
HAL Id: hal-03480419
https://hal.science/hal-03480419v2

Preprint submitted on 8 Mar 2022 (v2), last revised 22 Jan 2024 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging Randomized Smoothing for Optimal Control
of Nonsmooth Dynamical Systems

Quentin Le Lidec, Louis Montaut, Cordelia Schmid, Ivan Laptev, Justin
Carpentier

To cite this version:
Quentin Le Lidec, Louis Montaut, Cordelia Schmid, Ivan Laptev, Justin Carpentier. Leveraging Ran-
domized Smoothing for Optimal Control of Nonsmooth Dynamical Systems. 2022. �hal-03480419v2�

https://hal.science/hal-03480419v2
https://hal.archives-ouvertes.fr

Leveraging Randomized Smoothing
for Optimal Control of Nonsmooth Dynamical Systems

Quentin Le Lidec†, Louis Montaut†?, Cordelia Schmid†, Ivan Laptev† and Justin Carpentier†

Abstract— Optimal control (OC) algorithms such as Dif-
ferential Dynamic Programming (DDP) take advantage of
the derivatives of the dynamics to efficiently control physical
systems. Yet, in the presence of nonsmooth dynamical systems,
such class of algorithms are likely to fail due, for instance,
to the presence of discontinuities in the dynamics derivatives
or because of non-informative gradient. On the contrary,
reinforcement learning (RL) algorithms have shown better
empirical results in scenarios exhibiting non-smooth effects
(contacts, frictions, etc). Our approach leverages recent works
on randomized smoothing (RS) to tackle non-smoothness issues
commonly encountered in optimal control, and provides key
insights on the interplay between RL and OC through the
prism of RS methods. This naturally leads us to introduce the
randomized Differential Dynamic Programming (R-DDP) algo-
rithm accounting for deterministic but non-smooth dynamics in
a very sample-efficient way. The experiments demonstrate that
our method is able to solve classic robotic problems with dry
friction and frictional contacts, where classical OC algorithms
are likely to fail and RL algorithms require in practice a
prohibitive number of samples to find an optimal solution.

Index Terms— optimization, optimal control, reinforcement
learning

I. INTRODUCTION

THEORIES and applications of optimal control (OC)
and reinforcement learning (RL) are all related to the

problem of minimizing a cost (resp. maximizing a reward)
while fulfilling the system dynamics and constraints over a
given time duration. Nonetheless, the resulting algorithms to
solve OC or RL problems are based on different approaches,
leading to very different performances in practice. On one
hand, RL algorithms in their vast majority only exploits
samples, leading to zero-th order approaches. On the other
hand, optimal control and trajectory optimization techniques
such as the iterative Linear Quadratic Regulator (iLQR) [1]
and Differential Dynamic Programming (DDP) [2] rely on
first-order and second order linearization of the dynamics.
Exploiting this derivative information makes them much
more sample-efficient than their zero-th order counterparts
from the field of RL. However, when considering complex
scenarii such as robots in interaction with their environments,
the system dynamics may depict some non-smooth physical
phenomena (dry friction, contact constraints, etc.). These
properties may induce non-informative or discontinuous gra-
dients that make gradient-based strategies fail [3]. On the
contrary, RL algorithms have proven to be able to get

†The authors are with Inria and Département d’Informatique de
l’Ecole Normale Supérieure, PSL Research University, Paris, France.
firstname.lastname@inria.fr

? L. Montaut is with Czech Institute of Informatics, Robotics and
Cybernetics, Czech Technical University in Prague.

Fig. 1: Illustration of randomized smoothing effects on the
front left leg of the Solo robot.

around these non-smoothness issues in such cases, leading to
impressive results when considering contact interactions [4].
By treating the dynamics as a black-box function, derivative-
free algorithms such as standard RL methods circumvent
the aforementioned issues and can transparently deal with
arbitrarily complex and non-smooth dynamics. However,
completely disregarding the specific structure of the dynam-
ics comes at the cost of often requiring a large number of
samples.

In a recent growing effort, differentiable physical simula-
tors have emerged in the context of exploiting informative
gradients for control [5] and estimation [6]. Gradients of
rigid bodies dynamics were obtained by differentiating the
classical rigid body algorithms [7], [8]. Simulating and differ-
entiating physics with frictional contacts is more challenging
as it requires to also solve for contact forces [5], [6] and was
made possible by differentiable optimization techniques [9],
[10]. Yet, these dynamics derivatives may present some
discontinuities or lack of regularity, which may drastically
impact gradient-based optimization techniques, especially in
the context of classical control algorithms [3].

In this work, we propose to leverage randomized smooth-
ing (RS) techniques [11], [12] to cope with nonsmooth
dynamical systems in optimal control problems. From a
theoretical perspective, we notably demonstrate how RS
methods applied on OC problems allow to close the gap with
the RL setting (Sec. III). From a practical perspective, we
propose to use RS techniques within the frame of Differential
Dynamic Programming to deal with nonsmooth dynamics,
which are hard to handle in the vanilla setting (Sec. IV).
We also introduce an adaptive strategy to automatically
reduce the smoothing noise, inherent to RS techniques,
across the optimization procedure. We experimentally show
the practical benefits of our approach on various robotic tasks

with increasing complexity, ranging from inverted pendulum
to quadrupedal locomotion(Sec. V).

Concurrently to our work, [13] introduced the notion of
randomized smoothing in order to get gradients through
contacts. We take a different point of view by establishing
links between RL and OC through the lens of RS, which is
a first step towards a stronger interplay between these two
fields.

