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Antenna Characterization from a Small Number of
Far-Field Measurements via Reduced-Order Models

Nicolas Mézières, Michael Mattes and Benjamin Fuchs, Senior Member, IEEE

Abstract—The determination of a small number of samples
to characterize the antenna far field with a controlled accuracy
is addressed. The radiation operator that maps the equivalent
currents to the far field is built from the outer dimensions
of the antenna under test and is discretized into the so-called
radiation matrix using the methods of moments. This matrix is
approximated up to the measurement accuracy by truncating its
singular value decomposition accordingly. This operation enables
to construct numerically a reduced basis of the radiated fields.
The dimension of this basis and consequently the number of field
samples is shown to be determined by the area of the equivalent
current convex surface, in agreement with the fundamental works
on the minimum non-redundant samplings. The influence of
the field sampling strategy and noise on the far-field pattern
reconstruction are investigated in order to determine a realistic
small number of field samples. Finally, the characterization of
two radiating structures from the so-derived reduced number
of samples validates experimentally the proposed approach and
demonstrates its practical relevance.

Index Terms—Antenna measurements, antenna radiation pat-
tern, method of moments, reduced order systems.

I. INTRODUCTION

FAST antenna characterization is a very active field of
present-day research because of its important industrial

relevance. In this regard, a lot of different techniques have
been developed through the years [1]. The characterization of
antennas is a time consuming but necessary task to validate
the design and the manufacturing of radiating structures. The
most efficient way to speed up antenna characterization is to
reduce the number of field samples and therefore the field
acquisition duration. The goal of this paper is precisely to
develop a systematic method to reduce the number of samples
to characterize the far-field pattern radiated by a given antenna
with a controlled accuracy.

The field radiated by antennas of finite sizes can be ex-
panded using truncated series [2], [3]. The choice of this
expansion depends on a priori information about the antenna
(e.g. shape, maximum electrical length) and has an impact on
the number of field samples for its characterization. Nowadays,
the Spherical Wave (SW) expansion is a standard technique
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for spherical near- and far-field antenna 3D measurements. In
addition to being solutions to Maxwell’s equations, SW form
an orthogonal basis of functions defined over the sphere. The
number of SW in the expansion depends on the maximum
electrical dimension of the Antenna Under Test (AUT) [2].
The number of field samples to identify these SW expansion
coefficients is often referred to as Nyquist sampling, under-
stood as a generalization to the classical theorem for Fourier
series.

A recent line of research has leveraged the sparse SW
expansion of the field radiated by antennas to reduce the
number of field samples [4]–[7]. This strategy enables to
approximately halve the required number of field samples
as compared to the so-called Nyquist sampling. However,
this sparse SW expansion only provides an approximated
interpolation of the field radiated by the AUT.

Other analytical expansions have been proposed and suc-
cessfully validated by Prof. Bucci et al. [3], [8]–[10]. These
function bases better exploit the true shape of the AUT by
enclosing it in a convex surface with an axial symmetry. More
importantly and despite the geometrical limitations imposed
by the use of analytical basis functions, this fundamental and
pioneer work ensures the minimal number of samples.

The analytical approaches, either the SW expansion [2] or
the minimum non-redundant sampling [10], rely on limited
spatial-bandwidth assumption to provide an optimal sampling
rate. This paper aims to further harness the geometry of the
AUT as well as the one of the measurement surface with a
controlled accuracy level on the reconstruction.

Numerical approaches have been used in recent works to
combine strong a priori information and numerical simulations
of the AUT in order to expedite its characterization. Full-wave
electromagnetic simulations of the AUT structure can be used
to build a compressed [11], [12] or overcomplete [13] rep-
resentation of the radiated fields, enabling the reconstruction
of the AUT radiation pattern from a small number of field
samples. Both strategies lead to fast antenna testings when
strong priors about the AUT are available.

