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 43 

 44 

Abstract 45 

A DNA G-quadruplex (G4) is a non-canonical four-stranded nucleic acid structure 46 

involved in many biological processes in mammals. The current knowledge on plant 47 

DNA G4s, however, is limited; whether and how DNA G4s impact gene expression in 48 

plants is still largely unknown. Here, we applied a protocol referred to as 49 

BG4-DNA-IP-seq followed by a comprehensive characterization of DNA G4s in rice 50 

(Oryza sativa L.); we next integrated dG4s (experimentally detectable G4s) with 51 

existing omics data and found that dG4s exhibited differential DNA methylation 52 

between TE (transposable element) and non-TE (non-transposable element) genes. dG4 53 

regions displayed genic-dependent enrichment of epigenomic signatures; finally, we 54 

showed that these sites displayed a positive association with expression of DNA 55 

G4-containing genes when located at promoters, and a negative association when 56 

located in the gene body, suggesting localization-dependent promotional/repressive 57 

roles of DNA G4s in regulating gene transcription. This study reveals interrelations 58 

between DNA G4s and epigenomic signatures, as well as implicates DNA G4s in 59 

modulating gene transcription in rice. Our study provides valuable resources for the 60 

functional characterization or bioengineering of some of key DNA G4s in rice. 61 

 62 
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Key words: G4, global mapping, regulation of gene transcription, epigenomic 63 

signatures, rice 64 

 65 

 66 

Introduction 67 

A DNA G-quadruplex (G4) folds from guanine (G)-rich nucleic acid sequences 68 

harboring a specific G4 motif. It contains the self-assembly of four Gs forming 69 

co-planar G-quartets. It was first characterized in 1962 by X-ray studies of GMP gels 70 

(Gellert et al., 1962). DNA G4 was discovered using DNA oligonucleotides with 71 

sequences from immunoglobulin switching regions (Sen and Gilbert, 1988) and 72 

telomeres (Sundquist and Klug, 1989) in vitro. It has been reported that DNA G4s can 73 

be formed in different functional genomic contexts in mammalian and plant genomes 74 

(Hansel-Hertsch et al., 2016), including the functional heterochromatic regions, such 75 

as telomeres (Liu et al., 2016; Wu et al., 2020), G-rich repetitive sequences, like 76 

rDNA (Wallgren et al., 2016), genic regions (Hansel-Hertsch et al., 2016), and 77 

retrotransposons with long terminal repeats (LTR) in plants (Lexa et al., 2014).  78 

DNA G4s have been found or expected to play important roles in various 79 

biological processes in eukaryotes (Yadav et al., 2017; Varshney et al., 2020), such as 80 

stress response (Garg et al., 2016; Fleming et al., 2019), DNA replication (Sparks et 81 

al., 2019), maintenance of telomeres (Bao et al., 2019) and regulation of gene 82 

transcription (Garg et al., 2016). Proteins for specific binding of DNA or RNA G4s 83 
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have been characterized in mammals (Mishra et al., 2016), bacteria (Escherichia Coli; 84 

E. Coli), yeast (Saccharomyces cerevisiae; S. cerevisiae) and plants (Arabidopsis 85 

thaliana; A. thaliana) (Kang and Henderson, 2002). For instance, Nucleoside 86 

Diphosphate Kinase1 (ZmNDPK1) encodes a DNA G4-binding protein in maize (Zea 87 

mays L.) that exhibits a similar structure to the human homolog NM23-H2 for binding 88 

of G4 (Kopylov et al., 2015), indicating existence of possibly conserved regulatory 89 

mechanisms between mammals and plants. Several high-throughput methodologies 90 

have been developed for global mapping of DNA G4s in mammals, thus 91 

revolutionizing the advance of DNA G4 studies (Varshney et al., 2020): this includes 92 

chromatin immunoprecipitation coupled with sequencing (ChIP-seq) methods using 93 

either the G4-specific antibodies BG4 (Hansel-Hertsch et al., 2020) and D1 (Liu et al., 94 

2016), or an artificial, truncated DHX36 protein termed G4 probe ChIP (G4P-ChIP) 95 

(Zheng et al., 2020). Molecular tools have also been implemented such as the 96 

template-assembled synthetic G-quartet (TASQ)-related G4-RNA-specific 97 

precipitation and sequencing (G4RP-seq) (Yang et al., 2018) and the pyridostatin 98 

(PDS)-mediated polymerase stop assays (G4-seq) (Marsico et al., 2019) for DNA G4s 99 

identification, and (rG4-seq) for identification of RNA G4s (Kwok et al., 2016).  100 

BG4 is a single chain antibody from a phage-display library screen for G4-binding 101 

proteins (Biffi et al., 2013). It is now widely used to visualize DNA G4 structures 102 

located in human cells as well as in rice (Oryza sativa L.) nuclei (Zhang et al., 2018; 103 

Fang et al., 2019). BG4 does not exhibit DNA G4 conformation-related binding, it has 104 
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been applied to map DNA G4 structures in humans (Hansel-Hertsch et al., 2016; 105 

Hansel-Hertsch et al., 2020). Another antibody known as D1 can be alternatively used 106 

for performing ChIP-seq experiments (Liu et al., 2016). Collectively, the very 107 

important variation of the DNA G4 landscapes highlighted by different but 108 

complementary techniques (> 8,000 DNA G4 sites by D1-ChIP, > 10,000 by 109 

BG4-ChIP, and > 120,000 by G4P-ChIP) brightly illustrate the difficulties of 110 

identifying DNA G4s in vivo (Spiegel et al., 2020). 111 

   Putative G4-forming sequences (PQFSs) of DNA have been computationally 112 

identified in several plant species (Lexa et al., 2014; Garg et al., 2016; Ge et al., 2019) , 113 

including DNA PQFSs in A. thaliana (Takahashi et al., 2012), maize (Andorf et al., 114 

2014), rice (Wang et al., 2015), wheat (Triticum aestivum L.) (Cagirici and Sen, 2020) 115 

and barley (Hordeum vulgare L.) (Cagirici et al., 2021). DNA G4s seem to be prevalent 116 

across the plant kingdom but variations in genomic distribution has been observed 117 

between monocots and A. thaliana (Cagirici and Sen, 2020). Plant DNA G4s have been 118 

proposed to be involved in various physiological processes such as regulation of gene 119 

expression and translation, plant growth and development and stress responses (Kwok 120 

et al., 2015; Garg et al., 2016; Yadav et al., 2017; Cho et al., 2018; Griffin and Bass, 121 

2018; Cagirici and Sen, 2020) but the folding of these PQFSs in vivo still needs to be 122 

experimentally validated. 123 

G4-seq was employed to identify DNA G4s in A. thaliana (Marsico et al., 2019), 124 

more to demonstrate the applicability of the method to various species than to provide 125 
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insights into plant DNA G4 biology. Similarly, rG4-seq was used to profile RNA G4s 126 

in A. thaliana (Yang et al., 2020), but their actual cellular roles were not fully 127 

addressed. In this study, we decided to perform BG4-based IP-seq investigations, 128 

combined with epigenetics analyses, in the aim of unravelling the functional relevance 129 

of DNA G4s in rice.  130 

 131 

Results 132 

Application of BG4-DNA-IP-seq for global mapping of G4s  133 

The binding affinity of BG4 to plant DNA G4s was first confirmed in rice using dot 134 

blotting assays (Supplemental Figure S1A). A non-neglectable cross-reactivity of 135 

BG4 to i-motifs, another four-stranded DNA structure that folds from C-rich strands 136 

harbouring a specific motif capable of forming i-motif at acidic pH (pH=5.5) (Gehring 137 

et al., 1993), was reported (Zeraati et al., 2018). We also assessed whether BG4 138 

interacts with i-motifs in G4-favorable conditions (K
+
+ PEG, pH=7.5). After 139 

conducting a dot blotting assay using reported G4- and i-motif-forming sequences 140 

(Zeraati et al., 2018), we found that, in our conditions, BG4 was specific to G4s 141 

(Supplemental Figure S1B). We then applied BG4-mediated IP on rice seedlings by 142 

following the published procedures (Hansel-Hertsch et al., 2018), which includes 143 

fragmentation of genomic DNA, incubation with BG4 antibody and isolation of 144 

BG4-bound G4s (Figure 1A). Again, we observed that dot-signal intensity of genomic 145 

DNA obtained in K
+
+PEG conditions was approximately 2.4- and 1.4-fold stronger 146 
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than those obtained in either K
+
- or PEG-rich conditions, respectively (Supplemental 147 

Figure S1A). As controls, we used a synthetic rice dG4 (experimentally detectable 148 

G4s), for which the obtained signal was significantly positive, and both H2O and a 149 

synthetic AT-rich oligonucleotide, which were both almost undetectable 150 

(Supplemental Figure S1A). Moreover, the presence of G4s under the K
+
+PEG 151 

condition was also confirmed using a dot blotting assay with BioTASQ, a small 152 

molecule that specifically binds with DNA/RNA G4s in humans (Renard et al., 2019) 153 

