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Abstract:  

The Rubber Cord Adhesion Inflation Test (RCAIT) is a recently proposed test protocol to 

study tyre rubber-steel cord fracture [1]. As in the traditional blister test, a pressurised fluid is 

injected between the two adherends to propagate fracture. The fracture energy, Gc, is directly 

related to the strain energy stored in the inflated rubber. It was shown that evaluation of Gc for 

RCAIT depends intimately on how well the hyperelastic model is capable of predicting the 

rubber inflation condition [2]. Here, a thick tube inflation model is proposed for a generalised, 

phenomenological, hyperelastic material. It is subsequently applied to RCAIT in order to 

study which data processing technique is likely to  be the most reliable to evaluate the 

critical strain energy release rate of the specimen. 
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Nomenclature 

c  : Integration constant 

G, Gc  : Strain Energy Release Rate, Critical Strain Energy Release Rate 

Fz  : Axial force 

I1, I2, I3 : First, second and third invariant of strain 

lp  : Pre-crack length of the specimen 

P  : Fluid inflation pressure 

p  : Hydrostatic pressure component 

Pint, Pext : Pressure at the internal and external surface of the specimen 

Rtube  : Inner radius of the confinement tube 

r, r0   : Radial position- deformed, undeformed 

�����, �����  : Inner, outer initial rubber envelope radii (undeformed state) 

����, ����  : Inner, outer rubber envelope radii (deformed state) 

u  : Radial position variable for integration 

W  : Strain energy density function 

z, z0  : Axial position- deformed, undeformed 

	  : Hydrostatic distribution 

λ1, λ2, λ3 : Principal stretch ratios along the three coordinate axes 

λr, λθ, λz  : Radial, circumferential and axial stretch ratio 
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����
  : Deviatoric part of the Cauchy stress 

σrr, σθθ, σzz : Radial, circumferential and axial component of the Cauchy stress tensor  


�����   : Fluid compressibility 

CIS  : Confined Inflation Stage 

RCAIT : Rubber Cord Adhesion Inflation Test 

SERR  : Strain Energy Release Rate 

UIS  : Unconfined Inflation Stage 
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1. Introduction 

Tyres are complex structures that function as the key components to give road vehicles the 

control and stability required for a smooth ride both on and off road. The entire weight of the 

vehicle, along with the torsional and frictional forces arising from power application, braking 

and steering are supported by the tyres. Apart from these mechanical loads, a tyre has to 

withstand deleterious effects due to heat and humidity during its entire life, whether the 

vehicle is operational or not. Therefore, for the safety of the vehicle and its surroundings, tyre 

designers have to insist on the safety of tyres. 

Designing safe tyres starts from understanding how different components of the tyres 

withstand all these loads. A tyre is made up of different layers such as fabric, polymers and 

metal cable mesh, that are embedded in a rubber matrix. Each of these layers serves a distinct 

purpose. One very important layer is that of the metal cable mesh. This metal cable layer 

gives the tyre its rigidity and structure [3]. Safety of the tyre is largely dependent on how well 

this composite material made up of rubber matrix and metal reinforcement performs under 

various loads and environmental factors.  

During the vulcanization process of the tyre, the rubber matrix and metal reinforcement 

adhere as a result of strong Cu-S covalent bonds [4], [5]. These bonds create a dendritic 

structure that produces physico-chemical adhesion between the two materials via a brass 

coating deposited on the metal cable prior to the vulcanization. For a tyre designer, 

developing strong rubber-metal adhesion is therefore essential to produce a strong, durable 

tyre. The only way to evaluate the strength of this adhesion is to perform fracture mechanics 

tests on the rubber-metal composite. 

Rubber-metal adhesion is a complex topic to study since it involves both nonlinear materials 

and adhesion, as well as effect of environmental parameters on the adhesive interface [6]. 
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Several fracture mechanics tests have been proposed and used in the tyre industry as standard 

procedures, such as those presented in [7] - [18]. These tests can be mainly divided into two 

groups viz. wire pull-out tests and peel tests. Peel tests fail to mimic the cylindrical nature of 

the rubber-metal adhesion layer. This is because the brass coating deposited on the metal cord 

during the wire drawing process cannot be accurately represented by brass coating on a 

planar, peel test specimen. Moreover, the pull-out geometry suffers from rubber-metal friction 

losses during the tests, which affects the evaluation of the fracture energy. Therefore, to 

overcome these experimental artefacts, a rubber-metal cord fracture test viz. Rubber Cord 

Adhesion Inflation Test (RCAIT) was recently proposed [1].  

The RCAIT protocol is an axisymmetric version of the blister test used for film-substrate 

delamination [19]. The test specimen is in the shape of a rubber cylinder with the metal cord 

embedded along the central axis. The test protocol consists of injecting a pressurised fluid 

between the rubber and the metal cord to provoke fracture. A coaxial confinement tube 

restricts the inflation of the rubber allowing the fracture to propagate along the rubber-metal 

interface. A similar approach was used in the case of a constrained blister test in [20] and 

[21]. 