II. BACKGROUND

Our work builds on optimal control, reinforcement learn-
ing and randomized smoothing techniques, which are briefly
introduced in this section.
Optimal control. We consider the OC problem of controlling
a robot by minimizing a cost l while satisfying the system
dynamics f :

min
x,u

∫ T

0

l(t, x(t), u(t))dt (1a)

s.t. ẋ(t) = f(x(t), u(t)), (1b)
x(0) = x0, (1c)

where x(t) ∈ S and u(t) ∈ A are the state and the control
action of the system at time t respectively, and T is the time
horizon. In this paper, we call smooth a dynamics whose
corresponding function f is differentiable everywhere. While
in robotics f is often considered smooth, contact interactions
give rise to points where f is only sub-differentiable [14].

Two different approaches may be used to solve (1),
namely direct and indirect approaches. Direct approaches
translate the infinite dimensional problem (1) into a finite
nonlinear programming problem (NLP) and exploit off-the-
shelf constrained optimization solvers [15] for solving it. In
particular, this leads to a discrete numerical problem of the
form:

min
X,U

R(x,u)︷ ︸︸ ︷
lT (xT) +

T−1∑
t=0

lt(xt, ut) (2a)

s.t. xt+1 = f(xt, ut), ∀t ∈ [1, T − 1] , (2b)
x0 = x0, (2c)

where x = {x0, . . . , xT } and u = {u0, . . . , uT−1}.
Alternatively, indirect approaches first apply the optimal-

ity conditions of optimal control problems (e.g. Hamilton-
Jacobi-Bellman or Pontryagin’s maximum principles) and
then discritize these conditions in order to numerically
solved the problems. This notably offers the advantage of
highlighting the underlying sparsity of constraints induced by
times. In this line of work, iLQR [1] and DDP [16], [2], [17]
are the most well-known first and second order algorithms,
with linear or quadratic-type convergence rates respectively.
Moreover, their recent adaptations are even able to handle
trajectory constraints [18], [19] and implicit dynamics [20].
More closely related to our work, sampled DDP [21] lies
in-between as it uses stochastic estimates of the dynamics

derivatives to deal with dynamics for which gradients are
not available.
Reinforcement learning considers the dynamics as a black-
box function and uses parameterized stochastic policies πθ
to better explore the action space. This model-free approach
can natually handle complex, or even unknown, dynamics.
During training, the average cost R along the trajectories
sampled from the distribution ρθ induced by the policy πθ
is minimized (which is equivalent to maximizing −R, the
cumulated sum of rewards, as in the RL literature), leading
to the following problem:

min
θ

E(x,u)∼ρθ [R(x,u)] (3)

where trajectories are generated by the policy in the follow-
ing way:

ut ∼ πθ(·|xt), (4a)
xt+1 = f(xt, ut). (4b)

Policy Gradient (PG) [22], [23] algorithms aim at minimizing
(3) by using a zero-th order estimate of the gradient as a
descent direction:

∇θRPG = E(x,u)∼ρθ [R(x,u)∇θ log ρθ(x,u)] (5)

The resulting randomness induces some variance in the
gradients estimates, which in turns slows down optimization
but also fosters exploratory behaviours, potentially leading
to more global solutions. Finally, this makes RL an instance
of random optimization, which will be discussed more in
details in Sec. III-C.
Random optimization techniques are among the earliest
optimization schemes and were developed in order to tackle
problems where the objective function is discontinuous or
nonsmooth. In this situation, the gradients only provide
limited information and are not suited for a use in clas-
sic gradient-based optimization techniques [24]. During a
random search, one classical strategy consists in sampling
a random direction at each step and then moving towards
the corresponding directional derivative [25]. An alterna-
tive strategy, called Gradient Sampling (GS), approximates
the sub-gradient at non-differentiable points by taking the
descent direction inside the convex hull of some gradi-
ents randomly sampled in a neighbourhood [26]. Recent
works [27] exploits the equivalence between random op-
timization techniques and performing a stochastic gradient
descent on a smoothed version of the original problem in
order to get theoretical convergence bounds. In a parallel line
of work, randomized smoothing was recently introduced in
the machine learning community in order to be able to differ-
entiate through Linear Programming (LP) argmin operators
[28], [12], [29], [30]. Unlike their classical counterparts,
these perturbed optimizers are guaranteed to have non-null
gradients everywhere making it possible to use gradient-
based optimization methods.

Concretely, let Z be a random variable whose probability
distribution µ is a Gibbs measure. A function g can be

approximated by convolving it with this probability distri-
bution:

gε(x) = EZ∼µ [g(x+ εZ)] (6)

which corresponds to the randomly smoothed counterpart of
g and can be estimated with a Monte-Carlo estimator as
follows:

gε(x) ≈
1

M

M∑
i=0

g(x+ εZ(i)) (7)

where {Z(1), . . . , Z(M)} are i.i.d. samples and M is the
number of samples. Using an integration by part, we have
the following expression of gradients:

∇xgε(x) = EZ∼µ
[
−g(x+ εZ)

∇ logµ(Z)>

ε

]
(8a)

= EZ∼µ [∇g(x+ εZ)] , (8b)

where (8a) and (8b) corresponds respectively to the zero-
th and first order expressions of ∇xgε. In practice, it
is possible to approximate the smoothed gradient by the
first order Monte-Carlo (MC) estimator (9b) or, because
EZ∼µ

