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Abstract

We use convex duality techniques to study a spatial Pareto prob-
lem with transport costs and derive a spatial second welfare theorem.
The existence of an integrable equilibrium distribution of quantities
is nontrivial and established under general monotonicity assumptions.
Our variational approach also enables us to give a numerical algo-
rithm à la Sinkhorn and present simulations for equilibrium prices
and quantities in one-dimensional domains and a network of French
cities.
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1 Introduction

The present article proposes a simple model of efficient spatial trade in an
exchange economy subject to transportation costs. The notion of efficiency
we consider comprises two quite different aspects: efficiency of the transport
(import/export) process and efficiency in the Pareto sense of the distribution
of goods after import/export has taken place. We take as primitives the
spatial (initial) distribution of goods, the transportation cost for these goods
and the agent’s preferences, given by a (possibly location dependent) utility
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function. The unknown is the (final) distribution of goods after trade among
the different locations. Our approach is based on the maximization of a
global criterion which is a weighted average of the utility of final consumption
(Pareto efficiency) net of the minimal total transport cost taking into account
mass conservation constraints (optimal transport).

Our model relies to a large extent on optimal transport theory which has
been the object of an intensive and fruitful stream of research in the last
three decades and has found numerous applications in PDEs, functional in-
equalities, probability theory, economics and more recently machine learning,
see the textbooks of Villani [14] and Santambrogio [13], and for an overview
of optimal transport methods in economics and econometrics, see Galichon
[6]. Optimal transport aims at explaining how to transport mass efficiently
(i.e. so as to minimize a total cost) between two given measures with the
same total mass. A cornerstone of this theory is the Kantorovich duality
which characterizes optimal plans in terms of a pair of dual variables which
are naturally interpreted as prices.

In a spatially distributed exchange economy where various goods are avail-
able in different quantities according to location, agents located at different
locations may have an interest to trade and they will certainly do so if they
can all increase their utility for a small transport cost. Possible utility im-
provements is then the reason why some mass is actually transported. To
fix ideas, think of two locations A and B, all the resources in water are con-
centrated at A and all the resources in food are concentrated at B, agents
located at B will then import some water from A and export some food to
B but the precise amount of water/food transported will depend on: i) the
initial endowments of A and B, ii) the preferences of agents located at A
and B and iii) on how costly transporting these goods from one location to
another is. If we fix the demand for water of B and the demand for food
of A, this is a simple optimal transport problem but these demands result
from a Pareto (weighted utility maximization) problem between these two
locations. A dual version of the problem consists in looking for prices for
which markets clear and also reflect the cost of transporting the goods as
efficiently as possible.

We propose a simple variational model that combines optimal transport
(that is how to transport the goods) with Pareto efficiency requirements
(that is why some goods are actually transported). The variational problem
we consider to find Pareto efficient distributions involves separable optimal
transport terms and a joint concave utility term. Interestingly, this has a
somehow similar structure as steps of the celebrated JKO scheme of Jordan,
Kinderlehrer and Otto [7] for Wasserstein gradient flows, see Ambrosio, Gigli
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and Savaré [1] for a detailed account of this theory. Convex duality also
enables us to derive supporting prices and to prove a sort of spatial second
welfare theorem. From a mathematical point, the existence of integrable
Pareto optimal final resource distributions is non trivial and we provide a
complete proof using quite general monotonicity properties. We also prove
existence of continuous prices supporting these Pareto distribution of the
goods. The fact that the analysis resorts on convex minimization and duality
enables us to use state of the art solvers based on the Sinkhorn algorithm for
entropic optimal transport, see Cuturi [4], Benamou et al. [3], Cuturi and
Peyré [10], Peyré [9]. We illustrate the practical use of our model by solving
numerically one-dimensional examples as well as a graph model representing
some cities in France.

The paper is organized as follows. Our variational spatial Pareto model
and our assumptions are introduced in section 2. Section 3 is concerned with
existence and duality results. Primal-dual optimality conditions are further
analysed and a second welfare theorem is derived from the latter in section
4. Finally, section 5 presents an algorithm for the entropic regularization of
the problem and numerical simulations for equilibrium prices and quantities
in one-dimensional domains and a graph representing a network of French
cities.

2 Assumptions and notations

We consider a region denoted by X which we assume to be a compact metric
space. We consider agents populating X having initial endowments of N
goods, given by nonnegative Borel measures µ1, . . . , µN ∈M+(X)N . Choos-
ing a reference measure m ∈ M+(X) such that µi is absolutely continuous
with respect to m for i = 1, . . . , N (e.g. m =

∑N
i=1 µi) we denote by αi the

density of µi with respect to m i.e.

µi = αim, αi ∈ L1(X,m).