For a quantitative analysis of the rubber-metal adhesion by RCAIT, a global energy balance 

was proposed in [1]. It was shown that the energy stored in the pressure-inflated rubber 

constitutes a major part of the fracture energy evaluation. In [1] and [2] the energy stored in 

the pressure-inflated rubber was calculated for a Mooney-Rivlin rubber and an Ogden rubber 

respectively. It was found that inaccurate evaluation of rubber tube deformation can lead to 

substantial errors in the specimen critical SERR evaluation. With these results in mind, this 

article investigates the influence of rubber behaviour modelling and identification method on 

the evaluation of thick tube inflation. The final objective is to obtain a reliable estimate of the 

SERR during RCAIT so that only measurable quantities need to be considered. A similar 
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study of various rubber models and how well they can represent tensile test or shear test data 

has been carried out in [22] and [23]. In addition, in [24], [25] and [26], a review of various 

hyperelastic models, their stress-strain relations and some experimental results are presented. 

In the first section of this work, a brief introduction of RCAIT and representative results of 

one test are given. The global energy balance to calculate fracture energy (critical SERR) is 

briefly described. The critical SERR value calculated using the experimental data is also 

presented. Further, a semi-analytical resolution technique is proposed to simulate thick tube 

inflation in the case of incompressible hyperelastic materials, as an alternative to other 

approaches such as those presented in [27] and [28]. Various strategies are then used to 

identify the rubber and tube inflation behaviour from a simple set of experimental data. A 

generalised critical (SERR) equation is presented, based on this theoretical model. Finally, 

following the framework of [22] and [23], the critical SERR of the rubber-metal interface is 

evaluated using several hyperelastic models. Various identification protocols to evaluate the 

sensitivity of Gc estimation with respect to the data processing are also presented. 

 

2. Rubber Cord Adhesion Inflation Test (RCAIT) 
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In RCAIT, the test specimen is a cylindrical envelope made from rubber having an axial steel 

cord adhered to the rubber. A small pre-crack is created while preparing the specimen so that 

a pressurised fluid can be injected between the rubber and the metal. A coaxial glass tube is 

used to confine the rubber envelope and to restrict the radial inflation. The confinement tube 

ensures that the rubber does not inflate unstably, and the pressurised fluid causes the rubber to 

inflate axially. A schematic diagram of the test protocol is shown in Figure 1. As more fluid is 

injected, the pressure increases, and the rubber envelope inflates in both axial and radial 

directions. Eventually the fluid pressure reaches a plateau value and the crack propagates 

Figure 1: Schematic of the Rubber Cord Adhesion Inflation Test 

Figure 2: Typical Pressure vs Volume plot of RCAIT specimen 
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along the interface.  

A typical fluid pressure response recorded in a RCAIT is shown in Figure 2. The specimen 

consists of a rubber envelope of length 100mm, inner radius 0.65mm and outer radius 4.7mm 

and adhered to a brass coated steel cord of diameter 1.3mm along the axis. The average 

thickness of the brass coating is in the range of 0.05 to 0.1μm. An anti-adhering tape is used to 

cover 50mm length of the steel cord to produce initial debonding, or a pre-crack. The rubber 

envelope is made from natural rubber with 65phr of carbon black and 4.5phr of sulphur. The 

fluid (water) is injected inside the specimen at a rate of 5ml/min using a syringe pump. A 

hydraulic system connects the specimen to the syringe. Injected volume is determined from 

the piston displacement value, while a sensor is used to measure the pressure of the injected 

fluid. Initially, the rubber envelope inflates radially and axially until it touches the 

confinement tube (up to approx. 50bar). Once the rubber envelope comes in contact with the 

confinement tube, the rigid confinement tube restricts the external radius of the rubber tube 

from expanding further. Being incompressible, the rubber is then forced to stretch axially, and 

radially only at the inner radius. This changes the ‘gradient’ of the Pressure vs Volume curve, 

as seen in Figure 2. Eventually, the fluid pressure reaches a plateau value and the crack 

propagates along the interface. 

2.1. Global Energy Balance 

The aim of RCAIT is to evaluate the fracture energy required to propagate a crack along the 

rubber metal interface from the test data (pressure evolution). This can be done by a simple 

global energy balance. Some of the details already presented in detail in [1] are recalled here.  

The test is divided into three regimes: (a) Unconfined Inflation Stage (UIS) (b) Confined 

Inflation Stage (CIS) (c) Interface Fracture Stage (IFS). The total energy put into the test 

specimen is that supplied by the fluid injected. Part of this input is stored in the inflated 
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rubber; part is stored in the fluid itself as the potential energy of compression and the rest is 

liberated as fracture energy. This can be written in an equation form as 

WPdV= Erubber+ Ecompressibility+ Efracture 

Gc*Afracture =Efracture = WPdV - Erubber - Ecompressibility 

where Gc is critical SERR and Afracture is the area of the fractured surface. WPdv is the work 

input to the test specimen, Ecompressibility is the amount of energy stored in the compressed fluid 

at the pressure P and Erubber is the energy stored in the inflated rubber during the UIS and CIS. 

The terms WPdv and Ecompressibility can be calculated directly using their definitions. Therefore, if 

the term Erubber is calculated precisely, the fracture energy or Gc (Efracture/Afracture) can be 

calculated without any experimental artefacts. This task is, in fact, complex since the rubber 

undergoes complex loading conditions as well as finite deformation. Therefore, preliminary 

analysis should be performed to identify which models are most sensitive to capture the 

rubber tube inflation response during the RCAIT in relation to the behaviour observed in the 

traditional tensile tests. 

