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x
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Abstract—The design and implementation of agro-ecology IoT
applications is a non-trivial task since the data processed in such
applications are typically complex and heterogeneous. Moreover,
these applications are implemented using different systems and
technologies, over complex IoT communication network layers
(edge, fog, cloud). The existing system design methods fail to
effectively represent data in such a scenario. In this position
paper we report and discuss the open issues for a new, dedicated
design method, based on our initial experience in implementing
an agro-ecology IoT system.

Index Terms—Internet of Things, Big data, smart farming,
Agriculture robots

I. INTRODUCTION

In the recent years, the Internet of Things (IoT) has been
successfully applied in several different application domains,
as for example healthcare, environment, mobility, and even
agriculture [1]. IoT is the set of physically connected devices
that support computation and communication by means of dif-
ferent communication networks (e.g., ZigBee, Wi-Fi, ADSL).
As described in [2], IoT produces Big Data, which are data
mainly characterized by (at least) the 3Vs, namely Volume,

Variety, and Velocity. The usage of IoT in the agricultural
business is needed and promising. Indeed, one recent report1

estimates that in 2027 this sector will reach 34 billion USD.
Agro-ecology aims to develop new cultural practices that
respect the environment and at the same time save production
and biodiversity [3]. Agro-ecology has been recognized by all
governmental, economic, social and environmental institutions
as one the main challenges of humanity for the next 30 years.
Data used by agro-ecology models are very diverse, including
environmental, agricultural, and socio-economic data, at dif-
ferent (micro and macro) spatial and temporal scales and also
data coming from mobile autonomous robots and drones.

In the context of agriculture, IoT has been successfully
employed for different applications, e.g. agronomic surveil-
lance and livestock production. IoT leads to a revolutionary
approach for agro-ecology since it provides the stakeholders
with more precise, complete, and innovative data and their
associated analysis. In particular, at the crossroads between

1https://www.marketsandmarkets.com/Market-Reports/
iot-in-agriculture-market-199564903.html



breeding and agro-ecology, two main research topics emerge:
image recognition via neural networks to detect and recognize
the parasites on the legs of a grazing animal, and then the
geo-localization of parasites on a plot or a territory. The
monitoring of crops development and agricultural practices
using autonomous robots is another hot research topic. Agro-
ecological animal and plant breeding in the era of IoT and
Artificial Intelligence implies the usage of wireless sensors,
drones, satellite images, multimedia data, and classical data in
an integrated, coherent, and effective way.

An example of a classical IoT architecture in the agricultural
context is illustrated in Figure 1, which shows the data and
the network connections involved.

Data is collected, and sometimes computed, by IoT devices
(such as autonomous robots, tractors, meteorological sensors,
drones, etc.) deployed in the field. These IoT devices produce
real-time stream data which, when combined with other data
(such as farm data, geospatial data, images, etc.), can be used
for online analyses at the farm level. Moreover, historical
IoT data and other external data can be used to provide
more complex analyses (such as prediction models, OLAP,
etc.). Therefore, an IoT agriculture application is usually fed
with data coming from the field and historical external data
in a real-time way. All these data are deployed in different
data management systems (sensors devices, tractors’ laptops,
classical PCs, distributed servers, etc.). These data manage-
ment systems are deployed at different levels of the network
architecture (directly on the field, in the farm, in the cloud,
etc), and they communicate by means of various network
communication protocols (for example, ADSL, Wi-Fi, etc.).

Overall, agricultural IoT applications require:
• the use of complex spatio-temporal data (e.g., robot

trajectories, meteorological data);
• the use of stream data (e.g., from sensors deployed in

fields) and historical data (e.g., warehoused data on all
the aspects of an IoT system).

Moreover, agro-ecology IoT applications seem to be more
challenging than in Industry 4.0 in the following aspects:

• the use of autonomous robots and vehicles that operate
in an uncontrolled environment;

• the limited computation and communication resources
(ADSL networks, low-quality Wi-fi connections, small
laptops) deployed in rural areas;

• the involvement of stakeholders (such as farmers, re-
searchers, managers, etc.) who have heterogeneous pro-
files with different knowledge and experience in smart
farming (from farmers not skilled in IT to researchers in
robotics).

When dealing with IT applications that process complex
and heterogeneous data, the adoption of a conceptual design
step using formalisms such as UML or E/R has been widely
proved to be necessary to grant the success of projects [4].
Indeed, these formalisms make the implementation and tech-
nical issues transparent, allowing database designers and IoT
experts to focus exclusively on the functional requirements

provided by end-users. However, to the best of our knowledge,
data modeling methods for IoT agricultural applications have
not been deeply investigated so far (see [5] for a complete
survey). In this position paper, we motivate the need for a
new methodology for agro-ecology applications’ design and
implementation (Sec. II), then we present the modelling and
implementation requirements and some envisaged solutions.
Some relevant works are presented in Sec. IV. This contri-
bution is based on our findings while realizing some agro-
ecology research projects.