[
∇ logµ(Z)>

]
= 0, by the variance reduced zero-th

order MC estimator (9a):

∇xgε(x) ≈
1

M

M∑
i=1

(
g(x)− g(x+ εZ(i))

) ∇ logµ(Z(i))>

ε

(9a)

≈ 1

M

M∑
i=1

∇g(x+ εZ(i)) (9b)

More intuitively, because of the local averaging effect of
the convolution, gε(x) is always smoother than g. Indeed,
gε is guaranteed to be differentiable [31], uniformly close
from f and its gradient to be Lipschitz-continuous [11], [12].
Moreover, gε

ε−→0−−−→ g so reducing the perturbation by de-
creasing ε leads to a reduced gap between gε and the original
function f but also results in a less smooth approximation. In
terms of computational complexity, evaluating ∇gε with M
samples induces a complexity increased by a factor M . The
computation being easily parallelisable, this in fact leads to a
constant computational time, without a critical impact on the
memory footprint, as shown in the context of differentiable
rendering in [29]. Adding stochasticity to gradients is also
proven to help escape saddle points when optimizing non-
convex functions [32] which constitutes a positive side-effect
of randomized smoothing. Finally, other previous works
on the use of randomized smoothing demonstrates how it
can improve convergence rates when optimizing non-smooth
functions [11] and lead to more robust solutions [33].

III. BRIDGING THE GAP BETWEEN OPTIMAL CONTROL
AND REINFORCEMENT LEARNING

In this section, we present the caveats of poorly informa-
tive gradients for classical control algorithms, which may
for instance occur in the presence of nonsmooth dynamical
systems. To overcome these limitations, we propose to ex-
ploit the randomized smoothing approach in the trajectory

−2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0

u

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

x t
+

1

f(0, ⋅)
fε(0, ⋅), (ε,M) = (1.0, 32)
fε(0, ⋅), (ε,M) = (4.0, 32)
fε(0, ⋅), (ε,M) = (4.0, 1024)

Fig. 2: Top: A slight vertical force is not able to break the
unilateral contact, leaving cube on the floor and, thus, the
state unchanged. Bottom: The non-smoothness of physics
induces null gradients ∇uR which results in the failure of
classical optimization techniques (III-A).

optimization paradigm. We also detail a connection between
randomized smoothing and RL methods, thus explaining how
they effectively solve problems involving poorly informative
gradients.

A. Locally optimal solutions of optimal control problems

As discussed in Sec. II, several approaches may be used
for solving OC problems of the form (2). In particular,
one can substitute x1, . . . , xT thanks to the constraint on
the dynamics (2b) and express problem (2) only in terms
of u0, . . . , uT−1, leading to the following but equivalent
unconstrained optimization problem:

min
u

R(x(u),u) (10)

where x(u) is recursively defined by:

x0 = x0 and xt(u) = f(xt−1(u), ut), (11)

corresponding to an integration process (e.g. exploiting a
dynamical simulator). This also means that, by unrolling the
successive integration steps, x(u) can be efficiently differ-
entiated. This equivalent problem (10) can then be solved
using a classical unconstrained optimization algorithm such
as gradient descent, consisting in backpropagating through
time [34].

In the case of a robotic system, solving (2) with ap-
proaches described previously can lead to local solutions
because of the inherent non-convexity and non-smoothness
of the problem. To illustrate this, one can think about the
problem of lifting a cube [3] illustrated in Fig. 2. When u is
initialized with null control, this results in ∇uf = 0 because
of the complementarity constraint arising from unilateral
contacts (see IV. of [3]). By supposing that ∂R

∂u = 0 and

applying the chain rule, we have that:

∇uR(x(u),u) =
∂R

∂x

∂x

∂u
+
∂R

∂u
=
∂R

∂x

∂x

∂u
. (12)

Moreover, since ∇uf = 0, we have that
∂x1

∂u = ∂f
∂u (x0, u0) = 0 and with the time recursion,

this leads to:
∂xt+1

∂u
=
∂f

∂u
(xt, ut) +

∂f

∂x
(xt, ut)

∂xt
∂u

= 0, (13)

implying that ∂x
∂u = 0. Finally, because ∇uR = 0, an

algorithm exploiting only the local gradient information (e.g.
gradient or Newton descent) will stop at this point, leaving
the problem unsolved, blocked at a local maxima. For exactly
the same reasons, the classical DDP algorithm would get
stuck in a similar situation.

B. Randomized smoothing of the system dynamics

The issue highlighted above is due to the inability of
deterministic control algorithms to deal with non-smooth
dynamics and their non-informative gradients, which often
occurs for physical systems involving contact or frictions.

An intuitive way to circumvent this issue consists in
introducing randomization in the optimization process in
order to get a more exploratory behaviour, by collecting
samples in a larger neighbourhood around a given point,
when compared to classic methods as the ones relying on
local gradient information. This is precisely the motivation
behind Randomized Smoothing and, to some extent, be-
hind Reinforcement Learning as discussed in Sec. III-C.
We adapt the formulation (2) by artificially smoothing the
system dynamics using randomized smoothing, leading to
the following smooth but approximated problem:

min
x,u

R(x,u) (14a)

s.t. xt+1 = fε(xt, ut), ∀t ∈ [1, T − 1] , (14b)
x0 = x0. (14c)

where fε(x, u) = EZ∼µ [f(x, u+ εZ)] and µ is a noise
distribution. It is worth mentioning that fε corresponds to
a randomized version of f , which is only perturbed with
respect to the control input u. Perturbing the control but
not the state, ensures that only reachable state are explored.
When ε → 0, problem (14) converges to the original
problem (2).