The construction of a reduced-order model is achieved
by a Singular Value Decomposition (SVD). The SVD has
been previously used successfully for solving inverse problems
related to antenna measurement and diagnostic problems [14],
[15] as well as to speed up the analysis of large antennas [16].
However, the construction and use of reduced-order models to
speed up antenna characterization is relatively new. Initially
proposed to efficiently characterize the radar cross section
of targets [17], this approach has been recently applied to
bring down the number of samples for the characterization of
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antennas [18]. The proposed reduced-order model approach
requires to know the AUT outer dimensions and the measure-
ment surface geometry.

This paper describes a procedure to build the reduced
antenna characterization model with a controlled accuracy.
The derivation of a reduced number of field samples for a
given AUT is also detailed, compared to existing works, and
experimentally validated. The proposed methodology can be
summarized as follows:

1) The AUT, given its external dimensions and position
in the measurement coordinate system, is enclosed in a
surface mesh.

2) The radiation matrix is computed for the given sampling
positions.

3) A truncated singular value decomposition is performed
to provide a reduced-order model of the antenna char-
acterization problem.

4) The measured field is expanded into the basis given by
the model and this expansion is used to interpolate the
field where needed.

The paper is organized as follows: the construction and
discretization of the radiation operator (steps 1 and 2) involved
in the antenna characterization problem is detailed in Section
II. The operations to build the reduced-order antenna charac-
terization model with a controlled accuracy from the radiation
matrix (step 3) are described in Section III. A reduced number
of field samples is discussed in Section IV (step 4). Its link
to the area of the equivalent surface around the AUT is
given. The influence of the type of sampling and the noise is
investigated. Experimental validations of our antenna far-field
characterization procedure from a small number of samples are
shown. Finally, in Section V, we provide some conclusions.

II. RADIATION OPERATOR OF THE ANTENNA
CHARACTERIZATION

In the following sub-sections are described the construction
and discretization of the radiation operator that maps the
equivalent currents on the surface enclosing the AUT to the
radiated field.

A. Surface Equivalence Principle

In electromagnetics, the fields (E,H) radiated by a set of
finite sources (J,M) can be described by equivalent surface
electric and magnetic current distributions that represent the
tangential magnetic and electric fields, respectively [19]. This
equivalence principle, also known as Huygens’ principle,
means that the field radiated by the AUT enclosed by a
surface Σ can be represented by equivalent surface currents
(Jeq,Meq) on it, as depicted in Fig. 1.

There are different variants of the surface equivalence
principle depending on the constraints imposed on the internal
fields E′ and H′ in Fig. 1. Love’s formulation, also known as
zero internal fields constraint, for which E′ ≡ 0 ≡ H′, has
been shown to provide realistic current distributions [20], [21].
Besides, note that only one type of equivalent current (Jeq or
Meq) can suffice provided that the volume V is filled with
either a perfect magnetic or electric conductor, respectively.

E;H
J;M

E;H
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§

n

E0;H0

E;H
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Jeq = n£H

Meq = ¡n£E

,

Fig. 1. Surface equivalence principle : the original problem (left) can be
replaced by an equivalent one (right). The electromagnetic field (E,H)
outside a volume V enclosed by a surface Σ containing all the sources is
radiated by equivalent current distributions Jeq = n ×H,Meq = E × n
over Σ.

In this paper, the goal is to interpolate at best the electric
far field radiated by the AUT enclosed by Σ. Therefore, we
leave the internal fields E′ and H′ unconstrained and use both
types of equivalent currents, as suggested in [22], [23].

B. Integral Equations

1) Boundary integral equation: The electric field radiated
by the equivalent surface currents (Jeq,Meq) on Σ into a
source-free region, characterized by its permeability µ, its
permittivity ε and employing the Lorenz gauge, is given by

E(r) = jωµ

∫
Σ

g(r, r′)Jeq(r
′)dσ′

− 1

jωε

∫
Σ

gradrg(r, r′)div Jeq(r
′)dσ′

−
∫

Σ

rotr
(
g(r, r′)Meq(r

′)
)
dσ′

(1)

where ω is the angular frequency and g the scalar free-space
Green function, g(r, r′) = e−jk‖r−r′‖

4π‖r−r′‖ . The vector r is the
observation point and r′ is the one used for the integration
over Σ. The time convention ejωt has been used. The notations
gradr and rotr mean that these operators are applied with
respect to the observation position r only. Equation (1) is valid
for all observation points r outside V .