It should be noted that it is possible to calculate Gc without any consideration of rubber 

material behaviour. It was shown in [1] that the share of Ecompressibility is negligible in the 

energy balance for nearly incompressible fluids such as water. The quantity Erubber can be 

calculated using the area under the curve in the inflation regime of Figure 2. This energy is 

stored in the entire pre-crack length of the specimen (50mm). Similarly, WPdV can be 

calculated as described in [2]. It is stored in the fractured length of the specimen, i.e. 50mm. 

For the test shown in Figure 2, Erubber is 27.3J and WPdV is 32.9J. Therefore, following the 

energy balance presented above, the critical SERR is 27.4kJm-2. 

Although this method of calculating critical SERR is simple, it is susceptible to errors. The 

rate of deformation of the pre-crack length of the specimen is different from that of the 
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fractured length of the specimen. The pre-crack length of the specimen undergoes a steady 

increase in inflation pressure and volume, from zero at the start of the test, to a certain 

pressure (74.9bar) and volume (7.38ml) until crack initiation. On the other hand, the fractured 

length of the specimen undergoes sudden inflation at a nearly constant crack propagation 

pressure (74.9bar). Therefore, the Erubber values in these two regions of the specimen are 

likely to be different. However, in the calculation presented above, they are assumed to be 

equal. Any errors in the experimental data caused by inaccuracies in pre-crack length or the 

presence of trapped air in the hydraulic circuit will greatly affect Gc calculation. Moreover, 

this method of Gc calculation does not consider directly any microscopic parameters of the 

crack propagation such as viscoelastic dissipation in the bulk rubber or near the crack tip in 

the form of a process zone. Therefore, by formulating a theoretical or semi-analytical model, 

precise evaluation of Erubber can be achieved. Such a model, in the future, may be improved by 

considering the viscoelastic dissipation in the bulk rubber as well. 

In this context, the present work focuses on evaluating Erubber using a semi-analytical model 

and investigating its effect on the calculation of Gc. The Thick Rubber Tube Inflation Model 

proposed previously in [2] to calculate Erubber for an Ogden type rubber can be extended to 

various phenomenological hyperelastic models applied to the fracture problem. In the 

following section, an alternative semi-analytical resolution technique is proposed which is 

applicable to a large variety of rubber models. 

 

3. Thick-Walled Cylinder Inflation Model 

The strain energy stored in the rubber tube itself (Erubber) needs to be evaluated in order to 

solve the problem of a thick incompressible hyperelastic closed-ended tube, confined and 
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loaded under internal pressure. The procedure proposed below is applicable for any type of 

incompressible hyperelastic material. 

3.1. Constitutive equations 

Consider an infinitely long thick rubber cylinder with inner radius and outer radius 

respectively ����� and �����. Due to the inflation pressure, the cylinder expands both axially and 

radially so that in the deformed state the inner and outer radii are respectively ����  and ����. 

During the inflation loading the deformation and displacements are assumed to be large. Due 

to the geometry of the rubber envelope, the problem to be solved is axisymmetric. Therefore, 

polar coordinates are used, and the displacement field is expressed using only two functions: 

ur(r) and uz(r). No θ dependence is assumed as the deformation is homogeneous. In the 

following analysis, a Lagrangian description is preferred so that rather than evaluating 

displacements, the calculation aims at updating the position. (r0, z0) refers to the initial 

position while (r, z) refers to the position in the deformed state. Uniform deformation along 

the tube is assumed so that no z dependence is considered here, and the deformation field is 

expressed as a function of radius only. With these assumptions the material elongation 

(stretches) in the tube are given by relations: 

 ����� = ����� ����� = ��� �� = ��� (1) 

For incompressible hyperelastic materials condition λrλθλz = 1 is applicable. Assuming a 

uniform λz value due to homogenous deformation, explicit expressions for the radial 

evolution of principal stretches can be obtained:  

 ������ = 1�� ���� − 1���   (2) 

 ������ = 1�� � ���
��� − 1  (3) 
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 � = !1� + ���
��  (4) 

c is an integration constant related to the deformation. Details of the intermediate calculations 

are given in [29].  

Consider the stress equilibrium equation in axisymmetric mode, as shown in Figure 3. Due to 

the axisymmetric geometry no shear components are considered, and the stress tensor reduces 

to only three components σr, σθ and σz in radial, circumferential and axial direction 

respectively. The equilibrium equations in polar coordinates reduce to the relation: 

 �
���� + 
�� − 
��� = 0 (5) 

The boundary conditions applied to the inflated rubber are as following. A uniform pressure is 

applied inside the tube by the injected fluid. This results in a uniform normal stress applied to 

the inner radius but also produces an axial force due to the pressure applied to inner cross 

section. This leads to the following equations: 

 
��$����% = −& (6) 

Initial Configuration Deformed Configuration 

r
0

int 

r
0

ext 

R
tube

 

Confinement Tube 

r
int 

r
0

ext 

Figure 3: Cross section of the rubber tube and the coaxial confinement tube 
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 2( ) 
���*��+,-
�./- *�* = &(�����

 (7) 

 

Alternatively, it was found that in the case of dry contact, friction forces compensate the axial 

force exerted by the pressurized fluid. As for the shear lag model, the friction force decreases 

rapidly from the crack tip so that the stationary regime to consider far from the crack tip is 

equivalent to an open-end pressurized tube. This leads to the condition: 

 2( ) 
���*��+,-
�./- *�* = 0 (8) 

In the first inflation regime- the UIS- the rubber inflates radially and axially without any 

confinement. Then in the next stage (CIS), the external radius touches the confinement tube 

which is lubricated to limit friction. This creates a frictionless rigid contact between the 

inflated rubber cylinder and the confinement tube. These two stages lead to the following 

boundary conditions: 

 
�������� = 0 for ���� ≤ 1��2� (9) 

 ���� = 1��2� (10) 

In practice, imposing an internal pressure value and zero external pressure as boundary 

conditions renders the resolution of the problem numerically more complex. Therefore, these 

boundary conditions are replaced by using the internal and external radius in the deformed 

state as the driving parameters. 