(Supplemental Figure S1C). We then sequenced two replicated BG4-DNA-IP-seq 154 

libraries under the K
+
+PEG condition (Supplemental Table S1). Given a high 155 

correlation between the two replicates (r = 0.89) (Figure 1B), we merged repI and repII 156 

to re-identify total G4 peaks, and obtained 47,417, 29,430 and 27,042 dG4s relative to 157 

input, IgG and anti-Flag DNA IP-seq as controls (Figure 1C), respectively, and 23,685 158 

common dG4 peaks (Figure 1D, E). We thus decided to use these common dG4 peaks 159 

for downstream assays.  160 

 161 

Validation of dG4s 162 

To verify the accuracy of the 23,685 common dG4s, we analyzed the sequence 163 

features of dG4 peaks. We identified various PQFS patterns associated with dG4s 164 

(Figure 2A), which were also detected from computationally predicted G4s (PQFS) 165 

(Marsico et al., 2019) using fastaRegexFinder.py script (Fujimoto et al., 2020). We 166 

observed a similar trend regarding the percentage of each pattern between dG4s and 167 
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predicted G4s: for instance, among the five patterns G2+L1-12, G3+L1-3, G3+L4-5, G3+L6-7 168 

and G3+L8-12, the highest percentage was obtained for G2+L1-12 and the lowest for 169 

G3+L6-7. Next, after randomly shuffling 23,685 dG4s across the genome, we generated 170 

random regions with the same size as the common dG4 peaks and calculated the fold 171 

enrichment of PQFSs in dG4 peaks as compared to random regions. We found that all 172 

PQFSs were significantly enriched in the BG4 assay, especially for G3+L6-12 (Figure 173 

2B), indicating that BG4 does bind to genomic G4-forming sequences.  174 

We then randomly selected 17 G4 positive loci and 2 G4 negative loci for 175 

conducting BG4-DNA-IP-qPCR (Supplemental Table S2.xlsx), and found that all 176 

positive loci were enriched relative to the negative locus (Figure 2C). To further 177 

demonstrate the relevance of our approach, we reexamined 9 G4 positive loci and 1 G4 178 

negative locus that were previously experimentally validated (Garg et al., 2016), and 179 

found that 8 of them (7 positive, 1 negative) matched our data (Figure 2D). 180 

Collectively, all above results confirm that the quality of our dG4 data can be justified 181 

for the downstream assay. 182 

 183 

Genomic distribution and sequence features of dG4s and udG4s  184 

Using a PQFS-based formula (see Materials and Methods), we identified ca. 185 

1,800,000 total PQFSs, hereafter termed predicted G4s (Supplemental Table S3.xlsx) 186 

in the rice genome. A comparison with our dG4 results (above) indicates that the 187 

experimentally determined G4s cover ca. 5% of the predicted G4s (Figure 3A). These 188 
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results are reminiscent of the studies performed with the human genome, in which ca. 189 

1% of all sequences detected by G4-seq (Chambers et al., 2015) was detected by G4 190 

ChIP-seq. (Hansel-Hertsch et al., 2016). We decided to include over 95% of the 191 

sequences that are predicted but not experimentally detected in our subsequent 192 

analyses, referring to them as udG4s (experimentally undetectable G4s). In addition, 193 

417 dG4s contained non-canonical PQFS (Supplemental Table S4.xlsx), such as the 194 

(G3+L1-12)3+G3 pattern with at least one regular GGG run interrupted by a non-G 195 

bulge (e.g. GAG or GGAG representing one bulged stem of 2 or 3 stacked Gs).  196 

We then compared genomic distributions and the PQFS size between dG4s and 197 

udG4s: dG4s-(PQFS) were more prevalent (1.5-fold) in promoters and in 5’ UTRs 198 

(4.2-fold), but less present in exons (0.5-fold) compared to udG4s-(PQFS) (Figure 3B). 199 

On average, dG4s-(PQFS) were 51% longer than udG4s-(PQFS) (Figure 3C) and 200 

intervals between two neighboring PQFSs were 43% shorter in dG4s-(PQFS) 201 

compared to udG4s-(PQFS) (Figure 3D). These analyses suggest that a large size of 202 

PQFSs with a shorter distance between two neighboring PQFSs is likely prone to G4 203 

formation or facilitates G4 stabilization or binding to BG4. 204 

 After calculating the GC content, GC and AT skews around ± 1 kb of the midpoint 205 

of d/udG4s regions, we also observed that dG4s had 12% higher GC content at ± 100 bp 206 

around the center of the PQFS than udG4s (Figure 3E, top panel), and they exhibited 207 

more conspicuous GC- and AT-skews than udG4s (Figure 3E, middle and bottom 208 

panels). We then conducted motif identification by extracting the DNA sequence 209 
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around the G4 peaks: we notably found repetitive GAG and GGCGG motifs in the 210 

putative basic pentacysteine (BPC5) and ethylene-responsive factor 105 (ERF105) 211 

transcription factor binding sites documented in A. thaliana (Simonini et al., 2012) 212 

(Figure 3F), suggesting that G4s may play regulatory roles in various plant processes. 213 

Collectively, all above analyses indicate that dG4s have distinct genomic 214 

distribution and sequence features relative to udG4s.  215 

 216 

Interrelationship between G4s and DNA methylation  217 

It was previously reported that G4s can influence the epigenetic status of a genome, 218 

notably via the modulation of the DNA methylome (Mao et al., 2018). G4s can trigger 219 

hypomethylation through the sequestration of DNA methyltransferase. We thus 220 

investigated the G4 methylation levels by counting methylated cytosines at ± 1 kb 221 

around the center of dG4s (n = 23,685) and udG4s (n = 23,685), with similar C% using 222 

published bisulfite sequencing (BS-seq) data (SRP043447) (Hu et al., 2014) 223 

(Supplemental Figure S2A). We found that dG4s exhibited 58.6% less CG and 48.9% 224 

less CHG methylation levels compared to udG4s, but 17.5% higher CHH methylation 225 

levels at ± 100 bp around the center (Figure 4A). When dividing dG4s into high (n = 226 

5,000) and low (n = 5,000) peak intensity with similar C% (Supplemental Figure 227 

S2B), the difference in methylation levels was subtle but significant: G4s with high 228 

peak intensity tended to have less CG and CHG (7.3 and 2.4%, respectively) and more 229 
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CHH methylation (12.4%) than G4s with low peak intensity (Supplemental Figure 230 

S2C), which is consistent with hypomethylated G4s in humans (Mao et al., 2018).  231 

We next examined the relationship between G4s and DNA N6-methyladenine 232 

(D-6mA) sites, as adenine methylation is associated with gene expression, mostly via 233 

its ability to destabilize duplex stems. To this end, we integrated dG4 data with 234 

published DNA-6mA IP data (GSE103145) (Zhou et al., 2018) and detected 4,399 235 

(18.6%) dG4s that colocalize with D-6mA sites. We observed that dG4s with D-6mA 236 

displayed 9.0% higher BG4-DNA-IP intensity (expressed in Reads Per Kilobase per 237 

Million mapped reads, RPKM) than those without D-6mA (Figure 4B), and a similar 238 

tendency was observed for udG4s (Figure 4B, right). We plotted RPKM of D-6mA 239 

around ± 1 kb of the center of both dG4s and udG4s peaks with similar A% 240 

(Supplemental Figure S2D, E, F). We found that dG4s had lower D-6mA levels 241 

around the center of the peak, compared to the flanking regions, but had an overall 27% 242 

higher D-6mA level than udG4s (Figure 4C). When comparing D-6mA levels between 243 

dG4s with high (n = 5,000) and low (n = 5,000) peak intensity with similar A% 244 

(Supplemental Figure S2G), we found that dG4s with high intensity had 245 

approximately 36.6% higher D-6mA levels (Supplemental Figure S2H). All above 246 

analyses demonstrate that dG4s have less CG and CHG methylation but they tend to 247 

have more CHH and D-6mA methylation. 248 

To assess whether DNA methylation can affect G4 formation on a genome-wide 249 

scale, we next extracted genomic DNA from DMSO (Control, CK) and 250 
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zebularine-treated rice seedlings (a DNA demethylating agent), and from a mutant with 251 

CRISPR-Cas9-mediated knockout of the 6mA methyltransferase gene, 252 

LOC_Os01g16180. We then conducted BG4-, anti-5mC and anti-6mA-related DNA 253 

dot blotting assays (n = 2): we found a reduction of the global DNA methylation levels 254 

(ca. 40%) when rice seedling are treated with zebularine, combined with a global 255 

increase of G4 intensity (ca. 25%) (Figure 4D, right), thus confirming the negative 256 

association between DNA-5mC and G4 folding. Conversely, we found a global 257 

decrease of both DNA-6mA levels (ca. 24%) and G4 intensity (ca. 31%) in the 258 

LOC_Os01g16180 mutant, (Figure 4D, left), indicating a positive association between 259 

DNA-6mA levels and G4 intensities. We further conducted BG4-DNA-IP-seq using 260 

zebularine treated DNA, referred to as Zebu hypoDNA. We detected more Zebu 261 

hypoDNA biased dG4s (n = 1,906) than CK biased dG4s (n = 6,16) (Figure 4E, left). 262 