2) Boundary element method: The equivalent current dis-
tributions (Jeq,Meq) that are tangential to the surface Σ and
radiate the same field as the sources (J,M) contained in the
volume V are assumed to be expanded into a set of known
basis functions fk, k = 1, . . . ,K defined over Σ, yielding

Jeq(r
′) =

K∑
k=1

jkfk(r′),

Meq(r
′) = η

K∑
k=1

mkfk(r′).

(2)

where jk and mk are the complex expansion coefficients. Note
that the equivalent magnetic current is multiplied by the wave
impedance η so that both currents (Jeq,Meq) have the same
order of magnitude, as often advocated [21].

The current expansions (2) transform the surface integrals
(1) into a weighted sum of integrals of the known basis
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Fig. 2. Illustration of the support of a RWG basis function : ` is the length
of the common edge, T± denote the triangles and r± the position vectors
from the opposite vertices. The current flows from T+ to T−.

functions. Thus, the contribution of the basis function fk to
the radiated field, denoted Ek, is given by :

Ek(r) = jk

[
jωµ

∫
Σ

g(r, r′)fk(r′)dσ′

− 1

jωε

∫
Σ

gradrg(r, r′)div fk(r′)dσ′
]

− ηmk

∫
Σ

rotr
(
g(r, r′)fk(r′)

)
dσ′.

(3)

By doing so, the original integral equation is approximated by
an easier to solve coefficient identification problem, where the
unknowns are the weights jk and mk.

C. Construction of the Radiation Operator
The boundary element method can be implemented in

various manners. Our choices regarding the basis functions
fk, the numerical integration rule and the matrix construction
are now given.

1) RWG functions: The surface Σ containing the equivalent
currents is approximated by triangles. We consider Rao-
Wilton-Glisson (RWG) [24] basis functions. This choice is
widely spread for its ease of computation while ensuring
continuous normal fluxes across the common edge of two
adjacent triangles. Each couple of adjacent triangles, sharing
an edge, defines a basis function, which is computed as follows
following the notations given in Fig. 2

f(r) =


`

2A+ r
+ if r ∈ T+,

− `
2A− r

− if r ∈ T−,
0 otherwise.

(4)

where A± are the areas of the triangles T±, respectively.
2) Numerical integration: For a given observation position

r and using the Gauss-Legendre quadrature rule, each integral
term in (3) is evaluated. The 9-points version for a triangular
integration domain of the quadrature rule is used [25]. In
our measurement context, the observation point r is always
far enough from the equivalent surface Σ and thus from r′.
Consequently, each term of (3) is well-defined as singularities
are avoided. Hence, the integrands are smooth enough for the
Gauss-Legendre quadrature to be accurate.

3) Matrix formulation: The equation (3) is valid for any
observation point r in the external region (outside V ). Let us
consider a set rm of M observation points. Equation (1) can
be approximated and formulated in Cartesian coordinates as
follows ExEy

Ez

 =

AJ,x ηAM,x

AJ,y ηAM,y

AJ,z ηAM,z

[ j
m

]
(5)

where Ex contains the x-component of E at the observation
positions rm, AJ,x the x-component of the electric current
distribution in the equation (3) for each basis functions fk,
AM,x is the same for the magnetic current distribution. The
other components in y and z are defined similarly. Finally, the
vectors j and m gather all the coefficients of the equivalent
currents, jk and mk, to be determined. Systems of equations
similar to (5) can be easily derived when other vector field
representations are used.

In the sequel, the system (5) is denoted by y = Ax, where
the vector y contains the measured field, A is the discretized
radiation operator and x the equivalent currents.

III. REDUCED ANTENNA CHARACTERIZATION MODEL

In this part, the steps to construct the reduced antenna
characterization model from the radiation matrix are described.