3.2. Incompressible Hyperelasticity and the Inflation Model 

For the approach presented above to be applicable, the material must be considered to be 

incompressible. In the following, only hyperelastic models based on phenomenological 

thermodynamics are considered. Physically based models could also be implemented, though 
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the stress/stretch relation and potential energy density might be more difficult to derive. This 

review is not exhaustive since a large number of complex hyperelastic models can be found in 

the literature but only a few of them are being applied since the test data available for the 

rubber is limited. 

Considering a general, isotropic, incompressible material, the strain energy density function 

depends only on two invariants I1 and I2. I3 remains constant since it corresponds to the 

relative volume variation: 

 34 = �4� + ��� + �5�
 (11) 

 3� = �4���� + ����5� + �4��5�
 (12) 

 35 = �4��4��5� = 1 (13) 

For incompressible materials, the true principal (Cauchy) stresses are related to the elongation 

and invariants by the relations: 

 
� = 2 6��� 78734 − 1��� 7873� 9 − : (14) 

 
� = −: + �� 787�� = −: + 
���� (15) 

where 
���� is the deviatoric part of the stress.  

The following procedure is used to determine all quantities describing the cylindrical rubber 

envelope expansion under confined or unconfined conditions. First, internal and external 

radius values are set so that c and λz are determined with the relations: 

 �� = ������ − ������
����� − �����  (16) 

 1� = ����������� − �����������
������ − ������  (17) 
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 Then using (1) the radial and circumferential stretch ratios are determined so that the 

deviatoric part of the Cauchy stress becomes: 

 
���� = �� 787��  (18) 

Explicit expressions for the deviatoric stress can easily be derived for most of the 

phenomenological hyperelastic models. Then, the equilibrium equation (5) is used to 

introduce the hydrostatic pressure evolution: 

 
�:�� = �
�����

�� + 
����� − 
�����
�  (19) 

For a given inner and outer radius, the deviatoric part of the stress is known throughout the 

thickness, and the hydrostatic pressure must be determined using the following integral 

formulation: 

 :��� = 
�������� − 
�����$����% + ) 
������*� − 
������*�*
�

�./- �* + :$����% 

 = 	��� + :$����%  (20) 

The hydrostatic distribution 	��� can be determined numerically using trapezoidal 

integration. The hydrostatic constant p(rint) can then be determined by combining (7) and (20) 

as following: 

;� = −:$����%($����< − ����<% + 2( ) =
������*� −  	�*�>*�*�+,-
�./- = (����<&��� (21) 

The fluid pressure Pint is given by 

 &��� = −
��$����% = :$����% − 
�����$����% (22) 

So that: 

 :$����% = ����<
����< 
�����$����% + 2����< ) =
������*� −  	�*�>*�*�+,-

�./-  
(23) 
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Using the 	��� value calculated by the trapezoidal integration p(rint) is determined 

numerically using the trapezoidal rule again. 

For open-end condition regime, we have: 

 ;� = −:$����%($����< − ����<% + 2( ) =
������*� −  	�*�>*�*�+,-
�./- = 0 (24) 

So that: 

 :$����% = 2����< − ����< ) =
������*� −  	�*�>*�*�+,-
�./- = 0 (25) 
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Start 

Stop 

Choose a hyperelastic 

model. Set maximum 

value of deformed inner 

radius: �?@���� < 1��2� 

For an arbitrary value of ���� < 1��2�, take  ���� = ���� + B2 . Calculate ��,  
����,  	���,  :$����%,  &��� 

and &���    

Is ���� ≥ 1��2�? 

Using fsolve (MATLAB®) trust-

region algorithm solve for ���� 

such that &��� = 0 

NO 

Specify the total number of 

simulation points  

B2 = �FG,./- H�I./-
� , choose a 

suitable value of n 

For ���� = 1��2�, take  ���� = ���� + B2 . Calculate ��,  
����,  	���,  :$����% and &��� 

Is ���� ≥ �?@����  

YES 

NO 

YES 

Figure 4: Generalised Thick-Walled Cylinder Inflation Algorithm for hyperelastic materials 

Once the total hydrostatic pressure function p(r) is evaluated for a given choice of inner and 

outer radii, the stress distribution in the entire rubber thickness can be easily obtained. Finally, 

the inner and outer pressure values are determined by the relations: 

 &��� = −
��$����% &��� = −
�������� (26) 
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In the UIS, an iterative procedure is used to adjust the outer radius rext so that the stress-free 

outer surface condition Pext=0 is satisfied. In the CIS, the P(λz) evolution is obtained directly 

by imposing rext = Rtube and using the above integration procedure. 