For each good i, there is a transport cost ci ∈ C(X ×X) which satisfies

ci(x, y) ≥ 0, ci(x, x) = 0,∀(x, y) ∈ X2. (2.1)

The quantity ci(x, y) represents the cost of transporting one unit of mass of
good i from x to y.

The image (or pushforward) of a Borel measure θ by a Borel map T will
be denoted T#θ in the sequel. More precisely, if Y and Z are compact metric
spaces, if θ ∈ M(Y ) (i.e. θ is a Borel measure on Y ) and if T : Y → Z is
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Borel, then T#θ is defined by T#θ(B) = θ(T−1(B)) for every Borel subset B
of Z. Equivalently, using test-functions, T#θ is defined by∫

Z

ϕdT#θ =

∫
Y

ϕ ◦ Tdθ, ∀ϕ ∈ C(Z).

In particular, if γ ∈ M+(X × X), the marginals of γ are proj1#γ and
proj2#γ, where (proj1(x, y), proj2(x, y)) = (x, y) denote the canonical pro-
jections. Given νi a Borel measure on X, we set

Tci(µi, νi) :=

{
minγi∈Π(µi,νi)

∫
X×X ci(x, y)dγi(x, y) if νi ≥ 0 and νi(X) = µi(X)

+∞ otherwise

where Π(µi, νi) is the set of transport plans between µi and νi i.e. the set
of nonnegative Borel measures on X × X having µi and νi as marginals
(so that γi(A × B) represents the amount of mass of good i initially in A
transported to a location in B). In our model, transporting goods is costly
but may be worth because it may result in some improvement in terms of
the agent’s preferences. These preferences are given by a (space-dependent)
utility function U : X × RN

+ → R ∪ {−∞}, which satisfies

for m-a.e. x ∈ X, β ∈ RN
+ 7→ U(x, β) is usc, concave, nondecreasing1,

(2.2)
for every β ∈ RN

+ , x ∈ X 7→ U(x, β) is m-measurable. (2.3)

We shall also assume that there exists (α1, . . . , αN) ∈ L1(X,m)N such that

αi ≥ 0,

∫
X

αidm =

∫
X

αidm, i = 1, . . . , N, (2.4)

and ∫
X

U(x, α1(x), . . . , αN(x))dm(x) > −∞. (2.5)

Finally, we assume that (x, β) 7→ U(x, β) is sublinear with respect to β
uniformly in x ∈ X, which means that for every δ > 0 there exists Cδ such
that for m-a.e. x ∈ X one has

U(x, β) ≤ δ

N∑
i=1

βi + Cδ, ∀β ∈ RN
+ . (2.6)

Given ν := (ν1, . . . , νN) ∈M+(X)N . Let us define

U(ν) :=

{∫
X
U(x, β1(x), . . . , βN(x))dm(x) if νi = βim, for i = 1, . . . ,m

−∞ otherwise

1by nondecreasing we mean that β − β′ ∈ RN
+ implies U(x, β) ≥ U(x, β′).
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and

Tµ(ν) :=
N∑
i=1

Tci(µi, νi).

We are here interested in allocations which maximize the average utility
(Pareto efficiency) taking into account transportation cost of the different
goods and therefore consider

sup
{
U(ν)− Tµ(ν), ν = (ν1, . . . νN) ∈M+(X)N

}
(2.7)

which can also be expressed as

sup
β∈L1(X,m)N

{∫
X

U(x, β(x))dm(x)−
N∑
i=1

Tci(αim,βim)

}
(2.8)

which incorporates the mass conservation constraints∫
X

βi(x)dm(x) =

∫
X

αi(x)dm(x), i = 1, . . . , N. (2.9)

Note that (2.5) and (2.6) ensure that the value of the maximization problem
(2.7) is finite.

3 Existence and duality

3.1 Existence of L1 optimizers

Notice that the existence of an optimizer in L1 for (2.7) is not totally straigh-
forward, and this is the object of the next result.

Proposition 3.1. Assuming (2.1)-(2.2)-(2.3)-(2.4)-(2.5)-(2.6), the maxi-
mization problem (2.7) admits at least one solution.

Proof. Let νn = βnm be a maximizing sequence for (2.7). Since βni ≥ 0 and∫
X
βni dm = µi(X), (βn)n is bounded in L1(X,m)N . It therefore follows from

Komlos’ Theorem [8], that there exists a (not relabeled) subsequence such
that the Cesaro means

1

n

n∑
k=1

βk

converges m-a.e. to some β = (β1, . . . , βN). Since both U and −Tµ are
concave, the above sequence of Cesaro means is also a maximizing sequence,
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hence, slightly abusing notations by calling again βn this new sequence we
may assume that

βni (x)→ βi(x) for m-a.e. x ∈ X, for i = 1, . . . , N. (3.1)

Let δ > 0, the sublinearity assumption (2.6), together with (3.1), the semi-
continuity of U(x, .) and Fatou’s Lemma yield

lim inf
n

∫
X

(δ
N∑
i=1

βni (x)− U(x, βn(x)))dm(x)