In particular, we found that Zebu hypoDNA biased dG4s had a lower p-value relative to 263 

CK biased dG4s (Figure 4E, right), indicating that the peak density of Zebu hypoDNA 264 

biased dG4s changed more as compared to CK biased dG4s. Thus, the IP-seq result is 265 

overall consistent with the dot blotting result in Figure 4D. The detailed relationships 266 

between DNA methylation and G4 formation need to be further investigated. Hence, 267 

these results show distinct impacts of DNA-5mC and DNA-6mA on G4 formation in 268 

vitro. 269 

 270 

Differential methylation in transposable and non-transposable element genes  271 
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To investigate whether G4s affect the methylation levels of G4-overlapping genes, 272 

which exhibit at least 1 bp overlapping G4 regions from 1 kb upstream of the 273 

transcription start sites (TSSs) to the entire gene bodies, we re-analyzed the published 274 

BS-seq data mentioned above, and counted DNA-5mC methylation levels across ± 1 kb 275 

of the TSSs and the transcription termination sites (TTSs) of both transposable element 276 

(TE) genes (TEGs, n = 1,996) and non-transposable element (non-TE) genes 277 

(non-TEGs, n = 13,352), with both dG4s or udG4s containing similar C% 278 

(Supplemental Figure S3A). A distinct profile of DNA methylation was observed 279 

between TEGs and non-TEGs (Figure 5A): we found that non-TEGs with dG4s 280 

exhibited 29.8% higher CG methylation in gene bodies, but lower downstream of the 281 

TTS (Figure 5A, top left), a subtle difference in CHG methylation (Figure 5A, middle 282 

left) and 28.2% higher CHH methylation upstream of the TSSs (Figure 5A, bottom 283 

left). In contrast, we found that TEGs with dG4s (n = 1,996) exhibited less CG and 284 

CHG methylation levels (16.1 and 21.4%, respectively) across the entire regions, but 285 

no difference in CHH methylation across the downstream of TSSs compared with 286 

TEGs with udG4s (n = 1,996) (Figure 5A, right).  287 

We performed a similar analysis for D-6mA enrichment between TEGs and 288 

non-TEGs with both dG4s and udG4s containing similar A% (Supplemental Figure 289 

S3B). We found that non-TEGs or TEGs with dG4s had 14.6% and 83.1% higher 290 

enrichment of D-6mA, respectively, both upstream and downstream of the TSSs 291 

compared to the corresponding ones with udG4s (Figure 5B). We then wondered 292 
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whether the G4 formation is affected by DNA methylation. This was investigated by 293 

plotting normalized BG4-DNA-IP read density ± 1 kb around TEGs, ± 0.5 kb of the 294 

TTSs of non-TEGs, TEGs or non-TEGs with high/low DNA 5mC levels with similar 295 

CG% (Supplemental Figure S4A, S4B), and with/without D-6mA peaks containing 296 

similar AT% (Supplemental Figure S4C, S4D). We found that TEGs with low 5mC 297 

levels (Figure 5C) or with D-6mA peaks (Figure 5D) exhibited higher BG4-DNA-IP 298 

read density (140 and 118.5%, respectively) than the corresponding TEGs with high 299 

5mC levels or without D-6mA peaks. Similarly, we found that non-TEGs with low 300 

5mC levels (Figure 5C) or with D-6mA peaks (Figure 5D) exhibited higher 301 

BG4-DNA-IP read density (163.8 and 31.5%, respectively) than the corresponding 302 

non-TEGs with high 5mC levels or without D-6mA peaks. Thus, all above analyses 303 

indicate the intimate relationship between DNA methylation and G4 formation within 304 

TEGs/non-TEGs. 305 

 306 

Effects of G4s on expression levels of G4-overlapping genes 307 

We next decided to investigate the possible effects of G4s on the transcription of 308 

G4-containing genes. To this end, we compared the expression levels of TEGs and 309 

non-TEGs with both dG4s and udG4s using the published RNA-seq data (GSE33265) 310 

(Wu et al., 2011). We found that the mean expression levels of both TEGs and 311 

non-TEGs with dG4s were 3.6- and 5.5-fold higher than those with udG4s, respectively 312 

(Supplemental Figure S5A) and directly corresponded to dG4 intensity 313 
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(Supplemental Figure S5B). We divided TEGs and non-TEGs into 6 subgroups 314 

according to fragments per kilobase per million mapped fragments (FPKM) values, and 315 

found that the percentage of dG4-overlapping genes (TEGs and non-TEGs) was 316 

positively corresponded with the gene expression levels (Supplemental Figure S5C). 317 

As shown in Supplemental Figure S5D, genes with dG4s in the 5’UTR and downstream 318 

of the TTS exhibited the highest and lowest mean expression levels, respectively. 319 

Furthermore, we created a JBrowser (https://bioinfor.yzu.edu.cn/jbrowse2/bg4dnaip/) 320 

to visualize rice G4s for researchers who are interested in checking if there is a G4 in 321 

their target genes or validating the functions of promoter/gene body G4s in regulating 322 

expression of their target genes using CRISPR-mediated disruption of G4 structures. 323 

Therefore, these results suggest that dG4s have promotional roles in regulating the 324 

transcription of dG4-overlapping genes, and presumed contributions of dG4s in 325 

regulating gene transcription vary according to the location in or near different parts of 326 

gene structures.  327 

Next, we further divided non-TEGs into 4 subgroups according to FPKM values 328 

and plotted their BG4-DNA-IP read density (RPKM) values, which represent G4 329 

intensity around ± 1 kb of the TSSs (Figure 6A). Strikingly, the read intensity of 330 

BG4-DNA-IP  at TSSs exhibited a positive association with the expression levels of 331 

dG4-containing genes, while that of BG4-DNA-IP in gene bodies was negatively 332 

corresponded with the expression levels of dG4-containing genes (Figure 6A). The 333 

heat map shown in Figure 6B further confirmed that BG4-DNA-IP reads were enriched 334 
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at the TSSs of highly expressed genes, while distributed over the whole gene length of 335 

lowly or non-expressed genes. A similar trend was observed between the intensity of 336 

udG4s in promoters/gene bodies and the expression levels of corresponding genes 337 

(Supplemental Figure S6A, S6B).  338 

To assess whether DNA sequences with higher G content have higher probability to 339 

fold into G4s, we reassessed the relationship of BG4-DNA-IP read density between 340 

dG4s and udG4s and the expression levels of the corresponding genes with similar G%. 341 

As seen in Supplemental Figure S6C and S6D, this is indeed the case at promoters 342 

(Supplemental Figure S6C), and no association was found among the different 343 

subtypes of genes with udG4s (Supplemental Figure S6D). These results are in line 344 

with what we observed for dG4s and udG4s at promoters and dG4s in gene bodies 345 

(Figure 6A; Supplemental Figure S6A). Also, it has been reported that antisense 346 

PQFSs hotspots are prevalent at the TSS, the 5’ of intron 1 and around the mRNA AUG 347 

in maize (Andorf et al., 2014). To assess positional distributions of antisense and sense 348 

PQFSs around specific gene features, we plotted the total number of PQFSs that 349 

overlap each base for the observed genes and simulated sequences across ± 1 kb of the 350 

TSS, or ± 100 bp of the boundary of AUG or the 1
st
 Exon-Intron. We found that 351 

antisense PQFSs were highly enriched at TSSs (Fig. 6C), the boundary of the mRNA 352 

AUG (Fig. 6D) and the 1
st
 Exon-Intron (Fig. 6E) when compared with sense PQFSs 353 

and simulated sequences. Thus, these analyses imply involvement of G4s in 354 

transcription, splicing and translation in rice and maize. 355 
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Altogether, the above analyses indicate that dG4s have promotional and repressive 356 

roles in regulating expression of G4-overlapping genes; and each type of genic G4 may 357 

be involved in some distinct biological process. 358 

 359 

Potential interrelationship between epigenomic signatures and G4s  360 

It was then of interest to examine whether genomic regions at sequences detected 361 

by the BG4 assay are associated with any specific in vivo marks. To this end, we 362 

integrated dG4 data with existing omics data, including R-loop (DRIP-seq, 363 

GSE111944)(Fang et al., 2019), DHSs (DNase I hypersensitive sites, DNase-seq, 364 

GSE26734)(Zhang et al., 2012), ATAC-seq (GSE144564) (Liang et al., 2021) and 12 365 

histone marks (Supplemental Table S5) (Zhang et al., 2012; Lu et al., 2015; Fang et 366 

al., 2016; Tan et al., 2016). We performed a fold enrichment assay by comparing each 367 

mark distributed in promoter, gene body, terminal and intergenic regions with dG4s 368 

relative to udG4s (Figure 7A). We observed distinct epigenomic mark enrichment 369 

among subgenomic dG4s: for example, R-loop and H3K4me3 were highly enriched in 370 

all subgenomic dG4s; dG4s at promoters were hypomethylated while those at terminal 371 

and intergenic regions had highly methylated CG and CHH (Figure 7A). These results 372 

indicate that dG4s corresponding to various subgenomic regions in vivo exhibit 373 

potential divergent enrichment of epigenomic marks.  374 

To further confirm genomic regions capable of forming G4s detected by the BG4 375 

assay associated with in vivo related marks, we conducted histone ChIP or DNase I 376 
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treatment followed by BG4-DNA-IP-qPCR assays (for G4s) and BG4-DNA-IP 377 

followed by S9.6-based DRIP-qPCR assay (for R-loops) (Supplemental Figure S7). 378 

