds to what Equation (14) shows,
that is to say, that joint angles from S2 and S3 on the X and Y-axis are statistically significant
and contribute to gesture. Moreover, for this gesture, the subject needed to rotate the neck
to see where to place the bucking bar; therefore, this matches with the intra-joint association
indicated by the p-value of NY and NZ.

The next equation is an example of gesture G3,2 (shape the carafe curves) for the joint
angle of the left shoulder on the X-axis, representing the motion of the left clavicle (LSH2X):

LSH2X(t) = (0.15)LSH2Y(t− 1)︸ ︷︷ ︸
p=0.003

+ (0.17)LSH2Z(t− 1)︸ ︷︷ ︸
p=0.016

+

(−0.02)LAY(t− 1)︸ ︷︷ ︸
p=0.001

+ (−0.36)RSH2X(t− 1)︸ ︷︷ ︸
p=0.001

+

(−1.05)RSH2Z(t− 1)︸ ︷︷ ︸
p=0.001

+ · · ·+ (−0.01)LFAX(t− 1)︸ ︷︷ ︸
p=0.731

(15)

Statistical analysis of the Equation (15) indicates an intra-joint association, intra-limb
serial mediation with the left arm, and an inter-limb synergy with the right shoulder. In this
gesture, both arms must cooperate to shape the carafe correctly. The joints angles from
the right shoulder contribute to the response of the left shoulder, since with the right
arm the glassblower shaped the curves of the carafe, while the left arm slowly rolled
the blowpipe. The Equation (16) presents a gesture from the G4, where the subject bent
forward more than 60◦ for the joint angle S3 on the Y-axis (S3Y):

S3Y(t) = (2.13)S3X(t− 1)︸ ︷︷ ︸
p=0.007

+ (−0.17)S3Z(t− 1)︸ ︷︷ ︸
p=0.001

+

(−0.91)HX(t− 1)︸ ︷︷ ︸
p=0.012

+ (0.42)S1Y(t− 1)︸ ︷︷ ︸
p=0.001

+

(−3.24)S2X(t− 1)︸ ︷︷ ︸
p=0.001

+ · · ·+ (−0.06)HEX(t− 1)︸ ︷︷ ︸
p=0.061

(16)

The p-values show that there is a dependency on the intra-joint association assumption.
The joint angles on the X-axis from the sensors S3, H, and S2 are statistically significant
and have the highest coefficient values, which is to be expected since the spine moves on
the X-axis in order to bend forward. Moreover, there is an intra-limb serial and non-serial
mediation with joint angles on the Y-axis, except for HY.

The top ten variables that contributed the most in the gestures of each gesture vocabu-
lary are illustrated in Tables 1–4. From these joint angles, as mentioned in the methodology,
different sets are used for gesture recognition. The results are shown in Section 4.2.
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Table 1. G1: Televison assembly.

p-Value < 0.05

Spine Arms Legs

Variable Count Variable Count Variable Count

S1Z 49 LAX 56 RULY 32
S2Z 47 RSH1X 55 LULZ 32
HY 46 RSH2Y 55 LULY 31
HZ 45 RSH1Z 54 RLY 31
NY 44 RSH2Z 53 LULX 29
S1X 43 RSH2X 53 LLX 29
HZ 42 RAY 49 RLX 29
NX 42 LFAZ 48 HX 29
S1Y 41 LSH1X 46 RULX 29
S3X 41 LFAX 42 RULZ 29

Table 2. G2: Airplane assembly.

p-Value < 0.05

Spine Arms Legs

Variable Count Variable Count Variable Count

S3X 209 LSH2X 243 LULZ 39
S3Y 205 LSH1X 236 RULX 39
S2X 202 RAZ 230 HX 38
HZ 202 LFAX 229 LLX 38
HX 201 RFAY 227 LULY 38
SX 201 LAY 224 LLY 37

S1Y 197 LAZ 217 LLZ 37
S1Z 193 RSH1X 217 RLX 36
S3Z 193 LFAY 216 RLY 36
NY 193 LFAZ 212 RLZ 36

Table 3. G3: Glassblowing.

