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Abstract 

In this study, a probabilistic model based on Monte-Carlo theory is applied to predict the fatigue 
behavior of cast aluminum alloys. The objective of the proposed approach is to investigate the effect 
of porosity (i.e. the defect size distribution and spatial density) on the fatigue strength and its 
associated scatter for uniaxial fatigue loads with the load ratio R=0.1. The proposed model is applied 
to two cast aluminum alloys with very different defect characteristics. The results for these two alloys 
confirm that the model can be used to predict the average fatigue strength with a relative error less 
than 5%. It also accurately reproduces the experimentally observed trends concerning the scatter in 
fatigue strength. The scatter is underestimated but is of the same order of magnitude as the 
experimental values. It is believed that this is because the proposed model considers that the porosity 
is the only source of scatter. It is demonstrated that the model is well adapted for the prediction of the 
volume or scale effect in fatigue. This approach can also be used to estimate the Representative 
Volume Element in Fatigue for cast aluminum alloys. 

Keywords: High cycle fatigue, Cast aluminum alloys, Probabilistic model, Representative Volume 
Element (RVE), Size effect in fatigue, Highly stressed volume, Scatter in fatigue strength, Casting 
defect population 

1. Introduction  

Many experimental studies have highlighted the dependence of the fatigue strength on the size of the 
tested sample (Kloos et al. 1981) and the presence of a stress gradient (Papadopoulos and Panoskaltsis 
1996). The size effect corresponds to the decrease in the fatigue strength observed when the specimen 
size is increased. It is generally explained by an increase in the probability of encountering larger 
defects in larger loaded volumes, which leads to a lower fatigue strength. Other authors have shown 
that the presence of a stress gradient has a beneficial effect on the fatigue resistance by comparing the 
results of different loading conditions with and without stress gradients (Morel and Palin-luc 2002; 
Gaenser 2008).  

(Kuguel 1961) was the first to introduce the notion of a Highly Stressed Volume (HSV) which can be 
used to conjointly analyze both the stress gradient and the size effects. Since then, the HSV approach 
has been commonly used for this purpose by many authors (Kuguel 1961; Sonsino and Fischer 2005; 
Morel and Palin-luc 2002; Yang Ai et al. 2019). For any given geometry, the Highly Stressed Volume 
is selected as the regions subjected to more than n% of the maximum stress. This percentage is 
assumed to be 95% by (Kuguel 1961), 90% by (Sonsino and Fischer 2005) and 80% by El Khoukhi in 
the present work and in previous publications (El Khoukhi et al. 2019). It has been demonstrated that 
this approach yields accurate predictions for the fatigue behavior of both the notched and smooth 
specimens (Y. Ai et al. 2019; Yang Ai et al. 2019; Zhu et al. 2018).  

Experimental results indicate that, in terms of the local stress at a notch-tip (i.e. the hotspot stress), a 
notched specimen can endure higher stresses in comparison with smooth specimens due to the smaller 
Highly Stressed Volume (Sun and Song 2018). Furthermore, other experimental works have shown 
that the fatigue strength does not decrease indefinitely as the Highly Stressed Volume increases. This 
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indicates the presence of a Representative Volume Element (RVE) in fatigue above which the fatigue 
strength is constant and below which a volume effect is observed.  

In addition, a great deal of experimental work has shown that cast aluminum alloys have a high degree 
of scatter associated with their fatigue strength (El Khoukhi et al. 2018; Romano et al. 2019; El 
Khoukhi et al. 2019). It is generally accepted that the important parameters controlling the fatigue 
strength of a specimen are a combination of (a) the size of the largest defects in the HSV and (b) the 
distance between the largest defects and the free surface of the specimen (Murakami 1991 ; Murakami 
and Endo 1994). The variation of these parameters in individual specimens leads to a variation in the 
fatigue strengths of the batch. This explains the high scatter in the fatigue strength of this type of 
materials for which the fatigue strength is predominately controlled by defects. Undoubtedly, other 
factors also exist and influence the scatter in the fatigue strength (i.e. experimental error, surface 
roughness, residual stresses, heat treatment, microstructure etc.). However, it is proposed here that the 
dominate factors are related to the defect characteristics of the material. Furthermore, many works 
have shown that the scatter of the fatigue strength for the large samples is smaller than that for the 
smaller ones (El Khoukhi et al. 2019 ; Yi et al. 2007). 

From an industrial point of view, taking into account these two phenomena (the size effect and scatter) 
is crucial to the structural integrity assessment and reliability evaluation of engineering components.  

In order to gain insight into these phenomena, extensive experimental work is usually required. Many 
specimens with different sizes and shapes should be tested in order to investigate the decrease in 
fatigue strength versus the Fatigue Active Volume and to estimate the RVE. Also, in order to assess 
the scatter in the fatigue strength with a high level of confidence, more than 50 tests per batch is 
needed (Pollak 2005). Furthermore, the results obtained on the standard sized specimens should be re-
evaluated to make them applicable to real structures. Due to the time and cost of a full-scale testing 
program like this, the use of probabilistic models to predict the fatigue behavior has become more 
common in recent years. In general, deterministic analyses are considered insufficient. In most 
deterministic procedures (Devlukia et al. 1997), to ensure the integrity of components, the concept of a 
safety factor is normally used. However, these empirical coefficients do not explain the origin of the 
dispersion, which limit the optimization of the component of interest. Thus, probabilistic approaches 
are more useful and are capable of capturing the aforementioned features of the fatigue phenomenon. 
In addition, the relationship between small size specimens and full-scale components can be 
established easily by probabilistic modeling of the size effect.  

The Weibull Weakest-Link theory (Weibull 1939; Freudenthal and Gough 1946) is the tool most 
commonly used to interpret the statistical size effect, i.e. to describe how the probability of failure 
under a given stress depends on the size or volume of loaded material. The main shortcoming of 
Weibull’s original formulation is that fracture is assumed to occur from the largest flaw. However, 
experience shows that it is not systematically the largest flaw contained in the structure that leads to 
failure. A smaller flaw close to the surface can be sometimes more critical. 
 
In order to correct this shortcoming, a combination of the Weibull theory and the Highly Stressed 
Volume approach is usually used (Yang Ai et al. 2019). In this approach, only the active volume of the 
specimen is considered. The Weibull distribution supported by experimental data has been used for the 
statistical analysis of the fatigue strength and to investigate the statistical size effect by many authors. 
For example, (Shirani and Härkegård 2011) investigated the size effect on the fatigue strength of EN-
GJS-400-18-LT ductile casting irons and (Rafsanjani and Sørensen 2015) presented a probabilistic 
model for fatigue failure probability estimation. 
 