Positive loci with G4 overlapping the mark examined exhibited significant enrichment 379 

of marks examined, including H3K36me3 (Figure 7B), H3K4me3 (Figure 7C), 380 

H3K27me3 (Figure 7D), DH (Figure 7E) and R-loops (Figure 7F). 381 

Collectively, these analyses imply that sequences capable of forming G4s may 382 

interact with distinct epigenomic signatures in vivo. 383 

 384 

Discussion 385 

BG4-DNA-IP-seq for in vitro G4 identification  386 

Currently, high throughput methodologies for DNA G4 identification include 387 

polymerase stop assays (G4-seq) (Marsico et al., 2019), depending on stability and 388 

folding potentials of G4s; antibody or protein based ChIP-seq, D1-ChIP (Liu et al., 389 

2016), BG4-ChIP (Hansel-Hertsch et al., 2020), and G4P-ChIP (Zheng et al., 2020). In 390 

addition, similar to G4RP-seq for RNA G4 identification (Yang et al., 2018), BioTASQ 391 

can be potentially used for identification of DNA G4s in the future. Those approaches 392 

depend on the specificity and binding efficiency of antibody or protein or the small 393 

molecule to G4s. Combinations of different approaches help unveil comprehensive 394 

landscapes of DNA G4s in the genome. 395 

Our study showed that BG4 can be applied to identify rice G4s in vitro. All G4s 396 

detected in vitro (dG4s) are useful to provide references for in vivo investigations. 397 
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However, we were surprised that more than 95% of predicted G4s (PQFSs, also termed 398 

as udG4s) were undetectable by the BG4 assay(Figure 3A). The possible explanations 399 

for such a discrepancy could originate in the fact that dG4 overlapping PQFSs have 400 

shorter distance between two neighboring PQFSs within larger genomic regions as 401 

compared to dG4- overlapping PQFSs (Figure 3C and 3D); this suggests that K+PEG 402 

may not favour G4 formation in udG4. It has been reported that PQFSs with G3 L1-7 403 

pattern form among the most stable G4 structures in vitro (Bugaut and 404 

Balasubramanian, 2008; Mullen et al., 2010); this popular motif has been widely used 405 

for in silico identification of potential canonical G4s across animal and plant genomes 406 

(Huppert and Balasubramanian, 2005; Andorf et al., 2014; Wang et al., 2015; Cagirici 407 

and Sen, 2020). We found that G3L1-12 subtypes were more enriched than G2L1-12 408 

motifs (Figure 2B). Furthermore, those udG4s either only occur in silico or some of 409 

those PQFSs may preferentially form G4s in different cell types or tissues instead of 410 

seedlings as we examined. Tissue type G4 formation deserves to be further 411 

investigated. 412 

 Some of the PQFSs may form non-canonical G4s to which BG4 binds with a very 413 

low efficiency. Our study showed that 417 BG4-bound G4s had several types of 414 

non-canonical PQFS patterns (Supplemental Table S4.xlsx), such as the 415 

(G3+L1-12)3+G3 pattern with at least one regular GGG run interrupted by a non-G 416 

bulge (106/417). A subset of non-canonical G4s have been detected in vivo or in vitro in 417 

both animals and plants, including bulged G4s (Mukundan and Phan, 2013; Chambers 418 
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et al., 2015; Kopylov et al., 2019), (3+1) hybrid G4s (Sengar et al., 2019), and G4s with 419 

a GGXO (G-G-8-oxoguanine-xanthine) tetrad (Cheong et al., 2015). Potential 420 

non-canonical G4 conformation thus needs to be further investigated, which will help 421 

to deepen the understanding of G4 biology. 422 

It is also possible that some udG4s can form stable G4s but fail to be efficiently 423 

bound by the BG4 assay in vitro, which is the limitation of the use of BG4. In vivo study 424 

showed that approximately 15% of exon G4s can be detected by G4 antibody 425 

D1-related ChIP-seq, but undetected by BG4 ChIP-seq (Hansel-Hertsch et al., 2016; 426 

Liu et al., 2016), reflecting possible intrinsic variations in specificity of G4 antibodies 427 

for G4 detection. In addition, some PQFSs may preferentially form G4s in different 428 

conditions, such as PDS, Na
+
 or other cations instead of K

+
+PEG. Na

+
 or K

+
-specific 429 

G4 formation of synthesized oligoes has been detected in rice using circular dichroism 430 

(CD) spectroscopy (Garg et al., 2016).  431 

 432 

Regulatory roles of G4s in rice 433 

With this caveat in mind, we demonstrated that rice G4s do indeed play key 434 

regulatory roles in different biological processes (Yadav et al., 2017; Kim, 2019) such 435 

as transcription, splicing and translation in rice and maize (Andorf et al., 2014) (Figure 436 

6C to 6E). Compared to A. thaliana (Supplemental Figure S8A) (Marsico et al., 437 

2019), rice G4s display distinct genomic distributions, being more present at promoters 438 

(36.1 versus 21.7%) but less present in exons (16.5 versus 51.2%). These variations 439 
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indicate possible species-dependent G4 distributions and functions, which might be 440 

caused by differences in genome size or complexity.  441 

 442 

Dual roles of G4s in regulating gene transcription 443 

To go a step further, we showed that promoter G4s positively correspond with 444 

transcription levels of G4-containing genes in both rice and A. thaliana (Supplemental 445 

Figure S8B). This indicates a functional conservation of plant G4s at the promoter, 446 

which might be due to favorable spatial environments, which facilitate access or 447 

binding of trans-factors to promoters for transcriptional initiation, or to the fact that G4s 448 

can serve as docking sites for transcriptional factors (TFs) or G4-binding proteins, 449 

thereby indirectly recruiting trans-factors or transcriptional factors essential for gene 450 

transcription. Recent results lend credence to these hypotheses demonstrating that G4s 451 

can serve as common binding sites for binding of various TFs in human, especially for 452 

G4s found in the promoters of highly-expressed genes, in which TFs exhibited binding 453 

affinity to G4s comparable to typical double-stranded DNA loci (Spiegel et al., 2021).  454 

Our study showed that the GGC-box motif within G4s can be recognized by 455 

ERF105 (Hao et al., 1998). ERF105 has been found to be involved in cold and high 456 

light response in A. thaliana (Vogel et al., 2014; Bolt et al., 2017) and resistance to 457 

Exserohilum turcicum in maize (Zang et al., 2020). BPC TFs have been reported to 458 

function in tissue-specific gene expression through binding promoters of target genes in 459 

A. thaliana (Simonini et al., 2012). Therefore, G4s may function in biotic and abiotic 460 

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/advance-article/doi/10.1093/plphys/kiab566/6454112 by U

niversite D
e Bourgogne (D

ijon) user on 14 D
ecem

ber 2021



 

23 

 

responses or regulation of gene transcription through recruitment of some key TFs in 461 

plants. It has been reported that G4s can act as regulatory loci in multiple species (Du et 462 

al., 2009; Brooks and Hurley, 2010; Hansel-Hertsch et al., 2016), such as zinc-finger 463 

transcription factor with potential G4 binding in human (Kumar et al., 2011) and 464 

speculated to exist in maize (Andorf et al., 2014; Kopylov et al., 2015), rice and A. 465 

thaliana (Yadav et al., 2017; Griffin and Bass, 2018). G4s can thus function as cis 466 

elements to regulate transcription of genes that are involved in embryonic development 467 

(David et al., 2016).  468 

In contrast, G4s in gene bodies negatively correspond with expression levels of 469 

G4-containing genes. Gene body G4s may create a steric hindrance that affects 470 

transcriptional elongation through blocking the movement of transcriptional 471 

machinery, or preventing access of elongation trans-factors. G4-related RNA 472 

polymerase II promoter-proximal transcriptional pausing has been reported in human 473 

genes (Eddy et al., 2011). Preferential enrichment of G4s in 1
st
 exon-intron junctions 474 

(Figure 6E) may facilitate the occurrence of alternative splicing through blocking 475 

RNA polymerase II processivity. In vitro study showed that G4s formed in the 476 

non-transcribed DNA strand block the movement of mammalian RNA polymerase II 477 

(Sun and Hurley, 2010), suggesting that G4 structures act as physical obstacles to block 478 

the movement of polymerases during DNA transactions (Kim, 2019). G4s thus display 479 

apparently different roles, being alternatively activators (e.g., recruiting TFs) or 480 

repressors (e.g., blocking polymerase processivity). To date, the wealth of data 481 
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available on the prevalence of the G4 landscapes across multiple species provides 482 

precious insights into G4 biology, but does not allow for precisely understanding and/or 483 

predicting their cellular roles. The comparison between rice and A. thaliana described 484 

here is an example of such functional divergence: while it could be tempting to attribute 485 

this difference to a higher proportion of exonic G4s in A. thaliana (Supplemental 486 