A. Truncated Singular Value Decomposition
The radiation matrix A is, in general, not of full rank. Many

sets of currents x lead to the same radiated field y. Therefore,
the matrix A can be approximated by AT, for which only the
T largest singular values are kept:

A ≈ AT = USTV
H (6)

where VH is the conjugate transpose (also called Hermitian
transpose) of V. The columns of V form an orthonormal basis
of the equivalent current distributions over the equivalent sur-
face Σ while the columns of U are the associate orthonormal
modes of the fields that can be radiated by the enclosed AUT.
The diagonal matrix ST contains the first T singular values
σ1 ≥ σ2 ≥ · · · ≥ σT. The field y radiated by the AUT is
expanded into the first T columns of U as follows

y ≈ UTν (7)

where ν is the new unknown vector of length T. The quality
of the approximation (7) is determined by the truncation index
T.

B. Choice of the Truncation Index
The choice of the truncation index T, and consequently the

size of the radiated field basis UT, is critical, so to be able
to reconstruct properly the radiated field in y [26]. For the
antenna characterization problem, this index is connected to
the noise floor level of the measurement system.

Let us consider a reference field measurement y and its esti-
mation ỹ. For a measurement noise floor of R dB, we consider
that y and ỹ are identical when the average difference between
each sample of these two fields is smaller than R dB. This can
be translated into ‖y − ỹ‖ ≤ δ with δ =

√
M‖y‖∞10R/20,

where M is the size of the measurement vector y or ỹ.1

The radiation matrix A is well approximated by AT pro-
vided that the following inequality holds true for all possible
sets of equivalent currents x

‖Ax−ATx‖ ≤ δ. (8)

1The notation ‖ · ‖ denotes the Euclidean norm, also often written ‖ · ‖2,
‖ · ‖1 is the sum of magnitudes and ‖y‖∞ the maximum magnitude among
the components of y.
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The left hand side of (8) is bounded by ‖A − AT‖‖x‖ =
σT+1‖x‖ since we use a normed algebra and ‖B‖ is equal
to the largest singular value of the matrix B. Using the same
properties, ‖y‖ = ‖Ax‖ leads to ‖y‖ ≤ ‖x‖σ1. By noticing
that ‖y‖ ≤

√
M‖y‖∞, we can write

σT+1

σ1
≤ 10R/20. (9)

Note that the criterion (9) is not rigorously equivalent to
(8). However, its validity is numerically checked in the next
section.

C. Numerical Validation of the Truncation Index

1) Methodology: Let us consider the reference radiated
field y and its estimation ỹ computed from the truncated
radiation matrix AT, both of size M . The Equivalence Noise
Level (ENL) provides a convenient metric to compare these
two radiation patterns and is defined by

ENL(y, ỹ) = 20 log10

(
‖y − ỹ‖1
M‖y‖∞

)
. (10)

The ENL is a mean error that is normalized with respect to
the maximum of the reference field. Adding a white noise of
R dB to y to generate ỹ yields ENL(y, ỹ) ≈ R+ 2 dB.

The truncation index T is chosen such that ENL(y, ỹ) ≤
R for any field y radiated by an AUT inside the equivalent
current surface Σ.

2) Validation: Let us consider the case where the AUT
is enclosed by a spherical equivalent surface Σ. Any field
radiated by the AUT can be expanded into SW. These SW are
denoted Fsmn where s is the propagating mode, s ∈ {1, 2},
m the order and n the degree, |m| ≤ n, 1 ≤ n ≤ N . Indexes
m,n are also integers and N is the truncation order, given by
[2]

N = bkac+ n1 (11)

where k is the wavenumber, a the radius of the smallest sphere
enclosing the sources, b·c is the integer part function and n1

a positive integer. A safety margin of n1 = 10 is a widely
spread choice as it is valid for most antennas, as advocated
by [27]. Other choice of margins have been proposed, such as
n1 = β(ka)1/3 where β if a real constant for large antennas
[28].