To summarize, the characteristics of the defect population (i.e. the defect size distribution and the 
spatial defect density) of the material are the keys factors controlling certain aspects of the fatigue 
behavior, in particular the size effect, the scatter and the size of the RVE.  
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From this postulate, a probabilistic model using a Monte-Carlo approach is proposed in this article to 
examine how specific changes to the nature of the porosity population, in particular the average pore 
size and the pore spatial density, affect the fatigue strength and its scatter. These two parameters are 
estimated by changing the “virtual” volume of the specimen in order to understand the size effect. The 
proposed model uses the HSV concept in combination with Monte-Carlo sampling and aims to:  

• Predict the sensitivity of two cast aluminum alloys to the size effect (with or without the 
presence of a stress gradient). 

• Provide an estimation of the RVE for both alloys. 
• Provide an estimation of the scatter in fatigue strength for both alloys. 

The current work is organized as follows: (i) a general description is given for the proposed 
probabilistic approach for fatigue failure analysis, followed by a description of each step of the 
modeling approach. (ii) The results of the model applied to two very different, but fictive defect 
populations are presented. The influence of the defect size distribution on the fatigue strength and its 
scatter is investigated. Then (iii) the influence of the defect spatial density is presented, and (iv) the 
model is applied to two cast aluminum alloys. The model is validated for these alloys via comparison 
with experimental data. Finally, (v) the approach is used to study the effect of the number of tests used 
in the experimental protocol on the accuracy of the estimated fatigue strength. 

2. Proposed probabilistic approach  

The global approach proposed to study the probabilistic fatigue behavior of cast aluminum alloys is 
presented in the flowchart shown in Figure 1. 

 
Figure 1 : Flow diagram for the proposed probabilistic approach showing the main phases used to 

predict the fatigue strength. 

The global approach is based on the Monte-Carlo method. Each step is explained in detail in the 
following section.  

2.1. Porosity characterization (Phase 1 and 2) 

In phases 1 and 2, the defect population in the material is characterized using X-Ray micro-
tomography. From the scanned volume, the defect size distribution and the location of individual 
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defects can be determined in 3D space. The defect size is then characterized in terms of the equivalent 

Murakami parameter √Area�� of the defect (Murakami 1991). The relationship between the pore 

volume obtained by tomography and its equivalent square root value of the projected area is given by 
(eq. 1). This relationship is obtained by assuming the pores have a spherical shape. 

         √�	
��
 = ��/� (
������

�
)�/�                                                    (eq. 1) 

where Vpore is the pore volume.  

This approximation makes it possible to compare the pore sizes obtained by the CT scans and those 
measured on the fatigue failure surfaces.  

Point process theory can be used to characterize the defect spatial distribution. The natural defect 
population can then be numerically reproduced to create synthetic materials. Greater details are given 
in a work under submission (El Khoukhi et al. 2020). 

2.2. Generation of numerical synthetic materials (Phase 3)  

In phase 3, synthetic materials that mimic key macroscale features of the defect population in terms of 
size and 3D spatial distribution are generated.  

The experimental defect size distribution can be approximated by fitting a standard statistical 
distribution, such as the normal, log-normal or Weibull distributions. The choice of the distribution 
and the identification of the most suitable parameters are discussed in the work under submission 
referenced as (El Khoukhi et al., 2020) and summarized in the following sections. This distribution is 
then used to generate the defect sizes for the synthetic materials.  

If the spatial distribution of the natural defects is unknown or presents a small degree of clustering, the 

Poisson process can be used to generate the 3D positions of the synthetic defects. In this work Point 

Process Theory has been used in order to characterize the spatial distribution of the natural defects 

present in the material (El Khoukhi et al. 2020). It has been shown that the natural defect populations 

do not present a high level of clustering. This is especially true for the largest defects which are the 

most likely to control the fatigue behavior. Hence, it is concluded that the Poisson Process is suitable 

to approximate the spatial distribution of the pores present in the investigated alloys. In this case, the 

density ρ that defines the number of pores per unit volume [mm-3] is important for the generation of 

the pores in the numerical samples and corresponds to the average number of pores per unit volume. 

The number of points in a sample volume follows a Poisson distribution (eq. 2) with the parameter 

ρ|V|, where |V| is the volume of the sample: 

                 ���( ) = !" =
(#|�|)%

&!

()|�|                                        (eq. 2) 

 
Therefore, when considering a numerical sample of volume V generated from a material with a pore 

density of ρ, the average number of pores Nt contained in the numerical sample is given by (eq. 3): 

�* = + ×                                                              (eq. 3) 

An example of a synthetic material is presented in Figure 5. 

2.3. Extreme value analyses (Phase 3 and 4)  

From phase 3 to phase 4, extreme value analyses are applied. This consists of extracting the most 
critical defect in the Fatigue Active Volume (FAV). The principle of sampling and the definition of 
FAV are presented in the following paragraphs. 

• Principle of sampling 
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In terms of fatigue behavior, experience shows that the most critical defect in a structure or specimen 
is usually the largest defect that exists close to the surface (Le et al. 2016; Iben Houria et al. 2015; 
Serrano-Munoz et al. 2017; Boromei et al. 2010; Mu et al. 2014; Rotella et al. 2017). To take this into 
account, only the subsurface volume that we called FAV should be considered. 

For the definition of the FAV of a sample, first we estimate the Highly Stressed Volume under at least 

80% of the maximal principal stress. Then, we take just the subsurface volume of thickness ‘t’ (Figure 

3 .d). The thickness ‘t’ of the subsurface layer is a parameter estimated from the defect population and 

it can be considered a material characteristic. The idea is to define ‘t’ so that the subsurface layer 

would be thick enough to include even the “largest” critical defect found in the defect population. It is 

therefore defined as the distance from the furthest point on a critical defect to the free surface observed 

on the fatigue failure surfaces of the tested samples. The parameter ‘t’ is made equal to the maximum 

‘Depth’ observed in the whole batch. More details on the definition of the FAV are given in (El 

Khoukhi et al. 2019). 

 
Figure 2:The definition of the ‘Depth’ of a critical defect.  

The use of FAV based on the concept of Highly Stressed Volume is interesting in order to take stress 
gradient effect into account and it is possible to treat both notched and smooth samples in the same 
manner. 

  

Figure 3: (a) Specimen fatigue failure surface for cast aluminum alloy (AlSi7Mg03 - T7), that has 
failed at Sa= 55 MPa for Nf=919402 cycles with a stress ratio R=0.1, (a) Macroscopic view, detailed 
view of (b) surface pore and (c) internal pore. The SEM observations clearly show that the smallest 

pore close to the surface is responsible for the fatigue failure, (d) representation of FAV in the smooth 
specimen. 

the “Fatigue Active Volume” (Figure 3 .d and Figure 4 .c). The relationship between them is given in 

(eq. 4).   