Figure S8A, B, 51.2% versus 16.5% in rice), establishing such a functional link in a 487 

reliable manner will require further investigations. In addition, it is also possible that 488 

post-transcriptional mechanisms mediated by (pre)mRNA G4s could be involved in 489 

regulation of translation of related mRNAs. 5’UTR and CDS (coding sequence)-related 490 

G4s can function as a translational inhibitor of some mRNAs (Nie et al., 2015). RNA 491 

G4s generally suppress translation efficiency of mRNA from TEs (transposable 492 

elements) in A. thaliana (Yang et al., 2020). 493 

 494 

G4s in combination with epigenomic signatures may regulate expression of 495 

G4-overlapping genes 496 

We next focused on the relationship between G4s and epigenomic marks, with the 497 

hope of gaining precious insights into the roles that G4s may play in gene regulation in 498 

vivo. We found here that DNA-5mC methylation levels negatively correspond with G4 499 

formation, while the DNA-6mA levels positively correspond with G4 formation in rice 500 

(Figure 4). These results are in line with the most recent epigenetic advances as G4s 501 

hamper proper C-methylation (by enzyme sequestration) (Mao et al., 2018) and are 502 
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favored at transcriptionally active sites (associated to A-methylation) (Hansel-Hertsch 503 

et al., 2016). Additionally, C9ORF72 (C9) RNA G4 has been found to weakly bind 504 

Polycomb Repressive Complex 2 (PRC2), thereby modulating enrichment of 505 

H3K27me3 (Wang et al., 2019). We speculate that enrichment of H3K27me3 at or 506 

around dG4s at the gene body (Figure 7A) in our study is possibly mediated by 507 

recruitment of PRC2 through binding DNA G4. Moreover, G4s have been proposed to 508 

provide the docking site for recruitment of histone-modifiers (Reina and Cavalieri, 509 

2020). Changes of H3K4me3 and H3K9/14ac at the promoter of B lymphocyte 510 

alloantigen (BU-1) have been reported to be associated with the presence of G4 in 511 

regulator of expression of virion protein 1(rev1)-deficient DT 40 cells (Schiavone et al., 512 

2014). While we recognize that the detailed relationship between DNA methylation 513 

and G4s needs to be further studied in plants, we believe that our study contributes to 514 

decipher some of the G4 roles, notably through the demonstration that G4-forming 515 

sequences in rice interfere with specific histone marks in vivo.  516 

 517 

Materials and methods 518 

Plant materials  519 

Seeds of rice (Oryza. sativa L.) cultivar Nipponbare (Japonica) were immerged in 520 

tap water at room temperature (RT) for three days. Uniformly germinated seeds were 521 

sowed into the nutrient soil and grown in a greenhouse with a controlled temperature of 522 

28-30°C and a 14h/10h light-dark cycle. Two-week-old rice seedlings (the entire aerial 523 
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parts) were collected at 10:00 AM. The seedlings with 1-1.5 cm cut in length were 524 

cross-linked using 1%(v/v) formaldehyde in HEPES buffer pH=8.0 (20mM HEPES, 525 

1mM EDTA, 100mM NaCl and 1mM PMSF) at 23-25°C for 10min under a vacuum 526 

condition. The excessive formaldehyde was quenched by adding 2M glycine to achieve 527 

a final concentration of 0.125 M under a vacuum condition for an additional 5min. The 528 

cross-linked seedlings were ground to a fine powder in liquid nitrogen. The ground 529 

powder can be immediately used for the preparation of genomic DNA, nuclei, and 530 

chromatin or stored at -80 °C for later use.  531 

For zebularine treatment, a chemical for reduction of global DNA methylation 532 

through specifically inhibiting DNA methyltransferase in eukaryotic genomes (Zhou et 533 

al., 2002), 100 of 5-d-old rice seedlings were grown in 80 µM zebularine 534 

(Sigma-Aldrich Z4775) dissolved in DMSO or DMSO only (as control) for three days. 535 

The zebularine-treated or untreated seedlings were collected for extracting genomic 536 

DNA for dot blotting assays. 537 

 538 

Generation of the rice transgenic line 539 

The putative rice 6mA modifier gene, LOC_Os01g16180 that encodes a 540 

homologous MTA-70 domain protein responsible for 6mA modification in A. thaliana 541 

(Luo et al., 2014), was selected for preparing a CRISPR-cas9 construct (Supplemental 542 

Table S2). The construct was introduced into calli induced from mature rice cultivar 543 
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“Nipponbare” seeds through AGL1 Agrobacterium tumefaciens infection. 544 

Homozygous transgenic plants were grown in the field for collecting more seeds.  545 

 546 

Dot blotting assays  547 

The expression vector pSANG10-3F BG4 (plasmid no. 55756, Addgene) was used 548 

for preparation of the recombinant BG4-FLAG-fused protein by CHEMGEN 549 

BIOTECH (Shanghai). For the dot blotting assay, genomic DNA in G4-stabilizing 550 

buffer (150mM KCl, 40% (w/v) PEG 200 and 10mM Tris-HCl, pH=7.5), including 551 

DNA from WT or control, zebularine-treated seedlings and the 6mA-related transgenic 552 

line, was denatured at 95°C for 5min. The Amersham Hybond-N+-nylon membrane 553 

containing denatured DNA was pre-blocked in 5% (w/v) milk for 45min at RT, and 554 

then incubated with the recombinant BG4 protein overnight at 4 °C followed by 555 

incubation with anti-FLAG antibody for an additional 1.5h. The remaining steps were 556 

the same as described before (Fang et al., 2019). Similar procedures were used for 557 

detecting total levels of DNA-5mC and DNA-6mA by using anti-5mC (Aviva Systems 558 

Biology, AMM99021) and anti-m6A (abcam, ab151230), respectively. Each blot was 559 

repeated at least two times. We conducted a similar BG4 related dot blotting assay for 560 

i-Motif using reported oligos (Supplemental Table S2.xlsx).  561 

 562 

Analysis of GC/AT content and GC/AT skew 563 
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GC or AT content and GC/AT skew were calculated as follows: GC skew = (G - C)/(G 564 

+ C), AT skew = (A - T)/(A + T); GC content = (C + G)/(A+T+C+G), AT content = (A 565 

+ T)/(A+T+C+G), the ± 1 kb regions around dG4 peak centers were divided into 50 bp 566 

windows. Random regions were selected from the remaining genomic regions lacking 567 

G4s (command shuffleBed in bedtools, option -noOverlapping). Similar analyses were 568 

conducted for udG4s.  569 

To acquire similar sequence content loci between two groups, a portion of random 570 

loci were first selected for one group, then loci with less than 5% sequence content 571 

variation were selected for the other group. 572 

 573 

Public data analyses 574 

mRNA-seq (mRNA sequencing, GSE33265), DNase-seq (DNase I sequencing, 575 

GSE26734), DRIP-seq (DNA-RNA immunoprecipitation followed by high-throughput 576 

DNA sequencing, GSE111944), BS-seq (bisulfite sequencing, SRP043447), histone 577 

ChIP-seq and DNA-6mA IP-seq (6mA immunoprecipitation sequencing, GSE103145) 578 

are published data (Supplemental Table S5). Unique reads with mapQ > 20 from each 579 

data were used for downstream assays. 580 

DNase-seq: DNase-seq (Boyle et al., 2008) was used to identify DNase I 581 

hypersensitive sites (DHSs) with a 200 bp bandwidth for integrating with G4 data. The 582 

FDR was the ratio of DHSs identified from 10 random data sets divided by DHSs from 583 

DNase-seq. A cutoff in F-seq for controlling the FDR was <0.05. 584 
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DRIP-seq: DRIP-seq (DNA-RNA immunoprecipitation followed by 585 

high-throughput DNA sequencing) allows for high-resolution, genome-wide R-loops 586 

mapping (Sanz and Chedin, 2019) DRIP-seq data were here analyzed following our 587 

published pipelines (Fang et al., 2019). Briefly, W (Watson)- and C (Crick)-R-loop 588 

reads were sorted by flags of R2 reads equal to 163 and 147, respectively, for R-loop 589 

peak calling. MACS2 (Zhang et al., 2008) was used to call R-loop peaks. The command 590 

and parameters were as follows: macs2 callpeak --keep-dup 1 -g 3.8e+8 -B --extsize 591 

200 -q 0.01 --nomodel --SPMR.  592 

BS-seq: Bisulfite-sequencing (BS-seq) (Hu et al., 2014) was used here to further 593 

examine the relationship between DNA-5mC and G4s. To this end, bismark was used 594 

to map clean data to the rice reference genome (MSU7.0) (Krueger and Andrews, 595 