For numerical validation purposes, we consider a spherical
equivalent surface Σ of radius a = 2λ, λ = 0.1 m and a noise
floor R = −50 dB. The singular value distribution of the
resulting radiation matrix is shown in Fig. 3. The truncation
index T given by the criterion is also reported and corresponds
to the number of SW for n1 = 7, or N = 19. The radiation
matrix A is well approximated by AT provided that any SW
up to N = 19, Fs,19,19, can be reconstructed with an ENL
below R dB.

The SW of highest degree and order, Fs,19,19, is the hardest
to reconstruct since it exhibits the fastest variations with
respect to both directions θ and ϕ. The results of the recon-
struction of several SW are shown in Fig. 4. The truncation
index T for a noise floor R = −50 dB always leads to an
ENL lower than R for all tested SW, validating numerically
the proposed criterion (9).

0 500 1000 1500 2000
index k

150

100

50

0

k/
1 (

dB
)

T( 50dB)

Fig. 3. Normalized singular value distribution of the far-field radiation matrix
of a sphere of radius 2λ = 0.2 m. Truncation index T for R = −50 dB
corresponds to the number of SW in the expansion for N = 19. The step
widths correspond to the number of SW for each degree n. A similar pattern
can also be found in [22].
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Truncation index
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F s
,m
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dB

)

T F1, 15, 15
F2, 17, 17
F1, 19, 19
Fs, m, n 19

Fig. 4. ENL between the SW, Fsmn, and ỹ, its estimation from the
truncated radiation matrix AT. The truncation index T = 798 ensures a
proper reconstruction of all SW up to N = 19. Unmarked dotted curves
show the reconstruction performances of other SW for n ≤ 19.

D. Singular Values and Equivalent Surface Area

The truncation index T of the singular values is determined
by the low-pass behavior of their distribution. Previous analyt-
ical works on antenna characterization relying on the radiated
field expansion on analytical basis functions have determined
that the number of coefficients to retrieve is linked to the area
of some canonical convex surface enclosing the sources. More
specifically, in the case of spherical near-field measurement as
detailed in [2], the truncation order N given in (11) leads to a
number of spherical coefficients nearly proportional to 4πa2,
the area of the minimal sphere enclosing the antenna. The
work of Prof. Bucci et al. [10] provides an explicit relation
between the number of so-called degrees-of-freedom of the
radiated field for surfaces Σ with some symmetry properties,
Ndeg = A(Σ)/(λ/2)2, where A(Σ) is the area of Σ.

It has been numerically checked that two equivalent convex
surfaces of same area, no matter their shape, exhibit the
same low-pass behavior of their singular value distribution,
as illustrated in Fig. 5. It implies that the complexity of
the reduced-order model and consequently the number of
unknowns in our characterization problem is given by the area
of the equivalent convex surface Σ.
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Fig. 5. Normalized singular value distributions for two sets of equivalent
surfaces having the same area. The light grey curves correspond to surfaces
whose area is twice larger than the colored ones.

E. Singular Values and Sampling Distributions

A sampling is defined by its size and its distribution over the
measurement surface. We can consider the following spherical
samplings; Fibonacci’s sampling [7], one of the most evenly
distributed sampling on the sphere, the igloo sampling [6],
close to being uniform while providing an easy scan for
positioning systems available at IETR. We might also cite
the random sampling, where the points are chosen randomly
over the sphere, and the equiangular or constant angular
step sampling, which is commonly used in spherical near-
field measurements [2], or the spiral sampling [29], [30].
Evenly distributed samplings, such as Fibonacci or igloo,
have been observed to provide very similar singular values
distributions, their overall behaviour is as depicted in Fig.
5. The number of field samples has a negligible effect on
the singular value distribution as long as it is larger than the
number of basis functions. Based on these observations, the
validations example are led on evenly distributed samplings
on the measurement sphere with more field samples than basis
functions.

F. Conclusion

The construction of the reduced antenna characterization
model has been detailed, the method to determine the number
of basis functions (also called characteristic modes) to repre-
sent the far field has been discussed and validated. The order of
the antenna characterization model T was shown to be linked
to the area of the AUT equivalent surface over the squared
half wavelength. This result is in agreement with previous
analytical derivations, also known as degrees-of-freedom of
radiated fields [3], [9], [10].