Fatigue Active Volume = πh(2;< = <>)                                         (eq. 4) 

In the case of presence of stress gradient such as the notched samples, the FAV is presented in Figure 
4. There are two possible cases: 
- for the case where the width of the V80% < t, the width of FAV is equal to ‘t’ (FAV > V80%) 

[Figure 4 .a]. 

h

t

2R

d)
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- for the case where the width of the V80% > t, the width of FAV is limit to ‘t’ (FAV < V80%) 
[Figure 4 .b]. 

 

 

 
Figure 4: definition of the Fatigue Active Volume (FAV) and the Highly Stressed Volume (V80%) in 
(a) case of sharp notched samples, (b) case of blunt notched samples, and (c) case of smooth samples.

  

From the extensive experimental work presented in (El Khoukhi et al. 2019), the thickness of 
subsurface layer for the studied alloys was defined as 0.5 mm for the alloy A (AlSi7Cu05Mg03 - T7) 
and 0.65 mm for the alloy B (AlSi7Mg03 - T7). These values will be used for the application of the 
model to these alloys.  

In the numerical study, the critical defect is defined as the largest defect contained in the FAV (see 
Figure 5). 

 
Figure 5: Schematic representation of a numerical sample and its critical defect (R=2.5 mm, 

h=10 mm) (a) is the projected view (plane X-Y) and (b) is the 3D representation. 

By repeating N times the generation of the numerical sample and extracting the critical defect in each 
iteration, a distribution of N critical defects can be obtained. In general, this distribution follows the 
lognormal probability function (El Khoukhi et al. 2019). Physically, the N repetitions correspond to 
the number of samples. The same distribution can be compared to the distribution of critical defects 
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established by measuring the size of critical defects from fractography analyses of real fatigue test 
specimens. 

 

• Relationship between the critical defects and the fatigue strength (phase 5) 

It is well known that the fatigue strength decreases when the size of the critical defect increases. This 
relationship is described in the Kitagawa-Takahashi diagram, shown schematically in Figure 6. The 
objective of phase 5 is to obtain the distribution of the fatigue strength from the distribution of the 
critical defects. In this article, the fatigue strength is defined as the stress amplitude that the material 
can withstand 2 millions cycles, with a stress ratio of 0.1, without fatigue failure. 

 
Figure 6: relationship between the critical defects and the fatigue strength 

The transformation from the distribution of the critical defects, obtained in phase 4, to the distribution 
of the fatigue strength can be done using an equation established from the experimental data shown in 
Figure 7 called the Kitagawa-Takahashi diagram. It presents the local fatigue strength as a function of 
the critical defect size measured on the fatigue failure surface. As discussed in (El Khoukhi et al. 
2019), the local fatigue strength (or the fatigue strength expressed in terms of the “hotspot” stress) is 
expressed as ?*@A, where @A is the nominal stress calculated by dividing the applied force by the net 
section of the notched specimens and ?* is the stress concentration factor. In addition, @A is 
determined at 2 million cycles, via interpolation using eq. 5, proposed by (Lanning et al., 2005) and 
estimated using the data obtained by the staircase method with a step of 5 MPa. The run-out specimens 
were retested until failure at higher load levels. 

@A(� = 2 × 10�DEDF
G) = @H(� I (@H = @H(�) ×
JK

>×�LM                (eq. 5) 

In eq. 5, @H(� is the stress amplitude value of the loading block prior to the block where failure occurs. 
@H is the stress level of the final block of cycles during which failure occurs, and �N is the number of 

cycles to failure in the final loading block. For the specimens that fail at the first stress level (@H) the 
existence of a fictive level (@H(�) is assumed. 

In references (Engelke and Esderts 2018; Lipp et al., 2013), it was shown that there is good correlation 
between the fatigue strength expressed as ?*@A and the highly stressed volume. It is important to note 
also that by defining the fatigue strength in terms of the “hotspot” stress (?*@A) it is simple to compare 
notched samples (Kt=1.68) and smooth samples (Kt=1). 
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Figure 7: Diagram of Kitagawa-Takahashi for R=0.1 see (El Khoukhi et al. 2019) 

When dealing with a new material, there are several ways to obtain the dependence of the fatigue 
strength to the defect size, such as the Murakami empirical approach (Murakami and Endo 1994) or 
the  El-Haddad equation (El Haddad et al. 1979). 

 

• Detailed description of the probabilistic approach for the case of cylindrical numerical 

specimens 

As previously mentioned, the numerical samples generated N times make it possible to establish a 
distribution of critical defects that could be compared to the experimental distribution of critical 
defects measured on the fatigue failure surfaces of real specimens. The Monte-Carlo procedure used 
for these simulations is explained and summarized in the flowchart in Figure 8. 

 
Figure 8: Flow chart for the probabilistic determination of critical defect and fatigue strength 

distributions. The algorithm was implemented in Matlab. 

In the flow chart shown in Figure 8, the first step (S0), which corresponds to ‘Phase 3’ in Figure 1, 
consists of defining the sample volume by fixing its radius ‘r’ and its height ‘h’. At the same time, the 

S4: Using the diagram of  Kitagawa-Takahashi, calculate the corresponding 

fatigue strength.

S0: Generation of  the 

sample volume ‘r’ and ‘h’

(radius and height)

i=0

N number of  repetition

Parameter t

S1: Generation of  the position of  defects in the sample using the 

Poisson Process.

S2: Associate to each position a random size defect picked from 

the defect size distribution identified from CT scans.

S3: Extract the largest defect included in the Fatigue Active Volume.

S5: Establish the distribution of  extreme defects and fatigue strength

NO

YES
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number of repetitions ‘N’ corresponding to the number of samples in the batch is defined. The 
parameter ‘i’ corresponds to the sample’s number.  

After defining the sample volume, the next step (S1) is to generate the defects within the volume. The 
3D defect positions are generated using the Poisson process. In step (S2), for each position, a defect 
size is randomly selected from the defect size distribution, which was identified from the CT scans. 
This corresponds to ‘Phase 2’ in Figure 1. Note that other “fictive” distributions could be used to 

study the effect of different parameters of the defect population, such as the average defect size and its 

standard deviation. Following the numerical generation of the sample, the most critical defect is 
extracted (S3). The critical defect is defined as the largest defect in the Fatigue Active Volume and 
shown in ‘Phase 3’ (Figure 1). 

After extraction of the critical defect, the Kitagawa-Takahashi diagram shown in ‘Phase 5’ of Figure 
1, is used to calculate the corresponding fatigue strength for the sample (S4).  