The proposed solution of using a smoothed approximation
of the system dynamics is very generic and can be easily
instantiated in most of the existing trajectory optimization
frameworks without major modifications. Yet, there is a pri-
ori no obvious choice of the sampling distribution µ, neither
for the number of particles sufficient in the Monte-Carlo
estimator of the system dynamics and gradient computations.
Another difficulty lies in the proper scheduling of the noise
intensity ε towards 0 in order to remove the effect of noise
at convergence to recover the original problem.

In Sec. IV, we introduce an algorithmic variation of the so-
called Differential Dynamic Programming algorithm which
relies on the smoothed dynamics fε. In particular, we propose

an automatic scheduling of the noise intensity ε and an auto-
tuning strategy of the number of particles in the Monte-Carlo
estimators.

C. Reinforcement learning through the prism of randomized
smoothing

At this stage, one could wonder why RL demonstrated em-
pirical success even in the case of the non-smooth dynamics
evoked in III-A. We provide a first possible explanation by
drawing a parallel between the descent directions used in RL
and the one from random optimization (8a) when applied to
the OC problem (2).

Indeed, the descent directions used in the classical RL al-
gorithm REINFORCE with baseline (the same considerations
remain valid for the closely related actor-critic algorithms)
[35], [23], [36] can be written as:

∇θRPG = E(x,u)∼ρθ

[(
R(x,u)− V̂ (x0)

)
∇θ log ρθ(x,u)

]
, (15)

where V̂ is an estimate of the value function and this exactly
corresponds to the variance reduced version of the randomly
smoothed approximation (9a). More intuitively, in order to
deal with the non-smoothness of the dynamics or reward
functions, Policy Gradient adds noise in the action space by
sampling actions from a stochastic policy. Concretely, this
causes ∇θRPG 6= 0 even in regions where ∇uR = 0 and
first or second order gradient methods fail, as discussed in
Sec. III-A . Thus, introducing some stochasticity allows RL
to smooth the original problem and avoid the computation
of gradients from the dynamics when they are unknown.
Unfortunately, in general, this comes at the cost of an
increased variance in the estimates of ∇RPG, which induces
a slower convergence rate [27]. A similar study could be
done with Evolution Strategies used in [37], [38] which
prefer to generate trajectories with deterministic policies but
parameterized by randomly sampled parameters.

Following this analysis, in a way similar to RL, we pro-
pose to use randomized smoothing to compute informative
gradients even in situations when the standard ones are non-
informative. The obtained gradients can then be exploited in
the context of optimal control problems with higher-order op-
timization algorithms in order to get improved convergence
rates, as shown in the context of the widely used Differential
Dynamic Programming algorithm in the following section.

IV. RANDOMIZED DIFFERENTIAL DYNAMIC
PROGRAMMING

This section introduces our randomized Differential Dy-
namic Programming algorithm. This novel formulation
builds on the previous analysis to incorporate randomized
smoothing in the optimal control paradigm in order to
increase the exploration of classical DDP and efficiently
solve problems involving non-smooth dynamical systems.

Algorithm 1: Randomized DDP algorithm
Input: OC problem: R, f , Initial trajectory: u, x,

Target noise and precision: ε∗, α∗, Initial
noise and precision: ε, α, Adaptive scheme
parameters: ρ, γ

Output: Solution (u, x) of the OC problem (2)
1 repeat
2 repeat
3 k,K ← Backward Pass (19);
4 u, x← Forward Pass (22);
5 until ‖Qu‖Q−1

uu
< α;

6 ε← ε/ρ ;
7 α← α/γ;
8 until α < α∗ and ε < ε∗;

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Δu
−0.0004

−0.0003

−0.0002

−0.0001

0.0000

Q
0(
x,
u

+
Δu

)

+4e3

True dynamics
Smooth dynamics

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

Δu
−0.008

−0.006

−0.004

−0.002

0.000

Q
0(
x,
u

+
Δu

)

+4e3

True dynamics
Smooth dynamics

Fig. 3: Left: The randomly-smoothed dynamics allows to
get non null gradients and escape the local maximum for
the inverted pendulum. Right: Q0(x, ·) value function of the
pendulum with dry friction exhibits plateaus where Qu = 0
around u = 0 while randomly smoothed dynamics leads to
Qu 6= 0.

A. Dynamic programming with smoothed physics

The main idea behind randomized DDP consists in ex-
ploiting the formulation (14) and replacing the original,
possibly non-smooth, dynamics f by its randomly smoothed
approximation fε in the forward and backward passes of the
vanilla DDP. Doing so allows to benefits from the efficiency
of DDP even in situations where the original DDP algorithm
will fail.