II. MOTIVATION

IoT in the agro-ecological context comes with new issues
that we discuss in this section.

A. What

Agro-ecology IoT data have a spatio-temporal nature since
all agronomic and bravery phenomena are geolocalized (e.g.,
plots, positions of animals and robots). These data are com-
plex, ranging from images and videos to time series pro-
duced by sensors and autonomous robots. Therefore, they
need ad-hoc conceptual representations and implementations.
Indeed, IoT systems typically rely on relational or NoSQL
database managment systems (DBMSs), data stream manage-
ment systems (DSMSs), and other components implemented in
different technologies and supporting different programming
languages, which run on heterogeneous hardware (IoT devices,
personal computers, cloud servers). Here, such complex, het-
erogeneous, and changing data will be called polyglot data.

Quality of Service (QoS) features (such as latency, data loss,
etc.) play a major role in IoT data architectures. Data provided
by a system and their QoS features are strictly related. For
example, it is likely to send images from animal drinkers
with different resolutions; robots can send one aggregated
odometry data per minute instead of one data per second,
according to the available network bandwidth. This means
that, for each piece of data, different reliable representations
must be considered by end-users. Thus, IoT data can be
represented in different ways and at different abstraction
levels (multi-representation data) according to the physical
constraints imposed by the network architecture. Clearly, each
representation can be implemented in different ways in its
corresponding system (e.g. DBMS, DSMS, sensors).

These polyglot and multi-representation data must be cor-
related to provide a global data-centric representation of IoT
data. These correlations raise several design and implementa-
tion issues since they can involve different data management
systems (collection, storage, and computation). Noticeably,
according to [6], no conceptual model allows representation
of polyglot and multi-representation data.

At the conceptual design level, the main research questions
to be faced are:

• “How to define an integrated, polyglot meta-model that
conceptually represents agro-ecological data together
with data obtained from different kinds of computations
independently of all implementation details?”,



Fig. 1: An example of an agricultural IoT architecture.

• “How to conceptually represent each agro-ecological
data entity at multiple abstraction levels, and what poli-
cies should be defined to seamlessly switch from one level
to another?”

• “Which QoS features can be specified by end-users during
design, and how to integrate them with the meta-model
and with the multi-representation policies?”

At the implementation level, the main research questions are:
• “How to generate (semi)automatic implementations of

these polyglot and multi-representation IoT data over
different data management (collection, storage, and com-
putation) systems and programming languages?”

• “How to choose the most suitable technology for agro-
ecological data management (collection, storage, and
computation) and its deployment locations over the net-
work?”

B. How

Several different data management (collection, storage, and
computation) systems have been proposed to take into account
the particularities of the data stored and queries processed
(data workload). For example, to handle very high volumes of
robots data, NoSQL DBMSs seem better suited than classical
relational ones. Therefore, in order to select the system that
best fits the type of data, we can consider the workload as a
“metadata” that must be also represented in IoT systems. To
the best of our knowledge, only [7] introduces the workload at
the conceptual level, but it addresses only NoSQL document
DBMSs.

Thus, the research questions associated to the workload are:
• “Which workload features are relevant at design time?”
• “How to integrate them in the conceptual meta-model?”

C. Where

IoT applications are characterized by a geographically-
distributed deployment of (potentially moving) devices, and a
communication network continuum over different layers (from
edge to cloud). The network layer where the data management

system is deployed must take into account the QoS features.
Therefore, QoS features on every layer play a major role in IoT
data architectures. Indeed, they can respect some functional
and non-functional requirements, such as bandwidth, which
lead to a particular placement of data and computation over
the different layers. For example, in the context of hard real-
time applications, data and computation can be deployed at the
edge level (for example on a robot) to improve performances.

Therefore, the research questions associated to QoS are:
• “Which are the relevant QoS performance indicators

to guide the deployment and the functioning of data
management systems over the different network layers
(edge, fog, or cloud): access delay, data rate, packet loss
ratio?”

• “How to obtain these indicators in a reliable way for all
layers of the network?”

• “How to exploit these QoS indicators with regard to user
experience?”.

Moreover, agro-ecology IoT data can be implemented in
different ways and locations in the IoT architecture, and only
at run time the best data management system configuration of
each data can be chosen to make the overall system resilient to
network problems. Therefore, the research question associated
to the run-time execution of the application is:

• “How to define and implement an algorithm for dynam-
ically choosing the most suitable configuration for the
overall system at run-time, making it resilient according
to the QoS indicators?”