= δ
N∑
i=1

µi(X)− lim sup
n

∫
X

U(x, βn(x)))dm(x)

≥
∫
X

(δ
N∑
i=1

βi(x)− U(x, β(x))dm(x)

by letting δ → 0+, we thus get

lim sup
n

∫
X

U(x, βn(x))dm(x) ≤
∫
X

U(x, β(x))dm(x). (3.2)

Moreover, νn = βnm being bounded in M+(X)N , we can assume (again
passing to a subsequence if necessary) that it converges weakly-∗ to some
ν = (ν1, . . . , νN) ∈M+(X)N

νni := βni m
∗
⇀ νi, i = 1, . . . , N. (3.3)

Notice that νi(X) = µi(X), and it is well-known that Tci(µi, .) is sequentially
weakly-∗ lsc so that

lim inf
n
Tµ(νn) ≥ Tµ(ν). (3.4)

From (3.2)-(3.4) and the fact that νn is a maximizing sequence, we deduce:

sup(2.7) =

∫
X

U(x, β(x))dm(x)− Tµ(ν). (3.5)

Since β and ν may be different and β may violate the mass preservation
constraints (2.9), the identity (3.5) is not enough to conclude that (2.7) has
a solution. To obtain a solution of (2.7), we shall use some monotonicity
arguments relying on (2.1) and (2.2).

Let f ∈ C(X) with f ≥ 0. For all M > 0, we have,∫
X

f(x)dνni (x) ≥
∫
X

f(x) min(βni (x),M)dm(x).
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Letting n → +∞, using (3.1), Lebesgue’s dominated convergence Theorem
and (3.3), we deduce∫

X

f(x)dνi(x) ≥
∫
X

f(x) min(βi(x),M)dm(x),

so that, letting M →∞, by monotone convergence, we obtain

νi ≥ βim, for i = 1, . . . , N. (3.6)

Thanks to the Radon-Nikodym Theorem, we can decompose each measure
νi as

νi = βaim+ νsi with βai ∈ L1(X,m) and νsi ⊥ m. (3.7)

Since νsi and m are mutually singular there exists a Borel subset of X, which
we denote Ai, such that m(X \ Ai) = νsi (Ai) = 0 so that for every Borel
subset B of X, there holds

(βaim)(B) = νi(B ∩ Ai), νsi (B) = νi(B \ Ai). (3.8)

As a consequence, with (3.6), we also have

βi ≤ βai , m-a.e. for i = 1, . . . , N. (3.9)

Let now γi ∈ Π(µi, νi) be such that Tci(µi, νi) =
∫
X×X cidγi and let us de-

compose γi as γi = γai + γsi where γai and γsi are defined by∫
X×X

ϕdγai :=

∫
X×Ai

ϕdγi,

∫
X×X

ϕdγsi :=

∫
X×(X\Ai)

ϕdγi,

for every ϕ ∈ C(X ×X). By construction, we have

proj2#γ
a
i = βaim, proj2#γ

s
i = νsi

and one can decompose µi = αim = proj1#γi as proj1#γ
a
i + proj1#γ

s
i . Since

these two terms are absolutely continuous with respect to m, we can write
them as

αaim := proj1#γ
a
i , α

s
im := proj1#γ

s
i (hence αi = αai + αsi , m-a.e).

Now let us define
γ̃i := γai + (id, id)#α

s
im (3.10)

and observe that

proj1#γ̃i = αaim+ αsim = αim = µi
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and
proj2#γ̃i = β̃im where β̃i := βai + αsi

so that γ̃i ∈ Π(µi, β̃im). Using (2.1) and the definition of γ̃i in (3.10), we
have

Tci(µi, β̃im) ≤
∫
X×X

cidγ̃i =

∫
X×X

cidγ
a
i

≤
∫
X×X

cidγi = Tci(µi, νi).

Setting β̃ = (β̃1, . . . , β̃N) we thus have

Tµ(β̃m) ≤ Tµ(ν)

and since β̃i ≥ βai , from (3.9), we deduce that β̃ ≥ β, hence from the mono-
tonicity part in assumption (2.2), we get

U(β̃m) ≥ U(βm).

Together with (3.5), this implies that β̃ solves (2.7).

Remark 3.2. The proof above shows that if ν ∈ M+(X)N is such that
νi(X) = µi(X) for i = 1, . . . , N , and writing the Lebesgue decomposition
of νi with respect to m as

νi = νai + νsi = βaim+ νsi with νsi ⊥ m,

there exists β̃i ∈ L1(X,m) such that

β̃i ≥ βai ,

∫
X

β̃ai dm = µi(X) and Tci(µi, β̃im) ≤ Tci(µi, νi).