2011). The bismark methylation_extractor program was used to calculate the 596 

methylated cytosines of total uniquely mappable reads. Each position with the total 597 

number of all (C+T) no less than 5 was included for estimating the DNA methylation 598 

levels. Each region was split into 10 bp windows to calculate the DNA methylation 599 

levels in different regions. The average DNA methylation ratios of all cytosine sites in 600 

each window were used to represent the DNA methylation levels.  601 

DNA-6mA IP-seq: 6mA IP-seq data were analyzed following the published 602 

procedures (Zhou et al., 2018) to examine the interrelationship between DNA-6mA and 603 

G4s. MACS2 was used to call 6mA peaks by comparing the IP data with the input data. 604 
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ChIP-seq and RNA-seq: Both datasets were analyzed following the published 605 

procedures (Fang et al., 2019). MACS2 was used to call enriched peaks of each mark 606 

by comparing the IP data with the input data. 607 

BG4-DNA-IP-seq: All cleaned reads were aligned to the MSU v7.0 reference 608 

genome (http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/ 609 

annotation_dbs/pseudomolecules/version_7.0/all.dir/) using BWA (Burrows-Wheeler 610 

Aligner) (mem algorithm, version 0.7.17) with default parameters. Only reads with 611 

alignment length greater than 50 were used for G4 peak calling and further analyses. G4 612 

Peak calling was performed using MACS (version 2.1.1) with the following command 613 

and parameters: macs2 callpeak -g 3.8e+8 -f BAM --extsize 200 -p 1e-5 –nomodel. The 614 

input, IgG and anti-FLAG IP-seq data were used as controls. G4 peaks shared among 615 

BG4-DNA-IP date relative to either of three controls were considered as G4 peaks with 616 

high confidence (command intersect of the bedtools package). The Spearman’s rank 617 

correlation coefficient was calculated using plotCorrelation program of deepTools. 618 

 619 

BG4-DNA-IP-seq or -qPCR  620 

Preparation and purification of rice nuclei pellet were performed as described 621 

previously (Zhang et al., 2012). The purified nuclei were fragmented into sizes ranging 622 

from 100-500 bp in sonication buffer (50mM Tris-HCl, 10mM EDTA and 1% (w/v) 623 

SDS) using the water-based Biorupter (Diagnode) followed by genomic DNA 624 
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extraction and purification using phenol/chloroform extraction and cold ethanol 625 

precipitation.  626 

A total of 5μg fragmented genomic DNA was diluted in G4-stabilizing buffer 627 

(150mM KCl, 40% (w/v) PEG 200 and 10mM Tris-HCl, pH=7.5), denatured at 95°C 628 

for 5min, then reassociated by letting the temperature slowly drop down to RT. The 629 

re-associated DNA was diluted with G4-IP incubation buffer (50mM HEPES, 150mM 630 

KCl, 1mM MgCl2, 130nM CaCl2, 1% (w/v) BSA, 40% (w/v) PEG 200 and Complete 631 

mini, pH=7.5). 3μg of BG4 protein was incubated for 4h, then 3μg of anti-FLAG 632 

antibody (D110005, BBI) was added for an additional 4h at 4°C. 30 μl of washed 633 

protein G Dynabeads (10004D, Invitrogen) was incubated for another 4h at 4°C. The 634 

washed BG4-bound DNA was eluted with 200μl elution buffer (0.1M NaHCO3 and 1% 635 

(w/v) SDS) at 65°C for two times for 15min each. For the BG4-DNA-IP-seq assay, 636 

two biologically replicated BG4-IPed DNA or one replicate of Input/IgG-/anti-FLAG 637 

only-IPed control DNA was used for the library preparation for paired-end mode 638 

sequencing on Illumina NovaSeq platform. All sequencing libraries were constructed 639 

using the NEBNext
®

 Ultra™ II DNA Library Prep Kit for Illumina (NEB, E7645S). 640 

For the BG4-DNA-IP-qPCR, 1µl of input and IPed DNA (2ng/ µl each) was used as 641 

DNA templates. The enrichment of IPed DNA was calculated using the 2
(ΔΔCt)

 method 642 

and expressed as fold change over the corresponding input. Each primer set was 643 

repeated three times in each qPCR. All primer sequences are listed in Supplemental 644 

Table S2.xlsx. 645 
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 646 

Histone ChIP or DNase I treatment followed by BG4-DNA-IP-qPCR assay 647 

H3K4me3 (07-473, Millipore), H3K27me3 (07-449, Millipore) and H3K36me3 648 

(ab9050, abcam)-related ChIP were conducted as described previously (Zheng et al., 649 

2019). Each ChIPed DNA was used for the BG4-DNA-IP-qPCR assay. The PCR 650 

primer sequences are listed in Supplemental Table S2.xlsx. 651 

DNase I treatment was conducted as described previously (Zhang et al., 2012). 652 

DNase I-treated DNA fragments were used for the BG4-DNA-IP-qPCR assay. The 653 

PCR primer sequences are listed in Supplemental Table S2.xlsx. 654 

 655 

BG4-DNA-IP followed by DRIP-qPCR assay 656 

BG4-DNA-IP was conducted as described above. BG4-bound DNA was used for 657 

the S9.6-based DRIP-qPCR assay, which was conducted as described previously (Fang 658 

et al., 2019). The PCR primer sequences are listed in Supplemental Table S2.xlsx. 659 

 660 

PQFSs fold enrichment analyses 661 

 The whole genome sequence was computationally scanned using 662 

fastaRegexFinder.py 663 

(https://github.com/dariober/bioinformatics-cafe/blob/master/fastaRegexFinder.py) 664 

(Fujimoto et al., 2020) for identifying putative G-quadruplex-forming sequences 665 
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(PQFSs). The subtypes of PQFSs were defined by loop length and G repeats following 666 

the published procedures (Marsico et al., 2019).  667 

The fold enrichment of each subtype of PQFSs was calculated by comparing with 668 

random controls with the same size distribution as the G4 peaks across the genome 669 

(bedtools shuffle command, observed values divided by average of 1,000 670 

randomization values). 671 

 672 

Identification of non-canonical PQFSs  673 

Non-canonical PQFSs within dG4 peaks were identified using 674 

fastaRegexFinder.py with a customized regular expression. For example, modified 675 

(G3+L1-12)3+G3 with 1-3 [gG]{3,} fragment changing to [gG]\w[gG], representing a 676 

non-G bulge in the middle of a G3 run, for identification of (G3+L1-12)3+G3-like 677 

pattern with a nucleotide variation in at least one regular GGG run. A total of 14 types 678 

of modified regular expressions were used for screening non-canonical PQFSs 679 

associated with dG4s (Supplemental Table S4.xlsx).  680 

 681 

Normalization of read counts  682 

The ± 1 kb upstream and downstream of G4 peaks was divided into 50 bp 683 

windows, and the G4 peaks were equally divided into 20 bins for normalization. The 684 

number of reads per sliding window was first divided by the window length and then by 685 

the number of all uniquely mappable reads within the genome (Mb). For all mapped 686 
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reads, their positions in the rice genome were used to determine the midpoint of the 687 

sequence fragment. 688 

 689 

Motif prediction 690 

DNA sequences from the center of a G4 peak spanning ± 100 bp were used for 691 

motif analyses. G4-related motifs were identified using MEME-ChIP 692 

(http://meme-suite.org/tools/meme-chip) (Machanick and Bailey, 2011) with 693 

parameters as options minimum width 5 and maximum width 20. The identified motifs 694 

were used to further screen A. thaliana databases to match putative TF-binding sites 695 

(Tomtom tool). Only the top two or three significantly enriched motifs with the highest 696 

E-values are listed in the text. 697 

 698 

Gene ontology (GO)  699 

GO term analysis of genic-related G4 overlapping genes was conducted using 700 

online tools in Agrigo v 2.0 (http://systemsbiology.cau.edu.cn/agriGOv2/ ) (Tian et al., 701 

2017) with Oryza sativa annotation.  702 

 703 

Statistical Analyses 704 

Wilcoxon rank-sum test was performed in R environment using ggpubr package. 705 

Permutation test was performed using scipy package in python environment. One-way 706 

ANOVA analysis was conducted using GraphPad Prism 6. Variance analysis was 707 
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performed using GraphPad Prism6. One-way LSD test was performed in R 708 

environment using oneway.test function. 709 

Accession numbers 710 

The BG4-DNA-IP-seq data generated in this study have been submitted to the NCBI 711 

Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession 712 

number GSE132775. Published data used in this study are listed in Supplemental Table 713 