• “Which configuration mode is most suited to enhance the
user experience depending on the application use cases?”

III. ISSUES FOR AGRO-ECOLOGY IOT APPLICATIONS’
DESIGN AND IMPLEMENTATION

In this section we present two representative scenarios, as
well as the requirements and some envisaged solutions for a
method to design and implement agro-ecology IoT applica-
tions. Some relevant works are cited that could be extended
to meet these requirements. Figure 2 shows an overview of



our proposal, and can be used as a reference for the whole
section.

A. Scenarios

Here we briefly discuss the interest of IoT for agro-
ecological practices in crops and breeding.

Crops: the use of autonomous robots and drones is more
and more frequent in agro-ecology applications, for example
for repetitive and long tasks such as plowing, picking, and
harvesting needed by agro-ecology crops practices [8].

To support this transition, autonomous robots have an essen-
tial role to play, as they have low impact on the environment
(they are light and can operate in fleets) and are able to
perform repetitive and accurate farming operations over a
long time. With special equipment and combined with data
acquisition and data processing technologies, robots are able to
autonomously perform efficient and targeted tasks in the fields,
e.g., within inter-cropping systems, while optimizing the use
of resources and main training at a high level of productivity.
When robots cannot communicate over the network due to
some of their own electronic or mechanical problems, drones
could be used in place of the robots to send data to an
information system.

Breeding: New environmental and agronomic resilient
breeding practices apply to breeding animals outdoors. Rabbits
and pigs can thus be bred outdoors, but their epidemiological
monitoring must also be done on the field. This implies that
animal health must be checked by instruments that are placed
in the field using some classical measurements tools (like
weight or movement behaviour), but also cameras. Moreover,
disease vectors can also be present on the vegetation, which
must also be monitored. Thus, outdoor breeding implies an
advanced monitoring of animals and their environment to
prevent contamination and make their natural environment
safe.

B. Design

In the context of complex polyglot data, it is important to
decouple functional requirements from the architectures and
technologies used to implement them. In this direction, we
propose to adopt the Model-Driven Architecture (MDA), an
OMG-supported approach to software design, development,
and implementation which encourages this decoupling. In our
context, MDA would allow to design polyglot and multi-
representation data-centric IoT applications, also considering
QoS network features, which are relevant at the conceptual
level for end-users. For example, the conceptual representation
of the red data entity of Figure 2 should be augmented with
multi-representation, workload, and QoS features. Moreover,
its multi-representation-aware implementation can be done in
two different data management systems, namely, a classical
PC and a sensor (polyglot data) as shown by the two red
rectangles of the Design and (semi)automatic implementation
step in Figure 2.

MDA also aims at producing rapid and error-free imple-
mentations that comply with functional requirements; this is

a mandatory feature for the development of complex systems.
Noticeably, MDA promises to streamline the design iterations,
which is very relevant in the agro-ecological context since
functional requirements are usually not clearly defined from
the beginning of the project.

Combining MDA with UML profiles, which provide a for-
mal language to design data and computation, seems a natural
choice. In particular, we propose to define a UML profile based
on a data representation with UML Class element, which has
already been successfully used to model IoT nodes associated
to other complex data (stream, spatial data, etc.) in [5]. To this
end, we plan to extend the Platform Indipendent Model (PIM)
of [5] with data types other than the ones collected by sensors
(polyglot data). A first attempt in this direction has been done
in [9]. For multi-representation data, an approach similar to the
one proposed for spatial databases could be adopted [10], since
they are based on UML Class element too. Representations
could be changed by means of ad-hoc Class methods or OCL
constraints. QoS and workloads could be added as tagged
values of these Class elements. A promising direction to obtain
a (semi)automatic implementation of these data is to extend
the Platform Specific Model (PSM) of [5], which provides
a UML model of sensor devices used to define the PSM
from the PIM representing IoT data. The PSM and the device
model proposed in [5] could be extended by considering data
management systems and networks. Finally, the workload and
QoS features defined at the PIM level will also be included in
the PSM and device model, in order to obtain coherent PSM
models and implementations with PIM models.

C. Implementation

IoT data are distributed and exchanged over a communi-
cation network. Therefore, a set of advanced network per-
formance indicators to help the deployment process of data
management systems, and to choose the right configuration at
run-time, must be proposed. For example, as shown in the Run-
time step of Figure 2, the PC data management implementation
for the red data entity, and the cloud for the blue data entity
are chosen at run-time among all the implementation solutions
defined at design time.