This, together with the monotonicity of U , shows that

U(βam)− Tµ(ν) ≤ U(β̃m)− Tµ(β̃m)

therefore we have

sup
β∈L1((X,m))N

{U(βm)− Tµ(βm)} = sup
ν∈M+(X)N

{U(νa)− Tµ(ν)} (3.11)

where in the right-hand side νa = (νa1 , . . . , ν
a
N) denotes the absolutely con-

tinuous part of ν with respect to m.
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3.2 Duality

The Pareto problem (2.7) appears naturally as the dual of a convex mini-
mization problem over continuous functions which we now describe. Let us
first introduce for (x, ϕ) = (x, ϕ1, . . . , ϕN) ∈ X × RN :

V (x, ϕ) := sup
β∈RN+

{U(x, β)−
N∑
i=1

βiϕi}. (3.12)

Note that each V (x, .) is convex, lsc, nonincreasing and that ϕ ∈ RN
+ when-

ever V (x, ϕ) < +∞. Let us then consider the convex integral functional

V(ϕ) :=

∫
X

V (x, ϕ1(x), . . . , ϕN(x))dm(x), ∀ϕ ∈ C(X)N ,

and observe that, thanks to (2.6), one has

min
i=1,...,N

min
x∈X

ϕi(x) = δ > 0⇒ V(ϕ) ≤ Cδm(X) < +∞. (3.13)

Recall that, for any i = 1, . . . , N and given ψ ∈ C(X), the ci-transform of
ψ, denoted by ψci , is defined by

ψci(x) := min
y∈X
{ci(x, y)− ψ(y)}. (3.14)

For ϕ := (ϕ1, . . . , ϕN) ∈ C(X)N , let us set

K(ϕ) := −
N∑
i=1

∫
X

ϕcii dµi =
N∑
i=1

∫
X

max
y∈X
{ϕi(y)− ci(x, y)}dµi(x)

so that K is convex and everywhere continuous w.r.t the uniform norm.
Finally, let us consider the convex minimization problem

inf
ϕ∈C(X,R)N

{K(ϕ) + V(ϕ)} . (3.15)

It is easy to deduce, from (2.5) and the fact that ci is bounded, that K + V
is bounded from below. Hence, (3.13) together with the continuity of K
implies that the value of (3.15) is finite and that the Fenchel-Rockafellar
Theorem applies to (3.15). Identifying the dual of C(X)N withM(X)N , the
Fenchel-Rockafellar dual of (3.15) reads

sup
ν∈M(X)N

{−V∗(−ν)−K∗(ν)} , (3.16)
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where K∗ and V∗ respectively stand for the Legendre transform of K and V
(for the duality between continuous functions and Radon measures), i.e. for
every ν ∈M(X)N :

K∗(ν) : = sup
ϕ∈C(X)N

{
N∑
i=1

∫
X

ϕidνi −K(ϕ)

}
,

V∗(−ν) = sup
ϕ∈C(X)N

{
−

N∑
i=1

∫
X

ϕidνi − V(ϕ)

}
.

It turns out that (3.16) is nothing but (2.7), slightly in disguise, as expressed
by the next result.

Lemma 3.3. Let ν ∈M(X)N , there holds

K∗(ν) = Tµ(ν), V∗(−ν) =

{
−U(νa) if ν ∈M+(X)N ,

+∞ otherwise
(3.17)

where νa is the absolutely continuous part of ν with respect to m. Moreover,
we have

inf(3.15) = max(2.7). (3.18)

Proof. The fact that K∗(ν) = Tµ(ν) is a consequence of the well-known
Kantorovich duality formula for optimal transport (see for instance [13]).
As for the Legendre transform of V , it follows from the seminal results of
Rockafellar [11]-[12] for convex integral functionals. More precisely, thanks
to Theorem 4 in [12] and our assumptions on U , we have:

V∗(−ν) = inf
θ∈L1(X,m)N

{∫
X

V ∗(x,−θ(x))dm(x)

+ sup
ϕ∈C(X)N : V(ϕ)<+∞

N∑
i=1

∫
X

ϕid(θi − νi)
}
.

On the one hand, by the Fenchel-Moreau Theorem and the convexity and
lower semicontinuity of −U(x, .) we have

V ∗(x,−θ) = sup
ϕ∈RN
{−θ · ϕ− V (x, ϕ)} =

{
−U(x, θ) if θ ∈ RN

+ ,

+∞ otherwise.

On the other hand, since V(ϕ) < +∞ whenever each ϕi is strictly positive
and V(ϕ) < +∞ implies that each ϕi is nonnegative, we have

sup
ϕ∈C(X)N : V(ϕ)<+∞

N∑
i=1

∫
X

ϕid(θi − νi) =

{
0 if θi ≤ νi, for i = 1, . . . , N

+∞ otherwise.
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As a consequence, using the monotonicity of U(x, .) and the fact that for
θi ∈ L1(X,m), 0 ≤ θi ≤ νi is equivalent to 0 ≤ θi ≤ νai , we get

V∗(−ν) = inf

{
−
∫
X

U(x, θ(x))dm(x) : θ ∈ L1(X,m), 0 ≤ θi ≤ νi, i = 1, . . . , N

}
=

{
−U(νa) if ν ∈M+(X)N

+∞ otherwise.