p-Value < 0.05

Spine Arms Legs

Variable Count Variable Count Variable Count

S3X 155 LSH2Y 99 HY 65
S3Y 155 RAX 92 LLZ 63
S3Z 149 RFAZ 90 LLY 62
S2X 118 LSH2X 89 RLX 60
S2Z 116 RSH1Z 88 RLY 60
S2Y 110 LSH1Z 86 HZ 59
S1Y 105 RSH1Y 85 LLX 59
S1X 102 RSH2X 85 RULY 58
S1Z 93 LAY 84 RULZ 58
NX 89 LSH2Z 84 LULY 57
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Table 4. G4: Motion primitives based on EAWS.

p-Value < 0.05

Spine Arms Legs

Variable Count Variable Count Variable Count

S3Z 332 LSH1X 534 RULZ 474
S2Y 330 LAX 533 RULY 473
S2Z 330 RSH1X 523 LULY 472
S3X 326 LSH1Y 520 RLX 468
S3Y 316 LFAX 520 LLX 465
S2X 311 RSH2X 518 LULX 461
HEZ 279 RSH1Y 516 LULZ 457
SZ 264 RAX 514 RULX 456
HY 261 RSH1Z 508 LFTZ 455
NZ 258 LAY 507 RFTY 455

4.2. Validation of the Joint’s Selection

In this section, the recognition performances achieved by the different sets of sen-
sors are reviewed and compared. Table 5 summarizes the results obtained when using
different sensors and shows the configuration selected according to the GOM (SS), which
achieved the best recognition performance. The gesture vocabulary G1, as mentioned ear-
lier, was composed of three gestures, each with 106 repetitions. HMMs with seven hidden
states achieved the best recognition performance, trained with the joint angles provided
by the sensors S1, LA, and RUL, selected by using the GOM. The precision and recall
achieved with each configuration of sensors to recognize gestures from G1 are illustrated
in Tables 6 and 7.

Table 5. Recognition performance with each configuration of sensors. MS: Minimal set of two sensors.
SS: Selected sensors by using the GOM.

Gesture Vocabularies N◦ Classes Sensors F-Score (%)

G1: TV assembly 3
MS: H and RFA 95.59
SS: S1, LA, RUL 96.84

All sensors 93.39

G2: Airplane assembly 3
MS: H and RFA 88.89

SS: S3, S2, LSH1, LSH2, RA, LUL, RUL 94.33
All sensors 72.02

G3: Glassblowing 5
MS: H and RFA 88.03

SS: S3, LSH2, H, RFA 94.70
All sensors 80.68

G4: Motions based on EAWS 28
MS: H and RFA 73.85

SS: S2, LA, RSH1, RUL, LFA 91.77
All sensors 84.88

Table 6. Recall achieved for G1 using HMMs.

Sensors Recall (%)
G1,1 G1,2 G1,3

MS: H and RFA 97.17 95.28 94.34
SS: S1, LA, RUL 94.34 99.06 97.17
All sensors 92.45 95.28 92.45
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Table 7. Precision achieved for G1 using HMMs.

Sensors Precision (%)
G1,1 G1,2 G1,3

MS: H and RFA 95.37 96.19 95.24
SS: S1, LA, RUL 98.04 95.45 97.17
All sensors 94.23 91.82 94.23

G2 contained three gestures with 10 to 12 repetitions each. HMM with eight hidden
states achieved the best performance. The SS sensor configuration had the best F-score,
as shown in Table 5, 5.44% more than the set with the two sensors, and 22.31% more than
the set with all the sensors. Tables 8 and 9 shows the recognition performance for G2 with
each sensor configuration, where the best precision and recall was achieved by the set SS.

Table 8. Recall achieved for G2 using HMMs.

Sensors Recall (%)
G2,1 G2,2 G2,3

MS: H and RFA 83.33 83.33 100.00
SS: S3, S2, LSH1, LSH2, RA, LUL, RUL 100.00 83.33 100.00
All sensors 66.67 50.00 100.00

Table 9. Precision achieved for G2 using HMMs.