The preceding steps (S1 to S4) are repeated N times, which makes it possible to establish the critical 
defect distribution (see ‘Phase 4’ in Figure 1) and the fatigue strength distribution (see ‘Phase 6’ in 
Figure 1) corresponding to the sample volume. This is step S5.  

Finally, descriptive statistical analyses are applied to investigate the evolution of the average and the 
standard deviation of the resulting distributions.  

To summarize, to set-up the probabilistic modeling algorithm, the following parameters must be 
defined:  

- The volume of the sample, via its radius r (or diameter) and height h. 
- the definition of the Fatigue Active Volume via the ‘t’ thickness parameter. 
- The pore spatial density ρ. This parameter is needed for the generation of the 3D positions of the 

pores using the Poisson process.  
- The defect size distribution parameters (for example, the location, shape and scale parameters of 

the Weibull distribution) 
- The number of repetitions N (number of samples in the batch) with the same volume. 

Many phenomena can be investigated using this algorithm. 
 
� The volume effect in fatigue: this phenomenon can be investigated by changing the volume of the 

numerical samples (either the radius, the height or both) and fixing the other parameters ρ, N and 
the parameters of the defect population. The resulting distributions can then be compared in terms 
of their mean values and their standard deviations. 

� The effect of the defect size distribution on the fatigue strength: this can be examined by 
changing the parameters of the defect size distribution and fixing the other parameters (N, ρ and 
the volume of the samples). 

� The effect of the spatial density of the pores on the fatigue strength by changing the parameter ρ 
and fixing the other parameters. 

� The effect of the number of the samples (N) on the estimation of the fatigue strength. 

� It is also possible to study different combinations of the aforementioned aspects.   

In this paper, the modeling approach is firstly used to study the effect of the average defect size and 
the pore spatial density on the size effect and the scatter. The results are presented and discussed in the 
following paragraphs. 
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3. Sensitivity analyses: Effect of defect size distribution, pore density and number of samples 

on the fatigue strength predictions 

3.1. Effect of the defect size distribution on the size effect and the scatter 

As aforementioned, the first application of the model aims to simulate the effect of the average defect 
size on the size effect and the scatter of the fatigue strength. For this, two fictive defect populations 
that are very different in terms of their average defect size are used. The same defect density ‘ρ‘ is 
used for both populations. In fact, ‘Population 1’ contains smaller defects when compared to 
‘Population 2’ [Figure 9]. The parameters of the theoretical defect size distributions are summarized in 
Table 1.  

Table 1 : Characteristics of the used fictitious populations of defects 

 Lognormal distribution 

µ σ 

Population 1 3 0.4 

Population 2 5 0.3 
where µ is the mean and σ is the standard deviation of the lognormal distribution. 

These defect size distributions are visually presented in Figure 9. 

 
Figure 9 : The two fictive defect size populations investigated. 

Using these two defect size populations, different sample volumes were generated. The sample height 
is held constant and the radius varies (see example in Figure 10). The parameters used for these 
simulation are : 

- ρ =7 mm-3 
- h= 20 mm 
- r: radius changes from 1 to 9 mm 
- N=80 (numerical samples for each volume) 
- The Fatigue Active Volume parameter is t=0.5 mm. 
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Figure 10 : Examples of numerical samples: (a) with population 1 and (b) with population 2. 

The evolution of the critical defect size and the fatigue strength distributions as a function of the radius 
of the numerical samples are presented in Figure 11 and Figure 13 for both populations. The 
distributions are presented on lognormal probability plot. The comparison between the two 
populations is presented later. 

 
Figure 11: The critical defect size distributions for different sample radii for (a) Population 1 and (b) 

Population 2. 
Figure 11 shows the evolution of the critical defect size distributions for different sample radii for the 
two populations. The results clearly show that the average size of the critical defect distributions 
increases when the sample radius is increased for both populations. This increase reaches a certain 
level where it stabilizes to a constant value. This stabilization indicates the presence of an RVE. The 
same conclusions can be extracted from Figure 12.  

  
Figure 12: The evolution of the critical defect size as a function of the sample radius for (a) Population 
1 and (b) Population 2. On each box, the central mark in red indicates the median, and the bottom and 
top edges of the box indicate the 25th and 75th percentiles, respectively, and the outliers are plotted 

individually using the '+' symbol. 
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Figure 13 shows the evolution of the fatigue strength distributions for different sample radii for both 
populations. It can be observed that by increasing the sample volume (or radius), the fatigue strength 
distribution decreases. This is the exact definition of the size effect. Furthermore, the decrease in the 
fatigue strength stabilizes at a certain volume that can be defined by the RVE. It should be noted that 
the saturation in the average critical defect size may occur at a different volume compared to the 
volume for which the saturation in terms of the fatigue strength occurs. This is because the 
relationship between the critical defect size and the fatigue strength is not linear.  

 
Figure 13: The evolution of the fatigue strength distributions for different sample radii for (a) 

Population 1 and (b) Population 2. 

Besides the effect of the sample volume (or radius) on the fatigue strength, the Figure 14 gives insight 
into the change in the fatigue strength scatter when the sample volume (or radius is varied). It can be 
seen that the scatter is higher when the volume is small. Further analyses of the scatter are detailed in 
the following section.   

 
Figure 14: The evolution of fatigue strength as a function of the radius of the sample for (a) Population 

1 and (b) Population 2. 

Role of defect size population on the volume effect 

As already stated, the main objective of this section of the article is to illustrate the effect of the defect 
population characteristics, in particular its average value, on the volume effect and the resulting scatter 
in the fatigue strength. Figure 15 shows the evolution of the average fatigue strength value as a 
function of the Fatigue Active Volume of the numerical samples. In the following sections, we have 
chosen to represent the results in terms of Fatigue Active volume as defined in Figure 3.  
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Figure 15: The evolution of fatigue strength as a function of the FAV for both populations. 

 

• Firstly, both populations follow the same trend whereby the fatigue strength decreases with the 

sample volume. 

• Secondly, the fatigue strength of the synthetic material with the defect population characterized by 

smaller defects (Population 1) is higher than the material where the defects are larger (Population 

2).  

• Thirdly, the decrease in the fatigue strength for Population 1 is more pronounced than the decrease 

for Population 2; this difference leads to the two materials having different volume effects. In fact, 

Population 1 shows a more pronounced volume effect compared to the Population 2 with the larger 

defects. 

• Finally, for both populations the fatigue strength decreases and then tends to a stabilized value. 

This stabilization indicates the existence of a RVE for both materials. It can be seen that the RVE 

for Population 2 (with large defects) is smaller than the RVE for Population1 (with smaller 

defects). This can be explained by the fact that for Population 2 with larger defects, the 

transformation to the fatigue strength using the Kitagawa-Takahashi diagram occurs at the tail of 

the curve where the curve is relatively flat, leading to only a lower variation in the fatigue strength.  