IV. NUMBER OF FIELD SAMPLES

The steps to derive the number of field samples from
the reduced antenna characterization model are described,
validated numerically and experimentally.

A. From the Number of Spherical Waves to the Model Order

The main and remarkable result is that the order T, the trun-
cation index of the reduced antenna characterization model,

Fig. 6. Truncation index T as a function the surface Σ area enclosing the
AUT for various shapes and a noise floor R = −50 dB. Three different
margins for the number of SW, NSW, n1 = 5, 6, 7, are shown. Note that a
cube of side length 4λ has an area of 96 λ2.

depends only on the area of the surface Σ whatever its convex
shape. Since the number of SW, NSW , is known for a given
sphere radius, we can derive the following formula

T =
A(Σ)

A(S)
NSW. (12)

where A(S) is the area of the surface of the minimal sphere.
The order of the antenna characterization model is deduced
only from the area of the equivalent surface Σ and the maxi-
mum dimension of the AUT. An illustration of this statement
is shown in Fig. 6, investigated boxes (parallelepipeds) and
cylinders have very different aspects ratios.

B. From the Truncation Index to the Number of Samples

The truncation index can be estimated from simple geo-
metrical considerations thanks to (12). The number of field
samples from this truncation index T has to be determined to
complete our antenna characterization problem. Since noisy
measurements and truncation errors are unavoidable and im-
pact the number of required field samples, this leads to
considering oversampling factors, as in [10] for example.

1) Methodology: The field y radiated by the AUT can be
expanded using the reduced basis as follows:

y =
∑

k=1,...,T

νkuk + n (13)

where the vector n stands for the part that is unexplained by
the reduced order model, i.e. the measurement noise and the
truncation error.

Our goal is to determine the unknown vector ν of length T
from a small number of samples. As in Section III-C, we aim
at reconstructing each of the characteristic modes uk, k =
1, . . . ,T. The modes are known at MS sampling positions
and an additive Gaussian white noise is added to account for
measurement uncertainties, leading to the following equation

ν(s) = arg min
ν
‖y(s)

k −U
(s)
T ν‖ (14)

where yk = uk + n for each tested column k and the
superscript (s) denotes the subsample of size MS . The noise
magnitude, the mean of |n|, is chosen to be the noise floor R
used to derive the truncation index T.
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To assess the quality of the reconstruction and thereby the
choice of the number of samples MS , we compute the mean of
the reconstruction metrics ENL(uk, ũk) for all k where ũk is
the estimated characteristic mode computed solving (14). As
in Section III-C, the reconstruction is said successful when the
mean ENL reaches the noise floor R dB.

2) Results: The measurement ratio MS/T, where MS is
the size of the field sample, is used as a metric to quantify the
required number of field samples. The reduced-order model
is applied using four sampling strategies (Fibonacci, igloo,
random and equiangular) and a spherical equivalent current
surface Σ of radius 2λ. The random sampling results are
obtained from an average over 20 trials.

As shown in Fig. 7(a), having evenly distributed points
is crucial to minimize the number of field samples as the
Fibonacci and igloo sampling are clearly the first ones to
reach the noise floor R, at a measurement ratio ≈ 1.17. This
so-called oversampling factor corresponds to the intersection
point of the curves with the horizontal line located at the noise
floor R. In addition, this factor is rather stable with respect
to the measurement noise floor R dB for practically relevant
values, as shown by the grey curves in Fig. 7(a). It implies
that the number of field samples Ms and the truncation index
T increase similarly when the noise floor level R decreases.
From these observations, we only consider the igloo sampling
in the sequel as it is the one applied in our anechoic chambers,
while keeping in mind that Fibonacci or spiral samplings
behave similarly.

The influence of the equivalent surface shape Σ on the
measurement ratio has also been investigated. The results,
shown in Fig. 7(b), demonstrate that a measurement ratio of
1.25 is sufficient for all investigated shapes and by extension
most antenna geometries.