The algorithm to calculate stress-elongation state of the rubber cylinder at any specified 

deformed state (rint value) is described in Figure 4. rint is the only parameter increasing 

monotonically during the inflation, therefore it is chosen as the driving parameter.  

For applying the algorithm presented in Figure 4 to a chosen rubber model, stress vs stretch 

ratio relations (14) and (15) must first be derived. Then, using the algorithm, the through 

thickness stress - strain distributions are found so that specimen overall deformation can be 

expressed as a function of applied fluid pressure. In Figure 5, theoretical P(λz) evolution is 

given for the experimental condition presented in Figure 2 considering a Mooney-Rivlin 

Model as well as a 1st order Ogden model. Results obtained by applying the algorithm shown 

in Figure 4 are compared with the results presented in [1] and [2]. The rubber material 

parameters are found by fitting uniaxial tensile test data to the Mooney-Rivlin and Ogden 

models. The Mooney-Rivlin parameters are C1= 1.34MPa and C2=0.37MPa; whereas the 

Ogden parameters are α=2.64 and µ=1.89MPa. The two curves plotted using previous and 

Figure 5: Comparison between Thick-Walled Cylinder Inflation algorithms presented in Figure 4 and in [1] and [2] 
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this work follow the same path for both the material models. In [1] and [2], the semi-

analytical model and the algorithm for the Ogden model respectively were cross-checked 

using a finite element models and were found to be virtually identical. Therefore, Figure 5 

constitutes strong evidence of the results obtained by applying the algorithm shown in Figure 

4.  

Having established the validity of the equations and the algorithm, the specimen fracture 

energy can now be computed by performing global energy balance analysis as explained 

above. The equations are given in detail here: 

 	8J = 	8��22�� + 	8����� + KL2(�����	M (27) 

In (27), WP corresponds to the work provided to the whole system by pressure injection. 

Wrubber is the potential energy stored in the rubber envelope inflation, Wfluid is the potential 

energy stored in fluid compressibility and KL2(�����	M is the energy dissipated due to crack 

propagation of length 	M. In (27), proper evaluation of the stored potential energy is of the 

utmost importance for the reliable evaluation of Gc. 

The analysis presented in this work is based on assumptions of linear ELASTIC fracture 

mechanics in the sense that the crack initiation is assumed to be controlled only by the Gc 

value, without consideration of any irreversible processes which may occur before the fracture 

proceeds. Any viscoelastic effects present in the rubber and/or at the interface will be included 

in the Gc value at this stage. Under such condition, the energy balance described in equation 

(27) is sufficient to evaluate the energy needed to propagate the crack. However, it is 

important to note that the extent of the process zone ahead of the crack tip is not exactly 

known. Also, the specimen envelope deformation controls the stress/strain distribution in the 

near crack tip vicinity and consequently the damage process.  

In (27) the various terms are given as following: 
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 	8J = &���( N����� − ������O ��	M (28) 

 	8��22�� = ) 	P���2(����+,-
�./- ��	M (29) 

 	8����� = 12 &����

����� ($����< − �����<%��	M (30) 

Combining (27)-(30) gives following relation for energy balance 

 6&���2 − 14 &����

�����9 $����< − �����<%�� − ) 	P�*�*�*�+,-

�./- �� = KL����� (31) 

(31) can be rearranged to get 

  KL = ������� R6&���2 − &����
4
�����9 N����� − ������O − ) 	P�*�*�*�+,-

�./- S (32) 

(32) holds true for any hyperelastic model (neglecting dissipation mechanisms) applied to the 

rubber cylinder. By following the procedure described earlier the stress-elongation state of the 

rubber cylinder can be calculated for any type of hyperelastic material. It can then be used to 

solve the integral T 	P�*�*�*�+,-
�./-  using Riemann Sum or Trapezoidal Rule or any other 

numerical integration method. 

4. Application to various rubber models 

Since the proper evaluation of rubber envelope deformation is fundamental for reliable 

determination of Gc, proper identification of the rubber behaviour is also fundamental. 

Therefore, it is interesting to investigate how various rubber models can be used to describe 

the complex inflation problem and how they affect the value of critical SERR (Gc) evaluated 

using (32). In [22] and [23] a similar study was done on various hyperelastic models to 

compare their performance on Uniaxial, Biaxial and pure shear data reported by Treloar in 

[30].  
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4.1. Uniaxial test data fitting 

Numerous hyperelastic models are available in the literature out of which 10 different models 

were fitted to the tensile test data of the rubber and it was found that five models show the 

least residual values signifying a good fit. These models are: Mooney-Rivlin [31], Ogden 

Model [32], Yeoh Model [33], Lopez-Pamies Model [34] and ExpLn Model [35]. Of these, 

Mooney-Rivlin Model and Ogden Model (1st Order) were already used in [1] and [2] 

respectively, to describe the thick walled cylinder inflation of the rubber under consideration. 