 

 

Role of the defect size population on the scatter of the fatigue strength 

 
Figure 16: The standard deviation of the fatigue strength as a function of the Fatigue Active Volume 

It is well known that fatigue data in the HCF regime is characterized by a high degree of scatter. Even 
if there are many attributes that contribute to this variability in the fatigue behavior, for cast aluminum 
alloys porosity is the principal factor affecting the fatigue scatter. In the present work, it is assumed 
that porosity is the only source of scatter in the fatigue strength.  
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Figure 16 presents the effect of the FAV on the scatter in the fatigue strength. From the results of the 

model, it can be noted that both populations show the same trend in the standard deviation of the 

fatigue strength. Secondly, the scatter in the fatigue strength is high for the smaller volumes and 

decreases with increasing sample volume. This result has already been demonstrated experimentally 

(El Khoukhi et al. 2019). Thirdly, the results show that Population 1 with smaller defects have higher 

scatter compared to Population 2 with larger defects. This result is in agreement with the experimental 

results obtained in by (El Khoukhi et al. 2019).  

These results have been confirmed experimentally (El Khoukhi et al. 2019), for two different alloys 
with two different populations of defects. The results obtained on the studied alloys have been used for 
the validation of the proposed approach. The results of the validation will be presented and discussed 
in the section 4. However, firstly the effect of the pore spatial density on the fatigue behavior is 
investigated.  

3.2. Effect of the pore spatial density on the fatigue behavior 

The effect of the pore spatial density (Figure 17) on the fatigue strength is presented in this section. 
For this investigation, the following inputs to the probabilistic model must be defined:  

 
Figure 17: An example of three numerical samples with the same volume (FAV = 71 mm3) but with 

different pore spatial densities. 

- A single defect size distribution is used: lognormal distribution with µ=3 and σ=0.4  

- The same spatial distribution is generated using the Poisson process 

- 12 pore spatial densities (ρ) is used from 1 to 12 mm-3 

- 6 sample radii are used (R= 2000, 2500, 3000, 3100, 3300, 3500 [µm]) 

- For each calculation point, as a function of FAV and ρ (i.e. the red dots in Figure 18), the 
number of samples used to obtain the stabilization of the coefficient of variation is N=50 000. 

Therefore, for 12 × 6 =72 calculation points, a total of 3.6 x105 samples were generated. 

The effect of the pore spatial density (ρ) on the critical defect size is displayed in Figure 18. A higher 

pore density results in an increase of the average critical pore size (Figure 18. a) and leads to a 

decrease in the scatter of the critical pore size (Figure 18. b), for a fixed sample volume. The same 

behavior is observed in terms of the effect of the sample volume on the critical defect size distribution. 

Note that the scatter is presented in terms of the coefficient of variation, which is defined as the 

standard deviation divided by the average value. Physically, the effect of pore density on the critical 

defect size can be interpreted as when the overall number of pores in a given volume (sample size) 

increases, the size of the average critical defect increases. This is simply because many more large 

pores are available for crack initiation within the selected volume. Of course, when more large pores 
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are available for crack initiation, one would expect both the average fatigue strength and the fatigue 

strength scatter to be reduced. This is demonstrated in Figure 19. 

 

Figure 18: (a) The critical defect size as a function of the pore spatial density and the FAV. The red 
dots show the calculated values from which the surface is interpolated. (b) The coefficient of variation 
(standard deviation/mean) of the critical defects as a function of the pore spatial density and the FAV. 

 

Figure 19: (a) The fatigue strength as a function of the pore spatial density and the FAV and (b) its 
coefficient of variation (standard deviation/mean).  

Hence, the influence of the sample volume on the fatigue strength follows a similar trend to that of the 
pore density (ρ). The fatigue strength and its standard deviation are predicted to decrease with 
increasing specimen volume or pore density, and they tend towards almost constant values. This 
stabilization is predicted to happen at the RVE. From these results and the previous conclusions, it can 
be seen that the size of the RVE decreases: 

- with increasing pore density (ρ). 
- with an increasing average value of the defect size contained in the material. 

3.3. Effect of the number of samples on the fatigue strength prediction 

This approach can be extended to examine how changing certain parameters will affect the estimation 
of the fatigue strength. In the following, a sensitivity analysis of the effect of the number of samples 
on the estimated fatigue strength is presented. For this analysis, a constant sample volume is used, 
along with the characteristics of defect size distribution corresponding to an experimental alloy that we 
named alloy B and which we will present in detail in the following section. The only parameter that is 
varied is the number of samples N. The used parameters are the following: 

- The defect size distribution for Alloy B: Generalized Extreme Value (k=0.35, σ=4.4, µ =22). 

- The same spatial distribution is generated using the Poisson process 

- One pore density value ρ=7 mm-3 is used 

- One sample geometry is used (r=2.5 mm, h=12 mm) 

- The number of samples N is varied (N= 5, 10, 20, 30, 40, 50, 60).  
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Figure 20: Geometry of the sample BV1 (r=2.5 mm, h=12 mm and ρ = 7 mm-3)  

Figure 21: (a) Predicted fatigue strength distributions for N=5 samples, (b) for N=20, and (c) for 

N=50.  The model has been repeated 5 times in each figure.  

The Figure 21 shows the results for the analyses where the number of samples are: N=5, N=20 and 

N=50. The data is shown in the form of lognormal probability plots of the estimated fatigue strength 

distributions. In each figure, the analyses have been repeated five times for the same number of 

samples. The difference between the curves is due to the uncertainty in the estimation of the fatigue 

strength. This uncertainty depends on the number of the samples generated. We observe that when 

only 5 samples are used the results are unstable and five distinctly different distributions for the 

fatigue strength are obtained. However, as the number of samples that are generated is increased the 

stability increases and the distributions obtained via repeating the analysis 5 times converge.  
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Figure 22: (a) Uncertainty in the estimation of the fatigue strength decreases as the number of samples 

increases, and (b) evaluation of the standard deviation of the fatigue strength. Here, the model has 
been repeated 100 iterations for each batch. 

The evolution of the uncertainty as a function of number of samples is presented in Figure 22. It can 
be clearly seen that in order to obtain high precision in the estimation of the fatigue strength and its 
scatter a higher number of samples is necessary. For this sample volume and pore density (r=2.5 mm, 
h=12 mm and ρ = 7 mm-3), with 100 iterations, stabilization is reached within N=50 samples (Figure 
22 .b). It should be noted that the stabilized value of N depends on the sample volume and the pore 
density ρ. That means, if the numerical sample has a larger size, the stabilization will be reached with 
a lower number of samples N. In the same way, if the pore density ρ is higher in the numerical sample, 
the stabilization will be reached with a lower number of samples N. These results will be exploited to 
justify the choices (i.e. “N=50” and “number of iterations=100”) made in the simulations presented in 
section 4 to compare the numerical and experimental results for the alloys being investigated.  