First, we introduce the cost-to-go function associated to
our problem (14):

Jt(xt, ut, . . . , uT−1) = lT (xT) +

T−1∑
τ=t

lτ (xτ , uτ) (16)

and the value function which verifies the Bellman’s equation:

Vt(xt) = min
ut,...,uT−1

Jt(xt, ut, . . . , uT−1) (17a)

= min
ut

lt(xt, ut) + Vt+1 (fε(xt, ut)) (17b)

with the terminal condition VT (x) = lT (x). Additionally,
the Q-function is defined by:

Qt(x, u) = lt(x, u) + Vt+1 (fε(x, u)) (18)

As done in the classical Differential Dynamic Program-
ming algorithm, we exploit the sparsity of constraints in-

duced by time via the Bellman’s equation to solve the prob-
lem (14). To do so, local second order approximations of the
value and the Q functions are built by backpropagating the
Bellman’s equation (17) backward in time around a reference
trajectory x, leading to the backward pass equations:

Qxx = lxx + fx
>V ′xxfx + V ′x

>
fxx (19a)

Qux = lux + fu
>V ′xxfx + V ′x

>
fux (19b)

Quu = luu + fu
>V ′xxfu + V ′x

>
fuu (19c)

Qx = lx + V ′x
>
fx (19d)

Qu = lu + V ′x
>
fu (19e)

q = l + v′, (19f)

where v = Vt(x), and and the subscript on x and u are
the usual notations for the partial derivative w.r.t the state
and control variables, and the superscript V ′ denotes the
value function at the next time-step. Minimizing these local
quadratic approximations of Q w.r.t u gives:

u = k +K(x− x), k = −Q−1uuQu and K = −Q−1uuQux,
(20)

and injecting (20) in (17) gives rise to:

Vxx = Qxx −K>QuuK (21a)

Vx = Qx − k>QuuK (21b)

v = q − 1

2
k>Quuk. (21c)

Finally, u is updated with a line search during the forward
computation:

uni = ui + αk +K(xni − xi) (22a)
xn0 = x0 (22b)

xni+1 = fε(x
n
i , u

n
i), (22c)

where the superscript n relates to the updated quantities
after applying a Newton step. During line search, the noise
is fixed as described in [39], [40]. Repeating the forward
and backward steps by taking the new trajectory xn as the
new reference x allows to find the optimal control u under
the form of a linear policy (20) which is optimal around the
trajectory.

As detailed previously in Sec. II, smoothing the physics
makes it possible to have non-null gradients ∇ufε thus
inducing non-null Qu, as illustrated in Fig. 3. Alternatively,
the stochasticity can also be interpreted as an exploration
term which has proven to be crucial in the RL framework to
escape regions where the local information from gradients
does not provide exploitable insight on the problem being
solved (see Sec. III-C).

The main difference between our approach formulated at
(14) and ”Policy Gradient”-type algorithms lies in the scope
of the randomized smoothing. Indeed, RL smooths the whole
problem while we ”only” smooth the dynamics f : note that
the expectation is on entire trajectories in (3) while it is at
the time-step level in (14) resulting in a reduced variance in
the latter case [41]. Moreover, we find that preserving the

0 3 6 9 12 15 18 21
iterations

0

50

100

150

200

R(
X,
U

)−
R(
X

* ,
U

*)

ε= 0, M= 1
εinit = 10−1, M= 4

0 3 6 9 12 15 18 21 24
iterations

0.000

0.005

0.010

0.015

0.020

0.025

0.030

||Q
u||

∞

ε= 0, M= 1
εinit = 10−1, M= 4

Fig. 4: Randomized smoothing allows to escape from the
local optima (x, u) = 0 for the inverted pendulum (see
Fig 3). In blue, the gradient is null and the systems remains
stuck into the downward position. In orange, the system
is able to reach the upward position thanks to randomized
smoothing.

original recursive structure of (2) is beneficial in the case of
known dynamics f as it allows to benefit from the efficient
dynamic programming backward passes (19) of DDP. While
RL requires to also smooth the cost function to deal with
sparse rewards, it is not necessary in our case as current
trajectory optimization algorithms are able to handle hard
constraints [19], [20], [18].

B. Adaptive smoothing

To enforce the convergence towards an optimal (local) so-
lution, it remains crucial to reduce the noise injected via the
randomized smoothing across the iterations. A first possible
strategy [13] consists in relying on Robbins-Monro rule [42]
by decreasing the variance in a way such that

∑
k ε

2
k < ∞

to guarantee convergence towards a local minima. In this
work, we propose to decrease εk in a way that adapts to
the problem and avoids the smoothing being reduced too
quickly, which would lead to performance similar to classical
DDP, or too slowly, which would induce an unnecessary
large number of iterations. We adapt the smoothing by solv-
ing a cascade of randomly-smoohted DDP problem. More
concretely, ‖∇uQ‖∞ decreases towards 0 when converging
towards an optimum. Whenever ‖∇uQ‖∞ is under a given
precision threshold α we consider the smooth sub-problem
solved and thus reduce the noise intensity ε and the precision
threshold α, by a factor ρ and γ respectively, before solving
the next sub-problem. Typically, ρ and γ are taken equal
and set to the value 2. This adaptive scheme is summarized
in Alg. 1 and is generic, so it could be transferred to any
algorithm using randomized smoothing.

V. EXPERIMENTS

In this section, we demonstrate the practical benefits of
our randomized DDP algorithms on a set of robotics systems.
Our implementation is based on the open-source frameworks:
Crocoddyl [17] for the DDP algorithm and on Pinocchio [43]
and [8], [6] for the derivatives of the dynamics with and
without contacts.

A. Avoiding local optima of smooth dynamics

We consider the task of raising a pendulum from the
downwards to the upwards vertical position p∗. For this

0 5 10 15 20 25 30 35
iterations

0

50

100

150

R(
X,
U

)−
R(
X

* ,
U

*)

εinit = 10−1, M= 8
εinit = 10−1, M= 64

0 5 10 15 20 25 30 35 40
iterations

0.00

0.01

0.02

0.03

0.04

0.05

||Q
u||

∞

εinit = 10−1, M= 8
εinit = 10−1, M= 64

Fig. 5: Only a few samples (here M=8) are necessary to
get reasonable results on the cartpole task. Increasing this
number leads to very marginal improvement.