For the tensile test data, a dumbbell specimen was cut from a sheet of the same rubber used in 

the specimen of Figure 2. It was loaded under tension at a constant displacement rate of 

5mm/min or a constant strain rate of 0.22x10-2/s. Using the lsqnonlin algorithm of MATLAB®, 

the Cauchy stress vs stretch ratio data were fitted to the five models. It should be remembered 

that the Ogden, Yeoh and Lopez-Pamies models are expressed as a series sum. The strain 

energy density terms can be written as 1st order, 2nd order, 3rd order and so on. In this work, 

only the first 3 orders of the strain energy density functions are considered for Ogden and 

Lopez-Pamies models. The Yeoh model is used in its 2nd and 3rd order only. The 1st order Yeoh 

model is equivalent to a Neo-Hookean solid which shows a very poor fit due to the absence of 
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Figure 6: Uniaxial tensile test fit for the five models 
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a strain hardening factor, as well as I2 independence. Hence it is omitted in this work. 

Therefore, in total there are 10 hyperelastic Cauchy stress functions to be fitted to the tensile 

test data.  

The uniaxial tensile data fitted to these 10 stress functions are shown in Figure 6. Due to the 

absence of a strain hardening parameter, the Mooney-Rivlin model does not fit well at 

moderate and large strains. Overall, the other four models seem to fit to the data well at small 

Hyperelastic Model Parameter fit from  

Uniaxial Tests 

Mooney-Rivlin C1=1.34 MPa C2=0.37MPa 

Ogden Model (1st Order) α=2.64 µ=1.89MPa 

Ogden Model (2nd Order) 
α1=0.175 µ1=4.97MPa 

α2=2.81 µ2=1.52MPa 

Ogden Model (3rd Order) 

α1=0.0075 µ1=8.4MPa 

α2=2.67 µ2=1.81MPa 

α2=0.0074 µ2=23MPa 

Yeoh Model (2nd Order) C1=1.33MPa C2=0.059MPa 

Yeoh Model (3rd Order) 
C1=1.39MPa C2=0.024MPa 

C3=0.006MPa 

Lopez-Pamies Model 

(1st Order) 

α=1.36 µ=2.62MPa 

Lopez-Pamies Model 

(2nd Order) 

α1=1.41 µ1=2.54MPa 

α2=-16.26 µ2=1.11MPa 

Lopez-Pamies Model 

(3rd Order) 

α1=1.06 µ1=1.31MPa 

α2=1.68 µ2=1.26MPa 

α2=-17.7 µ2=1.12MPa 

ExpLn A=1.16MPa a=0.102 b=-0.02 

 

Table 1: Uniaxial test data fit to 10 Cauchy stress equations (5 hyperelastic models) 
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as well as large strains. The strain energy density parameters calculated for each of the 10 

cases are tabulated in Table 1.  
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Figure 7: Thick Walled Rubber Cylinder Inflation behaviour compared with the experimental data (a) All 5 hyperelastic 

models, (b) Ogden models, (c) Lopez-Pamies models 
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Planar uniaxial tests are not a true representation of the multi-axial inflation loading that the 

rubber undergoes in RCAIT. However, this study of different hyperelastic models and how 

they predict inflation behaviour highlights the importance of choosing the appropriate model. 

Before moving to the SERR evaluation, the Thick-Walled Cylinder Inflation evolution for 

each of these models based on the data from Table 1 should be considered. Following the 

algorithm described in Figure 4, these data can be converted into a fluid pressure vs specimen 

axial stretch ratio evolution. Such a plot is shown in Figure 7, compared with the 

experimental results. The fluid pressure is readily measured during the experiments, whereas 

the axial stretch ratio is calculated using image processing.  

Overall, after a strain of merely 5% (λz=1.05), all the curves start diverging. The ExpLn and 

Yeoh Model (3rd Order) show considerable strain hardening, especially at 100% strain. All 3 

orders of the Lopez-Pamies model follow a parallel trend in the CIS, so do the Ogden model 

curves. However, the behaviour of these models is drastically different in Figure 7 at large 

strains. This could be due to the multiaxial loading that the rubber cylinder undergoes in 

RCAIT. In addition, the presence of the confinement tube adds an extra boundary condition to 

the rubber inflation which along with the incompressibility of the rubber means that the 

rubber is forced to stretch more in the axial direction. For the hyperelastic models showing 

higher strain hardening (ExpLn and Yeoh – 3rd Order), the fluid pressure increases much more 

at large strains compared to the other models. These two phenomena together mean that the 

two models (ExpLn and Yeoh-3rd Order) predict a larger amount of energy stored in the 

rubber. This is likely to result in a lower estimate of the SERR (see Section 2.1). In the 

coming section, this effect is studied in detail.  

The evolution of the fluid pressure vs volume predicted for all 10 cases is shown in Figure 8. 

The plots are also compared with the experimental data shown in Figure 2. A clear 
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disagreement between the prediction and the experimental data is seen. During the 

experiments, a small initial volume (approx. 1.5ml-2ml) of liquid must be injected in order to 

occupy the empty space between the pre-crack length steel cord and rubber envelope. During 

this stage, the fluid pressure increases only slightly (5bar-6bar). The subtraction of this 

correction (~1.5ml) from the injected volume of the experimental data shifts the curve 

towards the left and the pressure-volume evolution from the experimental data is virtually 

parallel to that predicted by the Ogden Models. Similar behaviour is observed in Figure 7.  