 

4. Application to two cast aluminum alloys 

In this section, the proposed model will be applied to two cast aluminum-silicon alloys that have been 
extensively studied from an experimental point of view (El Khoukhi et al. 2019; 2018). The objective 
is to investigate and validate the ability of the model to predict, for both alloys: 

- the fatigue strength  

- the scatter associated with the fatigue strength 

- the sensitivity to size or volume effect (and implicitly stress gradient effect) 

- size of the RVE in fatigue  

4.1. Materials 

To evaluate the capacity of the proposed approach to predict the influence of casting defects on the 

fatigue behavior, two primary cast aluminum alloys, referred to as alloys A [AlSi7Cu05Mg03-T7] and 

B [AlSi7Mg03-T7], have been used. These alloys were fabricated by different casting processes (alloy 

A: gravity die-casting and Alloy B: lost foam casting), and subject to the T7 heat treatment. These 

processes result in different porosity populations (i.e. pore density, defect size and spatial 

distribution…) and different mechanical properties. Previous work concerning the  characterization of 

these materials has been done by (Le et al. 2016). Table 2, Table 3 and Table 4 summarize the 

mechanical and microstructural properties of these alloys. 

Table 2: Chemical composition of the alloy A [AlSi7Cu0.5Mg0.3] 
Element Si Cu Mg Zn Mn Ni Ti Pb Fe Sn 

% in weight 6,5-7,5 0,4-0,6 0,28-0,4 <0,10 <0,10 <0,05 0,08-0,2 <0,05 <0,20 <0,05 

(a) (b)



18 

 

Table 3: Chemical composition of the alloy B [AlSi7Mg0.3] 
Element Si Cu Mg Zn Mn Ni Ti Pb Fe Sn 

% in weight 6,5-7,5 <0,10 0,28-0,4 <0,10 <0,10 <0,05 0,08-0,2 <0,05 <0,20 <0,05 

 

Table 4 : Properties of the investigated cast Al-Si alloys 
Alloy A Alloy B 

Designation AlSi7Cu05Mg03 - T7 AlSi7Mg03 - T7 

Casting Process Gravity Die Lost Foam 

Heat treatment T7 T7 

SDAS (µm) 42±10 77±19 

Young Modulus E (GPa) 77±6  68±5 

Yield stress @`L.>% (MPa) 260±2 240±5 

Ultimate tensile strength @c (MPa)  304±4 251±6 

Elongation A (%) 4.7±1.2 0.8±0.1 

Void fraction (%) 0.03 0.28 

 

An extensive experimental campaign involving 220 uniaxial fatigue tests with a load ratio of R=0.1, 
reported in (El Khoukhi et al. 2019; 2018)  has highlighted the effect of casting defects on: (i) the size 
or volume effect, (ii) the scatter in the fatigue strength and (iii) and the RVE for these alloys. The 
experimental results are used here in order to validate the accuracy of the proposed probabilistic 
approach. As previously mentioned, certain material and model parameters must be provided so that 
the model can predict the fatigue behavior of the cast aluminum alloys. These parameters are: 

- The defect size distribution in terms of √�	
��
 

- The defect spatial distribution: characterization of the defect populations in these materials 
was presented in (El Khoukhi et al. 2020).  

- The pore density ρ of each material.  
- The specimen geometries. 
- The number of the numerical samples generated (N) 

It should be noted that the Kitagawa-Takahashi diagram used for these materials is the same diagram 
presented above in Figure 7. 

Defect size distribution  

Figure 23 shows the cumulative probability function of the defect size expressed in terms of √�	
��
 

for the studied alloys. The data are obtained from 9 CT X-Rays scans with a total volume of V = 
2.2×103 mm3 for Alloy B and 4 CT X-Rays scans with total volume of V = 0.9×103 mm3 for Alloy A. 
It can be seen that the maximum defect size for Alloy A is 285 µm and for Alloy B it is 1492 µm. 
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Figure 23: (a) Cumulative probability functions of the defect size distributions for (a) Alloy A and (b) 

Alloy B in terms of  √�	
��
. (b) Probability density functions of the defect size distributions for 

Alloy A. The red curve is determined experimentally, and the green curve is its fit using the GEV 

distribution, and the blue one is for the alloy B. 

In the previous work (El Khoukhi et al. 2020), we showed that the Generalized Extreme Value (GEV) 
distribution gives the highest value of the Ln likelihood. Hence, the GEV gives the best-fit for the 
defect size distribution for both alloys. The corresponding parameters are summarized in Table 6.  

Spatial distribution 

As discussed in (El Khoukhi et al. 2020), the Poison point process can be used to describe the spatial 
distribution of the defects in both alloys. The experimental analyses from the CT scans of the studied 
alloys indicate that the pore density for the Alloy A is ρ=13 mm-3 and for the Alloy B is ρ=7 mm-3. 
These values will be used for the generation of the numerical samples. The total number of pores Nt 
contained in the generated numerical samples is given by (eq. 3). 

Sample Geometries  

In previous experimental work discussed in (El Khoukhi et al. 2019), different fatigue specimen 

geometries were defined, corresponding to different Fatigue Active Volumes. These are shown in 

Figure 24 and are referred to as: “V1-Small Volume”, “V2-Reference Volume”, “V3-Large Volume” 

and “VN2-Notched specimen”. In order to compare the results of the model with the experimental 

results, the same sample volumes are generated numerically with similar defect populations [Figure 

24, Figure 25, Figure 26, Figure 27 and Figure 28]. 

 
Figure 24: Sample geometries investigated experimentally (unit is mm) (El Khoukhi et al. 2019) 
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The following figures show examples of the generated numerical samples. 

 

Figure 25: An example of a numerical sample for (a, c) Alloy A, Geometry “VN2-Notched specimen”, 
Label “AVN2”, and (b, d) Alloy B, Geometry “VN2-Notched specimen”, label “BVN2”. Dimensions 

are in µm. 

For the sake of simplicity, for the notched samples, we consider the numerical volume to be 
cylindrical. In addition, the fatigue strength is expressed in terms of the local stress at the notch-tip. 

 
Figure 26: An example of a numerical sample for (a, c) Alloy A, Geometry “V1-Small Volume”, 

Label “AV1”, and (b, d) Alloy B, Geometry “V1-Small Volume, Label “BV1”. Dimensions in µm. 