0 5 10 15 20 25 30 35
iterations

0

2

4

6

R(
X,
U

)−
R(
X

* ,
U

*)

ε= 0, M= 1
εinit = 4, M= 16
ε= 4, M= 16

0 3 6 9 12 15 18 21 24 27
iterations

0

500

1000

1500

2000

2500

R(
X,
U

)−
R(
X

* ,
U

*)

ε= 0, M= 1
εinit = 10−1, M= 4
ε= 10−1, M= 4

0 5 10 15 20 25 30 35
iterations

0

50

100

150

R(
X,
U

)−
R(
X

* ,
U

*)

ε= 0, M= 1
εinit = 10−1, M= 8
ε= 10−1, M= 8

0 5 10 15 20 25 30 35 40
iterations

0.000

0.002

0.004

0.006

0.008

0.010

0.012

||Q
u||

∞

ε= 0, M= 1
εinit = 4, M= 16
ε= 4, M= 16

0 4 8 12 16 20 24 28
iterations

0.0

0.1

0.2

0.3

||Q
u||

∞

ε= 0, M= 1
εinit = 10−1, M= 4
ε= 10−1, M= 4

0 5 10 15 20 25 30 35 40
iterations

0.00

0.01

0.02

0.03

0.04

0.05

||Q
u||

∞

ε= 0, M= 1
εinit = 10−1, M= 8
ε= 10−1, M= 8

Fig. 6: Left: Randomized smoothing allows to solve tasks
requiring to break contacts such as the one from Fig. 2
(Top) Middle: Complex systems such as an inverted double
pendulum Right: or cartpole with dry frictions on the joints.

problem, we optimize the following cost function:

R(x,u) = wp‖p(θT)− p∗‖2 +
T∑
t=0

wu‖ut − u∗‖2, (23)

where T = 400, dt = 5× 10−3 s, wp = 2, wu = 2× 10−5,
x = (θ, θ̇) and p(θ) corresponds to the position of the end-
effector. For the problem (23), the solution (u, x) = (0, 0)
is a local extrema and the classical DDP algorithm gets
stuck at this point (Fig. 4) as discussed in Sec. III-C.
randomized smoothing allows R-DDP to avoid this local
optima (Fig. 3,4). Here, two distinct effects are at work: i) the
Randomized Smoothing can smoothen out some local optima
and ii) the noise from the Monte-Carlo estimator helps to
escape from unstable critical points as detailed in [32]. Note
that, for this problem, only M = 4 samples are required to
obtain the presented results.

B. Controlling systems with non-smooth dynamics: contacts
and friction in robotics

In addition to converging towards better optima in the case
of smooth dynamics, we primarily designed R-DDP to be
an elegant solution when it comes to the aforementioned
issues from non-smooth dynamics (see Sec. III-A). In these
experiments, we use a cost function similar to the one of (23).
To illustrate the issues induced by the non-smoothness of
unilateral contact and frictions, we consider the preliminary
tasks of taking off or sliding a cube on a table (appearing in
[3]). As shown by Fig. 6, our approach allows to complete
this task while we have shown in Sec. III-A that it is not
possible when relying on classic gradient information. In a
similar way, it is possible to apply the R-DDP algorithm to
control more complex systems such as a double pendulum

Fig. 7: Randomized-DDP leverages the smooth dynamics to precisely schedules movements requiring to break contacts
(Bottom) and dry friction (Top).

0 6 12 18 24 30 36 42 48
iterations

0.0

0.1

0.2

0.3

0.4

R(
X,
U

)−
R(
X

* ,
U

*)

ε= 0, M= 1
εinit = 10−1, M= 8

0 6 12 18 24 30 36 42 48
iterations

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030
||Q

u||
∞

ε= 0, M= 1
εinit = 10−1, M= 8

Fig. 8: Randomized DDP makes it possible to achieve
complex tasks requiring breaking contacts with the floor on
Solo robot such as lifting a leg (see Fig. 7)

or a cartpole with dry friction on the joints. Using the true
dynamics, DDP is unable to optimize the control variable
because of the non-smoothness induced by the dry friction.
Once again, smoothing the dynamics with respect to the con-
trol u allows to have non-null gradients almost everywhere
and thus to apply classical DDP (Fig. 6). Doing so, it is
possible to solve very efficiently with the DDP algorithm the
problem of controlling a complex system involving contacts
and frictions. Interestingly, the FDDP algorithm [17] which
allows for unfeasible trajectories also failed to overcome
the non-smoothness from dry frictions. We also studied
the influence of the number of samples used for the MC
estimators (Fig. 5) and the adaptive scheme (Fig. 6) on the
quality of the obtained solution. We noticed that good results
could be obtained with a small number of samples, meaning
that the supplementary computational costs is limited when
compared to classical DDP. On the contrary, using an adap-
tive scheme for decreasing the smoothing perturbation leads
to a more precise solution by allowing the gradients of the
trajectory optimization problems to converge to zero (Fig. 6).

Finally, we apply our algorithm to solve a task on the
Solo robot [44], a 18-DoF robotics system, with frictional
contacts. Here, the goal is to reach a final target pose
xT (lifting of the tip of one leg while keeping the three
others on the ground), which requires breaking some ini-
tial existing contacts, as illustrated in Fig. 7. R-DDP with
adaptive smoothing allows to solve this task while classical
DDP algorithm fails (Fig. 8). The observed performance
gap can be explained by the impossibility of classical DDP
to precisely apprehend contacts because of non-informative
gradients of the dynamics. Typically, the control obtained
from DDP will only approach this pose while maintaining
the feet on the ground which results in Solo bending its leg
instead of lifting it.