4.2. Effect of Model on SERR Calculation 

Following the general relation of SERR with the test parameters and rubber material 

parameters described by (32), the SERR can now be calculated for the particular rubber in 

question. For any given fluid pressure, the deformation state of the rubber cylinder and, as a 

result, the strain energy stored per unit volume can be calculated using the numerical 

algorithm described in Figure 4. Using (32), the SERR vs Fluid Pressure evolution can now 

be plotted, as seen in Figure 9. Similar to Figure 7, all the curves follow nearly the same path 

up to 50bar. There is a large spread between the curves after that point, as the pressure 

increases. As predicted earlier, for large strains the models ExpLn and Yeoh (3rd Order) show 
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Figure 8: Fluid pressure evolution plotted for all 10 cases and compared with the experimental data. The curve for the 

experimental data is shifted to the left by 1.5ml to account for initial fluid injection. 
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a lower estimation of G. The curves of the all three orders of Lopez-Pamies model follow 

each other closely even at a pressure up to 90bar. Similar behaviour is observed for the Ogden 

models as well.  

Using Figure 9 the critical SERR values can be calculated for the test case shown in Figure 2 

at a fluid pressure of 74.9bar. The results are presented in Figure 10. Between the five 

hyperelastic models the critical SERR value varies within a range of nearly 40kJm-2. The 

average value of critical SERR is 38.6±13.5kJm-2. To put this into perspective, a critical 

SERR value of 27.4kJm-2 was calculated in Section 2.1 using a general definition of SERR. 

This signifies that other dissipation mechanisms might be involved in the crack propagation 

process. Moreover, the prediction of the P(∆V) evolution during the tube inflation experiment 

may not be reliable due to poor identification procedure and/or choice of a hyperelastic 

model. Therefore, an alternative material parameter identification procedure is proposed 

below using the RCAIT data recorded during the inflation phase. 
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Figure 9: Evaluation of SERR for all 10 cases 
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5. Volumetric Data Fitting 

Examining the results presented in the previous section, it is clear that quantitative analysis of 

how constitutive models affect SERR evaluation is important. It is important to choose such a 

model wisely and fit the experimental data to obtain precise values of material properties. As 

explained above, due to a limited availability of the rubber samples for performing complex 

tests (bi-axial, pure shear etc.), fitting any rubber constitutive model to the data was not easy. 

However, there is a lot of information concealed in the pressure vs injected volume curve, 

such as Figure 2, which can be used to fit the rubber constitutive models. This section focuses 

on the evaluation of strain energy density parameters for the 10 cases (or five hyperelastic 

models) using the volumetric data from Figure 2 and the uniaxial tensile test data.  

5.1. Data fitting algorithm 

The volumetric data fitting starts with choosing the data from the entire inflation regime in the 

pressure vs injected volume plot (Figure 2). Using the values of the injected volume, the 

deformed inner radius can be calculated from a simple relation 
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Figure 10: Critical SERR values evaluated for the test case in Figure 2 
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 ���� = ! U(��VW + �����<
 

(33) 

where V is the volume injected and lp is the pre-crack length of the specimen (50mm). 

To fit the material parameters of each hyperelastic model using the experimental data 

(inflation and tensile test data), the following cost function is minimised using the lsqnonlin 

function of MATLAB® 

 XL = Y$&��� − &��W% + �
?Z��� − 
���[����\ (34) 

Here, Pint is the fluid pressure calculated for the specific hyperelastic model using rint, Pexp is 

the fluid pressure recorded during the experiment. 
?Z��� is the uniaxial Cauchy stress 

calculated for the specific hyperelastic model and 
���[��� is the Cauchy stress recorded 

during the uniaxial tensile test. Therefore, this volumetric data fitting is aimed at minimising 

the difference between measured and predicted values of pressure and uniaxial tensile stress 

while treating the material parameters as the decision variables to be calculated.  

Figure 11: Tensile test data fitting performed using volumetric data 
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For the test case shown in Figure 2, the calculated Cauchy stress values (
?Z���) from the 

volumetric data fitting and the values from tensile test data (
���[���) are plotted against the 

axial stretch observed in the tensile tests, in Figure 11. Overall, the data fitting seem to be 

poor compared to the one for purely tensile test data (Figure 6). This is expected since the 

data fitting 

Hyperelastic Model Parameter fit from Volumetric 

Data and Uniaxial tests 

Mooney-Rivlin C1=1.44 MPa C2=0.05MPa 

Ogden Model (1st Order) α=2.88 µ=1.62MPa 

Ogden Model (2nd Order) 
α1=2.79 µ1=1.67MPa 

α2=14.04 µ2=0.03Pa 

Ogden Model (3rd Order) 

α1=2.79 µ1=1.67MPa 

α2=14.04 µ2=0.03Pa 

α3=2.8 µ3=8450Pa 

Yeoh Model (2nd Order) C1=1.31MPa C2=0.044MPa 

Yeoh Model (3rd Order) 
C1=1.31MPa C2=0.044MPa 

C3=0MPa 

Lopez-Pamies Model 

(1st Order) 

α=1.35 µ=2.52MPa 

Lopez-Pamies Model 

(2nd Order) 

α1=1.62 µ1=1.06MPa 

α2=1.62 µ2=1MPa 

Lopez-Pamies Model 

(3rd Order) 

α1=1.62 µ1=1.06MPa 

α2=1.62 µ2=1MPa 

α2=1.74 µ2=72.94Pa 

ExpLn A=1.08MPa a=-0.82 b=-0.97 

Table 2: Volumetric data fit to 10 Cauchy stress equations (5 hyperelastic models) 
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Figure 12: Thick Walled Rubber Cylinder Inflation behaviour from volumetric data fitting. Experimental data is compared 

with (a) All 5 hyperelastic models, (b) Ogden models, (c) Lopez-Pamies and ExpLn models 
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also takes into account the volumetric data. The Ogden models, Lopez-Pamies models of the 

2nd and 3rd order and the ExpLn model seem to fit the data slightly better than the other 

models. The strain energy density parameters calculated using this volumetric fitting 

technique are tabulated in Table 2. The material parameter values calculated using volumetric 

data fitting are different than those in Table 1. It is of interest to see how this fitting predicts 

the volumetric evolution of the specimen.  