3) Number of samples: From the previous studies and
results, it follows that the number of samples can be set to

MS = χT (15)

where T can be estimated from (12) and χ is an oversampling
factor, following the notation introduced by Bucci et al.
[10]. According to our conclusions, an oversampling factor
of χ = 1.25 allows a safe characterization in all antenna
characterization problems (antenna shape and measurement
noise floor).

C. Numerical Validation for Various Noise Levels

A first validation is led on an analytical example, an E-plane
horn in far field at 20 GHz [31]. The aperture is 1λ × 2λ,
located on the plane z = 0 and the ridge length is 3λ. It is
enclosed in a box of size 1.3λ × 2.3λ × 3.6λ. The radiation
matrix is computed on a dense far-field igloo sampling over
the hemisphere. For different noise floors R, the reduced-order
model is derived and sampling points are selected on a coarser
igloo so the sampling ratio is ≈ 1.25. White noise is added
such that it corresponds to the noise floor R. The coefficients
identification is performed from it and the difference to the
true, not noisy, dense reference is evaluated using the ENL
metric. The task is performed on 50 trials for each tested
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Fig. 7. Mean ENL reconstructions of the radiated modes for a noise floor R =
−50 dB. (a) Comparison between sampling strategies : the grey curves are
obtained for R = −40 and −60 dB with an igloo sampling. (b) Comparison
of various shapes using an igloo sampling.
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Fig. 8. Mean ENL reconstruction over 50 trials from a noisy sample using
the reduced order model of an analytical E-plane horn with sampling ratio
≈ 1.25.

noise floor. The results are shown in Fig. 8. It shows that
the truncation order T, depending on the noise floor R and
the proposed number of samples, 1.25T, gives the expected
reconstruction accuracy. The number of samples went from
356 for a noise floor of R = −30 dB to 660 for −70 dB.

D. Experimental Validation

The proposed small number of samples is applied to the
characterization of two radiating structures of radically differ-
ent shapes and operating frequencies measured in two different
systems.

1) Standard gain horn at X band: The horn has been
measured at 10 GHz in the MVG multi-probe system StarLab
[32] of IETR-INSA, the measurement setup is shown in Fig.
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Fig. 9. (a) Photography of the horn and representation of the three equivalent
current surfaces Σ (sphere, cylinder and box) used for the horn characteriza-
tion. (b) Normalized singular value distribution of the corresponding radiation
matrices.

9(a). The reference and data sets are generated in the far
field at any position using the spherical coefficients returned
by the MVG’s software. Three equivalent current surfaces Σ
enclosing the horn are considered : a box, a cylinder and a
sphere, as shown in Fig. 9(a). The corresponding singular
values of the radiation matrices are shown in Fig. 9(b). The
considered minimal sphere has a radius a of 10 cm ≈ 3.3λ.
The measurement noise floor is estimated to be equal to
R = −45 dB. As shown by the singular value distributions,
the orders of the model T for the box, the cylinder and the
sphere are 1141, 1389 and 1966 respectively.

The validity of the proposed small number of samples (15)
is shown in Fig. 10. The ENL metric between the reference
field y and the one estimated from MS samples is plotted
for the three equivalent current surfaces as a function of MS .
First, the vertical lines, computed from (15), indicate when
the aimed reconstruction accuracy should be achieved, ENL
≤ R = −45 dB. Second, the surface that best fits the AUT
(the box in this case) is clearly the one leading to the smallest
number of samples.