VI. CONCLUSION

Analyzing reinforcement learning via the theory of ran-
domized smoothing allows to understand how crucial the
exploratory characteristic of these algorithms is to solve
control problem with non-smooth dynamics. By transferring
these ideas to the field of trajectory optimization, we have
in this paper leveraged randomized smoothing to propose an
approximate and smooth formulation of the original optimal
control problem. Exploiting this new formulation with the
well-established DDP algorithm results in an approach able
to cope with the presence of frictional contacts or frictions,
in a sample efficient way. We’ve also demonstrated the
capacity of our method to correctly solved standard robotics
systems (pendulum, cartpole, Solo robot) including non-
smooth dynamical effects (frictions, contacts) and where
classic optimization-based will likely fail. In a future work,
it would be interesting to investigate possible uses of the
information contained in the variance of the several particle
of the Monte-Carlo estimator. In particular, we believe this
could help to build a more robust adaptive scheme by
detecting when increasing the noise ε, the precision threshold
α or even the number of particles M is necessary.

ACKNOWLEDGEMENTS

This work was supported in part by L’Agence d’Innovation
Défense, the HPC resources from GENCI-IDRIS(Grant
AD011012215), the French government under manage-
ment of Agence Nationale de la Recherche as part of
the ”Investissements d’avenir” program, reference ANR-
19-P3IA-0001 (PRAIRIE 3IA Institute), the European Re-
gional Development Fund under the project IMPACT (reg.
no. CZ.02.1.01/0.0/0.0/15 003/0000468), the Grant Agency
of the Czech Technical University in Prague, grant No.
SGS21/178/OHK3/3T/17, and Louis Vuitton ENS Chair on
Artificial Intelligence.

REFERENCES

[1] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems.” in ICINCO (1). Citeseer,
2004, pp. 222–229.

[2] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2012, pp. 4906–4913.

[3] K. Werling, D. Omens, J. Lee, I. Exarchos, and C. K. Liu, “Fast and
feature-complete differentiable physics for articulated rigid bodies with
contact,” arXiv preprint arXiv:2103.16021, 2021.

[4] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, 2019.

[5] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and
J. Z. Kolter, “End-to-end differentiable physics for learning and
control,” in Advances in Neural Information Processing Systems,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, Eds., vol. 31. Curran Associates, Inc.,
2018. [Online]. Available: https://proceedings.neurips.cc/paper/2018/
file/842424a1d0595b76ec4fa03c46e8d755-Paper.pdf

[6] Q. Le Lidec, I. Kalevatykh, I. Laptev, C. Schmid, and J. Carpentier,
“Differentiable simulation for physical system identification,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 3413–3420, 2021.

[7] R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.
[8] J. Carpentier and N. Mansard, “Analytical derivatives of rigid body

dynamics algorithms,” in Robotics: Science and systems (RSS 2018),
2018.

[9] B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a
layer in neural networks,” in International Conference on Machine
Learning. PMLR, 2017, pp. 136–145.

[10] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z.
Kolter, “Differentiable convex optimization layers,” Advances in Neu-
ral Information Processing Systems, vol. 32, pp. 9562–9574, 2019.

[11] J. C. Duchi, P. L. Bartlett, and M. J. Wainwright, “Randomized
smoothing for stochastic optimization,” SIAM Journal on Optimiza-
tion, vol. 22, no. 2, pp. 674–701, 2012.

[12] Q. Berthet, M. Blondel, O. Teboul, M. Cuturi, J.-P. Vert, and
F. Bach, “Learning with differentiable pertubed optimizers,” in
Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, Eds.,
vol. 33. Curran Associates, Inc., 2020, pp. 9508–9519.
[Online]. Available: https://proceedings.neurips.cc/paper/2020/file/
6bb56208f672af0dd65451f869fedfd9-Paper.pdf

[13] H. J. T. Suh, T. Pang, and R. Tedrake, “Bundled gradients through
contact via randomized smoothing,” 2021.

[14] B. Brogliato, Nonsmooth mechanics. Springer, 1999.
[15] M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber, “Fast direct

multiple shooting algorithms for optimal robot control,” in Fast
motions in biomechanics and robotics. Springer, 2006, pp. 65–93.

[16] D. Mayne, “A second-order gradient method for determining optimal
trajectories of non-linear discrete-time systems,” International Journal
of Control, vol. 3, no. 1, pp. 85–95, 1966.

[17] C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud,
M. Naveau, J. Carpentier, L. Righetti, S. Vijayakumar, and
N. Mansard, “Crocoddyl: An efficient and versatile framework for
multi-contact optimal control,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2020, pp. 2536–2542.

[18] T. A. Howell, B. E. Jackson, and Z. Manchester, “ALTRO:
A fast solver for constrained trajectory optimization,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2019, pp. 7674–7679. [Online]. Available:
https://ieeexplore.ieee.org/document/8967788/

[19] S. Kazdadi, J. Carpentier, and J. Ponce, “Equality constrained differ-
ential dynamic programming,” in 2021-IEEE International Conference
on Robotics and Automation, 2021.