S5. 714 

 715 

Supplemental data 716 

The following materials are available in the online version of this article. 717 

Supplemental Figure S1. Validation of BG4 antibody and comparison of G4s 718 

identified under different conditions. 719 

Supplemental Figure S2. A and C content normalization and DNA methylation 720 

within normalized G4s. 721 

Supplemental Figure S3. A or C normalization. 722 

Supplemental Figure S4. Comparisons of GC and AT content with different 723 

methylation levels. 724 

Supplemental Figure S5. Effects of d/udG4s on expression of G4-overlapping 725 

genes. 726 

Supplemental Figure S6. Relationships between d/udG4s and transcription of 727 

d/udG4-overlapping genes. 728 

Supplemental Figure S7. Schematic illustration of H3K4/27/36me3-related 729 

ChIP, DNase I treatment followed by BG4-DNA-IP-qPCR assay. 730 
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Supplemental Figure S8. Genomic distribution of OQs and relationship of OQs 731 

with expression of overlapping genes in A. thaliana. 732 

Supplemental Table S1. Summary of sequencing data analyzed in this study. 733 

Supplemental Table S2. Summary of primer information and PCR conditions for 734 

PCR or qPCR assays in this study. (xlsx) 735 

Supplemental Table S3. Summary of G3 PQFSs with genomic coordinates for 736 

dG4 and udG4 in rice. (xlsx) 737 

Supplemental Table S4. Summary of non-canonical PQFSs with genomic 738 

coordinates for dG4 in rice. (xlsx) 739 

Supplemental Table S5. Summary of published data sets used in this study. 740 
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 754 

Figure Legends 755 

 756 

Figure 1 Global identification of G4s in rice seedlings using BG4-DNA-IP-seq. A, 757 

Schematic representation of BG4-DNA-IP-seq workflow. B, Correlation analyses of 758 

two BG4-DNA-IP-seq reads in G4-favoring conditions (in the presence of K
+
 and 759 

PEG). r stands for Spearman's rank correlation coefficient. C, Venn plots illustrating 760 

overlaps of BG4-DNA-IP-seq peaks relative to controls (input, IgG and anti-flag). D, 761 

Venn plots highlighting the 23,685 common BG4-DNA-IP-seq peaks. E, A 762 

representative Integrative Genomics Viewer (IGV) snapshot across a 113 kb window 763 

from rice chromosome 1 illustrating the reproducibility of BG4-DNA-IP-seq (in 764 

K
+
+PEG conditions). Each G4 peak was marked with a solid rectangular blue box; 765 

green vertical bars indicate the presence of PQFSs. 766 

 767 

Figure 2 Validation of dG4s. A, Comparison of dG4 overlapping PQFS with 768 

predicted G4s: x-axis represents PQFS patterns, for instance, G2+L1-12 representing 769 

PQFS containing two or more tetrads with loop length up to 12 nucleotides; G3+L1-7 770 

representing PQFS containing at least three tetrads with loop length up to 7 nucleotides; 771 

G3+L8-12 representing extended PQFS containing at least three tetrads with at least one 772 
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loop with length from 8 to 12 nucleotides, and so on; y-axis represents the number of 773 

dG4 overlapping PQFSs (blue) versus predicted PQFSs (green). B, Fold enrichment of 774 

dG4 overlapping PQFS over random sequences: x-axis represents PQFS patterns; 775 

y-axis represents fold enrichment (observed values divided by average of 1,000 776 

randomization values). Permutation test was conducted to determine the significance of 777 

the difference when the observed value was >90% or <90% of the permutation value. 778 

C, BG4-DNA-IP-qPCR assay for ten positive G4 loci (P1-P10) and one non-G4 control 779 

(N) (primers listed in Supplemental Table S2). Fold change indicated the enrichment 780 

level of each positive locus over the negative locus. Significance was determined by 781 

one-way ANOVA analysis, *** p-value < 0.01, ** p-value < 0.05. D, Reexamination 782 

of nine G4 loci (Os4-7, Os9-11, Os13 and Os18) and one non-G4 locus (Os3), 783 

previously validated by circular dichroism (CD) spectroscopy in the presence of K
+
 in 784 

Oryza sativa.  785 

 786 

Figure 3 Characterization of dG4s and udG4s. A, Venn diagram showing predicted 787 

PQFSs versus experimentally (dG4 peaks) and non-experimentally detected G4s 788 

(udG4s). B, Sub-genomic distributions of both dG4s-(PQFS) and udG4s-(PQFS). C, 789 

Mean length of both dG4s-(PQFS) and udG4s-(PQFS). D, Distance between two 790 

neighboring PQFSs for both dG4s-(PQFS) and udG4s-(PQFS). E, Strand-specific GC 791 

contents, GC and AT skews calculated around ± 1 kb from the center of dG4s (red), 792 

udG4s (black) and random peaks (grey). F, Motif discovery using MEME for dG4s; 793 
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only the top three significantly enriched G4 motifs are listed. Significance in C and D 794 

was determined using Wilcoxon rank-sum test. ** p-value < 0.05. 795 

 796 

Figure 4 Interrelation between G4s and DNA methylation. A, CG, CHG, and CHH 797 

methylation levels of dG4s (n = 23,685) and udG4s (n = 23,685) with similar C content. 798 

The heat map at the top indicates Wilcoxon rank-sum test and the color key represents 799 

the p-values. B, Distribution of BG4-DNA-IP read density (Reads Per Kilobase per 800 

Million mapped reads, RPKM) of dG4s and udG4 with 6mA (6mA+, n = 4,399, blue), 801 

without 6mA (6mA-, n = 27,826, red) around ± 1 kb of G4s or PQFS regions. The heat 802 

map at the top indicates Wilcoxon rank-sum test and the color key represents the 803 

p-values C, Distribution of RPKM of 6mA across ± 1 kb of the center of dG4s and 804 

udG4s with similar A content. The heat map at the top indicates Wilcoxon rank-sum 805 

test and the color key represents the p-values. D, Dot blot assays for anti-5mC, 806 

anti-6mA and BG4 antibodies, as indicated (n = 2); significance was determined using 807 

variance analysis. *** p-value < 0.001, ** p-value < 0.01 and * p-value < 0.05. E, MA 808 

plot on the left illustrating CK and Zebu hypoDNA biased dG4s identified from 809 

BG4-DNA-IP-seq using DNA from CK and zebularine treated sample as the ones we 810 

used in the dot blotting assay; box plot on the right showing the p-value of Zebu 811 

hypoDNA biased dG4s is significantly lower than that of CK biased dG4s. Significance 812 

was determined using Wilcoxon rank-sum test. ** p-value < 0.01. 813 

 814 

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/advance-article/doi/10.1093/plphys/kiab566/6454112 by U

niversite D
e Bourgogne (D

ijon) user on 14 D
ecem

ber 2021



 

40 

 

Figure 5 Relation between G4s and DNA methylation of dG4s in transposable 815 

element genes (TEGs) and non-TEGs. A, CG, CHG, and CHH methylation levels in 816 

TEGs and non-TEGs associated with dG4s (red) and udG4s (blue) with similar C 817 

content. The heat map at the top indicates Wilcoxon rank-sum test and the color key 818 

represents the p-values. B, D-6mA methylation levels in non-TEGs (top panel) and 819 

TEGs (bottom panel) associated with dG4s (red) and udG4s (blue). Read density 820 

(RPKM) of DNA 6mA was plotted across 1 kb upstream of TSSs to 1 kb downstream 821 

of TTSs of genes with dG4s and udG4s. The heat map at the top indicates Wilcoxon 822 

rank-sum test and the color key represents the p-values. C, Plots showing the profile of 823 

BG4-DNA-IP reads ±1 kb around TEGs (left) and from 0.5 kb upstream of TSSs to 0.5 824 

kb downstream of TSSs of non-TEGs (right) with high and low 5mC methylation levels 825 

(n = 500), as indicated. D, Plots showing the profile of BG4-DNA-IP reads ±1 kb 826 

around TEGs (left) and from 0.5 kb upstream of TSSs to 0.5 kb downstream of TSSs of 827 

non-TEGs (right) with or without D-6mA peaks (n = 500), as indicated. Significance in 828 

c and d was determined using Wilcoxon rank-sum test. ** p-value < 0.05. 829 

 830 

Figure 6 Relationships between dG4s and transcription of dG4-containing genes. 831 

A, Plots showing the profile of read density (RPKM) of BG4-DNA-IP from 1 kb 832 

upstream of TSSs to 1 kb downstream of TTSs of dG4s in non-TEGs with different 833 

Fragments Per Kilobase per Million mapped fragments (FPKM) values (high, medium, 834 

low and non-expressed). B, The heat map showing distribution of RPKM of 835 
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BG4-DNA-IP from 1 kb upstream of TSSs to 1 kb downstream of TTSs of 836 

dG4-containing genes, ranked according to their FPKM. (C, D and E) Histograms 837 

showing the abundance of antisense (blue) and sense (red) PQFSs at specific positions 838 

plotted for the observed gene sets or randomized sequences (expected) for the TSS (C), 839 

the mRNA AUG (D) and the 1st Exon-Intron boundary (E).  840 

 841 

Figure 7 Epigenomic signatures of dG4-containing genes. A, Heat map showing 842 

enrichment of each mark for dG4s relative to udG4s in each indicated subgenomic 843 

region, the color key represents the fold enrichment of dG4s relative to udG4s. 844 

Permutation test was conducted to determine the significance of the difference when 845 

the observed value was >90% or <90% of the permutation value. (B, C and D) 846 

H3K36me3-ChIP (B), H3K4me3-ChIP (C) and H3K27me3-ChIP (D) coupled with 847 

BG4-DNA-IP-qPCR for five positive loci (with mark and G4) and one control (N, with 848 

G4 but without mark). E, DNase I treatment coupled with the BG4-DNA-IP-qPCR 849 

assay for five positive loci (D1-D5, with DNase I hypersensitive site (DHS) and G4) 850 

and one control (N, with DHS but without G4). F, BG4-DNA-IP coupled with 851 

S9.6-based DNA-RNA immunoprecipitation (DRIP-qPCR) for six positive loci 852 

(RL1-RL6, with R-loop and G4) and one control (N, with R-loop but without G4). The 853 

fold change in each qPCR run (n = 2) is expressed relative to the control. Primer 854 

sequences for qPCR are listed in Supplemental Table S2. *** p-value < 0.001, ** 855 

p-value < 0.01 and * p-value < 0.05 determined by variance analysis.  856 

 857 
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Figure 1 Global identification of G4s in

rice seedlings using BG4-DNA-IP-seq.