The reconstructions of the far field over a cutting plane
are shown in Fig. 11 in order to further demonstrate the
importance of the choice of the surface surrounding the AUT.
The small number of field samples advocated for the box,
which better fits the geometry of the antenna, has been chosen,
MS = 1448 ≈ 1.25× 1141. An excellent agreement between
the reference and the reconstruction using the box is achieved
whereas the two other surface shapes lead to inaccurate electric
far fields.
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Fig. 10. ENL reconstruction metric between the reference field y and its
estimation ỹ using the reduced order model for a noise floor of R = −45
dB for various sample sizes MS . The vertical lines are the number of samples
corresponding to an oversampling of χ = 1.25 for the respective shapes.
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Fig. 11. Normalized copolar component of the X band horn at 10 GHz.
The reference pattern is generated by the MVG software and other are
reconstructed from only Ms = 1448 field samples, as advocated for the
surface of the box (blue vertical line of Fig. 10). A proper reconstruction
from the cylinder and sphere surfaces would require more field samples.
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Fig. 12. Picture of the pillbox antenna designed by KTH and IETR [33]. The
operating bandwidth spans from 220 to 300 GHz.
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Fig. 13. (a) Normalized reconstruction of the field co-polarization in the main cutting plane for different oversampling factors. (b) Absolute error on the
reconstruction with respect to the reference.
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Fig. 14. ENL reconstruction metric between the reference field and its
estimation using the reduced order model as a function of the measurement
ratio (or oversampling factor).

2) Pillbox antenna at 230 GHz: Let us consider the pillbox
antenna designed by KTH and IETR [33] measured in the far
field at 230 GHz in the M2ARS facilities at IETR, an image
of the prototype is shown in Fig. 12. The measurement system
[34] is a roll-over-azimuth positioning system performing step-
by-step acquisition. The reference far-field pattern is provided
by a densely measured field sampling and SW expansion. The
considered equivalent surface is a box of dimensions 25×25×
4 mm, i.e. approximately 20λ × 20λ × 3λ. A noise floor of
R =−45 dB is assumed, leading to T ≈ 4.3×103 coefficients.

The ENL metric between the reference field and the recon-
struction using the reduced-order model as a function of the
measurement sampling MS/T ratios, or equivalently of the
oversampling factor χ, is shown in Fig. 14. An oversampling
factor χ = 1.25 is close to the optimal number of samples to
reach the aimed accuracy, which confirms experimentally our
previous studies. To provide an illustration of these results, the
reconstruction of the field co-polarization in the main cutting
plane and the error curve with respect to the reference are
displayed in Fig. 13 for two oversampling factors χ.

E. Summary

The characterization of far-field patterns from a reduced
number of samples has been experimentally validated using

two very different antenna types, shapes and operating fre-
quencies that have been characterized in two measurement
systems; an all-in-one commercial system [32] and an aca-
demic laboratory anechoic chamber.

Less field samples are required when the convex surface
surrounding the AUT is tailored to its shape, which confirms
the link between the number of field samples and the area
of the enclosing surface. Moreover, an oversampling value of
χ = 1.25 is shown to be a reasonable choice to find a small
number of samples as confirmed by these experimental results.

V. CONCLUSION

The steps to determine a reduced number of samples to
characterize the antenna far-field radiation pattern have been
detailed. The proposed methodology calls for the construction
of the radiation matrix involved in the antenna characteriza-
tion problem. By appropriately truncating its singular value
decomposition, a small dictionary of the possible far-fields
radiated by the antenna under test is built for a chosen accuracy
level. Instead of using all-purpose analytical basis functions
exhibiting intrinsic symmetries, the proposed strategy enables
to generate numerically a compressed basis tailored to the
antenna being characterized. The practical relevance of the so-
customized basis has been thoroughly investigated. The influ-
ence of the field sampling strategy, its robustness with respect
to noise and equivalent current surface shape surrounding the
antenna under test leads to a realistic small number of field
samples. It is determined by the area of the surface enclosing
the antenna under test. This work confirms, and somehow
extends by means of numerical tools, the fundamental and pio-
neering analytical derivations on the minimum non-redundant
sampling by Bucci et al. [10]. The proposed method has been
applied to characterize the far field of two antennas at 10 and
230 GHz, respectively. These measurements, carried out in
two different facilities, validate experimentally the proposed
approach and show its potentialities. The extension of this
work to the near-field characterization of antennas, where
sampling strategies depend on the measurement surfaces, is
under investigation.
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