Note that for the sake of simplicity the Geometry “V1-Small Volume”, which experimentally has an 
hour-glass shaped, is considered to have a cylindrical shape for the numerical samples.  
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Figure 27: An example of a numerical sample for (a, c) Alloy A, Geometry “V2-Reference Volume”, 
Label “AV2” and (b, d) Alloy B, Geometry “V2-Reference Volume”, Label “BV2” (units in µm) 

The third specimen geometry is “V3-Large Volume”. This geometry was only tested experimentally 
for Alloy A, hence only numerical samples for Alloy A were generated. 

 
Figure 28: An example of a numerical sample for (a, b) Alloy A, Geometry “V3-Large Volume”, 

Label “AV3” (units in µm). 

Table 5: The characteristics of the samples used for the experimental work 

Geometry 

Number of 

specimens/samples 
FAVA in mm3  for the 

sublayer of 500 µm 

FAVB in mm3  for the 

sublayer of 650 µm 
Alloy A Alloy B 

VN2 15 15  5  6 

V1 24 9   90  110 

V2 20 9 320  450 

V3 9 0  912 - 
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Table 6: Summary of the model parameters and specimen geometries used to validate the proposed 
approach 

 Alloy A Alloy B 

ρ: density of pores (mm-3) 13 7 
Spatial distribution Poisson process Poisson process 

Defect size distribution  
Generalized Extreme Value 

(k=0.35, σ=4.4, µ =22) 
Generalized Extreme Value 

(k=0.9, σ=9, µ =25) 
Geometries investigated AVN2, AV1, AV2, AV3 BVN2, BV1, BV2 

where µ is the location parameter, σ is the scale parameter, and k is the shape parameter of the 
generalized extreme value distribution. 

The other parameters used for the simulation are the number of numerical samples N=50 for each 
geometry/volume and 100 iterations are done in order to have a stabilized numerical distribution. An 
example shows that the stabilization is reached for the volume BV1 with the smallest pore density is 
examined in section 3.3. 
 

4.2. Validation of the probabilistic approach on experimental materials 

It this section the results are presented in terms of the estimated fatigue strength distributions. Firstly, 
the results for Alloy A are presented and discussed, followed by the results for Alloy B. It can be seen 
that the model provides a distribution of the fatigue strength for each volume. The average value of the 
resulting distribution and its standard deviation are compared to the experimental values for each 
alloy.  

4.2.1. Application to Alloy A 

Figure 29 shows the comparison between the proposed model and the experimental data for Alloy A 

with the notched geometry VN2 (labelled “AVN2”). 

 
Figure 29: Comparison between the experimental data and the model predictions for AVN2 

Figure 29(a) shows the experimental data in terms of the Cumulative Probability Function (CPF) fitted 

with the lognormal distribution and the predicted CPF. The results show good agreement between the 

predicted distribution and the experimental data as the predicted CPF is included in the 95% 

confidence interval of the experimental data. This result is confirmed by Figure 29(b) which shows 

that the experimental average fatigue strength is close to the average value of the numerical 

distribution. However, in terms of the scatter associated with this volume, the model predicts a lower 
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standard deviation compared to the experimental value [Figure 29(c)]. Further analyses of the 

difference between the numerical and the experimental data are presented later.  

The same conclusions can be made for the AV1 and AV2 cases. The model results are in good 
agreement with the experimental results for the average value of the fatigue strength. However, the 
predicted scatter is low compared to the experimental data.   

 
Figure 30: Comparison between the experimental data and the model predictions for AV1 

 

 
Figure 31: Comparison between the experimental data and the model predictions for AV2 

For Alloy A and the geometry with the largest volume (AV3), the model gives an estimation of the 
average fatigue strength of 59 MPa and the experimental value is 62 MPa. Hence, the relative error is 
less than 5%. However, the scatter estimation is also underestimated, hence non conservative. 
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Figure 32: Comparison between the experimental data and the model predictions for AV3 

A summary of the comparison between the experimental and the predicted data is shown in Table 7.  

Table 7: Summary of the results for Alloy A 
Average fatigue 
strength [MPa] 

Standard deviation 
[MPa] 

Coefficient of 
Variation 

Relative error = (Exp-Num)/Exp 

Batch Exp. Num. Exp. Num. Exp. Num. 
Fatigue 
strength 

Standard 
deviation 

Coefficient of 
variation 

AVN2 81.33 81.73 10.47 6.86 0.13 0.08 -0.005 0.35 0.35 
AV1 73.19 72.25 8.09 6.00 0.11 0.08 0.013 0.26 0.25 

AV2 64.56 64.81 7.78 5.02 0.12 0.08 -0.004 0.36 0.36 
AV3 61.91 58.87 6.33 3.46 0.10 0.06 0.049 0.45 0.42 

4.2.2. Application to Alloy B 

In this section the proposed model is applied to Alloy B. The smooth specimen geometries (BV1 and 

BV2) and the notch specimen geometry (BVN2) are considered. In terms of the experimental data 

available for this material (El Khoukhi et al. 2019), it is considered that there are sufficient to 

accurately determine the average fatigue strengths, however, this is not the case for the scatter, 

especially when compared to Alloy A. 

Concerning the prediction of the fatigue strength for Alloy B, the same conclusions can be drawn as 
those discussed above for Alloy A. It can be seen in Figure 33, Figure 34 and Figure 35 that good 
correlation is obtained between the experimental data and the model predictions for the fatigue 
strength distributions. The predicted CPFs are included in the 95% confidence intervals of the 
experimental data.  

The predicted standard deviation for batch BVN2 is very close to the experimental value [Figure 33 
(c)] and is lower for batches BV1 and BV2. The results are summarized in Table 8. 
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Figure 33: Comparison between the experimental data and the model predictions for BVN2 

 
Figure 34: Comparison between the experimental data and the model predictions for BV1 

 
Figure 35: Comparison between the experimental data and the model predictions for BV2 
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Table 8: Summary of the results for Alloy B 
 

Average fatigue 
strength [MPa] 

Standard 
deviation 

[MPa] 

Coefficient of 
Variation 

Relative error = (Exp-Num)/Exp 

Batch Exp. Num. Exp. Num. Exp. Num. 
Fatigue 
strength 

Standard 
deviation 

Coefficient of 
variation 

BVN2 60.78 60.27 5.66 7.10 0.09 0.12 0.01 0.25 0.27 

BV1 50.09 51.22 4.93 3.11 0.10 0.06 0.02 0.37 0.38 

BV2 51.73 50.17 3.66 1.09 0.07 0.03 0.03 0.70 0.69 

 
It can be seen that the model accurately predicts the average fatigue strength with a relative error of 
less than 3% and results in a predicted standard deviation with the same order of magnitude as the 
experimental value. Note that for Alloy B, 9 specimens for batches BV1 and BV2 have been 
experimentally tested, and 15 for batch BVN2. For these batches, the estimation of the experimental 
standard deviation is not considered to be accurate, as a greater number of specimens are needed. 
Nevertheless, the predicted standard deviation is in general lower than the experimental values, except 
for batch BVN2. 