Sensors Precision (%)
G2,1 G2,2 G2,3

MS: H and RFA 83.33 83.33 100.00
SS: S3, S2, LSH1, LSH2, RA, LUL, RUL 85.71 100.00 100.00
All sensors 57.14 60.00 100.00

G3 consisted of five gestures with 10 to 35 repetitions for each. For this gesture vocab-
ulary, HMM with four states modeled the best gestures and yielded the best recognition
performance. This performance is illustrated in Tables 10 and 11. The configuration of
sensors selected using GOM improved the overall F-score by at least 6% over the other sets.
The G4 was composed of the 28 motion primitives based on EAWS, where each exposed
the subjects to different ergonomics risks concerning the posture. There are 30 repetitions
for each motion, and HMM with seven states modeled the best gestures from G4. For the
gesture recognition of the 28 classes, the set SS yielded the higher F-score (91.77%), average
precision (91.90%) and recall (92.33%), over the minimized set of two sensors and the set
with all sensors. The minimized set achieved an average precision of 74.16% and an average
recall of 77.31%. By using all the sensors for the recognition, an average precision of 84.76%
and an average recall of 86.46% was achieved.

Table 10. Recall achieved for G3 using HMMs.

Sensors Recall (%)
G3,1 G3,2 G3,3 G3,4 G3,5

MS: H and RFA 100.00 100.00 72.72 70.00 94.29
SS: S3, LSH2, H, RFA 83.33 95.45 100.00 100.00 97.14
All sensors 70.00 100.00 45.45 80.00 97.14



Sensors 2021, 21, 2497 18 of 25

Table 11. Precision achieved for G3 using HMMs.

Sensors Precision (%)
G3,1 G3,2 G3,3 G3,4 G3,5

MS: H and RFA 90.90 95.65 100.00 70.00 91.67
SS: S3, LSH2, H, RFA 100.00 95.45 81.82 100.00 97.14
All sensors 77.78 95.65 100.00 80.00 82.93

Performance Analysis of Selected Sensors Sets

The relevance of the sensors selected for G1 in the execution of the three gestures
was proven due to the high recognition performance achieved. By observing the results
for G1 in Tables 6 and 7, it became apparent that the three sensors chosen improved
the precision of the recognition and the recall of the gestures G1,2 and G1,3. In the case of
G1,1, the two sensors configuration had the best recall. Overall, the selected sensors had
the best performance, with at least +1.2%. From the four gesture vocabularies, G1 had
the best performance for gesture recognition, which could be due to the low inter-class
variance between the three gestures.

G2 was the gesture vocabulary with the highest number of sensors selected. The reason
could be because the gestures in this vocabulary were more complex and more prolonged.
The most complicated gesture to model and recognize was G2,2, which was expected since
it is the gesture that could vary the most in its execution (high intraclass variance) from
among the three gestures. The subject did not prepare the material in exactly the same
way for each iteration. The subject was slower in some iterations than others since he
required more time to adjust the pneumatic hammer or needed to prepare more rivets.
The low intra-class variance could be because of the way the gestures were executed, which
depended on the locations where the worker was going to fasten the metal plate with
the rivets. For the recording of G2, there was only one airplane structure to build, and there
were no iterations where the subject placed the pneumatic hammer in the same location
more than once.

The sensors selected for recognition of gestures from G3 were validated by achiev-
ing a high recognition performance of the five gestures. By analyzing the results in
Tables 10 and 11, the recall is improved in most gestures using the set SS, since the selected
sensors capture the motion better. Regarding precision, the set SS improved it for G3,4 and
G3,5, but then it decreased in comparison with the minimized set for G3,1. This could be
because the information provided by the sensors S3 and LSH2 generated similar patterns
between the gestures G3,1 and G3,3. The minimized set had the worse precision and recall
for G3,4. The reason could be because of the lack of information on the motion of the shoul-
ders. According to GOM, the shoulders contribute most to executing this gesture. Four
out of the five gestures in this vocabulary generated similar patterns on the shoulder and
arms. Still, there was low intra-class variation because of the high level of the subject’s
dexterity, as an expert in glassblowing. In addition, the subject used a metal structure
for shaping the carafe that limited any potential freedom in the gesture performances.
Finally, for G4, a maximum F-score of 91.77% was recorded for the recognition of 28 motion
primitives, using the selected sensors S2, LA, RS1, RUL and LFA. The poor performance of
the minimized set was due to its failure to discriminate between motions that vary only
with regard to posture of the legs, while the poor performance using all the sensors can be
explained by the multiple dimensions of the data.