A, Schematic representation of BG4-

DNA-IP-seq workflow. B, Correlation

analyses of two BG4-DNA-IP-seq reads

in G4-favoring conditions (in the

presence of K+ and PEG). r stands for

Spearman's rank correlation coefficient. C,

Venn plots illustrating overlaps of BG4-

DNA-IP-seq peaks relative to controls

(input, IgG and anti-flag). D, Venn plots

highlighting the 23,685 common BG4-

DNA-IP-seq peaks. E, A representative

Integrative Genomics Viewer (IGV)

snapshot across a 113 kb window from

rice chromosome 1 illustrating the

reproducibility of BG4-DNA-IP-seq (in

K++PEG conditions). Each G4 peak was

marked with a solid rectangular blue box;

green vertical bars indicate the presence

of PQFSs.
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Figure 2 Validation of dG4s. A, Comparison of

dG4 overlapping PQFS with predicted G4s: x-

axis represents PQFS patterns, for instance,

G2+L1-12 representing PQFS containing two or

more tetrads with loop length up to 12

nucleotides; G3+L1-7 representing PQFS

containing at least three tetrads with loop length

up to 7 nucleotides; G3+L8-12 representing

extended PQFS containing at least three tetrads

with at least one loop with length from 8 to 12

nucleotides, and so on; y-axis represents the

number of dG4 overlapping PQFSs (blue)

versus predicted PQFSs (green). B, Fold

enrichment of dG4 overlapping PQFS over

random sequences: x-axis represents PQFS

patterns; y-axis represents fold enrichment

(observed values divided by average of 1,000

randomization values). Permutation test was

conducted to determine the significance of the

difference when the observed value was >90%

or <90% of the permutation value. C , BG4-

DNA-IP-qPCR assay for ten positive G4 loci

(P1-P10) and one non-G4 control (N) (primers

listed in Supplemental Table S2). Fold change

with mean ±SD indicated the enrichment level

of each positive locus over the negative locus.

Significance was determined by one-way

ANOVA analysis, *** p-value < 0.01, ** p-

value < 0.05. D, Reexamination of nine G4 loci

(Os4-7, Os9-11, Os13 and Os18) and one non-

G4 locus (Os3), previously validated by circular

dichroism (CD) spectroscopy in the presence of

K+ in Oryza sativa.
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Figure 3 Characterization of dG4s and udG4s. A, Venn

diagram showing predicted PQFSs versus experimentally

(dG4 peaks) and non-experimentally detected G4s

(udG4s). B, Sub-genomic distributions of both dG4s-

(PQFS) and udG4s-(PQFS). C, Mean length of both

dG4s-(PQFS) and udG4s-(PQFS). D, Distance between

two neighboring PQFSs for both dG4s-(PQFS) and

udG4s-(PQFS). Center line, median; box limits, upper and

lower quartiles; whiskers, 1.5x interquartile range; points,

outliers. E, Strand-specific GC contents, GC and AT

skews calculated around ± 1 kb from center of dG4s (red),
udG4s (black) and random peaks (grey). F, Motif

discovery using MEME for dG4s; only top three

significantly enriched G4 motifs are listed. Significance

in C and D was determined using Wilcoxon rank-sum test.

** p-value < 0.05.
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Figure 4 Interrelation between G4s and DNA methylation. A, CG, CHG, and

CHH methylation levels of dG4s (n = 23,685) and udG4s (n = 23,685) with

similar C content. The heat map at the top indicates Wilcoxon rank-sum test and

the color key represents the p-values. B, Distribution of BG4-DNA-IP read

density (Reads Per Kilobase per Million mapped reads, RPKM) of dG4s and udG4

with 6mA (6mA+, n = 4,399, blue), without 6mA (6mA-, n = 27,826, red) around

±1 kb of G4s or PQFS regions. The heat map at the top indicates Wilcoxon rank-

sum test and the color key represents the p-values C, Distribution of RPKM of

6mA across ±1 kb of the center of dG4s and udG4s with similar A content. The

heat map at the top indicates Wilcoxon rank-sum test and the color key represents

the p-values. D , Dot blot assays for anti-5mC, anti-6mA and BG4 antibodies, as

indicated (n = 2); significance was determined using variance analysis. Values

were presented as mean ±SD, *** p-value < 0.001, ** p-value < 0.01 and * p-

value < 0.05. E, MA plot on the left illustrating CK and Zebu hypoDNA biased

dG4s identified from BG4-DNA-IP-seq using DNA from CK and zebularine

treated sample as the ones we used in the dot blotting assay; box plot on the

right showing the p-value of Zebu hypoDNA biased dG4s is significantly lower

than that of CK biased dG4s. Center line, median; box limits, upper and lower

quartiles; whiskers, 1.5x interquartile range; points, outliers. Significance was

determined using Wilcoxon rank-sum test. ** p-value < 0.01.
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Figure 5 Relation between G4s and DNA methylation of dG4s in transposable element genes (TEGs) and non-TEGs. A, CG, CHG, and CHH methylation levels in TEGs and non-

TEGs associated with dG4s (red) and udG4s (blue) with similar C content. The heat map at the top indicates Wilcoxon rank-sum test and the color key represents the p-values. B, D-6mA

methylation levels in non-TEGs (top panel) and TEGs (bottom panel) associated with dG4s (red) and udG4s (blue). Read density (RPKM) of DNA 6mA was plotted across 1 kb upstream

of TSSs to 1 kb downstream of TTSs of genes with dG4s and udG4s. The heat map at the top indicates Wilcoxon rank-sum test and the color key represents the p-values. C, Plots showing

the profile of BG4-DNA-IP reads ±1 kb around TEGs (left) and from 0.5 kb upstream of TSSs to 0.5 kb downstream of TSSs of non-TEGs (right) with high and low 5mC methylation
levels (n = 500), as indicated. D, Plots showing the profile of BG4-DNA-IP reads ±1 kb around TEGs (left) and from 0.5 kb upstream of TSSs to 0.5 kb downstream of TSSs of non-TEGs
(right) with or without D-6mA peaks (n = 500), as indicated. Significance in c and d was determined using Wilcoxon rank-sum test. ** p-value < 0.05.
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Figure 6 Relationships between dG4s and transcription of dG4-

containing genes. A, Plots showing the profile of read density (RPKM)

of BG4-DNA-IP from 1 kb upstream of TSSs to 1 kb downstream of

TTSs of dG4s in non-TEGs with different Fragments Per Kilobase per

Million mapped fragments (FPKM) values (high, medium, low and

non-expressed). B, The heat map showing distribution of RPKM of

BG4-DNA-IP from 1 kb upstream of TSSs to 1 kb downstream of

TTSs of dG4-containing genes, ranked according to their FPKM. (C, D

and E) Histograms showing the abundance of antisense (blue) and

sense (red) PQFSs at specific positions plotted for the observed gene

sets or randomized sequences (expected) for the TSS (C), the mRNA

AUG (D) and the 1st Exon-Intron boundary (E).
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Figure 7 Epigenomic signatures of dG4-containing genes. A, Heat map showing

enrichment of each mark for dG4s relative to udG4s in each indicated subgenomic

region, the color key represents the fold enrichment of dG4s relative to udG4s.

Permutation test was conducted to determine the significance of the difference

when the observed value was >90% or <90% of the permutation value. (B, C and D)

H3K36me3-ChIP (B), H3K4me3-ChIP (C) and H3K27me3-ChIP (D) coupled with

BG4-DNA-IP-qPCR for five positive loci (with mark and G4) and one control (N,

with G4 but without mark). E, DNase I treatment coupled with the BG4-DNA-IP-

qPCR assay for five positive loci (D1-D5, with DNase I hypersensitive site (DHS)

and G4) and one control (N, with DHS but without G4). F, BG4-DNA-IP coupled

with S9.6-based DNA-RNA immunoprecipitation (DRIP-qPCR) for six positive

loci (RL1-RL6, with R-loop and G4) and one control (N, with R-loop but without

G4). The fold change in each qPCR run (n = 2) is expressed relative to the control.

Primer sequences for qPCR are listed in Supplemental Table S2. B-F, values were

presented as mean ±SD, *** p-value < 0.001, ** p-value < 0.01 and * p-value <

0.05 determined by variance analysis.
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