By the Fenchel-Rockafellar Theorem (see [5]), together with the continuity
of K and the fact that V is lsc and V(ϕ) is finite whenever the components
of ϕ are bounded from below by a positive constant, we get

inf(3.15) = max
ν∈M+(X)N

{U(νa)− Tµ(ν)}

from which we deduce (3.18) thanks to proposition 3.1 and (3.11).

3.3 Existence for the primal

Let us consider the following qualification condition which is a strengthening
of (2.4)-(2.5): there exists α ∈ L1(X,m)N such that (2.4) holds and there
exists ε ∈ (0, 1) such that

∫
X

U(x, (1− ε)α1(x), . . . , (1− ε)αN(x))dm(x) > −∞. (3.19)

We then have an existence result for (3.15):

Proposition 3.4. Assuming (2.1)-(2.2)-(2.3)-(2.4)-(3.19)-(2.6), the mini-
mization problem (3.15) admits at least one solution.

Proof. Let ϕn = (ϕn1 , . . . , ϕ
n
N) be a minimizing sequence for (3.15), let us

then define ϕ̃n := (ϕ̃n1 , . . . , ϕ̃
n
N) by

ϕ̃ni (y) := min
x∈X
{ci(x, y)− (ϕni )ci(x)}, ∀y ∈ X. (3.20)

It is well-known that (ϕ̃ni )ci = (ϕni )ci and that ϕ̃ni ≥ ϕni so that K(ϕ̃n) =
K(ϕn) and (since V (x, .) is nonincreasing) V(ϕ̃n) ≤ V(ϕn). Hence ϕ̃n is also
a minimizing sequence for (3.15). Now the advantage of working with the
minimizing sequence ϕ̃ni is that it is uniformly equicontinuous (indeed, thanks
to (3.20), a modulus of continuity of ci is also a modulus of modulus of ϕ̃ni
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for every n). Since V(ϕ̃n) is finite, ϕ̃ni ≥ 0, let us then set δni := minX ϕ̃
n
i ≥ 0,

and let us prove that δni is bounded. First, from the equicontinuity, there is
a constant C ≥ 0 such that for every i ∈ {1, . . . , N} and every n, one has

ϕ̃ni ≤ δni + C. (3.21)

Now fix, M such that

M ≥ K(ϕ̃n) + V(ϕ̃n), ∀n. (3.22)

Since ϕ̃ni ≥ δni , thanks to (2.1) we haveK(ϕ̃n) ≥
∑N

i=1(δni −minX×X ci)µi(X) =∑N
i=1 δ

n
i µi(X). Moreover, by the very definition of V and (3.21)

V (x, ϕ̃n(x)) ≥ U(x, (1− ε)α(x))− (1− ε)
N∑
i=1

αi(x)ϕ̃ni (x)

≥ U(x, (1− ε)α(x))− (1− ε)
N∑
i=1

αi(x)(δni + C).

Integrating and using (2.4)-(3.19), this yields that for some constant C ′,
V(ϕ̃n) ≥ C ′ − (1− ε)

∑N
i=1 δ

n
i µi(X). Thanks to (3.22), we therefore get

M ≥ C ′ + ε
N∑
i=1

δni µi(X)

which shows that δni is bounded so that ϕ̃n is uniformly bounded. Applying
Ascoli’s Theorem, we may therefore assume that ϕ̃n converges uniformly to
some ϕ̃, so that K(ϕ̃n) converges to K(ϕ̃), and since for some constant C ′′,
one has V (x, ϕ̃n(x)) ≥ U(x, α(x))− C ′′, one deduces from (2.5) and Fatou’s
lemma that lim infn V(ϕ̃n) ≥ V(ϕ̃) which finally proves that ϕ̃ solves (3.15).