4.3. Simulated Movements and Sensitivity Analysis

This section presents the results of the trajectory prediction and sensitivity analysis.
Figure 8 illustrates one example of a simulated gesture and the original from each gesture
vocabulary, with confidence bounds of 95%. Figure 8b,c show that the models could
capture the patterns generated on the motion of the spine by the task of buckling a rivet
and the motion of the forearm while the glassblower was rotating the blowpipe. For more
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quantitative measurement of the forecasting performance, the Theil inequality coefficient,
its decompositions, and the root mean square error were computed. Table 12 shows
the forecasting performance for one gesture of each vocabulary on three Euler angles of
a joint used during the execution of the gesture. By observing the Figure 8 and Table 12
alone, it can be assumed that the forecasting performance was good for these gestures.
The original and simulated values were close to each other, and the simulated values were
mostly inside the confidence bounds.

(a) (b)

(c) (d)

Figure 8. Examples of simulated gestures, their original gesture, and confidence bounds of 95%
(a) Simulation of the gesture G1,3 on the joint angle LAX; (b) The simulated joint angle sequence of SZ

for G2,3; (c) Simulation of LFAY for the gesture G3,1; (d) Forecasting of RAX for G4,9, which consists
of raising the forearms above the shoulder level.

In Figure three examples of shocks applied to different variables for the sensitivity
analysis are illustrated. Figure 9a,b show the forecasting behavior of the model of the joint
angle LAX for the gesture of raising the hands above the shoulder level. In Figure 9a
a shock was applied on the joint angles of LSH2, and in Figure 9b, it was on the joint angles
of RSH2. It is apparent that applying a shock to the left shoulder affected the motion of
the left arm far more than applying it to the right shoulder, due to the strong mediation
of the left shoulder over the left arm motion. Figure 9c shows the simulated motion of
S2Y when the subjects rotated their torso to the left. The shock in this case was applied
to the joint angles of H. It can be seen from the figure that the model was able to adapt
fast and, indeed, in less than 1 s (90 frames), which indicated low sensitivity of the model
to external disturbance. However, there was still a small variation in the forecasting if
compared to the simulated gesture forecast without shocks.
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Table 12. Forecasting performance of one gesture for each gesture vocabulary.

Gestures Joint Angles
Theil Bias Variance Covariance

RMSEInequality Proportion Proportion Proportion
U UB UV UC

G1,3

LSH1X 0.0174 0.2499 0.0030 0.7483 0.0958
LSH1Y 0.0069 0.0000 0.0021 0.9996 0.0078
LSH1Z 0.0147 0.0006 0.0001 1.0010 0.0083

G2,1

RSH2X 0.0939 0.0002 0.0769 0.9230 0.0648
RSH2Y 0.0142 0.0000 0.0000 1.0001 0.0075
RSH2Z 0.0247 0.0002 0.0018 0.9981 0.0093

G3,4

LSH2X 0.2061 0.2786 0.0275 0.6947 0.2139
LSH2Y 0.3958 0.2327 0.0038 0.7645 0.1821
LSH2Z 0.3662 0.4919 0.1726 0.3361 0.6323

G4,3

S2X 0.0077 0.0290 0.0187 0.9531 0.0742
S2Y 0.0351 0.0906 0.2100 0.7001 0.1434
S2Z 0.0115 0.0692 0.0599 0.8717 0.0776

(a) (b)

(c)

Figure 9. Simulated joint angles with and without disturbance of 80% on the two initial time frames.
(a) Simulation of the joint angle LAX with a disturbance on the joint angles of LSH2 (blue) and
without (red); (b) Simulated joint angle sequence of LAX with a disturbance on the joint angles of
RSH2 (blue) and without (red); (c) Simulation of the joint angle S2Y with a disturbance on the joint
angles of H (blue) and without (red).