[20] W. Jallet, N. Mansard, and J. Carpentier, “Implicit Differential
Dynamic Programming,” Sept. 2021, working paper or preprint.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-03351641

[21] J. Rajamäki, K. Naderi, V. Kyrki, and P. Hämäläinen, “Sampled
differential dynamic programming,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2016, pp. 1402–
1409.

[22] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3,
pp. 229–256, 1992.

[23] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[24] J. Matyas et al., “Random optimization,” Automation and Remote
control, vol. 26, no. 2, pp. 246–253, 1965.

[25] B. Polyak, Introduction to Optimization, 07 2020.

[26] J. V. Burke, A. S. Lewis, and M. L. Overton, “A robust gradient
sampling algorithm for nonsmooth, nonconvex optimization,” SIAM
Journal on Optimization, vol. 15, no. 3, pp. 751–779, 2005.

[27] Y. Nesterov and V. Spokoiny, “Random gradient-free minimization
of convex functions,” Foundations of Computational Mathematics,
vol. 17, no. 2, pp. 527–566, 2017.

[28] J. Abernethy, C. Lee, and A. Tewari, “Perturbation techniques in online
learning and optimization,” Perturbations, Optimization, and Statistics,
p. 233, 2016.

[29] Q. Le Lidec, I. Laptev, C. Schmid, and J. Carpentier, “Differentiable
Rendering with Perturbed Optimizers,” in Neural Information
Processing Systems, Sydney, Australia, Dec. 2021. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-03378451

[30] J.-B. Cordonnier, A. Mahendran, A. Dosovitskiy, D. Weissenborn,
J. Uszkoreit, and T. Unterthiner, “Differentiable patch selection for
image recognition,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021, pp. 2351–2360.

[31] D. P. Bertsekas, “Stochastic optimization problems with nondifferen-
tiable cost functionals,” Journal of Optimization Theory and Applica-
tions, vol. 12, no. 2, pp. 218–231, 1973.

[32] R. Ge, F. Huang, C. Jin, and Y. Yuan, “Escaping from saddle
points—online stochastic gradient for tensor decomposition,” in Con-
ference on learning theory. PMLR, 2015, pp. 797–842.

[33] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial robustness
via randomized smoothing,” in International Conference on Machine
Learning. PMLR, 2019, pp. 1310–1320.

[34] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” IEEE transactions on neural
networks, vol. 5, no. 2, pp. 157–166, 1994.

[35] E. Greensmith, P. L. Bartlett, and J. Baxter, “Variance reduction
techniques for gradient estimates in reinforcement learning.” Journal
of Machine Learning Research, vol. 5, no. 9, 2004.

[36] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning.
PMLR, 2016, pp. 1928–1937.

[37] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution
strategies as a scalable alternative to reinforcement learning,” arXiv
preprint arXiv:1703.03864, 2017.

[38] H. Mania, A. Guy, and B. Recht, “Simple random search of static
linear policies is competitive for reinforcement learning,” in Proceed-
ings of the 32nd International Conference on Neural Information
Processing Systems, 2018, pp. 1805–1814.

[39] S. Vaswani, A. Mishkin, I. Laradji, M. Schmidt, G. Gidel, and
S. Lacoste-Julien, “Painless stochastic gradient: Interpolation, line-
search, and convergence rates,” in Advances in Neural Information
Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran Asso-
ciates, Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/
paper/2019/file/2557911c1bf75c2b643afb4ecbfc8ec2-Paper.pdf

[40] J. Nocedal and S. Wright, Numerical optimization. Springer Science
& Business Media, 2006.

[41] J. Peters and S. Schaal, “Reinforcement learning of motor skills with
policy gradients,” Neural networks, vol. 21, no. 4, pp. 682–697, 2008.

[42] H. Robbins and S. Monro, “A Stochastic Approximation Method,”
The Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400 – 407,
1951. [Online]. Available: https://doi.org/10.1214/aoms/1177729586

[43] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard, “The Pinocchio C++ library – A fast
and flexible implementation of rigid body dynamics algorithms and
their analytical derivatives,” in International Symposium on System
Integration (SII), 2019.

[44] F. Grimminger, A. Meduri, M. Khadiv, J. Viereck, M. Wüthrich,
M. Naveau, V. Berenz, S. Heim, F. Widmaier, T. Flayols, et al.,
“An open torque-controlled modular robot architecture for legged
locomotion research,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 3650–3657, 2020.

https://proceedings.neurips.cc/paper/2018/file/842424a1d0595b76ec4fa03c46e8d755-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/842424a1d0595b76ec4fa03c46e8d755-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6bb56208f672af0dd65451f869fedfd9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/6bb56208f672af0dd65451f869fedfd9-Paper.pdf
https://ieeexplore.ieee.org/document/8967788/
https://hal.archives-ouvertes.fr/hal-03351641
https://hal.archives-ouvertes.fr/hal-03378451
https://proceedings.neurips.cc/paper/2019/file/2557911c1bf75c2b643afb4ecbfc8ec2-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/2557911c1bf75c2b643afb4ecbfc8ec2-Paper.pdf
https://doi.org/10.1214/aoms/1177729586

	Introduction
	Background
	Bridging the gap between optimal control and reinforcement learning
	Locally optimal solutions of optimal control problems
	Randomized smoothing of the system dynamics
	Reinforcement learning through the prism of randomized smoothing

	Randomized Differential Dynamic Programming
	Dynamic programming with smoothed physics
	Adaptive smoothing

	Experiments
	Avoiding local optima of smooth dynamics
	Controlling systems with non-smooth dynamics: contacts and friction in robotics

	Conclusion
	References