4 Optimality conditions and a second welfare

Theorem

4.1 Primal-dual extremality conditions

Now that we know that, under the assumptions of proposition 3.4, there
exist solutions both to (2.7) and its primal (3.15), we can easily use (3.18)

12



to deduce a characterization of these solutions. Indeed, by construction, we
have

V (x, ϕ) ≥ U(x, β)− ϕ · β = U(x, β)−
N∑
i=1

ϕiβi, ∀(ϕ, β) ∈ RN
+ × RN

+ (4.1)

and for every i, β := (β1, . . . , βN) ∈ L1(X,m)N such that βi ≥ 0 and∫
X
βim = µi(X) and every ϕ := (ϕ1, . . . , ϕN) ∈ C(X)N , we have

Tci(µi, βim) ≥
∫
X

ϕcii αim+

∫
X

ϕiβim. (4.2)

Now if ϕ solves (3.15) and β solves (2.7), from (3.18), we obtain

V(ϕ)− U(βm) +

∫
X

ϕ · βm+ Tµ(βm)−
N∑
i=1

∫
X

ϕcii αim−
∫
X

ϕ · βm = 0

so that with (4.1), we get

V (x, ϕ(x)) = U(x, β(x))− ϕ(x) · β(x) for m-a.e. x. (4.3)

Likewise, with (4.2), we get for every i,

Tci(µi, βim) =

∫
X

ϕcii αim+

∫
X

ϕiβim

so that

∃γi ∈ Π(αim,βim) such that ϕcii (x) + ϕi(y) = ci(x, y) for γi-a.e. (x, y).
(4.4)

By continuity of ϕi and ci, this means that, whenever (x, y) is in the support
of γi, one has

ϕi(y)− ci(x, y) ≥ ϕi(z)− ci(x, z), ∀z ∈ X. (4.5)

Note in particular that (4.3) implies that for m-a.e. x, ϕ(x) is a super-
gradient of U(x, .) at β(x) and then

∀β ∈ RN
+ , ϕ(x) · β ≤ ϕ(x) · β(x)⇒ U(x, β) ≤ U(x, β(x)). (4.6)
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4.2 A second welfare theorem with transport costs

The optimality conditions (4.4)-(4.6) can easily be interpreted in terms of
equilibrium conditions as we shall now explain. Imagine that there is a
representative agent at each location x, with utility U(x, .) and an initial
endowment α(x) for the goods 1, . . . , N . Assume also that this agent has a
given (monetary) endowment w(x). In an exchange economy, where the agent
located at y can trade with agents located at any location x, an equilibrium
for the monetary endowment w is a system of prices y 7→ p(y) together with
a final endowment y 7→ β(y) of the goods, satisfying:

• There is free-mobility of trade: Given the price, system p, and a
location x, agents located at x exporting one unit of good i to location
y, get a profit pi(y)− ci(x, y), so that their total profit is

π(x) · α(x) =
N∑
i=1

πi(x)αi(x), πi(x) = max
y∈Y
{pi(y)− ci(x, y)} = −pcii (x),

• Consumers maximize utility: Agents located at y maximize their
utility U(y, β) subject to their budget constraint that expenditure p(y)·
β is smaller than their total revenue which is w(y) augmented by their
export profit π(y) · α(y), i.e. β(y) should solve

max{U(y, β) : p(y) · β ≤ π(y) · α(y) + w(y)}

• Markets clear: which means that for every i, one can find a plan
γi (γi(A × B) represents the quantity of good i transported from a
location in A to a location in B), such that γi ∈ Π(αim,βim) (i.e.
demand and supply match) and πi(x) = pi(y)− ci(x, y) for every (x, y)
in the support of γi (which means that this plan is consistent with
free-mobility of trade).

We then straighforwardly deduce from the optimality conditions (4.4)-
(4.6), a sort of second welfare theorem with transport costs

Theorem 4.1. Let ϕ and β solves (3.15) and (2.7) respectively. Define then

pi := ϕi, πi := −pcii , w := p · β − π · α

then (β, p) is an equilibrium with monetary endowment w.

14



5 Algorithm and simulations

In this final section, we describe the entropic approximation of (3.15) and
its dual (2.7). Since the influential paper of Cuturi [4], entropic optimal
transport has become a popular and efficient tool for computational optimal
transport thanks to Sinkhorn’s celebrated scaling algorithm, and we refer to
[10] for a comprehensive exposition. The algorithm detailed in the next para-
graph is based on a variant of the Sinkhorn algorithm introduced by Peyré
[9] in the context of Wasserstein gradient flows. We finally give numerical
results in the one-dimensional case and in the case of a network of cities.

5.1 An entropic approximation algorithm

From now on, we assume that X is finite, take the counting measure m as
reference measure on X, and denote by αi(x) > 0 the inital endowment of
location x ∈ X in the good i ∈ {1, . . . , N}. Problem (3.15) thus takes the
form:

inf
ϕ∈RX×N

∑
y∈X

V (y, ϕ(y)) +
N∑
i=1

∑
x∈X

αi(x) max
y∈X
{ϕi(y)− ci(x, y)}. (5.1)

Given a regularization parameter ε > 0, we consider the smooth approxima-
tion of (5.1) where maxima are replaced by soft maxima:

inf
ϕ∈RX×N

∑
y∈X

V (y, ϕ(y)) + ε
N∑
i=1

∑
x∈X

αi(x) log
(∑
y∈X

e
ϕi(y)−ci(x,y)

ε

)
. (5.2)