5. Discussion

This paper evaluates GOM’s feasibility to model industrial workers and subjects’
dynamics and select the joint angles that best represent the gesture vocabulary, and predict
their joint angles’ trajectory. The statistical analysis conducted on the GOM models permit-
ted identification of the joint angles that contributed most to the execution of the gestures of
each vocabulary. For validation, these joint angles were then used for gesture recognition.
These results demonstrate the potential of the selected set of sensors for a posture-based
ergonomic analysis. By only using the data of the selected sensors, it was possible to
discriminate accurately between different professional gestures and motion primitives
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where various postures of the spine, arms, and legs were assumed. The recognition of
these changes in posture are clearly useful for ergonomic analysis of professional gestures.
By applying a whole gesture to the trained HMMs from this vocabulary, the models could
tell whether an awkward motion primitive is performed and which body part causes this
ergonomic risk (i.e., spine, legs, or arms).

By solving the simultaneous equations that compose the GOM, it was possible to
accurately forecast the modeled gesture, using Euler joint angles as input. Moreover,
the models are tolerant to small variations in the gestures and offsets between same
class gestures, which could be due to different recording conditions (different subjects
or different recording days). Regarding the sensitivity analysis, the models showed low
sensitivity to external disturbances, with only a small variation in the forecasting from
that of a simulation without shocks. The response of the models to the shocks applied on
different variables could be useful for detecting any physical strain (e.g., on the shoulders
or lower back) or a load that affects the workers’ performance and increases the ergonomic
risk of the motion.

The industry has used ergonomic evaluations based on joint angle thresholds widely,
due to their practicality. Previous studies have applied these evaluations in their anal-
ysis, where their only contribution was to fill them automatically using motion capture
technologies [10–13]. An ergonomic analysis using such an approach can result in over-
simplicity and ignore other potential risks workers are exposed to (e.g., external forces and
dangerous movements). Menytchas [17] expanded such ergonomic analysis by examining
the kinematics and kinetics of professional movements to identify joints that accumulate
the most strain. The kinetic descriptors used in that study, however, did not allow for
accurate discrimination between dangerous motions with small variations in the posture;
moreover, they do not analyze the dynamics of movements, unlike the present study, which
allowed for a good recognition performance and distinction between motions of different
ergonomic risk.

In this study, GOM was proved to be useful for ergonomic analysis of professional
motions. In comparison with the approach taken in the previous study by Manitsaris [14],
a more in-depth analysis was conducted over the dynamic relationships of body parts,
including more assumptions in the mathematical representation of each body joint motion.
This gave insight into the influence of all body parts that work together to execute a specific
movement and into devising helpful strategies to address ergonomic hazards, such as opti-
mizing workspaces. Moreover, the methodology which was followed allowed the selection
of the most meaningful joint angles for gesture recognition, improving the recognition
performance considerably.

Despite the good performances and contributions achieved, this study highlighted
some limitations regarding the use of inertial sensors in real workplace scenarios. Inertial
sensors can offer precise and reliable measurements to study human motion; however,
the degree of this precision and reliability depends on the site, movements, and tools han-
dled during the performance. For instance, in the recording for the gesture vocabularies G2
and G3, workers used plastic gloves or did not wear the gloves that come with the inertial
suit in order to avoid disturbances in the measurements. For this study, the motion data
needed to be pre-processed after the recording to remove disturbances and drifts that could
affect the results of the method.