In particular, these performance indicators will give us an
idea about the QoS that can be expected from the network. To
meet this requirement, a promising direction is to extend the
approach presented in [11]. Because of multi-representation
of data and QoS, the corresponding data management systems
can be deployed in different network layers. This leads to
different possible implementation configurations of the same
IoT data-centric conceptual model. Therefore, an intelligent
agent methodology to choose the best implementation con-
figuration at run-time is needed. The envisioned distributed
and decentralized infrastructure requires locally implement-
ing online decisional algorithms aimed at operating optimal
allocation of resources and services to specific devices and
computation nodes. This will encourage resilience and adap-
tation in case of services or devices failure or disconnection.
In this context, the multi-agent systems paradigm is a perfect



Fig. 2: An overview of the envisaged proposal.

fit, as it provides both theoretical and practical tools to design
and develop complex systems composed of several decision
nodes. A possibility is to rely on resilient deployment and
self-organization of intelligent systems [12], where agents
with local decision rules and decision redundancy allow the
system to adapt to unexpected events. Finally, to coordinate
the autonomous mobile sensors, multi-robot and multi-agent
planning techniques could be adopted [13]. Noticeably, such a
multi-agent implementation will challenge the state-of-the-art
techniques, due the large scale of the envisioned system, the
presence of unpredictable queries and communication failures,
and the use of autonomous vehicles as mobile sensors, which
goes far beyond classical IoT-based sensing systems.

IV. RELATED WORK

The seminal paper of [14] suggests IoT and Big Data as
very promising approaches for the development of smart agro-
ecology solutions. According to the authors, the usage of sim-
ple sensors devices must be coupled with more sophisticated
devices such as smartphones, and equipment such as drones
and autonomous robots. [15] provides a complete study about
interdisciplinary of IoT and crop management, and it also
highlights the importance of the usage of mobile equipment
coupled with Big Data analysis tools. Several other works
recognize the importance of this integrated usage of different
data sources [16], [17].

Some works have been proposed for the modelling of
IoT-based applications using UML. Recently, [18] and [19]
surveyed studies on the development of IoT applications, and
classified them according to the main steps used, such as
identifying the actors, the requirements, the implementation of
a proof of concept, until the study of technical implementation

issues. [5] provides a complete survey about existing work
using UML to represent data used by IoT applications. The
authors conclude that all existing works do not provide a
sufficient abstraction level allowing to take apart technical
details of the IoT devices and networks from the data represen-
tation. According the authors, this makes difficult an agile and
effective design of the data-centric application with end-users.

The usage of multi-agent systems in IoT applications, and
recently in agriculture is more and more present, such as in
[20], where agents are used to manage the communication
network of green houses, or in [21], which uses deep reinforce-
ment learning to improve decision-making irrigation process
of crops, and [22] for pesticide use reduction. However, in the
context of autonomous agricultural robot, to the best of our
knowledge, no work applies multi-agent systems to coordinate
them with other IoT devices deployed in the field.

When dealing with real-time applications, knowing the state
of the network in terms of available throughput, delay, and
packet loss helps to adapt the required QoS. Indeed, when
the performance of the network is degraded, lowering the
QoS requirements in terms of data rate would help reduce
the packet loss. This is known as adaptive bitrate streaming
and is mainly based today on the HTTP protocol under
the name DASH (Dynamic Adaptive Streaming over HTTP)
[23]. Supervising the performance of a wireless network is a
challenging task [24]. For example, in Wi-Fi networks, many
rate adaptation methods exist that try to maximize the data
rate of transmissions depending on the quality of the link
between nodes [11]. Some of these methods are based on
implicit observations that do not require additional overhead,
but they lack in reactivity to network changes. Other methods
are explicit and react faster to network changes, but they



require sending feedback in order to inform the sender about
the quality of the link from the receiver perspective. When
the HTTP protocol is not used, new methods are needed
to adapt QoS requirements in wireless networks based on
observations of network performances. When audio and video
are transmitted, methods based on RTP (Real-Time protocol)
in conjunction with the RTCP (RTP Control Protocol) are
generally used. Other types of traffic are also critical from the
application point of view, such as control/command traffic for
remotely guiding mobile robots. Hence, the need for a general-
purpose QoS monitoring method for wireless networks.

V. CONCLUSION

Making all implementation and technological details related
to IoT transparent to agro-ecological decision-makers is a
crucial key factor to successfully create effective new agro-
ecology applications. This because decision-makers are usu-
ally not skilled in IT, hence, adopting a simple but formal
design formalism focused on the data they use will allow
them to easily interact with IT and IoT experts to define their
own agro-ecology application. In this position paper we have
listed the related requirements and research challenges from
two points of view: design and implementation. We have also
introduced two real case studies that could be used as proof
of concept for our future proposals.
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