Now, let us observe that (5.2) can be conveniently reformulated by consider-
ing the convex function

Φ(ϕ, ψ) :=
∑
y∈X

V (y, ϕ(y))−
N∑
i=1

∑
x∈X

αi(x)ψi(x)+ε

N∑
i=1

∑
(x,y)∈X2

e
ψi(x)+ϕi(y)−ci(x,y)

ε

for (ψ, ϕ) ∈ RX×N×RX×N . Indeed, for fixed ϕ, the minimizer of ψ 7→ Φ(ϕ, ψ)
is explicitly given by

ψi(x) = ε log(αi(x))− ε log
(∑
y∈X

e
ϕi(y)−ci(x,y)

ε

)
(5.3)

so replacing in Φ, we get

inf
ψ

Φ(ϕ, ψ) = C +
∑
y∈X

V (y, ϕ(y)) + ε
N∑
i=1

∑
x∈X

αi(x) log
(∑
y∈X

e
ϕi(y)−ci(x,y)

ε

)
15



where C is the constant

C := ε

N∑
i=1

∑
x∈X

αi(x)(1− log(αi(x))).

Optimality system in primal and dual form. The optimality condi-
tion for (5.2) (which is the minimization of the sum of a convex lsc function
with a smooth convex function) writes:

− β(y) ∈ ∂V (y, ϕ(y)), ∀y ∈ X (5.4)

where β(y) = (β1(y), . . . , βN(y)) is given by

βi(y) =
∑
x∈X

αi(x)
e
ϕi(y)−ci(x,y)

ε∑
z∈X e

ϕi(z)−ci(x,z)
ε

. (5.5)

Defining

γi(x, y) := αi(x)
e
ϕi(y)−ci(x,y)

ε∑
z∈X e

ϕi(z)−ci(x,z)
ε

we thus have γi ∈ Π(αi, βi) and γi solves the entropic optimal transport
problem

T εci(αi, βi) := inf
γ∈Π(αi,βi)

∑
(x,y)∈X2

(ci(x, y) + ε log(γ(x, y))γ(x, y).

It is then easy to check that (5.4)-(5.5) is equivalent to the fact that β solves
the dual of (5.2):

sup
β∈RX×N

+

∑
y∈X

U(y, β(y))−
N∑
i=1

T εci(αi, βi), (5.6)

which is the entropic regularization of (2.7) with regularization parameter ε.

Coordinate descent/Sinkhorn. We can find the (regularized) prices
ϕ by solving (5.2) and then the optimal quantities β by using (5.5). As noted
above, (5.2) is equivalent to

inf
(ψ,ϕ)∈RX×N×RX×N

Φ(ϕ, ψ) (5.7)

which can be solved by coordinate descent as follows. Starting from (ψ0, ϕ0),
we recursively compute (ψk+1, ϕk+1) by:

ψk+1 = argminψ∈RX×N Φ(ϕk, ψ)
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which, using (5.3), gives totally explicit Sinkhorn-like updates:

ψk+1
i (x) = ε log(αi(x))− ε log

(∑
y∈X

e
ϕki (y)−ci(x,y)

ε

)
(5.8)

for i = 1, . . . , N and every x ∈ X. Then, we update the prices by:

ϕk+1
1 = argminϕ1∈RN Φ(ϕ1, ϕ

k
2, . . . ϕ

k
N , ψ

k+1)

which is the same as solving a one-dimensional strictly convex minimization
problem for each y ∈ X:

ϕk+1
1 (y) = argmint V (y, t, ϕk2(y), . . . , ϕkN(y)) + εe

t
ε

∑
x∈X

e
ψk+1
1 (x)−c1(x,y)

ε . (5.9)

This boils down to a strictly monotone equation (if V is differentiable, see
the Cobb-Douglas case below) or inclusion (if V is nonsmooth) in t which
can be solved efficiently by dichotomy for instance. The next price updates
are performed similarly by iteratively solving for, i = 2, . . . , N − 1 and every
y ∈ X:

ϕk+1
i (y) = argmint

{
V (y, ϕk+1

1 (y), . . . , ϕk+1
i−1 (y), t, ϕki+1(y), . . . , ϕkN(y))

+ εe
t
ε

∑
x∈X

e
ψk+1
i

(x)−ci(x,y)
ε

}
(5.10)

and for i = N

ϕk+1
N (y) = argmint

{
V (y, ϕk+1

1 (y), . . . , ϕk+1
N−1(y), t)

+ εe
t
ε

∑
x∈X

e
ψk+1
N

(x)−cN (x,y)

ε

}
.