6. Conclusions

From the literature reviewed, most of the studies used inertial sensors for quantify-
ing the intensity, repetition, and duration of extreme motions and postures. The ability
to extract information about work content from kinematics data is underutilized. In-
dustrial workers perform complex professional gestures that contain crucial information
about ergonomic risks. In this paper, not only was the contribution of every body joint
in the execution of a specific professional gesture statistically estimated, but how they all op-
erationally cooperate was modeled using GOM, and, in addition, their motion trajectories
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were accurately predicted using the trained models. GOM is based on state-space represen-
tations and consists of a simultaneous equation system of differential equations for all body
body parts. The most significant joint motions for each gesture vocabulary were selected
based on their statistical significance in the GOM models. The selection was then validated
by achieving a high recognition performance of gestural time-series, which was modeled
using continuous HMM. Four datasets were created for this work that contain profes-
sional gestures recorded under real conditions in factories and in a laboratory environment.
The forecasting performance of the models was evaluated by comparing the simulated
gestures with their original values. According to the Theil inequality coefficient and its
decompositions, the performance of the models can be considered accurate.

Analyzing the response of the models to external disturbances and identifying the body
joints to enable tracking for ergonomic monitoring could be useful for faster and more
efficient evaluation of workers’ gestures. Furthermore, the models could be used for er-
gonomic risk prevention. They could detect patterns in the motion trajectories that imply
exposure to an ergonomic risk factor (e.g., workers are bending their torso or raising their
arms beyond a level that could be considered ergonomically safe).

Lastly, using a full-body mocap suit in an industrial context has several difficulties.
This study contributes to the literature by identifying the minimum motion descriptors
to measure. This allows for the use of less intrusive technologies, such as smartphones
and smartwatches, to measure these same motion descriptors. Future work will consist of
adding kinetic measures to the assumptions that GOM models are composed of (e.g., joint
moments), to complement the kinematic information, and will consider the effect of loads
on the kinetic variables, which could indicate worker exposure to higher ergonomic risk.
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Appendix A. Description of the Datasets’ Gestures

This appendix presents a detailed description of the gestures from the four gesture
vocabularies recorded. The first gesture vocabulary (G1) consists of three gestures executed
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by two workers from the TV assembly sector. They grabbed an electronic card from
a container, took a wire from another, connected them, and placed them on a TV chassis.
The first gesture is grabbing the electronic card from a container (G1,1), the second consists
of taking a wire from a second container (G1,2), and the third one involves connecting
the electronic card and wire and placing them on the TV chassis (G1,3).

The second gesture vocabulary is composed of three gestures performed in the air-
plane assembly sector (G2). Two workers were recorded, one performing riveting with
a pneumatic hammer and the other holding a bucking bar to counteract the incoming rivet.
The first gesture in this second vocabulary is riveting with the pneumatic hammer (G2,1),
while the second is preparing the pneumatic hammer and grabbing rivets (G2,2), and the
third involves positioning the bucking bar to counteract the incoming rivet (G2,3).

The third gesture vocabulary contains five gestures performed by a glassblower
when creating a water carafe (G3). In the first gesture, the glassblower with a blowpipe
grabs melted glass from an oven while rotating the blowpipe (G3,1). For the second
gesture, the glassblower holds a specific paper with his right hand and shapes the carafe’s
curves while seated in a metallic structure (G3,2). The third gesture involves blowing
through the metal blowpipe that holds the glass for the carafe (G3,3). In the fourth gesture,
the glassblower is shaping the carafe’s neck with pliers while standing (G3,4), and the fifth
gesture concerns heating the glass of the carafe in the oven while rotating the blowpipe
(G3,5).

The last gestural vocabulary is related to 28 motion primitives performed in a labo-
ratory (G4), recorded from ten subjects. Each gesture exposed the subjects to a different
level of ergonomic risk. According to EAWS, the ergonomic risk level depends on the torso,
legs, and arms posture. The gestures here varied in the posture of the spine, legs, and arms.
For the torso posture, in some gestures, the subjects bent more than 60◦, rotated the torso,
laterally bent to the left, or rotated their torso while leaning forward. The legs posture
changes depending on whether the subject executes the gesture standing, sitting, or kneel-
ing. Regarding the arms posture, the changes consist of raising their arms above shoulder
level or keeping them down and having the arms stretched or bent 90◦.
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