Using the material parameters shown in Table 2 in conjunction with the Thick-Walled 

Cylinder Inflation Model algorithm shown in Figure 4, the evolution of pressure vs axial 

stretch ratio (λz) is plotted in Figure 12. The spread in the inflation behaviour is much smaller 

than that seen in Figure 7 indicating a better fit. In particular, the Ogden models of 2nd and 3rd 

order seem to fit the volumetric data fairly well. The Mooney-Rivlin model fits poorly, 

especially in the large strain regime.  

The SERR values calculated using these material parameters are plotted against fluid pressure 

in Figure 13. Similar to the behaviour seen in Figure 12, the SERR curves in Figure 13 do 

not show a spread even at 50bar. 
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Figure 13: SERR values calculated for 10 cases using volumetric data fitting 
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Figure 14 shows the critical SERR values evaluated from the curves shown in Figure 13 and 

considering the mean crack propagation pressure shown in Figure 2 i.e. 74.9bar. The critical 

SERR values calculated using the volumetric data fitting technique are considerably different 

from those calculated using tensile test data only (Figure 10). As mentioned above, the spread 

between the values is much smaller, ~12kJm-2, compared to the ~40kJm-2 spread observed in 

Figure 10. Therefore, the SERR evaluation from volumetric data fitting algorithm is more 

reliable than that using the tensile test data only. The average critical SERR value is 

48.1±3.9kJm-2. In Section 2.1, Gc was calculated to be 27.4kJm-2 using a general definition of 

SERR. Although the Gc values are of the same order of magnitude, the difference clearly 

justifies the need to develop the semi-analytical model presented here. 

The theoretical work presented in this article can be extended in terms of fracture surface 

analysis of the test as well. In this context, the fractured steel cord was examined with an X-

ray tomography equipment in order to investigate the fractured surfaces. It was found that a 

ca. 0.2mm thick layer of rubber remained on the steel cord at the end of the test (Figure 15). 

The thickness of the brass coating is merely 0.05-0.1μm. This indicates that the fracture 

Figure 14: Critical SERR values evaluated using the volumetric data fitting for the test case in 

Figure 2 
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propagates very close to, but not exactly at 

the interface. This should be taken into 

consideration while drawing up the global 

energy balance. The 0.2mm should be 

subtracted from the undeformed rubber 

thickness to obtain rint=0.85mm. This 

changes the SERR evaluation, however, 

there is only a minor difference in the 

SERR values compared to Figure 14. The 

average critical SERR value is 

46.5±2.2kJm-2. In reference [11], 90° peel 

tests on rubber-steel adhesion showed a 

value of Gc of ~30kJm-2. Although the rubber used in [11] had a lower carbon black content 

and the fracture was of the stick-slip type, the order of magnitude of the Gc values is the same. 

An XPS study of the fractured cord surface would reveal more about the failure mode – 

whether it is adhesive or cohesive. 

 

6. Concluding Remarks 

This work focuses on numerical analysis of the Rubber Cord Adhesion Inflation Test 

(RCAIT). The resolution technique for predicting the inflation of a hyperelastic Thick-Walled 

Cylinder and applicable to a broad range of hyperelastic models is presented. This model is 

used to evaluate the theoretical critical SERR (Gc) as a function of the stationary pressure 

measured during the crack propagation phase of RCAIT. Significant variations are observed 

Steel Cord 

Fractured rubber ≈ 0.2mm 

640µm 

Figure 15: X-ray tomography lateral cross-section of the 

fractured cord 

640µm 
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when hyperelastic law parameters are identified from simple tensile test data denoting that the 

tube inflation behaviour is not properly predicted. 

The rubber envelope expansion strongly contributes to the overall energy balance of the crack 

propagation process, due to the large stretches and multiaxial loading conditions observed 

during the test. Identifying the rubber behaviour from simple uniaxial tensile test data only is 

not relevant. Therefore, a volumetric data fitting technique is introduced where pressure-

volume data from the inflation tests along with the tensile test data are used to evaluate the 

rubber behaviour.  Using the data from the RCAIT experiment leads to drastic reduction in 

the dispersion of Gc values with respect to different hyperelastic models. Due to this data 

reduction technique, Gc evaluation is less sensitive to the rubber mechanical behaviour 

introduced in the analysis. This approach simply allows better fitting of the PΔV evolution 

needed for the energy balance analysis. Additionally, using such a model is fundamental to 

evaluate various quantities related to the rubber envelope inflation that will be needed in 

future work to take into account various dissipative and / or damage phenomena. Now that a 

reliable Gc evaluation is achieved, supplementary assessment can be achieved by comparing 

RCAIT test results with peel tests provided that both tests have similar material and loading 

conditions. 
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