(5.11)

The Cobb-Douglas case. If we further specify the utility to be of
Cobb-Douglas form2 :

U(β) =
N∏
i=1

βaii , ∀β ∈ RN
+ , ai > 0, a :=

N∑
i=1

ai < 1,

2for simplicity, we take U independent of the location but there is no extra difficulty
in having a dependence in y in a multiplicative prefactor or even in the exponents ai.
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then a direct computation gives

V (ϕ) = (1− a)

∏N
i=1 a

ai
1−a
i∏N

i=1 ϕ
ai

1−a
i

. (5.12)

Hence, each minimization step as (5.10) amounts, for some parameter A > 0
and exponent b, to finding the root t of the strictly monotone equation

ettb = A

which can be solved efficiently with a few steps of a dichotomy method. We
can also notice that since V is smooth and locally strongly convex on its
domain, the linear convergence of the coordinate scheme described above is
guaranteed by the results of Beck and Tetruashvili [2].

5.2 Numerical results

We now present some simulations using the entropic approximation algorithm
described in the previous paragraph.

5.2.1 One-dimensional experiments

We first consider the one dimensional case X = [0, 1] (suitably discretized),
assume there are twoo goods and that the utility is a Cobb-Douglas function
with parameters a1 and a2. As for the transport cost, we take a power of the
distance:

Cλ,p(x, y) = λ
|x− y|p

p
,∀(x, y) ∈ [0, 1]2.

When λ is large, transport is costly and β1, β2 tend to be close to the initial
distributions α1 and α2. On the contrary, when λ is small, the utility term
dominates and β1 and β2 tend to be constant.

In our first three simulations, α1 and α2 are gaussians of expected values
respectively µ1 = 0.25 and µ2 = 0.75 and standard deviations σ1 = σ2 = 0.2,
(a1, a2) = (0.49, 0.49) and ε = 0.01. The three simulations correspond to
different exponents p for the cost: a concave cost with p = 0.3 (Figure 1),
the linear cost p = 1 (Figure 2) and the quadratic cost p = 2 (Figure 3). In
the first row, α appears in light grey and β in dark grey, the prices (ϕ1, ϕ2)
are plotted in the second row. The third row represents the convergence of
the algorithm: we plot the decay of the functional Φ and the evolution of the
error ||∂V (ϕ(·)) +β(·)||2 for the first order necessary and sufficient condition
(5.4).
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The most striking phenomenon shown by these simulations is the emer-
gence of extra modes in the final distributions whereas the initial distributions
are single peaked. This phenomenon seems to be related to the concavity of
the transport cost. In the concave case of Figure 1, β exhibits three local
maxima, the linear case of Figure 2 exhibits two modes and in the quadratic
case of case of Figure 3, initial and final distributions roughly have the same
unimodal shape.

In order to further explore numerically the impact of the various param-
eters on the structure of the Pareto optimum, we present in Figure 4 and
Figure 5, the case of mixture of three gaussians for α1 and of two gaussians
for α2 for different values of a1 and a2 (in Figure 4, a1 + a2 is close to 1 and
in Figure 5, a1 + a2 = 0.5).

5.2.2 A network model

Our next application concerns a connected network of French cities. The
nodes of this network (see Figure 9) are the nine French cities: Brest, Lille,
Lyon, Marseille, Nantes, Paris, Rennes, St-Malo and Strasbourg. The cost
between two neighbouring cities is given by the distance as the crow flies 3

and more generally the cost between two cities is given by the shortest path
distance between them. To take into account population differences between
these cities, we have weighted the Cobb-Douglas utility by a weight w(x) for
city x:

City B
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w (thousands) 139 518 868 2,175 285 217 233 46 314

This leads to the weighted utility

U(x, β1, β2, β3) = w(x)βa11 (x)βa22 (x)βa33 (x),

and the corresponding dual term (see (3.12)):

V (x, ϕ) = w(x)
1

1−a

∏3
i=1 a

ai
1−a
i∏3

i=1 ϕ
ai

1−a
i

with a = a1 + a2 + a3 < 1. In our examples, we have taken (a1, a2, a3) =
(0.4, 0.1, 0.2). In Figures 6 to 9, we have represented the initial and final

3given by the website https://www.coordonnees-gps.fr/distance.
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distributions as well as the optimal transport plans between the cities. Note
that the larger ε, the stronger the diffusion effect in the transport plan, which
explains why we see more connections in Figure 6 and 7 (large diffusion with
ε = 0.1) than in Figure 8 and 9 (ε = 0.01). We also give the prices of the
goods in the different cities and analyze the convergence of the algorithm
both in terms of the decay of the objective function Φ and in the residuals
for the optimality condition.
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Figure 1: Gaussian distributions with concave cost
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Figure 2: Gaussian distributions with homogeneous cost
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Figure 3: Gaussian distributions with convex cost
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Figure 4: Another example with a1 + a2 close to 1
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Figure 5: Another example with a1 + a2 far from 1
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Figure 6: French network with ε = 0.1
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Figure 7: French network with ε = 0.1
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Figure 8: French network with ε = 0.01
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Figure 9: French network with ε = 0.01
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