4.2.3. Summary on the prediction of fatigue strength and it scatter 

 
Figure 36: (a) Comparison between the experimental average fatigue strength and the corresponding 
predicted values for Alloys A and B versus the Fatigue Active Volume, and (b) the fatigue strength 

scatter for Alloy A versus the Fatigue Active Volume. 

Figure 36 a. and Table 7 highlight that the proposed probabilistic approach is capable of predicting the 
high cycle fatigue strength of both alloys with a relative error less than 5%, including the accurate 
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prediction of the volume effect, for both smooth and notched geometries. Therefore, it can be 
concluded that the proposed model can be used: 

- To evaluate the susceptibility of cast aluminum to the volume effect  

- To predict their fatigue strength distribution  

- To estimate the RVE in fatigue 

In Figure 32 .b, we choose to represent only the data corresponding to the alloy A for which we have 
high number of samples. It can be seen that the proposed model is able to predict the experimental 
trend in terms of the influence of the Fatigue Active Volume on the standard deviation. That is the 
scatter is highest for small FAVs. However, the absolute values of the predicted standard deviation are 
consistently lower than the experimental values. This difference can be explained as follows. 

It is well known that in the HCF regime the fatigue strength is characterized by high scatter which can 
be attributed to many sources. For the cast aluminum alloys investigated in this work, casting defects 
and in particular the presence of porosity are the principal source of scatter. Nevertheless, it is not the 
only factor influencing the scatter. Other sources could include experimental errors, environmental 
factors, residual stresses, microstructure, … . In the proposed model, it is assumed that the fatigue 
behavior is completely controlled by the porosity, which is the only source of dispersion. It is hence 
not surprising that the predicted standard deviations are systematically lower than the corresponding 
experimental values. In some cases, up to 2 times lower.  

5. Discussion 

It should be noted that the proposed probabilistic model assumes that the porosity controls the fatigue 
behavior of the material. This assumption is based on many experimental studies that showed that 
usually the fatigue failures were initiated from a pore close to the surface (El Khoukhi et al. 2019 ; Le 
et al. 2016 ; Rotella et al. 2017 ; Murakami 1991). The proposed method presents many advantages 
and some drawbacks. The advantages of the proposed model include:  

- The average fatigue strength is predicted with high precision (relative error less than 5%).  
- The trends in the fatigue strength scatter are correctly predicted, however the model 

underestimates the absolute values of the standard deviation associated with the fatigue 
strength. 

- The RVE can be estimated. 
- The size or volume effect can be investigated. 
- Arbitrary geometries involving the presence of stress gradients can be investigated through the 

definition of the Fatigue Active Volume (FAV).  
- The model can be used to assess the variability due to the manufacturing process and the 

effect of the process parameters on the fatigue behavior of the alloys. 
- For information, the computational time on a numerical volume AV2 and N=50 and 100 

iterations is almost 12 min 22 s. The simulation was conducted on computer with a Processor 
Intel® Core™ i3-8145U CPU@2.10GHz with 8 Gbytes of RAM. 

The proposed model has the following limits and drawbacks:  

- The model is well suited to material for which the fatigue behavior is controlled by the presence of 
“well defined” defects such as micro-shrinkage porosity in cast materials. Its application to other 
defect types or microstructural heterogeneities, such as inclusions or persistent slip bands, is 
possible but should be validated experimentally. 

- The model assumes that porosity is the only source of scatter. Hence it underestimates the scatter.   
- The casting defects are considered to be perfectly spherical. This assumption seems to be valid for 

the case of cast aluminum alloys, but it may not be appropriate for Titanium alloys or Steels. For 

different materials and alloys, the general framework should not be changed, however modeling of 

the local fatigue strength should be revised to take into account the variability due to the 

morphology of the defects. If there is indeed an effect of the morphology, its characterization in 

relation to the defect size must be performed. Random sampling of the defect orientation and 
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aspect ratio could be included in the modelling approach. Some work has been carried out by other 

authors to take in account the defect shape in cyclic loading, for example (Mbiakop, 

Constantinescu, and Danas 2015). 

- This approach is valid only when the failure mechanism is a pore (or an oxide). 
- In order to consider the scatter observed in Figure 7, instead of considering a deterministic 

Kitagawa-Takahashi diagram, a probabilistic Kitagawa-Takahashi diagram could have been 
defined. However, it should be noted that even though this was not done here, the predictions are 
accurate. In this work, we voluntarily chose to use a deterministic Kitagawa-Takhashi diagram and 
to describe the variability only by the defect size and their spatial distribution. The results show 
that a major part of the scatter is caused by the variability of the defect size. 

- The approach presented in this study could be applied in an industrial context, as long as the 
Kitagawa-Takahashi Diagram corresponding to the service loading conditions of the component 
(defined by the load ratio R and the multiaxiality) is known. A possible way of doing this was 
proposed by (Le et al. 2016) for different cast aluminum alloys. 

6. Conclusions 

In this work, a probabilistic approach to model the uniaxial fatigue strength with a load ratio of R=0.1 
has been established. It allows to investigate the statistical characteristics of the fatigue strength 
controlled by the porosity population in cast aluminum alloys. The results show that the average pore 
size, the pore density, and the specimen volume, all influence the fatigue strength of these alloys. In 
general, the largest pore that is close to the free surface determines the fatigue strength. The average 
value and standard deviation of the fatigue strength decrease with increasing average pore size, and 
pore density. The specimen volume was also found to influence the fatigue strength by affecting the 
number of pores and their proximity with the specimen surface, this result explains the size effect 
phenomenon. The characteristics of the parent defect population are found to control the magnitude of 
the size effect. In fact, a population of defects with a smaller size leads to a high size effect and high 
scatter in the fatigue strength compared to a defect population with larger defect sizes. 

By applying the model to two cast aluminum alloys, it is demonstrated that the predicted fatigue 
strength is in excellent agreement with the experimental results. Hence, it is concluded that the model 
can be used to: 

- predict the fatigue strength distribution for smooth and notched geometries, via the definition 
of the Fatigue Active Volume (FAV) 

- evaluate the volume effect 
- estimate the RVE in fatigue  
- estimate the trends in terms of the scatter (but underestimates the scatter) 

The principal drawbacks and limits of the model are:  

- that it assumes that the fatigue behavior is completely controlled by porosity. Hence, it may not 
be suitable for all materials with different fatigue damage mechanisms.  
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